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COMBINATORIAL ENCODINGS OF INFINITE
SYMMETRIC GROUPS AND DESCRIPTIONS OF
SEMIGROUPS OF DOUBLE COSETS

ABSTRACT. Spaces of double cosets of infinite symmetric groups
with respect to some special subgroups admit natural structures
of semigroups. Elements of such semigroups can be interpreted in
combinatorial terms. We present a description of such constructions
in a relatively wide degree of generality.

Let G be an infinite-dimensional group and K be a subgroup. Quite
often, the double coset space K \ G/K admits a natural multiplication.
Moreover, for any unitary representation of G, the semigroup K \ G/K
acts in the space of K-fixed vectors. The first example of such a multipli-
cation was discovered by R. S. Ismagilov in the 1960s, later several series
of constructions of this type for classical and symmetric groups were ex-
amined by Olshanski (for the case of symmetric groups, see [15]). In [7],
it was observed that this phenomenon is quite general; however, it seemed
that the spaces K \ G/K themselves are unhandable objects. In [9], an
explicit geometric description was obtained of the semigroups K \ G/K
for the case of G = Sy X Soo X Soo (Where Sy, is the infinite symmetric
group) and K a diagonal subgroup, in terms of two-dimensional surfaces
and their cobordisms. In the preprint [8], the construction was general-
ized to numerous pairs (G, K) related to infinite symmetric groups. Later,
constructions of the preprint [8] were extended in [1,10,11]. However, [8]
has a “dogmatic part” containig descriptions of the semigroups K \ G/K
in wide generality (G and K are products of symmetric groups; also, we
admit wreath products); this part is the topic of the present paper. Proofs
are omitted, because they are one-to-one copies of the proofs given in [10].

It seems that our constructions can be interesting for finite symmetric
groups; we give descriptions of various double coset spaces and also produce
numerous “parametrizations” of symmetric groups.

Key words and phrases: triangulations, polygonal surfaces, bipartite graphs, unitary
representations, representations of categories.
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§1. (G, K)-PAIRS AND THEIR TRAINS. DEFINITIONS AND
A PRIORI THEOREMS

1.1. Notation. — N is the set of positive integers.
— M(«) is the initial segment {1,2,...,a} of N.
— N, No, ... are disjoint copies of the set N.
— M () are the initial segments {1,2,...,a} of N;.
—I(¢) are finite sets with ¢ elements.
— U, ][ are symbols for the disjoint union of sets.

— S, is the finite symmetric group of order n (the group of all permu-
tations of {1,2,...,n}).

1.2. The infinite symmetric group. For a countable set 2, denote
by S () the group of all finitely supported permutations of 2. Denote
Seo(N) by S.
We represent permutations by infinite 0-1 matrices in the usual way.
By S%, C S we denote the group of permutations having the form

(1, 0
=57

where 1, is the unit o X o matrix.
Let K = Seo(N1) X -+ X Seo(Np). For a multi-index o = (a1, ..., qp),
we define a subgroup K C K:

K% :=8S3(Ny) x -+ x S (Np).

1.3. The topological infinite symmetric group. Denote by S the
group of all permutations of N. Define the subgroups S& C S, as above.
Define a topology on S assuming that S form a fundamental systems of
open neighborhoods of the identity. In other words, a sequence o; converges
to o if for any k € N we have ok = ok for sufficiently large j. The group
S, is a totally disconnected topological group®.

A classification of irreducible unitary representations of S., was ob-
tained by Lieberman [6], see expositions in [7,14]. Let & = 0,1,2,...,
and let 7 be an irreducible representation of S,. Consider the subgroup
Sa X S C So. Consider the represetation 7 ® 1 of S, x S&, where 1

(e op)
denotes the trivial (one-dimensional) representation of S , and the cor-

oo

responding induced representation of S.,. Note that the quotient space

LThis is the unique structure of a separable topological group on S, see [3].
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Seo/SE = Soo /S, is countable and, therefore, the induced representation
is well defined (see, e.g., [5, 13.2]).

Theorem 1.1. a) Every irreducible representation of S is induced from
a representation of the from T ® 1 of a subgroup S, x S&,.

b) Every unitary representation of Soo is a direct sum of irreducible
representations.

In a certain sense, the Lieberman theorem opens and closes the repre-
sentation theory of the group S.,. However, it is an important element of
wider theories.

1.4. Reformulations of continuity. Let p be a unitary representation
of S in a Hilbert space H. Denote by H* C H the subspace of all S& -
fixed vectors. We say that a representation p is admissible if UH® is dense
in H.

Denote by B, the semigroup of matrices composed of 0 and 1 such
that each row and each column contains < 1 ones. We equip B, with the
topology of element-wise convergence; the group Sy, is dense in B,.

Theorem 1.2 (see [7,14]). The following conditions are equivalent:
— p is continuous in the topology of Soo;
— p is admissible;

— p admits a continuous extension to the semigroup Bo.

This statement has a straightforward extension to products of symmet-
ric groups K =S, X -++ X S.

1.5. Wreath products. Let U be a finite group. Consider the countable
direct product U :=U x U x U X ...; it is a group whose elements are
all infinite sequences (1, us, . . . ). Consider also the restricted product U,
whose elements are all sequences such that u; = 1 for sufficiently large j.
The group U is equipped with the direct product topology, the group
U= is discrete.

Permutations of sequences (uj,us,...) induce automorphisms of U
and U*°. Consider the semidirect products K := S,o x U and K :=
Soo X U™, see, e.g., [5, 2.4]; they are called the wreath products of Sy
and U.

Our main example is the wreath product of S, and a finite symmetric
group Si. We realize it as a group of finite permutations of N x I(k). The
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a) The group S X (Sg)°°. The group S, acts by permutations of
columns. The normal subgroup (Si)>° permutes elements in each column.
The semidirect product consists of the permutations preserving the
partition of the strip into columns.
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b) The group Se X (Sk, X -+ X Sk,)*°. The group S, acts by
permutations of columns. The normal subgroup acts by permutations
inside each subcolumn.

Fig. 1. Wreath products.

group S, acts by permutations of N, and the subgroups Sy C (Sk)> act
by permutations of the sets {m} x {1,...,k}, see Fig. la.
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1.6. Representations of wreath products. For K = S, x U, we
define a subgroup K* as the semidirect product of S and the subgroup
U™ :=1x---x1xUxUXx....

—_———

a times

For a unitary representation p of K in a Hilbert space H, we denote by
H® the space of K“-fixed vectors. We say that p is admissible if U, H?* is
dense in H. A unitary representation of K = S, x U™ is admissible if and
only if it is continuous in the topology of the group K = S, x U,

1.7. (G, K)-pairs. See Fig. 2. Fix positive integers ¢, p and a ¢ X p matrix
Z = A{Gi}

consisting of nonnegative integers. Assume that it has no zero columns and
NO Zero rows.

A
Fix a collection A = | : | of nonnegative integers. Fix sets Li,..., L,
Aq
such that L; has A; elements. Consider the collection of sets

Ni X ]I(ng)

Denote by §2; the disjoint union

Qj = Lj L H (Nz X H(C]t))

i<p

(we assume that all sets ; obtained in this way are mutually disjoint).
Set

q q

G:=GIZA =]][Sx(®), G:=G[Z,A]=]]Sx(®).
=1 j=1

Next, we define the following subgroup K° C G[Z, A]:

14

K° = K°[2] = H(Sm(Ni) X (H Sgﬁ)oo),

i=1

and its completion K° C G[Z, A]:

K° = K°[2] := Zf[l(soo(l\li) X (H Scji)oo).
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a) The set U_, UT_; (N; x I(¢j;)). Here ¢ =4, p=3, A =0, and
0 0 1
1 51 .
Z= 5 0 4 . The groups Soo (1), Seo(22), Seo(23), Seo(24) consist
4 2 1

of permutations of the sets ;. The group G is the product of Soo(£2;).
The groups Seo(N1), Seo(N2), Seo(N3) act by permutations of columns
(inside the given N;). The subgroup K® C G is the product
Soo(N1) X Soo (N2) X Seo(N3). For each column we have the group of all
permutations inside the column preserving subcolumns. The group K° is
generated by K® and all such subgroups. In our case,
K° = (Soo(Nl)D((SQ XS4)OO) X (SOO(NQ)[X(SE’,XS2)OO) X (SOO(N2)D((S4)OO)

b) A picture with a nonzero L; (surrounded by a circle).

Fig. 2. Reference to Sec. 1.

Also, we define the following subgroup in G[Z, A]:
p
K®[2]:= [[ =) € K°[Z],
i=1

and its completion
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Below, (G, K) denotes a pair (group, subgroup) of the form
(G, K) = (GIZ,ALK°[Z)  or  (G,K)=(G[Z,A],K®[2)).

REMARK. One can also consider intermediate wreath products K be-
tween K°[Z] and K®[Z]; below we consider one example from this zoo.

1.8. Colors, smells, melodies. We wish to draw figures, also we want
to have a more flexible language.

a) To each ; we assign a color, say red, blue, white, red, green, etc.
We also think that a color is an attribute of all points of ;. We denote
colors by J;.

b) Next, to each N; we assign a smell X;, say Magnolia, Matricana,
Pinus, Ledum, Rafflesia, etc. In figures, we denote smells by A, X, 0, .... We
also think that a smell N; is an attribute of all points of (N; x I({j;)) C Q.

c) Orbits of the group S (N;) on 2; are one-point orbits or countable
homogeneous spaces S, /SL, =~ N. To each countable orbit we assign a
melody, say, violin, harp, tomtom, flute, drum, .... In figures, we denote
melodies symbols ©, =, V, £, i, etc. Note that a melody makes sense after
fixing a smell and a color.

Example. See Fig. 2c. We have a 4 x 3 table. Boxes are distinguished
by colors, columns (corresponding to Ny, No, ...) are by distinguished
smells. Rows inside the intersection of a box and a column are indexed by
melodies.

1.9. Admissible representations. Let p be a unitary representation of
G. We say that p is a K -admissible representation if the restriction of p to
K is admissible. Equivalently, we say that p is a representation of the pair

(G, K).

1.10. Reformulation of admissibility in terms of continuity. The
embedding K — G admits an extension to a map K — G of the corre-
sponding completions. Consider the group

Gk =G-KCG

generated by G and K. Any element of Gk admits a (nonunique) repre-
sentation as gk where g € G, k € K.

We consider the natural topology on the subgroup K and assume that
K is an open-closed subgroup in Gk.
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Proposition 1.3. A unitary representation of G is K-admissible if and
only if it is continuous in the above sense.

1.11. Lemma on admissibility.

Lemma 1.4. Let p be an irreducible unitary representation of G. If H* # 0
for some «, then the representation p is K-admissible.

Proof. Consider the subspace H := UH®. Fix g € (. For sufficiently
large 3, the element g commutes with K?. Therefore, H is g-invariant.
The closure of H is a subrepresentation. O

Corollary 1.5. If an irreducible unitary representation of G has a K -fixed
vector, then it is K-admissible.

1.12. The existing representation theory. A well-developed existing
theory is related to the pair G = Sy, X S and the diagonal subgroup

K = S, see [4,13,15]. In our notation, £ = 1). The representation

1
theory of this pair includes also earlier works on the Thoma characters [17],
see [18].

Olshanski [15] also considered the following pairs:

1 0
-G =S50, K =So X Sy in our notation, Z = (1 1).
-G = S200, K =S XZ3°, and also G = Syooy1 With the same subgroup
K. In our notation, Z = (2) and A =0or 1.
In all these cases, the pairs (G, K) are limits of spherical pairs of finite
groups.
Nessonov [12] considered the case Z = (1 ... 1) and described all

K ®-spherical representations of G(Z;0). Note that this result has no finite-
dimensional counterpart.

— G = Seot1 X Soo, K = Soo; in our notation, Z = <1>, A= (1)

1.13. Trains. Consider the following (a+ N + N +00) X (a+ N + N +00)
matrix @Ef;] € Seo:

1, 0 0 0
o |0 0 1y O

O =10 14y 0 o0 |€5=
0 0 0 1.
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In fact, @Ef;] is contained in S&.
Consider a pair (G, K). For a multi-index o = (o, ..., ap), we denote
by @53] the element

o) = (ef,...,05) e K.
Again, @[ﬁ] € K@.
Fix multi-indices a, 3, . Consider double cosets
he K°\G/K*,  geK"\G/K",
and choose their representatives g € g, h € . Consider the sequence
fv=g0heaq.
Consider the double coset fy containing fn,
fv € K"\ G/K*".
Theorem 1.6. a) The sequence fn is eventually constant.
b) The limit
gob:= lim fy
does not depend on the choice of representatives g, h.
c) The product o obtained in this way is associative, i.e., for any
g€ K°\G/K", heK'\G/K’,  feK°\G/K?,
we have
(goh)of=go(hof).

Thus we obtain a category T(G, K), whose objects are multi-indices
and morphisms a — 3 are elements of K” \ G/K®. We say that T(G, K)
is the train of the pair (G, K).

1.14. The involution in the train. The map g — ¢~ ! induces a map
of the quotient spaces K\ G/K? — K%\ G/K*®, we denote it by

Obviously,
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1.15. Representations of the train. Now let p be a unitary represen-
tation of the pair (G, K). We define subspaces H* as above and denote
by P® the orthogonal projection to H®. For g € K\ G/K®, choose a
representative g € g. Consider the operator

Pa,s(9) == P’plg) : H* — HP.
By definition, we have
[Pa,s(9)ll < 1. (1)

Theorem 1.7. a) The operator p, 5(g) depends only on the double coset
g containing g.

b) We obtain a representation of the category T(G, K), i.e., for any
ge K"\G/K?,  heK°\G/K",
the following identity holds:

75,4(8) Pa,3(0) = Pay(g0).

c) We obtain a x-representation, i.e.,

(ﬁa,ﬂ(g))* = ﬁﬁ,a(gm)'
d) The operator p(©%;) weakly converges to the projection P%.

Theorem 1.8. Our construction provides a bijection between the set of all
unitary representations of the pair (G, K) and the set of all x-representations
of the category T(G, K) satisfying condition (1).

We omit the proofs of Theorems 1.6-1.8 and Theorem 1.9 formulated
below, because they are literal copies of the proofs in [10].

Our main purpose is to give an explicit description of trains; also, we
give some constructions of representations of groups.

1.16. Sphericity.

Theorem 1.9. Let (G,K) = (G[Z,A],K°[Z]) or (G[Z,A], K®[Z]), as
above. If A = 0, then the pair (G, K) is spherical. In other words, for
every irreducible unitary representation of (G, K), the dimension of the
space of K -fixed vectors is < 1.



COMBINATORIAL ENCODINGS 75

1.17. The structure of the rest of the paper. In the next section,
we recall a definition of tensor products of Hilbert spaces. In Sec. 3, we
consider three examples. In Secs. 4, 5, we present a description of trains
for arbitrary pairs

(G(2,0),K°[2]),  (G(Z,A),K®[Z]).

§2. TENSOR PRODUCTS OF HILBERT SPACES

Here we recall a definition of an infinite tensor product of Hilbert spaces,
see the detailed von Neumann’s paper [16] or a short introduction in the
addendum to [2].

2.1. Definition of tensor products. Let Hy, H>, ...be a countable
collection of Hilbert spaces (they can be finite-dimensional or infinite-
dimensional). Fix a unit vector & € Hy in each space. The tensor product

(H1,61) @ (H2,&) @ (H3,&3) @ ...

is defined in the following way. We choose an orthonormal basis e;[k] in
each Hj, assuming that e;[k] = &. Next, we consider the Hilbert space
with the orthonormal basis

ea,[1]®ea,[2]® ...

such that e, [N] = &y for sufficiently large N (note that this basis is
countable).

The construction substantially depends on the choice of distinguished
vectors. The spaces @(Hy, &) and ®(Hy,ni) are canonically isomorphic if
and only if

> 1&,my) —1] < oo
In particular, we can omit distinguished vectors in a finite number of fac-

tors (more precisely, we can choose them in an arbitrary way).

2.2. The action of symmetric groups in tensor products. The sym-
metric groups S, act in the tensor powers H®" by permutations of factors.
This phenomenon has a straightforward analog.

We denote by

(H,6)®>® := (H,6) @ (H,6) @ ...

the infinite symmetric power of (H, ¢).
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Proposition 2.1. a) The complete symmetric group S acts in (H,£)®>®
by permutations of factors. The representation is continuous with respect
to the topology of Seo.

b) The vector £2°° is a unique Soo-fived vector in (H,£)®>°.

c) The subspace of S -fixed vectors is
H®* @ 9%,

Proposition 2.2. Fix a sequence & of unit vectors in a Hilbert space H.
The symmetric group Seo acts in the tensor product @y (H, &) by permu-
tations of factors.

We emphasize that in this case there is no action of the complete sym-
metric group Seo-

§3. AN EXAMPLE: TRIANGULATED SURFACES

3.1. The group. Let Z = (3) and A > 0 be arbitrary. First, we consider
the pair
(G(2,A),K°(2)) = (Sxt800;Se0 X (53)7) -
We reduce the subgroup and set
K =S x (Z3),

where Z3 C S3 is the group of cyclic permutations (or, equivalently, the
group of even permutations).
Now

Q=LuU(NxI(@3)).
Let a > 0; we define a set (), as the set of all fixed points of K¢,
Q[a] =LU (M(a) X ]1(3))

Thus, we have only one color, only one smell, but three melodies, say
harp (V), violin (V), tube (>).

Remark. Let A > 3. Then the operation A — X\ — 3 does not change
the topological group Gk . Indeed, we can add one point to the set N and
exclude three points from L. Therefore, we may consider only the cases
A=0,1,2.
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k + k —

\Y \Y

a) A plus-triangle and a minus-triangle.

4+
W

b) A plus-tag and a minus-tag.

Fig. 3. Reference to Sec. 3.2. Items for a complex.

3.2. The encoding of elements of the symmetric group. Fix
a,B = 0.
First, we take the following collection of items (see Fig. 3).

A. Plus-triangles and minus-triangles. To each element k € N we assign
a pair of oriented triangles T’ (k) with label k. We write the labels V,
Q, = on the interiors of the sides of T (k) (respectively, T_(k)) clockwise
(respectively, counter-clockwise).

An important remark: a number k and a melody determine some ele-
ment w € Q.

B. Plus-tags and minus-tags. To each element w € () we assign two
oriented segments D4 (w) with tags, see Fig. 3. We write the label w and the
label “+” (respectively, “—”) on the segment Ty (w) (respectively, T_(w)).

We take the following collection of items:

Ty (k) where k> T_(l) wherel > f;

D, (w) where w € Q[a]; D_(w) where w € Q[f].

Each element of 2 is present on precisely one edge of one item T (k)
or D, (w) (and, respectively, on one item T (k) or D_(w)).
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A piece of a complex. Removing the numbers and the melodies >, V, O
(and leaving the signs and the labels on the tags), we pass to double
cosets.

TS
>

Fig. 4. Reference to Secs. 3.2-3.3.

%

Fix an element g € S (Q2). For each w € Q, we identify (keeping in
mind the orientations) the edge of 7' (-) or D, (-) labeled by w with the
edge of T_(-) or D_(-) labeled by gw.
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w
1/J —

a) A degenerate component. An edge with two tags.

1 — I -
/0 =\~ /9 =\V
k+ k+
\V/ \Y
b) v 0) 0

This is the stereographic projection of a sphere and a graph on the
sphere. A pure envelope (b) and an envelope (c).

Fig. 5. Reference to Secs. 3.2-3.3.

In this way, we obtain a two-dimensional oriented triangulated surface
E(g) with tags on the boundary. Our picture satisfies the following prop-
erties:

(i) The surface consists of a countable number of compact components.

(ii) Each component is a two-dimensional oriented triangulated surface
with tags on the boundary (we allow also a segment with two tags, see
Fig. 5a).

(iii) All triangles and tags have labels “+” or
have different signs.

[43

—”, neighboring objects

(iv) The plus-triangles (respectively, minus-triangles) are indexed by
a+1,a+2, a+3, ... (respectively, 3+1, 8+2, 8+3,...).
(v) The sides of plus-triangles are labeled (from the interior) by V, ©,

> clockwise. The sides of minus-triangles are labeled by the same symbols
counter-clockwise.

(vi) The plus-tags are indexed by the elements of )[,; the minus-tags,
by the elements of (5.
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(vii) Almost all components are spheres composed of two triangles, and
the melodies on the sides of the edges coincide.

We regard such surfaces up to combinatorial equivalence.

Lemma 3.1. FEvery surface equipped with the data described above has
the form Elg]. Different elements g € Soo(Q) produce different equipped
surfaces.

Proof. We present the inverse construction. Above, we have assigned two
elements of 2 to each edge. Let i correspond to the plus-side, v correspond
to the minus-side. Then g sends u to v. O

Thus we obtain a bijection.

Now we need a technical definition. We say that an envelope is a com-
ponent consisting of two triangles. We say that an envelope is pure if the
melodies on both sides of each edge coincide (see Fig. 5).

3.3. The projection to double cosets.

Lemma 3.2. The right multiplications g — gh by elements of S% (N)
correspond to permutations of the labels a + 1, a+ 2, a + 3, ... on plus-
triangles. Correspondingly, the left multiplications by elements of S5 (N)
correspond to permutations of the labels on minus-triangles.

Lemma 3.3. The right multiplications by elements of (Z3)~%t> C K¢
correspond to cyclic permutations of the symbols V, O, = inside each plus-
triangle.

Corollary 3.4. Passing to double cosets K® \ G/K% corresponds to for-
getting the numbers of triangles and the melodies on the interior sides of
edges of triangles, and removing all envelopes.

Thus, we remember only labels on tags and signs.

3.4. The construction of the train. Objects of the category are in-
tegers a > 0. Fix indices o and 8. A morphism o — ( is a compact (in
general, disconnected) triangulated surface without envelopes equipped
with data (ii), (iii), (vi) from the list above (labels 4 and labels on tags).

To multiply & : & — S and $ : 8 — v, we glue (according to the
orientations) the minus-segments of the boundary of & with the plus-
segments of the boundary of $ having the same labels on their tags. We
remove the corresponding tags, forget their labels, forget the contour of
gluing. Some envelopes can appear, we remove them.
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We obtain a morphism a — 7.

Theorem 3.5. The multiplication described above is the multiplication in
the train of the pair (G, K).

Proof. Fix h, g € G. Consider the corresponding surfaces Z[h], Z[g]. Take
a very large number N. Then the set of labels k£ on the minus-triangles
of E[%Vh] and the set of labels [ on the plus-triangles of Z[g] are disjoint.

Therefore, the plus-triangles of E[Gé\’ h] preserve their neighbors after the
multiplication E[%V h] — gE[%V h]. Also, the minus-triangles of Z[g] pre-
serve their neighbors after the multiplication g — gE[HéV h]. Therefore,
both surfaces Z[h], E[g] are pieces of the surface E[gﬁg h]. O

3.5. The involution on the train. We reverse the signs and reverse
the orientation.

3.6. Examples of representations. Let V be a Hilbert space. Fix a
unit vector

EeVeveV (2)

invariant with respect to the cyclic permutations of elements of the tensor
product.
Consider the tensor product

QRVeVeVeV,q)™.

leL
The group Gk acts on this product by permutations of factors. Namely,
S acts by permutations of the factors (V @ V @ V,&). The copies of Z3
act by cyclic permutations of factors of the products V@V ®@V. The group
G acts by permutations of the factors V.

3.7. Another pair. The subgroup K®. Let Z, A\, G = G[Z, )] be as
above and consider the pair

(GaK) = (G(Za/\)aK®(Z)) = (S/\+3007800)'

Return to Lemma 3.2. Now we remove the numbers of triangles but pre-
serve the melodies. We also remove all pure envelopes.
In the construction of the representation, we can replace (2) by an
arbitrary unit vector
EeVolVoV.
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3.8. Another pair. The subgroup K°. Let Z, \, G = G[Z, ] be as
above. Consider the pair

(G,K) :=(G(Z,)),K°(Z)) = (Sx+300,Se0 X (S3)%).
First, we construct representations. In the construction of Sec. 3.6, we take
EeESVCV VRV,

where S®V is the third symmetric power of V.

An attempt to repeat the construction of the train meets an obvious
difficulty: permutations of the melodies change the orientations of the tri-
angles. However, we can pass from triangulations to dual graphs. Now we
can enumerate the double cosets by trivalent graphs. See the next section.

§4. THE GENERAL CASE, K = K° IS A WREATH PRODUCT

4.1. The group. Here we consider an arbitrary matrix Z and an arbi-
trary vector A. Now

Recall that we attributed a color to each ;, a smell to each N;, and a
melody to each infinite orbit of So(N;) on ;.

We denote
Q:=]]
i<y
and regard G[Z, A] as a subgroup in S (2). For a multi-index a = (a1, ..., ap),
we denote by ([, the set of all K-fixed points of 2,

q

Qo = ]_[ <Lj U Q(M(ai) X H(Cji))>.

j=1
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a) A node.
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b) A double coset.

c) A trivial component of a graph.
Fig. 6. Reference to Sec. 4.2.
4.2. The encoding of elements of symmetric groups. For each el-

ement of G[Z,A], we construct a graph equipped with some additional
data.
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For each smell ¢, we draw a node T[R;] (see Fig. 6). It contains a vertex of
smell 8; and >, y (j; semi-edges. The edges are colored, each color J; is used
for coloring (;; edges. To each edge of a given color we attribute a melody
from the corresponding list of ;; melodies (different edges have different
melodies). Thus, the semi-edges of T'[X;] are in a one-to-one correspondence
with the orbits of So (N;) on €.

Now we prepare the following collection of items.

a) For each smell ®; and each k € N, we draw two copies T4 [X;; k] of
the node T'[X;], their vertices are labeled by k& and +. We throw out the
nodes Ty [N;; k] with k& < «; and the nodes T_[X;; m] with m < 3;

b) For each color J; and each element w of Q; Ny, we draw a tag
D, (w) and mark this tag by w, the color of w, and “4”. We draw similar
tags D_(w) for the elements w € Q5. We imagine a tag as a vertex and a
semi-edge.

Thus, the set ) is in a one-to-one correspondence with the sets
_ | all semi-edges of
Ev = { all nodes T, [¥;, k]} U
and

_ | all semi-edges of
£ = { all nodes T_[N;, k] }UQ

Denote the bijections } — &1 by H..
Now for each w € Q we connect a semi-edge Hi(w) € &, with the
semi-edge H_(gw) € £_. We obtain a graph with the following properties.

(i) The graph consists of a countable number of compact components.

(ii) There are two types of vertices, interior vertices® and terminal ver-
tices (ends of semi-edges).

(iii) Each interior vertex has a smell X; and a sign “+” or “—”.

(iv) The interior plus-vertices are indexed by the set {a; +1, a;+2,...};
the interior minus-vertices, by {8; +1,3; + 2,... }.

(v) The terminal vertices fall into two classes, entries and exits. The
entries are indexed by the elements of (1) and the labels “+”. The exits
are indexed by the elements of (25 and the labels “~".

(v) Neighboring vertices have different signs.

2The case >_; Gi =1 is admissible.
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(vi) The edges are colored, the number of edges of color J; coming to
an interior vertex of smell 8; is (;;. The edge adjacent to a terminal vertex
with label w has the color of w.

(vii) To each semi-edge adjacent to an interior vertex, a melody is at-
tributed compatible with its color. At each vertex of smell R;, each melody
compatible with the smell is present precisely once.

(viii) All but a finite number of components consist of two interior
vertices and edges connecting these vertices.

We call components described in (viii) trivial. We say that a component
is completely trivial if for every edge the smells of both semi-edges coincide.

Theorem 4.1. There is a one-to-one correspondence between the set of
all graphs satisfying (1)—(viii) and the infinite symmetric group Soo(€2).

Proof. Consider an edge. It has a plus-semi-edge and a minus-semi-edge.
Consider the corresponding elements ¢ € £ and ¢y € £E_. Set gp = . O

4.3. The projection to double cosets.

Proposition 4.2. a) The right multiplications by elements of S (N;) cor-
respond to permutations of the labels {a+1,a+2,...} on plus-vertices of
smell N;.

b) The right multiplications by elements of Sg_jf‘i+°° C Sec(R2j) corre-

spond to permutations of the melodies of semi-edges of color J; adjacent
to fized vertices of smell N;.

Corollary 4.3. Passing to double cosets corresponds to forgetting the la-
bels € N and melodies.

The colors, smells, signs, and also labels on tags are preserved.

4.4. The multiplication of double cosets. Given two morphisms
G :a— F,9H: 0 — 7, we glue the exits of g with the corresponding
entries of h (and forget the vertices of gluings).

The involution is the inversion of the signs and also the entries/exits.

Theorem 4.4. This product coincides with the product in the train T(G, K).
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4.5. Some representations of (G, K'). We consider a collection of Hilbert

spaces Wi, ..., W, indexed by colors. Fix i. Consider the tensor product
- ®C
Hi= QW™ 3)
=1

Note that the factors of the product are in a one-to-one correspondence
with the semi-edges of T[N;].
Fix a unit vector

p
& € ®S<ﬁ Wj C H;. (4)

j=1

Consider the tensor product

q q N
0 = ® W](_gAi ® ®(H“ é-z)®oo — ® I/V®/\J ® ®(® W®C“ ‘>®
j=1 i=1 P

Note that the factors W of this tensor product are indexed by the elements
of L(};. Formally, we can write

é@Wr

j:l L:.)EQ]‘

However, this makes no sense without distinguished vectors.

Each group Soo(£2;) acts by permutations of the factors ;. This de-
termines an action of G. Each group S (N;) acts by permutations of the
factors (H;,&;). For each copy of (H;, ;) we have an action of [[; Sc,,
namely, the symmetric group S¢;; permutes the factors W; in (4).

Thus we obtain an action of Gk.

§5. THE GENERAL CASE, K = K® 1S A PRODUCT OF SYMMETRIC
GROUPS

The construction of this section is more or less a version of the previous
construction. For the smaller group K = K®, we can replace a graph by
a fat graph, and after this draw a two-dimensional surface. We repeat the
construction independently.
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Fig. 7. Reference to Sec. 5.2. A polygon T [N;].

5.1. The group. We consider an arbitrary matrix Z and an arbitrary
vector A. Now

Q;=L;U ﬁ(Ni x 1(¢j2)),

i=1

G :=G[Z,\] = HS K := K®[2] = [[ Sec(Ny).
i=1
We denote
Q:=]] .
J<q
For a multi-index o = (as,...,ap), we denote by Q4 the set of all K-

fixed points of €2,

Q[a] = H(L ] H Oéz X H C]z)))
Jj=1
5.2. Constructions of the train. Fix a smell X;. The nontrivial orbits
of Soo(N;) on LIQ; are indexed by pairs (color, melody). The total number
of such orbits is
> G
J

We choose an arbitrary cyclic order on the set of such pairs (the construc-
tion below depends on this choice). Next, we draw a polygon T [R;] of
smell X; whose sides are marked by pairs (color, melody) according to the
cyclic order. We also define the polygon T_[¥;], whose sides are marked
according to the reversed cyclic order.

Consider the following types of items.
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— Plus-polygons and minus-polygons. For each i < p, for each k € N;,
we draw the pair of oriented polygons T+ [N;, k] described above; they are
additionally labeled by k € N. Every side of every polygon T4 [N;, k] has a
smell (the smell of the polygon), a color, and a melody; therefore, a side
determines an element of Q.

— Plus-tags and minus-tags. For each element w € , we draw two tags
D (w) labeled by w and +, see Fig. 3. The side of a tag is colored by the
color of w.

Fix multi-indices «, 3.
We take the following collection:

— the polygons T4 [N;, k] if & > «;;
— the polygons T_[X;, m] if m > 3;;
— the tags Ty [w] if w € Q4 [a];

— the tags T_[w] if w € Q_[f].

Now we have one-to-one correspondences between the set ) and the set
of all edges of all plus-triangles and plus-tags. Also, we have one-to-one
correspondences between the set 2 and the set of all edges of all minus-
triangles and minus-tags.

For each g € GG, we glue a polygonal complex. For each w € 2, we iden-
tify the (oriented) edge of a plus-polygon or a plus-tag corresponding to w
with the (oriented) edge of a minus-polygon or a minus-tag corresponding
to gw.

Thus we obtain a polygonal two-dimensional oriented surface with tags
on the boundary satisfying the following properties:

(i) The surface consists of a countable number of compact components.

(ii) Each component is tiled by polygons of types T'+[X;] and has tags
D on the boundary.

141

(iii) Each polygon is labeled by “+” or
different signs.

—”, neighboring polygons have

(iv) Each edge has a color, which is common for both (plus and minus)
sides of the edge.

(v) Each edge has two melodies, on the plus-side and on the minus-side.

(vi) A cyclic order of pairs (color, melody) around the perimeter of each
polygon T4 [N;] is fixed.
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(vii) The plus-polygons (respectively, minus-polygons) of a fixed smell
N; are indexed by a; + 1, a; + 2 ... (respectively 8; + 1, 8; + 2, ...).

(viii) The plus-tags are indexed by the points of ), and the minus-
tags, by points of (23).

(ix) All but a finite number of components of the surface are unions of
pairs T4 [N;, k] and T_[R;, ]. We call such components “envelopes.” A pure
envelope is an envelope such that the melodies on the plus and minus sides
of each edge coincide.

Theorem 5.1. The data of this type are in a one-to-one correspondence
with the group G.

The inverse construction. For each gw, we find w inside the pairs (plus-
polygon, side). This side is also a side of a minus-polygon and encodes the
element gw.

5.3. Passing to double cosets K\ G/K®. The literal analog of Lem-
ma 3.2 holds.

In order to pass to double cosets K\ G/ K”, we forget the labels k € N
and remove all envelopes.

We obtain a compact surface tiled by polygons.

— Polygons are equipped with signs + and smells.

— Each edge is equipped with a color and a pair of melodies on the neg-
ative side and the positive side of the edge (the coloring and melodization
of the edges of each polygon is fixed up to a cyclic permutation of sides,
as above).?

— The boundary edges of the surface are equipped with signs, the posi-
tive edges are indexed by the points of )}, the negative edges are indexed
by the points of (5.

We say that such a surface is a morphism a — £.

Let & : « — 8, § : f — 7 be two surfaces. For each w € Q[f], we
glue the w-exit of ® with the w-entry of $ (according to the orientation).
Removing the envelopes, we arrive at a complex of the same type.

Theorem 5.2. This multiplication coincides with the multiplication in the
train.

Proof is the same as for Theorem 3.5.

3Recall that in many cases melodies can be uniquely reconstructed from colors and
may be forgotten.
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Fig. 8. Reference to Sec. 5.5. A digonal complex and the
corresponding one-dimensional chain.

a)

Fig. 9. Reference to Sec. 5.5. The only possible connected
1-gonal complexes.

5.4. The involution in the train. We reverse the signs + and reverse
the orientation.

5.5. Simple cases. Note that our construction admits 2-gons and 1-gons,
see Figs. 8, 9. Let the matrix Z satisfy Zj Cij = 2 for all 4. Then all our
polygons are 2-gons. A digonal complex can be regarded as a union of
chains (see Fig. 8), and we can use the language of chips, see [15] and
also [10].

If Z=(1 ... 1), then our complex consists of 1-gons. This corre-
sponds to Nessonov’s case, see [10].

5.6. Constructions of representations. In the construction of a tensor
product from Sec. 4.5, we can choose arbitrary unit vectors

P
fi c ®W]®Cﬁ =:H;

=1

instead of (4).
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