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t. Spa
es of double 
osets of in�nite symmetri
 groupswith respe
t to some spe
ial subgroups admit natural stru
turesof semigroups. Elements of su
h semigroups 
an be interpreted in
ombinatorial terms. We present a des
ription of su
h 
onstru
tionsin a relatively wide degree of generality.Let G be an in�nite-dimensional group and K be a subgroup. Quiteoften, the double 
oset spa
e K \ G=K admits a natural multipli
ation.Moreover, for any unitary representation of G, the semigroup K \ G=Ka
ts in the spa
e of K-�xed ve
tors. The �rst example of su
h a multipli-
ation was dis
overed by R. S. Ismagilov in the 1960s, later several seriesof 
onstru
tions of this type for 
lassi
al and symmetri
 groups were ex-amined by Olshanski (for the 
ase of symmetri
 groups, see [15℄). In [7℄,it was observed that this phenomenon is quite general; however, it seemedthat the spa
es K \ G=K themselves are unhandable obje
ts. In [9℄, anexpli
it geometri
 des
ription was obtained of the semigroups K \ G=Kfor the 
ase of G = S∞ × S∞ × S∞ (where S∞ is the in�nite symmetri
group) and K a diagonal subgroup, in terms of two-dimensional surfa
esand their 
obordisms. In the preprint [8℄, the 
onstru
tion was general-ized to numerous pairs (G;K) related to in�nite symmetri
 groups. Later,
onstru
tions of the preprint [8℄ were extended in [1, 10, 11℄. However, [8℄has a \dogmati
 part" 
ontainig des
riptions of the semigroups K \G=Kin wide generality (G and K are produ
ts of symmetri
 groups; also, weadmit wreath produ
ts); this part is the topi
 of the present paper. Proofsare omitted, be
ause they are one-to-one 
opies of the proofs given in [10℄.It seems that our 
onstru
tions 
an be interesting for �nite symmetri
groups; we give des
riptions of various double 
oset spa
es and also produ
enumerous \parametrizations" of symmetri
 groups.Key words and phrases: triangulations, polygonal surfa
es, bipartite graphs, unitaryrepresentations, representations of 
ategories.Supported by the grants FWF, P22122, P28421.65
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§1. (G;K)-pairs and their trains. Definitions anda priori theorems1.1. Notation. { N is the set of positive integers.{ M(�) is the initial segment {1; 2; : : : ; �} of N.{ N1, N2, . . . are disjoint 
opies of the set N.{ Mj(�) are the initial segments {1; 2; : : : ; �} of Nj .{ I(�) are �nite sets with � elements.{ ⊔, ∐ are symbols for the disjoint union of sets.{ Sn is the �nite symmetri
 group of order n (the group of all permu-tations of {1; 2; : : : ; n}).1.2. The in�nite symmetri
 group. For a 
ountable set 
, denoteby S∞(
) the group of all �nitely supported permutations of 
. Denote

S∞(N) by S.We represent permutations by in�nite 0-1 matri
es in the usual way.By S�∞ ⊂ S∞ we denote the group of permutations having the form� = (1� 00 ∗

) ;where 1� is the unit �× � matrix.Let K = S∞(N1) × · · · × S∞(Np). For a multi-index � = (�1; : : : ; �p),we de�ne a subgroup K� ⊂ K:K� := S
�1
∞ (N1)× · · · × S

�p
∞ (Np):1.3. The topologi
al in�nite symmetri
 group. Denote by S∞ thegroup of all permutations of N. De�ne the subgroups S�∞ ⊂ S∞ as above.De�ne a topology on S∞ assuming that S�∞ form a fundamental systems ofopen neighborhoods of the identity. In other words, a sequen
e �j 
onvergesto � if for any k ∈ N we have �jk = �k for suÆ
iently large j. The groupS∞ is a totally dis
onne
ted topologi
al group1.A 
lassi�
ation of irredu
ible unitary representations of S∞ was ob-tained by Lieberman [6℄, see expositions in [7, 14℄. Let � = 0; 1; 2; : : : ,and let � be an irredu
ible representation of S�. Consider the subgroupS� × S�∞ ⊂ S∞. Consider the represetation � ⊗ 1 of S� × S�∞, where 1denotes the trivial (one-dimensional) representation of S�∞, and the 
or-responding indu
ed representation of S∞. Note that the quotient spa
e1This is the unique stru
ture of a separable topologi
al group on S∞, see [3℄.
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S∞=S�∞ = S∞=S�∞ is 
ountable and, therefore, the indu
ed representationis well de�ned (see, e.g., [5, 13.2℄).Theorem 1.1. a) Every irredu
ible representation of S∞ is indu
ed froma representation of the from � ⊗ 1 of a subgroup S� × S�∞.b) Every unitary representation of S∞ is a dire
t sum of irredu
iblerepresentations.In a 
ertain sense, the Lieberman theorem opens and 
loses the repre-sentation theory of the group S∞. However, it is an important element ofwider theories.1.4. Reformulations of 
ontinuity. Let � be a unitary representationof S∞ in a Hilbert spa
e H . Denote by H� ⊂ H the subspa
e of all S�∞-�xed ve
tors. We say that a representation � is admissible if ∪H� is densein H .Denote by B∞ the semigroup of matri
es 
omposed of 0 and 1 su
hthat ea
h row and ea
h 
olumn 
ontains 6 1 ones. We equip B∞ with thetopology of element-wise 
onvergen
e; the group S∞ is dense in B∞.Theorem 1.2 (see [7, 14℄). The following 
onditions are equivalent:{ � is 
ontinuous in the topology of S∞;{ � is admissible;{ � admits a 
ontinuous extension to the semigroup B∞.This statement has a straightforward extension to produ
ts of symmet-ri
 groups K = S∞ × · · · × S∞.1.5. Wreath produ
ts. Let U be a �nite group. Consider the 
ountabledire
t produ
t U∞ := U × U × U × : : : ; it is a group whose elements areall in�nite sequen
es (u1; u2; : : : ). Consider also the restri
ted produ
t U∞,whose elements are all sequen
es su
h that uj = 1 for suÆ
iently large j.The group U∞ is equipped with the dire
t produ
t topology, the groupU∞ is dis
rete.Permutations of sequen
es (u1; u2; : : : ) indu
e automorphisms of U∞and U∞. Consider the semidire
t produ
ts K := S∞ ⋉ U∞ and K :=S∞ ⋉ U∞, see, e.g., [5, 2.4℄; they are 
alled the wreath produ
ts of S∞and U .Our main example is the wreath produ
t of S∞ and a �nite symmetri
group Sk. We realize it as a group of �nite permutations of N × I(k). The
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(k)

a) The group S∞ ⋉ (Sk)∞. The group S∞ a
ts by permutations of
olumns. The normal subgroup (Sk)∞ permutes elements in ea
h 
olumn.The semidire
t produ
t 
onsists of the permutations preserving thepartition of the strip into 
olumns.
(k4)

(k3)

(k2)

(k1)

b) The group S∞ ⋉ (Sk1 × · · · × Skp)∞. The group S∞ a
ts bypermutations of 
olumns. The normal subgroup a
ts by permutationsinside ea
h sub
olumn.Fig. 1. Wreath produ
ts.group S∞ a
ts by permutations of N, and the subgroups Sk ⊂ (Sk)∞ a
tby permutations of the sets {m} × {1; : : : ; k}, see Fig. 1a.



COMBINATORIAL ENCODINGS 691.6. Representations of wreath produ
ts. For K = S∞ ⋉ U∞, wede�ne a subgroup K� as the semidire
t produ
t of S�∞ and the subgroupU∞−� := 1× · · · × 1
︸ ︷︷ ︸� times ×U × U × : : : :For a unitary representation � of K in a Hilbert spa
e H , we denote byH� the spa
e of K�-�xed ve
tors. We say that � is admissible if ∪�H� isdense in H . A unitary representation of K = S∞ ⋉U∞ is admissible if andonly if it is 
ontinuous in the topology of the group K = S∞ ⋉U∞.1.7. (G;K)-pairs. See Fig. 2. Fix positive integers q, p and a q×p matrix

Z := {�ji}
onsisting of nonnegative integers. Assume that it has no zero 
olumns andno zero rows.Fix a 
olle
tion � = 




�1...�q of nonnegative integers. Fix sets L1,. . . , Lqsu
h that Lj has �j elements. Consider the 
olle
tion of sets
Ni × I(�ji):Denote by 
j the disjoint union
j := Lj ⊔ ∐i6p (Ni × I(�ji))(we assume that all sets 
j obtained in this way are mutually disjoint).Set G := G[Z;�℄ = q

∏j=1 S∞(
j); G := G[Z;�℄ = q
∏j=1S∞(
j):Next, we de�ne the following subgroup K◦ ⊂ G[Z;�℄:K◦ = K◦[Z℄ := p

∏i=1(S∞(Ni) ⋉

(∏j S�ji)∞
);and its 
ompletion K◦ ⊂ G[Z;�℄:K◦ =K◦[Z℄ := p

∏i=1(S∞(Ni) ⋉

(∏j S�ji)∞
):
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Ω4

Ω3

Ω2

Ω1

1 2 3a) The set ∪pi=1 ∪qj=1 (Ni × I(�ji)). Here q = 4, p = 3, � = 0, and
Z = 





0 0 11 5 12 0 44 2 1. The groups S∞(
1), S∞(
2), S∞(
3), S∞(
4) 
onsistof permutations of the sets 
j . The group G is the produ
t of S∞(
j).The groups S∞(N1), S∞(N2), S∞(N3) a
t by permutations of 
olumns(inside the given Nj). The subgroup K⊛ ⊂ G is the produ
t
S∞(N1)× S∞(N2)× S∞(N3). For ea
h 
olumn we have the group of allpermutations inside the 
olumn preserving sub
olumns. The group K◦ isgenerated by K⊛ and all su
h subgroups. In our 
ase,K◦ = (

S∞(N1)⋉(S2×S4)∞)
×

(
S∞(N2)⋉(S5×S2)∞)

×
(
S∞(N2)⋉(S4)∞).

Ωj b) A pi
ture with a nonzero Lj (surrounded by a 
ir
le).Fig. 2. Referen
e to Se
. 1.Also, we de�ne the following subgroup in G[Z;�℄:K⊛[Z℄ := p
∏i=1 S∞(Ni) ⊂ K◦[Z℄;and its 
ompletion K⊛[Z℄ := p
∏i=1S∞(Ni) ⊂K◦[Z℄:



COMBINATORIAL ENCODINGS 71Below, (G;K) denotes a pair (group, subgroup) of the form(G;K) = (G[Z;�℄;K◦[Z℄) or (G;K) = (G[Z;�℄;K⊛[Z℄):Remark. One 
an also 
onsider intermediate wreath produ
ts K be-tween K◦[Z℄ and K⊛[Z℄; below we 
onsider one example from this zoo.1.8. Colors, smells, melodies. We wish to draw �gures, also we wantto have a more 
exible language.a) To ea
h 
j we assign a 
olor, say red, blue, white, red, green, et
.We also think that a 
olor is an attribute of all points of 
j . We denote
olors by jג .b) Next, to ea
h Ni we assign a smell ℵi, say Magnolia, Matri
ana,Pinus, Ledum, Ra�esia, et
. In �gures, we denote smells by , , , . . . . Wealso think that a smell ℵi is an attribute of all points of (Ni × I(�ji)) ⊂ 
j .
) Orbits of the group S∞(Ni) on 
j are one-point orbits or 
ountablehomogeneous spa
es S∞=S1∞ ≃ N. To ea
h 
ountable orbit we assign amelody, say, violin, harp, tomtom, 
ute, drum, . . . . In �gures, we denotemelodies symbols ♥, ≻, ∇, ℄, ‡, et
. Note that a melody makes sense after�xing a smell and a 
olor.Example. See Fig. 2
. We have a 4 × 3 table. Boxes are distinguishedby 
olors, 
olumns (
orresponding to N1, N2, . . . ) are by distinguishedsmells. Rows inside the interse
tion of a box and a 
olumn are indexed bymelodies.1.9. Admissible representations. Let � be a unitary representation ofG. We say that � is a K-admissible representation if the restri
tion of � toK is admissible. Equivalently, we say that � is a representation of the pair(G;K).1.10. Reformulation of admissibility in terms of 
ontinuity. Theembedding K → G admits an extension to a map K → G of the 
orre-sponding 
ompletions. Consider the groupGK := G ·K ⊂ Ggenerated by G and K. Any element of GK admits a (nonunique) repre-sentation as gk where g ∈ G, k ∈ K.We 
onsider the natural topology on the subgroup K and assume thatK is an open-
losed subgroup in GK.



72 YU. A. NERETINProposition 1.3. A unitary representation of G is K-admissible if andonly if it is 
ontinuous in the above sense.1.11. Lemma on admissibility.Lemma 1.4. Let � be an irredu
ible unitary representation of G. If H� 6= 0for some �, then the representation � is K-admissible.Proof. Consider the subspa
e H := ∪H�. Fix g ∈ G. For suÆ
ientlylarge �, the element g 
ommutes with K�. Therefore, H is g-invariant.The 
losure of H is a subrepresentation. �Corollary 1.5. If an irredu
ible unitary representation of G has a K-�xedve
tor, then it is K-admissible.1.12. The existing representation theory. A well-developed existingtheory is related to the pair G = S∞ × S∞ and the diagonal subgroupK = S∞, see [4, 13, 15℄. In our notation, Z = (11). The representationtheory of this pair in
ludes also earlier works on the Thoma 
hara
ters [17℄,see [18℄.Olshanski [15℄ also 
onsidered the following pairs:{ G = S∞+1 × S∞, K = S∞; in our notation, Z = (11), � = (10).{ G = S2∞, K = S∞ × S∞; in our notation, Z = (1 1).{ G = S2∞,K = S∞⋉Z∞2 , and alsoG = S2∞+1 with the same subgroupK. In our notation, Z = (2) and � = 0 or 1.In all these 
ases, the pairs (G;K) are limits of spheri
al pairs of �nitegroups.Nessonov [12℄ 
onsidered the 
ase Z = (1 : : : 1) and des
ribed allK⊛-spheri
al representations of G(Z; 0). Note that this result has no �nite-dimensional 
ounterpart.1.13. Trains. Consider the following (�+N+N+∞)×(�+N+N+∞)matrix �[�℄N ∈ S∞: �[�℄N = 





1� 0 0 00 0 1N 00 1N 0 00 0 0 1∞





∈ S∞:
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t, �[�℄N is 
ontained in S�∞.Consider a pair (G;K). For a multi-index � = (�1; : : : ; �p), we denoteby �[�℄N the element �[�℄N = (�[�1℄N ; : : : ;�[�p℄N )

∈ K:Again, �[�℄N ∈ K�.Fix multi-indi
es �, �, 
. Consider double 
osets
h ∈ K� \G=K�; g ∈ K
 \G=K�;and 
hoose their representatives g ∈ g, h ∈ h. Consider the sequen
efN = g�[�℄N h ∈ G:Consider the double 
oset fN 
ontaining fN ,

fN ∈ K
 \G=K�:Theorem 1.6. a) The sequen
e fN is eventually 
onstant.b) The limit
g ◦ h := limN→∞

fNdoes not depend on the 
hoi
e of representatives g, h.
) The produ
t ◦ obtained in this way is asso
iative, i.e., for any
g ∈ KÆ \G=K
 ; h ∈ K
 \G=K�; f ∈ K� \G=K�;we have (g ◦ h) ◦ f = g ◦ (h ◦ f):Thus we obtain a 
ategory T(G;K), whose obje
ts are multi-indi
es �and morphisms � → � are elements of K� \G=K�. We say that T(G;K)is the train of the pair (G;K).1.14. The involution in the train. The map g 7→ g−1 indu
es a mapof the quotient spa
es K� \G=K� → K� \G=K�, we denote it by

g 7→ g�:Obviously, (g ◦ h)� = h�g�:



74 YU. A. NERETIN1.15. Representations of the train. Now let � be a unitary represen-tation of the pair (G;K). We de�ne subspa
es H� as above and denoteby P� the orthogonal proje
tion to H�. For g ∈ K� \ G=K�, 
hoose arepresentative g ∈ g. Consider the operator��;�(g) := P ��(g) : H� → H�:By de�nition, we have
‖��;�(g)‖ 6 1: (1)Theorem 1.7. a) The operator ��;�(g) depends only on the double 
oset

g 
ontaining g.b) We obtain a representation of the 
ategory T(G;K), i.e., for any
g ∈ K
 \G=K�; h ∈ K� \G=K�;the following identity holds:��;
(g) ��;�(h) = ��;
(g ◦ h):
) We obtain a ∗-representation, i.e.,

(��;�(g))∗ = ��;�(g�):d) The operator �(��N ) weakly 
onverges to the proje
tion P�.Theorem 1.8. Our 
onstru
tion provides a bije
tion between the set of allunitary representations of the pair (G;K) and the set of all ∗-representationsof the 
ategory T(G;K) satisfying 
ondition (1).We omit the proofs of Theorems 1.6{1.8 and Theorem 1.9 formulatedbelow, be
ause they are literal 
opies of the proofs in [10℄.Our main purpose is to give an expli
it des
ription of trains; also, wegive some 
onstru
tions of representations of groups.1.16. Spheri
ity.Theorem 1.9. Let (G;K) = (G[Z;�℄;K◦[Z℄) or (G[Z;�℄;K⊛[Z℄), asabove. If � = 0, then the pair (G;K) is spheri
al. In other words, forevery irredu
ible unitary representation of (G;K), the dimension of thespa
e of K-�xed ve
tors is 6 1.
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ture of the rest of the paper. In the next se
tion,we re
all a de�nition of tensor produ
ts of Hilbert spa
es. In Se
. 3, we
onsider three examples. In Se
s. 4, 5, we present a des
ription of trainsfor arbitrary pairs(G(Z;�);K◦[Z℄); (G(Z;�);K⊛[Z℄):
§2. Tensor produ
ts of Hilbert spa
esHere we re
all a de�nition of an in�nite tensor produ
t of Hilbert spa
es,see the detailed von Neumann's paper [16℄ or a short introdu
tion in theaddendum to [2℄.2.1. De�nition of tensor produ
ts. Let H1, H2, . . . be a 
ountable
olle
tion of Hilbert spa
es (they 
an be �nite-dimensional or in�nite-dimensional). Fix a unit ve
tor �k ∈ Hk in ea
h spa
e. The tensor produ
t(H1; �1)⊗ (H2; �2)⊗ (H3; �3)⊗ : : :is de�ned in the following way. We 
hoose an orthonormal basis ej [k℄ inea
h Hk, assuming that e1[k℄ = �k. Next, we 
onsider the Hilbert spa
ewith the orthonormal basise�1 [1℄⊗ e�2 [2℄⊗ : : :su
h that e�N [N ℄ = �N for suÆ
iently large N (note that this basis is
ountable).The 
onstru
tion substantially depends on the 
hoi
e of distinguishedve
tors. The spa
es ⊗(Hk; �k) and ⊗(Hk; �k) are 
anoni
ally isomorphi
 ifand only if

∑

|〈�j ; �j〉 − 1| <∞:In parti
ular, we 
an omit distinguished ve
tors in a �nite number of fa
-tors (more pre
isely, we 
an 
hoose them in an arbitrary way).2.2. The a
tion of symmetri
 groups in tensor produ
ts. The sym-metri
 groups Sn a
t in the tensor powersH⊗n by permutations of fa
tors.This phenomenon has a straightforward analog.We denote by (H; �)⊗∞ := (H; �)⊗ (H; �)⊗ : : :the in�nite symmetri
 power of (H; �).



76 YU. A. NERETINProposition 2.1. a) The 
omplete symmetri
 group S∞ a
ts in (H; �)⊗∞by permutations of fa
tors. The representation is 
ontinuous with respe
tto the topology of S∞.b) The ve
tor �⊗∞ is a unique S∞-�xed ve
tor in (H; �)⊗∞.
) The subspa
e of S�∞-�xed ve
tors isH⊗� ⊗ �⊗∞:Proposition 2.2. Fix a sequen
e �k of unit ve
tors in a Hilbert spa
e H.The symmetri
 group S∞ a
ts in the tensor produ
t ⊗k(H; �k) by permu-tations of fa
tors.We emphasize that in this 
ase there is no a
tion of the 
omplete sym-metri
 group S∞.
§3. An example: triangulated surfa
es3.1. The group. Let Z = (3) and � > 0 be arbitrary. First, we 
onsiderthe pair (G(Z;�);K◦(Z)) = (S�+3∞; S∞ ⋉ (S3)∞) :We redu
e the subgroup and setK := S∞ ⋉

(
Z3)∞;where Z3 ⊂ S3 is the group of 
y
li
 permutations (or, equivalently, thegroup of even permutations).Now 
 = L ⊔

(
N × I(3)):Let � > 0; we de�ne a set 
[�℄ as the set of all �xed points of K�,
[�℄ = L ⊔

(
M(�) × I(3)):Thus, we have only one 
olor, only one smell, but three melodies, sayharp (∇), violin (♥), tube (≻).Remark. Let � > 3. Then the operation � 7→ � − 3 does not 
hangethe topologi
al group GK. Indeed, we 
an add one point to the set N andex
lude three points from L. Therefore, we may 
onsider only the 
ases� = 0, 1, 2.



COMBINATORIAL ENCODINGS 77
∇

♥ ≻

k +

∇

≻ ♥

k −a) A plus-triangle and a minus-triangle.
ω
+ ω

−b) A plus-tag and a minus-tag.Fig. 3. Referen
e to Se
. 3.2. Items for a 
omplex.3.2. The en
oding of elements of the symmetri
 group. Fix�; � > 0.First, we take the following 
olle
tion of items (see Fig. 3).A. Plus-triangles and minus-triangles. To ea
h element k ∈ N we assigna pair of oriented triangles T±(k) with label k. We write the labels ∇,
♥, ≻ on the interiors of the sides of T+(k) (respe
tively, T−(k)) 
lo
kwise(respe
tively, 
ounter-
lo
kwise).An important remark: a number k and a melody determine some ele-ment ! ∈ 
.B. Plus-tags and minus-tags. To ea
h element ! ∈ 
 we assign twooriented segmentsD±(!) with tags, see Fig. 3. We write the label ! and thelabel \+" (respe
tively, \−") on the segment T+(!) (respe
tively, T−(!)).We take the following 
olle
tion of items:T+(k) where k > �; T−(l) where l > �;D+(!) where ! ∈ 
[�℄; D−(!) where ! ∈ 
[�℄:Ea
h element of 
 is present on pre
isely one edge of one item T+(k)or D+(!) (and, respe
tively, on one item T−(k) or D−(!)).
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∇

♥

≻

+ 12

♥

∇

≻

− 5

♥

∇ ≻− 107

♥

∇ ≻

+ 1
♥

≻
∇

− 1

♥

∇

≻

+ 3 ω

−

ψ

+

A pie
e of a 
omplex. Removing the numbers and the melodies ≻, ∇, ♥(and leaving the signs and the labels on the tags), we pass to double
osets.
+

−

−
+

−

+
ω
−

ψ
+

Fig. 4. Referen
e to Se
s. 3.2{3.3.Fix an element g ∈ S∞(
). For ea
h ! ∈ 
, we identify (keeping inmind the orientations) the edge of T+(·) or D+(·) labeled by ! with theedge of T−(·) or D−(·) labeled by g!.
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ω +

ψ −a) A degenerate 
omponent. An edge with two tags.
b) ∇

♥ ≻

∇

♥ ≻

k +

l −


) ∇

♥ ≻

♥

≻ ∇

k +

l −

This is the stereographi
 proje
tion of a sphere and a graph on thesphere. A pure envelope (b) and an envelope (
).Fig. 5. Referen
e to Se
s. 3.2{3.3.In this way, we obtain a two-dimensional oriented triangulated surfa
e�(g) with tags on the boundary. Our pi
ture satis�es the following prop-erties:(i) The surfa
e 
onsists of a 
ountable number of 
ompa
t 
omponents.(ii) Ea
h 
omponent is a two-dimensional oriented triangulated surfa
ewith tags on the boundary (we allow also a segment with two tags, seeFig. 5a).(iii) All triangles and tags have labels \+" or \−", neighboring obje
tshave di�erent signs.(iv) The plus-triangles (respe
tively, minus-triangles) are indexed by�+ 1, �+ 2, �+ 3, . . . (respe
tively, � + 1, � + 2, � + 3, . . . ).(v) The sides of plus-triangles are labeled (from the interior) by ∇, ♥,
≻ 
lo
kwise. The sides of minus-triangles are labeled by the same symbols
ounter-
lo
kwise.(vi) The plus-tags are indexed by the elements of 
[�℄; the minus-tags,by the elements of 
[�℄.



80 YU. A. NERETIN(vii) Almost all 
omponents are spheres 
omposed of two triangles, andthe melodies on the sides of the edges 
oin
ide.We regard su
h surfa
es up to 
ombinatorial equivalen
e.Lemma 3.1. Every surfa
e equipped with the data des
ribed above hasthe form �[g℄. Di�erent elements g ∈ S∞(
) produ
e di�erent equippedsurfa
es.Proof. We present the inverse 
onstru
tion. Above, we have assigned twoelements of 
 to ea
h edge. Let � 
orrespond to the plus-side, � 
orrespondto the minus-side. Then g sends � to �. �Thus we obtain a bije
tion.Now we need a te
hni
al de�nition. We say that an envelope is a 
om-ponent 
onsisting of two triangles. We say that an envelope is pure if themelodies on both sides of ea
h edge 
oin
ide (see Fig. 5).3.3. The proje
tion to double 
osets.Lemma 3.2. The right multipli
ations g 7→ gh by elements of S�∞(N)
orrespond to permutations of the labels � + 1, � + 2, � + 3, . . . on plus-triangles. Correspondingly, the left multipli
ations by elements of S�∞(N)
orrespond to permutations of the labels on minus-triangles.Lemma 3.3. The right multipli
ations by elements of (Z3)−�+∞ ⊂ K�
orrespond to 
y
li
 permutations of the symbols ∇, ♥, ≻ inside ea
h plus-triangle.Corollary 3.4. Passing to double 
osets K� \G=K� 
orresponds to for-getting the numbers of triangles and the melodies on the interior sides ofedges of triangles, and removing all envelopes.Thus, we remember only labels on tags and signs.3.4. The 
onstru
tion of the train. Obje
ts of the 
ategory are in-tegers � > 0. Fix indi
es � and �. A morphism � → � is a 
ompa
t (ingeneral, dis
onne
ted) triangulated surfa
e without envelopes equippedwith data (ii), (iii), (vi) from the list above (labels ± and labels on tags).To multiply G : � → � and H : � → 
, we glue (a

ording to theorientations) the minus-segments of the boundary of G with the plus-segments of the boundary of H having the same labels on their tags. Weremove the 
orresponding tags, forget their labels, forget the 
ontour ofgluing. Some envelopes 
an appear, we remove them.
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.Theorem 3.5. The multipli
ation des
ribed above is the multipli
ation inthe train of the pair (G;K).Proof. Fix h, g ∈ G. Consider the 
orresponding surfa
es �[h℄, �[g℄. Takea very large number N . Then the set of labels k on the minus-trianglesof �[�N� h℄ and the set of labels l on the plus-triangles of �[g℄ are disjoint.Therefore, the plus-triangles of �[�N� h℄ preserve their neighbors after themultipli
ation �[�N� h℄ → g�[�N� h℄. Also, the minus-triangles of �[g℄ pre-serve their neighbors after the multipli
ation g 7→ g�[�N� h℄. Therefore,both surfa
es �[h℄, �[g℄ are pie
es of the surfa
e �[g�N� h℄. �3.5. The involution on the train. We reverse the signs and reversethe orientation.3.6. Examples of representations. Let V be a Hilbert spa
e. Fix aunit ve
tor � ∈ V ⊗ V ⊗ V (2)invariant with respe
t to the 
y
li
 permutations of elements of the tensorprodu
t.Consider the tensor produ
t
⊗l∈L V ⊗ (V ⊗ V ⊗ V; �i)⊗∞:The group GK a
ts on this produ
t by permutations of fa
tors. Namely,S∞ a
ts by permutations of the fa
tors (V ⊗ V ⊗ V; �). The 
opies of Z3a
t by 
y
li
 permutations of fa
tors of the produ
ts V ⊗V ⊗V . The groupG a
ts by permutations of the fa
tors V .3.7. Another pair. The subgroup K⊛. Let Z, �, G = G[Z; �℄ be asabove and 
onsider the pair(G;K) := (G(Z; �);K⊛(Z)) = (S�+3∞; S∞):Return to Lemma 3.2. Now we remove the numbers of triangles but pre-serve the melodies. We also remove all pure envelopes.In the 
onstru
tion of the representation, we 
an repla
e (2) by anarbitrary unit ve
tor � ∈ V ⊗ V ⊗ V:



82 YU. A. NERETIN3.8. Another pair. The subgroup K◦. Let Z, �, G = G[Z; �℄ be asabove. Consider the pair(G;K) := (G(Z; �);K◦(Z)) = (S�+3∞; S∞ ⋉ (S3)∞):First, we 
onstru
t representations. In the 
onstru
tion of Se
. 3.6, we take� ∈ S3V ⊂ V ⊗ V ⊗ V;where S3V is the third symmetri
 power of V .An attempt to repeat the 
onstru
tion of the train meets an obviousdiÆ
ulty: permutations of the melodies 
hange the orientations of the tri-angles. However, we 
an pass from triangulations to dual graphs. Now we
an enumerate the double 
osets by trivalent graphs. See the next se
tion.
§4. The general 
ase, K = K◦ is a wreath produ
t4.1. The group. Here we 
onsider an arbitrary matrix Z and an arbi-trary ve
tor �. Now
j = Lj ⊔ p

∐i=1(Ni × I(�ji));G := G[Z;�℄ = q
∏j=1 S∞(
j);K := K◦[Z℄ = p

∏i=1(S∞(Ni) ⋉

(∏j S�ji)∞):Re
all that we attributed a 
olor to ea
h 
j , a smell to ea
h Ni, and amelody to ea
h in�nite orbit of S∞(Ni) on 
j .We denote 
 := ∐j6q
iand regardG[Z;�℄ as a subgroup in S∞(
). For a multi-index � = (�1; : : : ; �p),we denote by 
[�℄ the set of all K�-�xed points of 
,
[�℄ = q
∐j=1(Lj ⊔ p

∐i=1(M(�i)× I(�ji))):
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∇

≻

♥

♮
♯

a) A node.
+
ω

+
ν

−

λ

−

+

−

+

b) A double 
oset.
− +
) A trivial 
omponent of a graph.Fig. 6. Referen
e to Se
. 4.2.4.2. The en
oding of elements of symmetri
 groups. For ea
h el-ement of G[Z;�℄, we 
onstru
t a graph equipped with some additionaldata.



84 YU. A. NERETINFor ea
h smell i, we draw a node T [ℵi℄ (see Fig. 6). It 
ontains a vertex ofsmell ℵi and ∑j �ji semi-edges. The edges are 
olored, ea
h 
olor jג is usedfor 
oloring �ji edges. To ea
h edge of a given 
olor we attribute a melodyfrom the 
orresponding list of �ji melodies (di�erent edges have di�erentmelodies). Thus, the semi-edges of T [ℵi℄ are in a one-to-one 
orresponden
ewith the orbits of S∞(Ni) on 
.Now we prepare the following 
olle
tion of items.a) For ea
h smell ℵi and ea
h k ∈ N, we draw two 
opies T±[ℵi; k℄ ofthe node T [ℵi℄, their verti
es are labeled by k and ±. We throw out thenodes T+[ℵi; k℄ with k 6 �i and the nodes T−[ℵi;m℄ with m 6 �ib) For ea
h 
olor jג and ea
h element ! of 
j ∩ 
[�℄, we draw a tagD+(!) and mark this tag by !, the 
olor of !, and \+". We draw similartags D−(!) for the elements ! ∈ 
[�℄. We imagine a tag as a vertex and asemi-edge.Thus, the set 
 is in a one-to-one 
orresponden
e with the sets
E+ = { all semi-edges ofall nodes T+[ℵi; k℄}⋃
[�℄and
E− = { all semi-edges ofall nodes T−[ℵi; k℄}⋃
[�℄:Denote the bije
tions 
 → E± by H±.Now for ea
h ! ∈ 
 we 
onne
t a semi-edge H+(!) ∈ E+ with thesemi-edge H−(g!) ∈ E−. We obtain a graph with the following properties.(i) The graph 
onsists of a 
ountable number of 
ompa
t 
omponents.(ii) There are two types of verti
es, interior verti
es2 and terminal ver-ti
es (ends of semi-edges).(iii) Ea
h interior vertex has a smell ℵi and a sign \+" or \−".(iv) The interior plus-verti
es are indexed by the set {�i+1; �i+2; : : :};the interior minus-verti
es, by {�i + 1; �i + 2; : : : }.(v) The terminal verti
es fall into two 
lasses, entries and exits. Theentries are indexed by the elements of 
[�℄ and the labels \+". The exitsare indexed by the elements of 
[�℄ and the labels \−".(v) Neighboring verti
es have di�erent signs.2The 
ase ∑j �ji = 1 is admissible.



COMBINATORIAL ENCODINGS 85(vi) The edges are 
olored, the number of edges of 
olor jג 
oming toan interior vertex of smell ℵi is �ji. The edge adja
ent to a terminal vertexwith label ! has the 
olor of !.(vii) To ea
h semi-edge adja
ent to an interior vertex, a melody is at-tributed 
ompatible with its 
olor. At ea
h vertex of smell ℵi, ea
h melody
ompatible with the smell is present pre
isely on
e.(viii) All but a �nite number of 
omponents 
onsist of two interiorverti
es and edges 
onne
ting these verti
es.We 
all 
omponents des
ribed in (viii) trivial. We say that a 
omponentis 
ompletely trivial if for every edge the smells of both semi-edges 
oin
ide.Theorem 4.1. There is a one-to-one 
orresponden
e between the set ofall graphs satisfying (i){(viii) and the in�nite symmetri
 group S∞(
).Proof. Consider an edge. It has a plus-semi-edge and a minus-semi-edge.Consider the 
orresponding elements � ∈ E+ and  ∈ E−. Set g� =  . �4.3. The proje
tion to double 
osets.Proposition 4.2. a) The right multipli
ations by elements of S�∞(Ni) 
or-respond to permutations of the labels {�+1; �+2; : : : } on plus-verti
es ofsmell ℵi.b) The right multipli
ations by elements of S−�i+∞�ji ⊂ S∞(
j) 
orre-spond to permutations of the melodies of semi-edges of 
olor ij adja
entto �xed verti
es of smell ℵi.Corollary 4.3. Passing to double 
osets 
orresponds to forgetting the la-bels ∈ N and melodies.The 
olors, smells, signs, and also labels on tags are preserved.4.4. The multipli
ation of double 
osets. Given two morphisms
G : � → �, H : � → 
, we glue the exits of g with the 
orrespondingentries of h (and forget the verti
es of gluings).The involution is the inversion of the signs and also the entries/exits.Theorem 4.4. This produ
t 
oin
ides with the produ
t in the train T(G;K).



86 YU. A. NERETIN4.5. Some representations of (G;K). We 
onsider a 
olle
tion of Hilbertspa
es W1, . . . , Wq indexed by 
olors. Fix i. Consider the tensor produ
t
Hi = p

⊗j=1W⊗�jij : (3)Note that the fa
tors of the produ
t are in a one-to-one 
orresponden
ewith the semi-edges of T [ℵi℄.Fix a unit ve
tor �i ∈ p
⊗j=1 S�jiWj ⊂ Hi: (4)Consider the tensor produ
t

W := q
⊗j=1W⊗�jj ⊗

q
⊗i=1 (Hi; �i)⊗∞ = q

⊗j=1W⊗�jj ⊗

q
⊗i=1( p

⊗j=1W⊗�jij ; �i)⊗∞:Note that the fa
torsW of this tensor produ
t are indexed by the elementsof ⊔
j . Formally, we 
an write q
⊗j=1 ⊗!∈
jWj :However, this makes no sense without distinguished ve
tors.Ea
h group S∞(
j) a
ts by permutations of the fa
tors Wj . This de-termines an a
tion of G. Ea
h group S∞(Ni) a
ts by permutations of thefa
tors (Hi; �i). For ea
h 
opy of (Hi; �i) we have an a
tion of ∏j S�ji ,namely, the symmetri
 group S�ji permutes the fa
tors Wj in (4).Thus we obtain an a
tion of GK.

§5. The general 
ase, K = K⊛ is a produ
t of symmetri
groupsThe 
onstru
tion of this se
tion is more or less a version of the previous
onstru
tion. For the smaller group K = K⊛, we 
an repla
e a graph bya fat graph, and after this draw a two-dimensional surfa
e. We repeat the
onstru
tion independently.
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♯

≻

♮
∇

♥

♭

‡Fig. 7. Referen
e to Se
. 5.2. A polygon T+[ℵi℄.5.1. The group. We 
onsider an arbitrary matrix Z and an arbitraryve
tor �. Now
j = Lj ⊔ p
∐i=1(Ni × I(�ji));G := G[Z;�℄ = q

∏j=1 S∞(
j); K := K⊛[Z℄ = p
∏i=1 S∞(Ni):We denote 
 := ∐j6q
i:For a multi-index � = (�1; : : : ; �p), we denote by 
[�℄ the set of all K�-�xed points of 
,
[�℄ = q

∐j=1(Lj ⊔ p
∐i=1(M(�i)× I(�ji))):5.2. Constru
tions of the train. Fix a smell ℵi. The nontrivial orbitsof S∞(Ni) on ⊔
j are indexed by pairs (
olor, melody). The total numberof su
h orbits is ∑j �ij :We 
hoose an arbitrary 
y
li
 order on the set of su
h pairs (the 
onstru
-tion below depends on this 
hoi
e). Next, we draw a polygon T+[ℵi℄ ofsmell ℵi whose sides are marked by pairs (
olor, melody) a

ording to the
y
li
 order. We also de�ne the polygon T−[ℵi℄, whose sides are markeda

ording to the reversed 
y
li
 order.Consider the following types of items.



88 YU. A. NERETIN{ Plus-polygons and minus-polygons. For ea
h i 6 p, for ea
h k ∈ Ni,we draw the pair of oriented polygons T±[ℵi; k℄ des
ribed above; they areadditionally labeled by k ∈ N. Every side of every polygon T±[ℵi; k℄ has asmell (the smell of the polygon), a 
olor, and a melody; therefore, a sidedetermines an element of 
.{ Plus-tags and minus-tags. For ea
h element ! ∈ 
, we draw two tagsD±(!) labeled by ! and ±, see Fig. 3. The side of a tag is 
olored by the
olor of !.Fix multi-indi
es �, �.We take the following 
olle
tion:{ the polygons T+[ℵi; k℄ if k > �i;{ the polygons T−[ℵi;m℄ if m > �i;{ the tags T+[!℄ if ! ∈ 
+[�℄;{ the tags T−[!℄ if ! ∈ 
−[�℄.Now we have one-to-one 
orresponden
es between the set 
 and the setof all edges of all plus-triangles and plus-tags. Also, we have one-to-one
orresponden
es between the set 
 and the set of all edges of all minus-triangles and minus-tags.For ea
h g ∈ G, we glue a polygonal 
omplex. For ea
h ! ∈ 
, we iden-tify the (oriented) edge of a plus-polygon or a plus-tag 
orresponding to !with the (oriented) edge of a minus-polygon or a minus-tag 
orrespondingto g!.Thus we obtain a polygonal two-dimensional oriented surfa
e with tagson the boundary satisfying the following properties:(i) The surfa
e 
onsists of a 
ountable number of 
ompa
t 
omponents.(ii) Ea
h 
omponent is tiled by polygons of types T±[ℵi℄ and has tagsD± on the boundary.(iii) Ea
h polygon is labeled by \+" or \−", neighboring polygons havedi�erent signs.(iv) Ea
h edge has a 
olor, whi
h is 
ommon for both (plus and minus)sides of the edge.(v) Ea
h edge has two melodies, on the plus-side and on the minus-side.(vi) A 
y
li
 order of pairs (
olor, melody) around the perimeter of ea
hpolygon T±[ℵi℄ is �xed.



COMBINATORIAL ENCODINGS 89(vii) The plus-polygons (respe
tively, minus-polygons) of a �xed smell
ℵi are indexed by �i + 1, �i + 2 . . . (respe
tively �i + 1, �i + 2, . . . ).(viii) The plus-tags are indexed by the points of 
[�℄, and the minus-tags, by points of 
[�℄.(ix) All but a �nite number of 
omponents of the surfa
e are unions ofpairs T+[ℵj ; k℄ and T−[ℵj ; l℄. We 
all su
h 
omponents \envelopes." A pureenvelope is an envelope su
h that the melodies on the plus and minus sidesof ea
h edge 
oin
ide.Theorem 5.1. The data of this type are in a one-to-one 
orresponden
ewith the group G.The inverse 
onstru
tion. For ea
h g!, we �nd ! inside the pairs (plus-polygon, side). This side is also a side of a minus-polygon and en
odes theelement g!.5.3. Passing to double 
osets K� \G=K�. The literal analog of Lem-ma 3.2 holds.In order to pass to double 
osets K� \G=K�, we forget the labels k ∈ Nand remove all envelopes.We obtain a 
ompa
t surfa
e tiled by polygons.{ Polygons are equipped with signs ± and smells.{ Ea
h edge is equipped with a 
olor and a pair of melodies on the neg-ative side and the positive side of the edge (the 
oloring and melodizationof the edges of ea
h polygon is �xed up to a 
y
li
 permutation of sides,as above).3{ The boundary edges of the surfa
e are equipped with signs, the posi-tive edges are indexed by the points of 
[�℄, the negative edges are indexedby the points of 
[�℄.We say that su
h a surfa
e is a morphism �→ �.Let G : � → �, H : � → 
 be two surfa
es. For ea
h ! ∈ 
[�℄, weglue the !-exit of G with the !-entry of H (a

ording to the orientation).Removing the envelopes, we arrive at a 
omplex of the same type.Theorem 5.2. This multipli
ation 
oin
ides with the multipli
ation in thetrain.Proof is the same as for Theorem 3.5.3Re
all that in many 
ases melodies 
an be uniquely re
onstru
ted from 
olors andmay be forgotten.
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Fig. 8. Referen
e to Se
. 5.5. A digonal 
omplex and the
orresponding one-dimensional 
hain.

a) 1-gon

tag b) 1-gon

1-gon

Fig. 9. Referen
e to Se
. 5.5. The only possible 
onne
ted1-gonal 
omplexes.5.4. The involution in the train. We reverse the signs ± and reversethe orientation.5.5. Simple 
ases. Note that our 
onstru
tion admits 2-gons and 1-gons,see Figs. 8, 9. Let the matrix Z satisfy ∑j �ij = 2 for all i. Then all ourpolygons are 2-gons. A digonal 
omplex 
an be regarded as a union of
hains (see Fig. 8), and we 
an use the language of 
hips, see [15℄ andalso [10℄.If Z = (1 : : : 1), then our 
omplex 
onsists of 1-gons. This 
orre-sponds to Nessonov's 
ase, see [10℄.5.6. Constru
tions of representations. In the 
onstru
tion of a tensorprodu
t from Se
. 4.5, we 
an 
hoose arbitrary unit ve
tors�i ∈ p
⊗j=1W⊗�jij =: Hiinstead of (4).
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