
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 462, 2017 Ç.N. V. Tsilevi
hON THE DUAL COMPLEXITY AND SPECTRA OFSOME COMBINATORIAL FUNCTIONSAbstra
t. In a re
ent paper, A. M. Vershik and the author startedthe study of representation-theoreti
 aspe
ts of well-known 
ombi-natorial fun
tions on the symmetri
 groups Sn. The note presentsa series of further results in this dire
tion.
§1. Introdu
tionIn [9℄, A. M. Vershik and the author started the proje
t 
on
erned withthe study of representation-theoreti
 aspe
ts of 
ombinatorial fun
tions onthe symmetri
 groups Sn. The idea is, given a 
ombinatorial statisti
 a(i. e., a fun
tion on Sn, or an element of the group algebra C[Sn℄), tostudy the representation of Sn whi
h is the restri
tion of the left regularrepresentation to the left ideal C[G℄a generated by a. In parti
ular, we
onsidered the notion of the dual 
omplexity of a, originally suggested byA. M. Vershik, whi
h is the dimension of this representation. The statisti
s
onsidered in [9℄ are the major index, the des
ent number, and the inversionnumber of a permutation. It turned out that ea
h of them generates thesame ideal, and the 
orresponding representation of Sn is isomorphi
 toits representation in the spa
e of n×n skew-symmetri
 matri
es, whi
h al-lowed us to obtain formulas for the fun
tions under 
onsideration in termsof matri
es of an ex
eptionally simple form, whi
h, in turn, were appliedto �nd their spe
tra in the regular representation, as well as to dedu
e aseries of identities relating them to one another and to the number of �xedpoints. In this note, we 
onsider a series of further examples. First, theseare the so-
alled m-pattern and 
onse
utive m-pattern fun
tionals (seeDe�nitions 2 and 3), whi
h essentially 
ount the number of o

urren
esof subsequen
es of length m with 
ertain order stru
tures in permutations(regarded as words in the alphabet 1; 2; : : : ; n). The study of su
h fun
-tionals (from the 
ombinatori
 point of view) goes ba
k to Knuth [5℄; fora 
omprehensive survey on 
lassi
al and generalized patterns, see, e.g., [3℄.Key words and phrases: dual 
omplexity, pattern fun
tional, ex
edan
e number.Supported by the RFBR grant 17-01-00433.112



ON THE DUAL COMPLEXITY AND SPECTRA 113The number of inversions and the number of des
ents studied in [9℄ are a2-pattern fun
tional and a 
onse
utive 2-pattern fun
tional, respe
tively.In Se
. 3, we state a general result on the dual 
omplexity of a patternfun
tional (Theorem 2, Corollaries 1 and 2), and then in Se
. 4 
onsidersome examples, namely, the number of peaks, valleys, double as
ents, anddouble des
ents, whi
h are 3-pattern fun
tionals. The te
hniques used indealing with this series of examples are related to the so-
alled Solomondes
ent algebra, so that in Se
. 2 we present the ne
essary ba
kground.Another type of statisti
s, with a quite di�erent behavior as regards therepresentation-theoreti
 aspe
ts, is 
onsidered in Se
. 5; these are the ex-
edan
e number and the number of �xed points.The author is grateful to A. M. Vershik for many fruitful dis
ussions.
§2. The Solomon des
ent algebra and Lie 
hara
ters ofthe symmetri
 groupFor n ∈ N, denote by Comp(n) the set of 
ompositions of n and byPart(n) the set of partitions of n.Given a permutation � ∈ Sn, we denote by Des(�) its des
ent set:Des(�) = {i ∈ {1; : : : ; n − 1} : �(i) > �(i + 1)}. For p = (�1; : : : ; �k) ∈Comp(n), putBp = ∑�:Des(�)⊂{�1;�1+�2;:::;�1+:::+�k−1}� ∈ C[Sn℄:In parti
ular, B(1n) = ∑�∈Sn �, and for p(2)k = (1; : : : ; 1; 2; 1; : : : ; 1) (whe-re 2 is in the kth position) Bp(2)k = ∑�:k=∈Des(�) �.The elements {Bp}p∈Comp(n) form a basis of a subalgebra �n of thegroup algebra C[Sn℄ 
alled the Solomon algebra. In [2℄, another importantbasis {Ip}p∈Comp(n) of �n was introdu
ed. Denote by k(p) the number ofparts of a 
omposition p. Given two 
ompositions p; q ∈ Comp(n) withp 6 q (i.e., p being a re�nement of q), let ki be the number of parts ofp that subdivide the ith part of q, and denote k(p; q) = k1k2 : : : ks andk!(p; q) = k1!k2! : : : ks!. Then the elements of the two bases are related asfollows: Iq = ∑p6q (−1)k(p) − (−1)k(q)k(p; q) Bp; Br = ∑q6r 1k!(q; r) Iq :



114 N. V. TSILEVICHIn parti
ular, B(1n) = I(1n); Bp(2)k = Ip(2)k + 12I(1n): (1)Consider the representation�� = IndSn
Sm1 [S1℄×:::×Smk [Sk ℄×:::(Idm1 [Lie1℄⊗ : : :⊗ Idmk [Liek℄⊗ : : :); (2)where Smk [Sk℄ is the wreath produ
t (Sk)mk ≀Smk and Idmk [Liek℄ is therepresentation of Smk [Sk℄ 
onstru
ted from the identity representationIdmk of Smk and the so-
alled Lie representation Liek (see, e.g., [2℄) of

Sk. The stru
ture of the representation Liek is des
ribed in [4, 6℄ (seealso [8, Ex. 7.88℄).The following result is essentially proved in [2, Theorem 4.4℄ (see also [1,Theorem 2.2 and Corollary 2.3℄).Theorem 1 ( [1,2℄). Let a = ∑q aqIq be an element of �n, and let Ma bethe matrix of the right multipli
ation by a in C[Sn℄. Then the eigenvaluess� of Ma are indexed by the partitions � ∈ Part(n) ands� = b� ∑p:�(p)=� ap; (3)where b� = ∏mk! for � = (kmk). The restri
tion of the left regular repre-sentation of Sn to the 
orresponding eigenspa
e V� is isomorphi
 to ��. Inparti
ular, dim V�, i.e., the multipli
ity of the eigenvalue s�, is n!z� , wherez� = ∏ kmkmk!, that is, the 
ardinality of the 
onjuga
y 
lass of Sn 
or-responding to �.In parti
ular, we have the following de
omposition of the left regularrepresentation Regl of Sn:
C[Sn℄ = ∑�∈Part(n)V�; i.e., Regl = ∑�∈Part(n) ��: (4)

§3. The dual 
omplexity of pattern fun
tionalsRe
all the de�nition of dual 
omplexity from [9℄.De�nition 1. The dual 
omplexity d
(�) of an element � of the groupalgebra C[G℄ is the dimension of the 
y
li
 subspa
e (ideal) Ide(�) = C[G℄�generated by all left translations of this element.



ON THE DUAL COMPLEXITY AND SPECTRA 115The purpose of this se
tion is to study the dual 
omplexity of so-
alledpattern fun
tionals on the symmetri
 groups.Let m 6 n. For every element a ∈ C[Sm℄ (regarded as a fun
tion on
Sm), 
onsider the following fun
tional on Sn:�a(g) = ∑16k1<k2<:::<km6n a(g|{k1;:::;km});where the notation g|{k1;:::;km} = � for � ∈ Sm means that g(ki) < g(kj)
⇐⇒ �(i) < �(j) for any i; j = 1; : : : ;m.De�nition 2. The fun
tionals of the form �a, a ∈ C[Sm℄, are 
alledm-pattern fun
tionals.Given a ∈ C[Sm℄, denote by �a the restri
tion of the left regular repre-sentation Regl of Sn to the ideal Ide(�a).Theorem 2. Consider the de
omposition (4), and let a∈V�, �∈Part(m).Assume that � has m − k rows of length 1, and denote by � the diagramof size k obtained from � by removing all these rows. Then�a = IndSn

Sk×Sn−k(�� × Idn−k)and, in parti
ular, d
(�a) = dim �� ·
(nk).Proof. Given b ∈ V� ⊂ C[Sm℄ and 1 6 i1 < : : : < im 6 n, 
onsider thefun
tional F b

{i1;:::;im} on C[Sn℄, whereF b
{i1;:::;im}(g) := b(g|{i1;:::;im}); g ∈ C[Sn℄:It is not diÆ
ult to 
he
k that the subsetW� of C[Sn℄ spanned by F b

{i1;:::;im}for all b ∈ V� and all sets of m indi
es {i1; : : : ; im} is a left ideal and therestri
tion of Regl toW� is isomorphi
 to IndSn
Sm×Sn−m(��×Idn−m). More-over, it is 
lear that this ideal 
ontains Ide(�a). If we realize the indu
edrepresentation in the spa
e of fun
tions on Sn=(Sm ×Sn−m) with valuesin V�, then �a 
orresponds to the 
onstant fun
tion identi
ally equal toa ∈ V�.On the other hand, sin
e �� = IndSm

Sk×Sm−k (��× Idm−k) by (2), we 
anrealize V� as the spa
e of fun
tions on Sm=(Sk×Sm−k) with values in V�,and then it is not diÆ
ult to see, using the properties of indu
ed represen-tations, that Ide(�a) is in fa
t the spa
e of IndSn
Sk×Sn−k(�� × Idn−k). �



116 N. V. TSILEVICHDe�nition 3. Anm-pattern fun
tional on Sn of the form �a where a ∈ V�and � has k rows of length greater than 1 will be 
alled a k-ary patternfun
tional.Corollary 1. For a k-ary fun
tional �a, the representation �a is isomor-phi
 to a representation of Sn in a spa
e of tensors of rank k.An element a ∈ Sm determines, along with �a, another natural fun
-tional on Sn:  a(g) = n−m+1∑k=1 a(g|{k;k+1;:::;k+m−1}):De�nition 4. A fun
tional of the form  a is 
alled a 
onse
utive m-pat-tern fun
tional on Sn.Corollary 2. For every a ∈ C[Sm℄ we have Ide( a) = Ide(�a), and the
on
lusions of the theorem hold for  a, too.Proof. Follows from the proof of Theorem 2. �

§4. Examples; the number of peaks, valleys, doubleas
ents, and double des
entsGiven � ∈ Part(n), by �� we denote the irredu
ible representation of
Sn 
orresponding to �.For k 6 3, from (2) we have�(1) ≃ �(1);�(12) ≃ �(2); �(2) ≃ �(12);�(13) ≃ �(3); �(2;1) ≃ �(21) ⊕ �(13); �(3) ≃ �(21):Thus, a 1-pattern fun
tional on Sn is just a 
onstant fun
tional, whi
his 0-ary. There are no 1-ary fun
tionals.The set of 2-pattern fun
tionals is spanned by the 0-ary 
onstant fun
-tionals and the 2-ary fun
tional �a with a = Æe − Æ(1;2) ∈ C[S2℄. Clearly,this is the 
entered1 number of inversions ĩnv(g) = inv(g) − n(n−1)4 . Itsdual 
omplexity is equal to n(n−1)2 , and the 
orresponding representationis isomorphi
 to the representation of Sn in the spa
e of n × n skew-symmetri
 matri
es. The 
orresponding 
onse
utive fun
tional  a is the1By a 
entered fun
tional we mean a fun
tional orthogonal to the subspa
e of 
on-stants, i.e., su
h that the sum of its values over all elements of the group vanishes.



ON THE DUAL COMPLEXITY AND SPECTRA 117
entered number of des
ents d̃es(g) = des(g) − n−12 . For more details,see [9℄.For k = 3, we have also the set of 3-ary fun
tionals, for whi
h the
orresponding representation �a is isomorphi
 to a representation of Sn inthe spa
e of tensors of rank 3 and de
omposes asIndSn
S3×Sn−3(�(2;1) × �(n−3)) = �(n−1;1) + �(n−2;2) + �(n−2;12) + �(n−3;2;1):The dual 
omplexity of su
h a fun
tional is equal to n(n−1)(n−2)3 .Consider, for example, the following well-known 
onse
utive 3-patternfun
tionals  a, a ∈ S3: the number of peaks, valleys, double as
ents, anddouble des
entspeaks(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) < �(i) > �(i+ 1)};valleys(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) > �(i) < �(i+ 1)};das
(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) < �(i) < �(i+ 1)};ddes(�) = {i ∈ {2; : : : ; n− 1} : �(i− 1) > �(i) > �(i+ 1)}:It is easy to see that these fun
tionals are of the form  a for the fun
tionsapeaks(g) = Æ[132℄ + Æ[231℄, avalleys(g) = Æ[213℄ + Æ[312℄, adas
(g) = Æ[123℄, andaddes(g) = Æ[321℄, respe
tively.Observe that all these fun
tionals belong to the Solomon algebra, so thatTheorem 1 gives all the ne
essary information on the spe
tra. Namely, de-note by p2;j the 
omposition of n of the form (1; : : : ; 1; 2; 1; : : : ; 1) with 2 atposition j, and by p3;j the 
omposition of n of the form (1; : : : ; 1; 3; 1; : : : ; 1)with 3 at position j. Then it is easy to see thatpeaks = n−2∑j=1(Bp2;j −Bp3;j ) = n− 23 I(1n) − n−2∑j=1 Ip3;j + 12(Ip2;1 − Ip2;n−1);so that, in the notation of Theorem 1, we have only two nonzero eigenval-ues: s(1n) = n! · n− 23 ; s(31n−3) = −(n− 3)! · (n− 2);the �rst one (of multipli
ity 1) 
orresponding to the identity representa-tion, and the se
ond one (of multipli
ity n(n−1)(n−2)3 ) 
orresponding to the3-ary fun
tional obtained from the number of peaks by 
entering.Obviously, exa
tly the same results hold for the number of valleys.



118 N. V. TSILEVICHIn a similar way, we havedas
 = n−2∑j=1 Bp3;j = n− 26 I(1n) + n−2∑j=1 Ip3;j + 12 n−1∑j=2(Ip2;j−1 − Ip2;j );so that in this 
ase there are three nonzero eigenvalues:s(1n) = n!·n− 26 ; s(21n−2) = (n−2)!·(n−2); s(31n−3) = (n−3)!·(n−2);of multipli
ities 1, n(n−1)2 , and n(n−1)(n−2)3 , respe
tively, 
orresponding tothe de
omposition of das
 into a sum of a 0-ary, 2-ary, and 3-ary fun
tion-als.It is not diÆ
ult to see that the 
ase of the number of double des
entsdi�ers from this one only in that the se
ond and third eigenvalues havethe opposite sign.
§5. The ex
edan
e number and the number of fixedpointsIn this se
tion, we 
onsider statisti
s of another type, whi
h are notpattern fun
tionals and demonstrate a quite di�erent behavior of spe
tra.The ex
edan
e number of a permutation � ∈ [Sn℄ is de�ned as follows:ex
(�) = #{i = 1; : : : ; n− 1 : �(i) > i}:This statisti
 was �rst studied by Ma
Mahon [7℄, and it is an Eulerianstatisti
s, that is, its generating fun
tion is given by the Euler polynomials:

∑�∈Sn qex
(�) = An(q); where ∑n>0An(q)znn! = (1− q)ezeqz − qez :It is not diÆ
ult to dedu
e thatCn = ∑�∈Sn ex
(�) = n! · n− 12 : (5)Denote by uex
 the 
orresponding element of C[Sn℄:uex
 = ∑g∈Sn ex
(g)g ∈ C[Sn℄:Theorem 3. The dual 
omplexity of the fun
tion ex
 is equal to (n−1)2+1,and Ide(uex
) 
oin
ides with the spa
e of the primary 
omponent of the rep-resentation �(n−1;1) plus the subspa
e of 
onstants.



ON THE DUAL COMPLEXITY AND SPECTRA 119Proof. Consider the following elements of C[Sn℄:eij = ∑�∈Sn "ij(�)�; where "ij(�) = {1; �(i) > j;0 otherwise; (6)for i = 1; : : : ; n, j = 1; : : : ; n − 1. Then it is not diÆ
ult to see that forevery g ∈ Sn, geij = eg−1(i);j : (7)It easily follows that for every j = 1; : : : ; n−1, the subspa
e Lj spanned byeij for i = 1; : : : ; n is invariant for Regl and the 
orresponding subrepresen-tation is isomorphi
 to �(n−1;1)⊕�(n). Then the whole spa
e L = ⊕n−1j=1 Ljspanned by all eij is the primary 
omponent of the representation �(n−1;1)plus the subspa
e of 
onstants.Now we obviously have uex
 = n∑i=1 eii; and the theorem follows. �Theorem 4. Let Mex
 = Regl(uex
) be the operator of the left multipli
a-tion by uex
 in C[Sn℄. Then the eigenvalues of Mex
 ares0 = n! · n− 12 (with multipli
ity 1) andsk = −
n(n− 2)!1− !k ; where !k = e 2�ikn ; k = 1; : : : ; n− 1;ea
h having the multipli
ity n− 1. The eigenspa
e of s0 is the subspa
e of
onstants, and the eigenspa
e 
orresponding to sk with k = 1; : : : ; n− 1 isspan{ n∑m=1!m−1k emj ; j = 1; : : : ; n− 1} :Remark. Another form of sk issk = −n(n− 2)! · 1 + i 
ot �kn2 ; k = 1; : : : ; n− 1:Lemma 1. In ea
h of the spa
es Lj, the matrix of the operator Mex
 inthe basis (6) is the following 
ir
ulant matrix:(n− 2)! ·  an an + 1 an + 2 : : : an + n− 1an + n− 1 an an + 1 : : : an + n− 2: : :an + 1 an + 2 an + 3 : : : an 

 ;where an = (n−1)(n−2)2 .



120 N. V. TSILEVICHProof. It follows from (7) that the entries of the matrix in question aremik = ∑�∈Sn:�−1(i)=k ex
(�):It is 
lear that for every i we have mii = Cn−1 = (n−1)!(n−2)2 = (n− 2)!anby (5). Now, it is not diÆ
ult to show that for k > i,
∑�∈Sn:�−1(i)=k+1 ex
(�) = ∑�∈Sn:�−1(i)=k ex
(�) + (n− 2)!;by 
onsidering the bije
tion

( : : : k k + 1 : : :: : : x i : : : )
↔

( : : : k k + 1 : : :: : : i x : : : ) ;whi
h does not 
hange the number of ex
edan
es if x 6= k+1 and 
hanges itby 1 if x = k+1. In a similar way one 
an 
he
k that mi−1;i = mii+(n−1)!and that mk−1;i = mki − (n− 2)! for every k < i. The lemma now followsby indu
tion. �Proof of Theorem 4. The theorem follows from Lemma 1 and the well-known des
ription of the spe
trum of a 
ir
ulant matrix. Namely, for the
ir
ulant matrix with the �rst row (
0; 
n−1; : : : ; 
2; 
1), the eigenvalues aregiven bysk = 
0+
n−1!k+
n−2!2k+ : : :+
1!n−1k ; where !k = e 2�ikn ; k = 1; : : : ; n;and the 
orresponding eigenve
tors are (1; !k; !2k; : : : ; !n−1k )T : �Now 
onsider the number of �xed points�x(�) = #{i = 1; : : : ; n : �(i) = i}:Theorem 5. The dual 
omplexity of the fun
tion �x is equal to (n−1)2+1,and Ide(uex
) 
oin
ides with the spa
e of the primary 
omponent of therepresentation �(n−1;1) plus the subspa
e of 
onstants.Proof. The proof is similar to that of Theorem 3; it suÆ
es to observethat u�x = n∑i=1(ei;i−1 − eii): �Theorem 6. LetM�x = Regl(u�x) be the operator of the left multipli
ationby u�x in C[Sn℄. Then M�x has two nonzero eigenvalues: s0 = n! withmultipli
ity 1 and s1 = n · (n−2)! with multipli
ity (n−1)2, the eigenspa
e



ON THE DUAL COMPLEXITY AND SPECTRA 121of s0 being the subspa
e of 
onstants and that of s1 being the primary
omponent of the representation �(n−1;1).Proof. Like Theorem 4, follows from the lemma below, whi
h 
an beproved similarly to Lemma 1. �Lemma 2. In ea
h of the spa
es Lj , the matrix of the operator M�x inthe basis (6) is the matrix whose all diagonal entries are equal to 2(n− 1)!and all o�-diagonal entries are equal to (n− 2)!(n− 2).Denote by ẽx
 and �̃x the 
entered versions of the 
orresponding statis-ti
s: ẽx
(�) = ex
(�) − n− 12 ; �̃x(�) = �x(�)− 1:Corollary 3. uẽx
 ∗ u�̃x = u�̃x ∗ uẽx
 = n(n− 2)! · uẽx
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