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ON THE DUAL COMPLEXITY AND SPECTRA OF
SOME COMBINATORIAL FUNCTIONS

ABSTRACT. In arecent paper, A. M. Vershik and the author started
the study of representation-theoretic aspects of well-known combi-
natorial functions on the symmetric groups &,. The note presents
a series of further results in this direction.

§1. INTRODUCTION

In [9], A. M. Vershik and the author started the project concerned with
the study of representation-theoretic aspects of combinatorial functions on
the symmetric groups G,,. The idea is, given a combinatorial statistic a
(i.e., a function on &,, or an element of the group algebra C[&,]), to
study the representation of &, which is the restriction of the left regular
representation to the left ideal C[G]a generated by a. In particular, we
considered the notion of the dual complezity of a, originally suggested by
A. M. Vershik, which is the dimension of this representation. The statistics
considered in [9] are the major index, the descent number, and the inversion
number of a permutation. It turned out that each of them generates the
same ideal, and the corresponding representation of &,, is isomorphic to
its representation in the space of n x n skew-symmetric matrices, which al-
lowed us to obtain formulas for the functions under consideration in terms
of matrices of an exceptionally simple form, which, in turn, were applied
to find their spectra in the regular representation, as well as to deduce a
series of identities relating them to one another and to the number of fixed
points. In this note, we consider a series of further examples. First, these
are the so-called m-pattern and consecutive m-pattern functionals (see
Definitions 2 and 3), which essentially count the number of occurrences
of subsequences of length m with certain order structures in permutations
(regarded as words in the alphabet 1,2,...,n). The study of such func-
tionals (from the combinatoric point of view) goes back to Knuth [5]; for
a comprehensive survey on classical and generalized patterns, see, e.g., [3].
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The number of inversions and the number of descents studied in [9] are a
2-pattern functional and a consecutive 2-pattern functional, respectively.
In Sec. 3, we state a general result on the dual complexity of a pattern
functional (Theorem 2, Corollaries 1 and 2), and then in Sec. 4 consider
some examples, namely, the number of peaks, valleys, double ascents, and
double descents, which are 3-pattern functionals. The techniques used in
dealing with this series of examples are related to the so-called Solomon
descent algebra, so that in Sec. 2 we present the necessary background.
Another type of statistics, with a quite different behavior as regards the
representation-theoretic aspects, is considered in Sec. 5; these are the ex-
cedance number and the number of fixed points.
The author is grateful to A. M. Vershik for many fruitful discussions.

§2. THE SOLOMON DESCENT ALGEBRA AND LIE CHARACTERS OF
THE SYMMETRIC GROUP

For n € N, denote by Comp(n) the set of compositions of n and by
Part(n) the set of partitions of n.

Given a permutation o € &,, we denote by Des(o) its descent set:
Des(o) ={i e {1,...,n—1} : 0(i) > o(i + 1)}. For p = (a1,...,ax) €
Comp(n), put

B, = > o € C[G,].
o:Des(c)C{a1,a1+as,...,a1+...4+ap_1}
In particular, B(iny = ), cs. 0, and for pf) =(1,...,1,2,1,...,1) (whe-
re 2 is in the kth position) B = 2 oikgDes(s) O
The elements {Bp},ccomp(n) form a basis of a subalgebra X, of the
group algebra C[&,,] called the Solomon algebra. In [2], another important
basis {Ip}pecomp(n) Of Ln Was introduced. Denote by k(p) the number of
parts of a composition p. Given two compositions p,q € Comp(n) with
p < ¢ (i.e., p being a refinement of q), let k; be the number of parts of
p that subdivide the ith part of ¢, and denote k(p,q) = kiks...ks and
kl(p,q) = k1!ks!.. . ks!. Then the elements of the two bases are related as
follows:

(—1)k®) — (—1)k@) 1
I, = B B, = —1,.
=2 k(p,q) " ; k!(g,r)""

P<q
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In particular,

1
B(ln) = [(1n), Bpgeg) = ngez) + 5[(11;) (1)

Consider the representation

T =IdG" (6,15 x6m, ()5, (dmi [Lie1] @ ... @ Tdy, [Lieg] @ ..), (2)

where &, [6y] is the wreath product (&)™ 1 &y, and Id,,, [Liey] is the
representation of &, [Sy] constructed from the identity representation
Id,,, of &,,, and the so-called Lie representation Liey (see, e.g., [2]) of
Sk. The structure of the representation Liey is described in [4, 6] (see
also [8, Ex. 7.88]).

The following result is essentially proved in [2, Theorem 4.4] (see also [1,
Theorem 2.2 and Corollary 2.3]).

Theorem 1 ( [1,2]). Let a =Y ayzI; be an element of ¥y, and let M, be

q
the matriz of the right multiplication by a in C[&,]. Then the eigenvalues
sx of M, are indexed by the partitions A € Part(n) and

S\ = b)\ Z Qp, (3)
PA(P)=A
where by = [[mg! for X = (k™*). The restriction of the left reqular repre-
sentation of G, to the corresponding eigenspace Vy is isomorphic to Tx. In
particular, dim V), i.e., the multiplicity of the eigenvalue sy, is Z%!, where
zx = [[ k™ my!, that is, the cardinality of the conjugacy class of &, cor-
responding to \.

In particular, we have the following decomposition of the left regular
representation Reg; of &,:

(C[Gn] = Z V,\, i.e., Regl = Z X (4)
A€ePart(n) A€Part(n)
§3 THE DUAL COMPLEXITY OF PATTERN FUNCTIONALS

Recall the definition of dual complexity from [9].

Definition 1. The dual complexity dc(¢) of an element ¢ of the group
algebra C[(] is the dimension of the cyclic subspace (ideal) Ide(¢) = C[G]¢
generated by all left translations of this element.
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The purpose of this section is to study the dual complexity of so-called
pattern functionals on the symmetric groups.

Let m < n. For every element a € C[G,,] (regarded as a function on
Sm), consider the following functional on &,,:

$a(g) = > (g k... ko))

1<ki<ke<..<km<n

where the notation g|(x, .. .} = 7 for 7 € &,, means that g(k;) < g(k;)
<~ 7(i) < 7(j) for any 7,5 =1,...,m.

Definition 2. The functionals of the form ¢,, a € C[&,,], are called
m-pattern functionals.

Given a € C[&,,], denote by p, the restriction of the left regular repre-
sentation Reg; of G,, to the ideal Ide(¢,).

Theorem 2. Consider the decomposition (4), and let a€Vy, A€ Part(m).
Assume that X has m — k rows of length 1, and denote by u the diagram
of size k obtained from \ by removing all these rows. Then

pa=Indg" s (7 x Idp_y)
and, in particular, dc(¢p,) = dim 7, - (Z)
Proof. Given b € V) C C[G,,,] and 1 <
functional Ffil,...,im} on C[&,], where

F{bil,...,im}(g) = b(gl{i1,...,im}): g € C[6,].

It is not difficult to check that the subset Wy of C[&,,] spanned by Ffih...,im}
for all b € V) and all sets of m indices {iy,...,i,,} is a left ideal and the
restriction of Reg; to W) is isomorphic to Indg; w6, (TaxIdp_m). More-
over, it is clear that this ideal contains Ide(¢,). If we realize the induced
representation in the space of functions on &, /(& X G,—py) With values
in V), then ¢, corresponds to the constant function identically equal to
a € Vy.

On the other hand, since 7\, = Indg:xgm,k (1y x Idpm—s) by (2), we can
realize V) as the space of functions on &,, /(& X &y,—j) with values in V,,,
and then it is not difficult to see, using the properties of induced represen-
tations, that Ide(¢,) is in fact the space of Indg:xen,k (1 x Idp—g). O

i1 < ...< iy, < n, consider the
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Definition 3. An m-pattern functional on &, of the form ¢, where a € Vy
and X has k rows of length greater than 1 will be called a k-ary pattern
functional.

Corollary 1. For a k-ary functional ¢,, the representation p, is isomor-
phic to a representation of &, in a space of tensors of rank k.

An element a € &,, determines, along with ¢,, another natural func-

tional on &,,:
n—m-+1

Ya(g) = Z a(glgr k1, k+m—1})-

k=1

Definition 4. A functional of the form 1, is called a consecutive m-pat-
tern functional on &,,.

Corollary 2. For every a € C[6,,] we have Ide(v),) = Ide(d,), and the
conclusions of the theorem hold for 1,, too.

Proof. Follows from the proof of Theorem 2. O

§4. EXAMPLES; THE NUMBER OF PEAKS, VALLEYS, DOUBLE
ASCENTS, AND DOUBLE DESCENTS

Given A € Part(n), by 7, we denote the irreducible representation of
&,, corresponding to A.
For k < 3, from (2) we have
T(1) = T();
T(12) ~ 71'(2), 7'(2) ~ 71'(12);
T(#) X T(3)s  T(2,1) = T(21) DT(s),  T(3) ~ T(21)-
Thus, a 1-pattern functional on &, is just a constant functional, which
is 0-ary. There are no 1-ary functionals.
The set of 2-pattern functionals is spanned by the 0-ary constant func-
tionals and the 2-ary functional ¢, with a = 0. — d(1 2) € C[&2]. Clearly,
.. 1 . . T . n(n—l)
this is the centered’ number of inversions inv(g) = inv(g) — —F—. Its
dual complexity is equal to @, and the corresponding representation
is isomorphic to the representation of &,, in the space of n x n skew-
symmetric matrices. The corresponding consecutive functional v, is the

1By a centered functional we mean a functional orthogonal to the subspace of con-
stants, i.e., such that the sum of its values over all elements of the group vanishes.
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centered number of descents (iAgs(g) = des(g) — ;L. For more details,

see [9].

For k = 3, we have also the set of 3-ary functionals, for which the
corresponding representation p, is isomorphic to a representation of &,, in
the space of tensors of rank 3 and decomposes as

Indg;xen,g(ﬂ'(m) X T(n-3)) = T(n-1,1) + T(n—2,2) + T(n—2,12) + T(n-3,2,1)-
The dual complexity of such a functional is equal to W

Consider, for example, the following well-known consecutive 3-pattern
functionals v,, a € &3: the number of peaks, valleys, double ascents, and
double descents

= {ie{2,...,n—1}:0
= {ie{2,...,n—1}:0
= {ie{2,...,n—1}:0(
= {ie{2,....n—=1}:0(i—1)>0(i

It is easy to see that these functionals are of the form 1, for the functions
peaks(9) = O[132] + [231]5 Gvalleys(9) = Oj213] + [312], @dasc(g) = J[123), and
addes(9) = d[321], respectively.

Observe that all these functionals belong to the Solomon algebra, so that
Theorem 1 gives all the necessary information on the spectra. Namely, de-
note by p» ; the composition of n of the form (1,...,1,2,1,...,1) with 2 at
position j, and by ps ; the composition of n of the form (1,...,1,3,1,...,1)
with 3 at position j. Then it is easy to see that

n—2 n—2
n—2 1
peaks = Z(sz,j = Byp,;) = 3 Iany — Z Ips; + §(Ipz,1 —Ipyii)s
Jj=1 j=1

so that, in the notation of Theorem 1, we have only two nonzero eigenval-
ues:

n—2
S(1m) :n!'T, S@in-3) = —(n —3)!- (n —2),

the first one (of multiplicity 1) corresponding to the identity representa-
tion, and the second one (of multiplicity W) corresponding to the
3-ary functional obtained from the number of peaks by centering.

Obviously, exactly the same results hold for the number of valleys.
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In a similar way, we have

n—2 n—2 n—2 1 n—1
dasc = Z By, ; = 6 I(l") + Z Iy ; + ) Z(Ip2,j—1 - Ip2,j):
i=1 =1 =2

so that in this case there are three nonzero eigenvalues:

n—2
S(ln) =n! 6 y 8(211;72) = (17,72)!'(”72), 8(311;73) = (17,73)!'(”72),

of multiplicities 1, ”("2_1), and "(”_132 (n=2) respectively, corresponding to

the decomposition of dasc into a sum of a 0-ary, 2-ary, and 3-ary function-
als.

It is not difficult to see that the case of the number of double descents
differs from this one only in that the second and third eigenvalues have
the opposite sign.

§5. THE EXCEDANCE NUMBER AND THE NUMBER. OF FIXED
POINTS

In this section, we consider statistics of another type, which are not

pattern functionals and demonstrate a quite different behavior of spectra.

The excedance number of a permutation o € [S,,] is defined as follows:
exc(o) =#{i=1,...,.n—1:0() > i}.

This statistic was first studied by MacMahon [7], and it is an Eulerian
statistics, that is, its generating function is given by the Euler polynomials:

3 0 = Au(g), where > Au(g)> 4 =ge

ceS, n=0

nl etz —ge*’
It is not difficult to deduce that
n—1

Cn= ) exc(o) =n! o (5)

cEG,

Denote by uexe the corresponding element of C[G,,]:
Uexc = Z eXC(g)g € (C[Gn]
g€Gn

Theorem 3. The dual complezity of the function exc is equal to (n—1)*+1,
and Ide(uexce) coincides with the space of the primary component of the rep-
resentation m(,_11) plus the subspace of constants.
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Proof. Consider the following elements of C[S,,]:

1 . .
€ij = Z Eij(a)a, where e’:‘ij(O') = { ’ U(l) > >

oy 0 otherwise,

(6)

fori =1,...,n,j =1,...,n — 1. Then it is not difficult to see that for
every g € &,

geij = €g-1(i),j- (7)
It easily follows that for every j = 1,...,n—1, the subspace L; spanned by
e;j for i =1,...,nis invariant for Reg; and the corresponding subrepresen-

tation is isomorphic to m(,,—1,1)® (). Then the whole space L = @?;11 L;
spanned by all e;; is the primary component of the representation 7, _; 1)
plus the subspace of constants.
n
Now we obviously have uexe = > €;i, and the theorem follows. O
i=1
Theorem 4. Let Meyxe = Reg;(uexc) be the operator of the left multiplica-
tion by uexe in C[S,,]). Then the eigenvalues of Mex. are

s = n!'n; (with multiplicity 1) and
—2)! ni
S = —M, where wk:eznk, k=1,...,n—1,
].7(;.)]c

each having the multiplicity n — 1. The eigenspace of sg is the subspace of
constants, and the eigenspace corresponding to s withk=1,... n—1 is

n
span{Zw,’c"lem]’, j= 1,...,n—1}.
m=1

Remark. Another form of sy, is

1+ icot ”—f
—
Lemma 1. In each of the spaces Lj, the matriz of the operator Mex. in
the basis (6) is the following circulant matriz:

s = —n(n —2)!

an an+1 apn+2 ... ap+n-—1
(n—2) a, +n—1 an a,+1 ... a,+n—2
a, +1 a,+2 a,+3 ... Qn
(n=1)(n—2)

where a,, = 5 .



120 N. V. TSILEVICH

Proof. It follows from (7) that the entries of the matrix in question are

Mk = Z exc(o).

€S0 (i)=k

It is clear that for every i we have m;; = Cp,_1 = m-%ﬁ =(n-2)la,
by (5). Now, it is not difficult to show that for k > 1,

Z exc(o) = Z exc(o) + (n —2)1,
€S, o1 (i) =k+1 cEG,: 01 (i)=k

by considering the bijection

ek k41 ek k41
which does not change the number of excedances if = # k+1 and changes it
by 1if # = k+1. In a similar way one can check that m;_q ; = m;;+ (n—1)!

and that my_1,; = myg; — (n — 2)! for every k < i. The lemma now follows
by induction. O

Proof of Theorem 4. The theorem follows from Lemma 1 and the well-
known description of the spectrum of a circulant matrix. Namely, for the

circulant matrix with the first row (¢g, ¢,—1, ..., 2, ¢1), the eigenvalues are
given by

_ 2 n—1 h _ 2mik k=
S =CotCpn_1Wk+Cp2Wi +...+C1w,, ~, wherew, =e =1,...,n,
and the corresponding eigenvectors are (1,wg,w?, ... ,w,’;’l)T.

Now consider the number of fixed points
fix(o)=#{i=1,...,n:0() =1i}.

Theorem 5. The dual complexity of the function fix is equal to (n—1)%2+1,
and Ide(uexe) coincides with the space of the primary component of the
representation m(,_1,1) plus the subspace of constants.

Proof. The proof is similar to that of Theorem 3; it suffices to observe
that

n
Ufix = Z(ei,i—l — €ii)- O

i=1

Theorem 6. Let Max = Reg;(uax) be the operator of the left multiplication
by ugx in C[S,]. Then Mgy has two nonzero eigenvalues: so = n! with
multiplicity 1 and s; = n-(n—2)! with multiplicity (n —1)2, the eigenspace
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of so being the subspace of constants and that of si being the primary
component of the representation m(,_ 1)

Proof. Like Theorem 4, follows from the lemma below, which can be
proved similarly to Lemma 1. (I

Lemma 2. In each of the spaces L;, the matriz of the operator Mgy in
the basis (6) is the matriz whose all diagonal entries are equal to 2(n — 1)!
and all off-diagonal entries are equal to (n — 2)!(n — 2).

Denote by exc and fix the centered versions of the corresponding statis-

tics:
n—1

2 )

fix(o) = fix(o) — 1.

exc(o) = exc(o) —

Corollary 3.

Uge * Ugy, = Ugy * Ugte = (N — 2)! - Ugzc.
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