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66 YU. A. NERETIN
§1. (G;K)-pairs and their trains. Definitions anda priori theorems1.1. Notation. { N is the set of positive integers.{ M(�) is the initial segment {1; 2; : : : ; �} of N.{ N1, N2, . . . are disjoint opies of the set N.{ Mj(�) are the initial segments {1; 2; : : : ; �} of Nj .{ I(�) are �nite sets with � elements.{ ⊔, ∐ are symbols for the disjoint union of sets.{ Sn is the �nite symmetri group of order n (the group of all permu-tations of {1; 2; : : : ; n}).1.2. The in�nite symmetri group. For a ountable set 
, denoteby S∞(
) the group of all �nitely supported permutations of 
. Denote

S∞(N) by S.We represent permutations by in�nite 0-1 matries in the usual way.By S�∞ ⊂ S∞ we denote the group of permutations having the form� = (1� 00 ∗

) ;where 1� is the unit �× � matrix.Let K = S∞(N1) × · · · × S∞(Np). For a multi-index � = (�1; : : : ; �p),we de�ne a subgroup K� ⊂ K:K� := S
�1
∞ (N1)× · · · × S

�p
∞ (Np):1.3. The topologial in�nite symmetri group. Denote by S∞ thegroup of all permutations of N. De�ne the subgroups S�∞ ⊂ S∞ as above.De�ne a topology on S∞ assuming that S�∞ form a fundamental systems ofopen neighborhoods of the identity. In other words, a sequene �j onvergesto � if for any k ∈ N we have �jk = �k for suÆiently large j. The groupS∞ is a totally disonneted topologial group1.A lassi�ation of irreduible unitary representations of S∞ was ob-tained by Lieberman [6℄, see expositions in [7, 14℄. Let � = 0; 1; 2; : : : ,and let � be an irreduible representation of S�. Consider the subgroupS� × S�∞ ⊂ S∞. Consider the represetation � ⊗ 1 of S� × S�∞, where 1denotes the trivial (one-dimensional) representation of S�∞, and the or-responding indued representation of S∞. Note that the quotient spae1This is the unique struture of a separable topologial group on S∞, see [3℄.
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S∞=S�∞ = S∞=S�∞ is ountable and, therefore, the indued representationis well de�ned (see, e.g., [5, 13.2℄).Theorem 1.1. a) Every irreduible representation of S∞ is indued froma representation of the from � ⊗ 1 of a subgroup S� × S�∞.b) Every unitary representation of S∞ is a diret sum of irreduiblerepresentations.In a ertain sense, the Lieberman theorem opens and loses the repre-sentation theory of the group S∞. However, it is an important element ofwider theories.1.4. Reformulations of ontinuity. Let � be a unitary representationof S∞ in a Hilbert spae H . Denote by H� ⊂ H the subspae of all S�∞-�xed vetors. We say that a representation � is admissible if ∪H� is densein H .Denote by B∞ the semigroup of matries omposed of 0 and 1 suhthat eah row and eah olumn ontains 6 1 ones. We equip B∞ with thetopology of element-wise onvergene; the group S∞ is dense in B∞.Theorem 1.2 (see [7, 14℄). The following onditions are equivalent:{ � is ontinuous in the topology of S∞;{ � is admissible;{ � admits a ontinuous extension to the semigroup B∞.This statement has a straightforward extension to produts of symmet-ri groups K = S∞ × · · · × S∞.1.5. Wreath produts. Let U be a �nite group. Consider the ountablediret produt U∞ := U × U × U × : : : ; it is a group whose elements areall in�nite sequenes (u1; u2; : : : ). Consider also the restrited produt U∞,whose elements are all sequenes suh that uj = 1 for suÆiently large j.The group U∞ is equipped with the diret produt topology, the groupU∞ is disrete.Permutations of sequenes (u1; u2; : : : ) indue automorphisms of U∞and U∞. Consider the semidiret produts K := S∞ ⋉ U∞ and K :=S∞ ⋉ U∞, see, e.g., [5, 2.4℄; they are alled the wreath produts of S∞and U .Our main example is the wreath produt of S∞ and a �nite symmetrigroup Sk. We realize it as a group of �nite permutations of N × I(k). The
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(k)

a) The group S∞ ⋉ (Sk)∞. The group S∞ ats by permutations ofolumns. The normal subgroup (Sk)∞ permutes elements in eah olumn.The semidiret produt onsists of the permutations preserving thepartition of the strip into olumns.
(k4)

(k3)

(k2)

(k1)

b) The group S∞ ⋉ (Sk1 × · · · × Skp)∞. The group S∞ ats bypermutations of olumns. The normal subgroup ats by permutationsinside eah subolumn.Fig. 1. Wreath produts.group S∞ ats by permutations of N, and the subgroups Sk ⊂ (Sk)∞ atby permutations of the sets {m} × {1; : : : ; k}, see Fig. 1a.



COMBINATORIAL ENCODINGS 691.6. Representations of wreath produts. For K = S∞ ⋉ U∞, wede�ne a subgroup K� as the semidiret produt of S�∞ and the subgroupU∞−� := 1× · · · × 1
︸ ︷︷ ︸� times ×U × U × : : : :For a unitary representation � of K in a Hilbert spae H , we denote byH� the spae of K�-�xed vetors. We say that � is admissible if ∪�H� isdense in H . A unitary representation of K = S∞ ⋉U∞ is admissible if andonly if it is ontinuous in the topology of the group K = S∞ ⋉U∞.1.7. (G;K)-pairs. See Fig. 2. Fix positive integers q, p and a q×p matrix

Z := {�ji}onsisting of nonnegative integers. Assume that it has no zero olumns andno zero rows.Fix a olletion � = 




�1...�q of nonnegative integers. Fix sets L1,. . . , Lqsuh that Lj has �j elements. Consider the olletion of sets
Ni × I(�ji):Denote by 
j the disjoint union
j := Lj ⊔ ∐i6p (Ni × I(�ji))(we assume that all sets 
j obtained in this way are mutually disjoint).Set G := G[Z;�℄ = q

∏j=1 S∞(
j); G := G[Z;�℄ = q
∏j=1S∞(
j):Next, we de�ne the following subgroup K◦ ⊂ G[Z;�℄:K◦ = K◦[Z℄ := p

∏i=1(S∞(Ni) ⋉

(∏j S�ji)∞
);and its ompletion K◦ ⊂ G[Z;�℄:K◦ =K◦[Z℄ := p

∏i=1(S∞(Ni) ⋉

(∏j S�ji)∞
):
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Ω4

Ω3

Ω2

Ω1

1 2 3a) The set ∪pi=1 ∪qj=1 (Ni × I(�ji)). Here q = 4, p = 3, � = 0, and
Z = 





0 0 11 5 12 0 44 2 1. The groups S∞(
1), S∞(
2), S∞(
3), S∞(
4) onsistof permutations of the sets 
j . The group G is the produt of S∞(
j).The groups S∞(N1), S∞(N2), S∞(N3) at by permutations of olumns(inside the given Nj). The subgroup K⊛ ⊂ G is the produt
S∞(N1)× S∞(N2)× S∞(N3). For eah olumn we have the group of allpermutations inside the olumn preserving subolumns. The group K◦ isgenerated by K⊛ and all suh subgroups. In our ase,K◦ = (

S∞(N1)⋉(S2×S4)∞)
×

(
S∞(N2)⋉(S5×S2)∞)

×
(
S∞(N2)⋉(S4)∞).

Ωj b) A piture with a nonzero Lj (surrounded by a irle).Fig. 2. Referene to Se. 1.Also, we de�ne the following subgroup in G[Z;�℄:K⊛[Z℄ := p
∏i=1 S∞(Ni) ⊂ K◦[Z℄;and its ompletion K⊛[Z℄ := p
∏i=1S∞(Ni) ⊂K◦[Z℄:



COMBINATORIAL ENCODINGS 71Below, (G;K) denotes a pair (group, subgroup) of the form(G;K) = (G[Z;�℄;K◦[Z℄) or (G;K) = (G[Z;�℄;K⊛[Z℄):Remark. One an also onsider intermediate wreath produts K be-tween K◦[Z℄ and K⊛[Z℄; below we onsider one example from this zoo.1.8. Colors, smells, melodies. We wish to draw �gures, also we wantto have a more exible language.a) To eah 
j we assign a olor, say red, blue, white, red, green, et.We also think that a olor is an attribute of all points of 
j . We denoteolors by jג .b) Next, to eah Ni we assign a smell ℵi, say Magnolia, Matriana,Pinus, Ledum, Ra�esia, et. In �gures, we denote smells by , , , . . . . Wealso think that a smell ℵi is an attribute of all points of (Ni × I(�ji)) ⊂ 
j .) Orbits of the group S∞(Ni) on 
j are one-point orbits or ountablehomogeneous spaes S∞=S1∞ ≃ N. To eah ountable orbit we assign amelody, say, violin, harp, tomtom, ute, drum, . . . . In �gures, we denotemelodies symbols ♥, ≻, ∇, ℄, ‡, et. Note that a melody makes sense after�xing a smell and a olor.Example. See Fig. 2. We have a 4 × 3 table. Boxes are distinguishedby olors, olumns (orresponding to N1, N2, . . . ) are by distinguishedsmells. Rows inside the intersetion of a box and a olumn are indexed bymelodies.1.9. Admissible representations. Let � be a unitary representation ofG. We say that � is a K-admissible representation if the restrition of � toK is admissible. Equivalently, we say that � is a representation of the pair(G;K).1.10. Reformulation of admissibility in terms of ontinuity. Theembedding K → G admits an extension to a map K → G of the orre-sponding ompletions. Consider the groupGK := G ·K ⊂ Ggenerated by G and K. Any element of GK admits a (nonunique) repre-sentation as gk where g ∈ G, k ∈ K.We onsider the natural topology on the subgroup K and assume thatK is an open-losed subgroup in GK.



72 YU. A. NERETINProposition 1.3. A unitary representation of G is K-admissible if andonly if it is ontinuous in the above sense.1.11. Lemma on admissibility.Lemma 1.4. Let � be an irreduible unitary representation of G. If H� 6= 0for some �, then the representation � is K-admissible.Proof. Consider the subspae H := ∪H�. Fix g ∈ G. For suÆientlylarge �, the element g ommutes with K�. Therefore, H is g-invariant.The losure of H is a subrepresentation. �Corollary 1.5. If an irreduible unitary representation of G has a K-�xedvetor, then it is K-admissible.1.12. The existing representation theory. A well-developed existingtheory is related to the pair G = S∞ × S∞ and the diagonal subgroupK = S∞, see [4, 13, 15℄. In our notation, Z = (11). The representationtheory of this pair inludes also earlier works on the Thoma haraters [17℄,see [18℄.Olshanski [15℄ also onsidered the following pairs:{ G = S∞+1 × S∞, K = S∞; in our notation, Z = (11), � = (10).{ G = S2∞, K = S∞ × S∞; in our notation, Z = (1 1).{ G = S2∞,K = S∞⋉Z∞2 , and alsoG = S2∞+1 with the same subgroupK. In our notation, Z = (2) and � = 0 or 1.In all these ases, the pairs (G;K) are limits of spherial pairs of �nitegroups.Nessonov [12℄ onsidered the ase Z = (1 : : : 1) and desribed allK⊛-spherial representations of G(Z; 0). Note that this result has no �nite-dimensional ounterpart.1.13. Trains. Consider the following (�+N+N+∞)×(�+N+N+∞)matrix �[�℄N ∈ S∞: �[�℄N = 





1� 0 0 00 0 1N 00 1N 0 00 0 0 1∞





∈ S∞:



COMBINATORIAL ENCODINGS 73In fat, �[�℄N is ontained in S�∞.Consider a pair (G;K). For a multi-index � = (�1; : : : ; �p), we denoteby �[�℄N the element �[�℄N = (�[�1℄N ; : : : ;�[�p℄N )

∈ K:Again, �[�℄N ∈ K�.Fix multi-indies �, �, . Consider double osets
h ∈ K� \G=K�; g ∈ K \G=K�;and hoose their representatives g ∈ g, h ∈ h. Consider the sequenefN = g�[�℄N h ∈ G:Consider the double oset fN ontaining fN ,

fN ∈ K \G=K�:Theorem 1.6. a) The sequene fN is eventually onstant.b) The limit
g ◦ h := limN→∞

fNdoes not depend on the hoie of representatives g, h.) The produt ◦ obtained in this way is assoiative, i.e., for any
g ∈ KÆ \G=K ; h ∈ K \G=K�; f ∈ K� \G=K�;we have (g ◦ h) ◦ f = g ◦ (h ◦ f):Thus we obtain a ategory T(G;K), whose objets are multi-indies �and morphisms � → � are elements of K� \G=K�. We say that T(G;K)is the train of the pair (G;K).1.14. The involution in the train. The map g 7→ g−1 indues a mapof the quotient spaes K� \G=K� → K� \G=K�, we denote it by

g 7→ g�:Obviously, (g ◦ h)� = h�g�:



74 YU. A. NERETIN1.15. Representations of the train. Now let � be a unitary represen-tation of the pair (G;K). We de�ne subspaes H� as above and denoteby P� the orthogonal projetion to H�. For g ∈ K� \ G=K�, hoose arepresentative g ∈ g. Consider the operator��;�(g) := P ��(g) : H� → H�:By de�nition, we have
‖��;�(g)‖ 6 1: (1)Theorem 1.7. a) The operator ��;�(g) depends only on the double oset

g ontaining g.b) We obtain a representation of the ategory T(G;K), i.e., for any
g ∈ K \G=K�; h ∈ K� \G=K�;the following identity holds:��;(g) ��;�(h) = ��;(g ◦ h):) We obtain a ∗-representation, i.e.,

(��;�(g))∗ = ��;�(g�):d) The operator �(��N ) weakly onverges to the projetion P�.Theorem 1.8. Our onstrution provides a bijetion between the set of allunitary representations of the pair (G;K) and the set of all ∗-representationsof the ategory T(G;K) satisfying ondition (1).We omit the proofs of Theorems 1.6{1.8 and Theorem 1.9 formulatedbelow, beause they are literal opies of the proofs in [10℄.Our main purpose is to give an expliit desription of trains; also, wegive some onstrutions of representations of groups.1.16. Spheriity.Theorem 1.9. Let (G;K) = (G[Z;�℄;K◦[Z℄) or (G[Z;�℄;K⊛[Z℄), asabove. If � = 0, then the pair (G;K) is spherial. In other words, forevery irreduible unitary representation of (G;K), the dimension of thespae of K-�xed vetors is 6 1.



COMBINATORIAL ENCODINGS 751.17. The struture of the rest of the paper. In the next setion,we reall a de�nition of tensor produts of Hilbert spaes. In Se. 3, weonsider three examples. In Ses. 4, 5, we present a desription of trainsfor arbitrary pairs(G(Z;�);K◦[Z℄); (G(Z;�);K⊛[Z℄):
§2. Tensor produts of Hilbert spaesHere we reall a de�nition of an in�nite tensor produt of Hilbert spaes,see the detailed von Neumann's paper [16℄ or a short introdution in theaddendum to [2℄.2.1. De�nition of tensor produts. Let H1, H2, . . . be a ountableolletion of Hilbert spaes (they an be �nite-dimensional or in�nite-dimensional). Fix a unit vetor �k ∈ Hk in eah spae. The tensor produt(H1; �1)⊗ (H2; �2)⊗ (H3; �3)⊗ : : :is de�ned in the following way. We hoose an orthonormal basis ej [k℄ ineah Hk, assuming that e1[k℄ = �k. Next, we onsider the Hilbert spaewith the orthonormal basise�1 [1℄⊗ e�2 [2℄⊗ : : :suh that e�N [N ℄ = �N for suÆiently large N (note that this basis isountable).The onstrution substantially depends on the hoie of distinguishedvetors. The spaes ⊗(Hk; �k) and ⊗(Hk; �k) are anonially isomorphi ifand only if

∑

|〈�j ; �j〉 − 1| <∞:In partiular, we an omit distinguished vetors in a �nite number of fa-tors (more preisely, we an hoose them in an arbitrary way).2.2. The ation of symmetri groups in tensor produts. The sym-metri groups Sn at in the tensor powersH⊗n by permutations of fators.This phenomenon has a straightforward analog.We denote by (H; �)⊗∞ := (H; �)⊗ (H; �)⊗ : : :the in�nite symmetri power of (H; �).



76 YU. A. NERETINProposition 2.1. a) The omplete symmetri group S∞ ats in (H; �)⊗∞by permutations of fators. The representation is ontinuous with respetto the topology of S∞.b) The vetor �⊗∞ is a unique S∞-�xed vetor in (H; �)⊗∞.) The subspae of S�∞-�xed vetors isH⊗� ⊗ �⊗∞:Proposition 2.2. Fix a sequene �k of unit vetors in a Hilbert spae H.The symmetri group S∞ ats in the tensor produt ⊗k(H; �k) by permu-tations of fators.We emphasize that in this ase there is no ation of the omplete sym-metri group S∞.
§3. An example: triangulated surfaes3.1. The group. Let Z = (3) and � > 0 be arbitrary. First, we onsiderthe pair (G(Z;�);K◦(Z)) = (S�+3∞; S∞ ⋉ (S3)∞) :We redue the subgroup and setK := S∞ ⋉

(
Z3)∞;where Z3 ⊂ S3 is the group of yli permutations (or, equivalently, thegroup of even permutations).Now 
 = L ⊔

(
N × I(3)):Let � > 0; we de�ne a set 
[�℄ as the set of all �xed points of K�,
[�℄ = L ⊔

(
M(�) × I(3)):Thus, we have only one olor, only one smell, but three melodies, sayharp (∇), violin (♥), tube (≻).Remark. Let � > 3. Then the operation � 7→ � − 3 does not hangethe topologial group GK. Indeed, we an add one point to the set N andexlude three points from L. Therefore, we may onsider only the ases� = 0, 1, 2.
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∇

♥ ≻

k +

∇

≻ ♥

k −a) A plus-triangle and a minus-triangle.
ω
+ ω

−b) A plus-tag and a minus-tag.Fig. 3. Referene to Se. 3.2. Items for a omplex.3.2. The enoding of elements of the symmetri group. Fix�; � > 0.First, we take the following olletion of items (see Fig. 3).A. Plus-triangles and minus-triangles. To eah element k ∈ N we assigna pair of oriented triangles T±(k) with label k. We write the labels ∇,
♥, ≻ on the interiors of the sides of T+(k) (respetively, T−(k)) lokwise(respetively, ounter-lokwise).An important remark: a number k and a melody determine some ele-ment ! ∈ 
.B. Plus-tags and minus-tags. To eah element ! ∈ 
 we assign twooriented segmentsD±(!) with tags, see Fig. 3. We write the label ! and thelabel \+" (respetively, \−") on the segment T+(!) (respetively, T−(!)).We take the following olletion of items:T+(k) where k > �; T−(l) where l > �;D+(!) where ! ∈ 
[�℄; D−(!) where ! ∈ 
[�℄:Eah element of 
 is present on preisely one edge of one item T+(k)or D+(!) (and, respetively, on one item T−(k) or D−(!)).
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∇
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ψ
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A piee of a omplex. Removing the numbers and the melodies ≻, ∇, ♥(and leaving the signs and the labels on the tags), we pass to doubleosets.
+

−

−
+

−

+
ω
−

ψ
+

Fig. 4. Referene to Ses. 3.2{3.3.Fix an element g ∈ S∞(
). For eah ! ∈ 
, we identify (keeping inmind the orientations) the edge of T+(·) or D+(·) labeled by ! with theedge of T−(·) or D−(·) labeled by g!.
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ω +

ψ −a) A degenerate omponent. An edge with two tags.
b) ∇

♥ ≻

∇

♥ ≻

k +

l −

) ∇

♥ ≻

♥

≻ ∇

k +

l −

This is the stereographi projetion of a sphere and a graph on thesphere. A pure envelope (b) and an envelope ().Fig. 5. Referene to Ses. 3.2{3.3.In this way, we obtain a two-dimensional oriented triangulated surfae�(g) with tags on the boundary. Our piture satis�es the following prop-erties:(i) The surfae onsists of a ountable number of ompat omponents.(ii) Eah omponent is a two-dimensional oriented triangulated surfaewith tags on the boundary (we allow also a segment with two tags, seeFig. 5a).(iii) All triangles and tags have labels \+" or \−", neighboring objetshave di�erent signs.(iv) The plus-triangles (respetively, minus-triangles) are indexed by�+ 1, �+ 2, �+ 3, . . . (respetively, � + 1, � + 2, � + 3, . . . ).(v) The sides of plus-triangles are labeled (from the interior) by ∇, ♥,
≻ lokwise. The sides of minus-triangles are labeled by the same symbolsounter-lokwise.(vi) The plus-tags are indexed by the elements of 
[�℄; the minus-tags,by the elements of 
[�℄.



80 YU. A. NERETIN(vii) Almost all omponents are spheres omposed of two triangles, andthe melodies on the sides of the edges oinide.We regard suh surfaes up to ombinatorial equivalene.Lemma 3.1. Every surfae equipped with the data desribed above hasthe form �[g℄. Di�erent elements g ∈ S∞(
) produe di�erent equippedsurfaes.Proof. We present the inverse onstrution. Above, we have assigned twoelements of 
 to eah edge. Let � orrespond to the plus-side, � orrespondto the minus-side. Then g sends � to �. �Thus we obtain a bijetion.Now we need a tehnial de�nition. We say that an envelope is a om-ponent onsisting of two triangles. We say that an envelope is pure if themelodies on both sides of eah edge oinide (see Fig. 5).3.3. The projetion to double osets.Lemma 3.2. The right multipliations g 7→ gh by elements of S�∞(N)orrespond to permutations of the labels � + 1, � + 2, � + 3, . . . on plus-triangles. Correspondingly, the left multipliations by elements of S�∞(N)orrespond to permutations of the labels on minus-triangles.Lemma 3.3. The right multipliations by elements of (Z3)−�+∞ ⊂ K�orrespond to yli permutations of the symbols ∇, ♥, ≻ inside eah plus-triangle.Corollary 3.4. Passing to double osets K� \G=K� orresponds to for-getting the numbers of triangles and the melodies on the interior sides ofedges of triangles, and removing all envelopes.Thus, we remember only labels on tags and signs.3.4. The onstrution of the train. Objets of the ategory are in-tegers � > 0. Fix indies � and �. A morphism � → � is a ompat (ingeneral, disonneted) triangulated surfae without envelopes equippedwith data (ii), (iii), (vi) from the list above (labels ± and labels on tags).To multiply G : � → � and H : � → , we glue (aording to theorientations) the minus-segments of the boundary of G with the plus-segments of the boundary of H having the same labels on their tags. Weremove the orresponding tags, forget their labels, forget the ontour ofgluing. Some envelopes an appear, we remove them.



COMBINATORIAL ENCODINGS 81We obtain a morphism �→ .Theorem 3.5. The multipliation desribed above is the multipliation inthe train of the pair (G;K).Proof. Fix h, g ∈ G. Consider the orresponding surfaes �[h℄, �[g℄. Takea very large number N . Then the set of labels k on the minus-trianglesof �[�N� h℄ and the set of labels l on the plus-triangles of �[g℄ are disjoint.Therefore, the plus-triangles of �[�N� h℄ preserve their neighbors after themultipliation �[�N� h℄ → g�[�N� h℄. Also, the minus-triangles of �[g℄ pre-serve their neighbors after the multipliation g 7→ g�[�N� h℄. Therefore,both surfaes �[h℄, �[g℄ are piees of the surfae �[g�N� h℄. �3.5. The involution on the train. We reverse the signs and reversethe orientation.3.6. Examples of representations. Let V be a Hilbert spae. Fix aunit vetor � ∈ V ⊗ V ⊗ V (2)invariant with respet to the yli permutations of elements of the tensorprodut.Consider the tensor produt
⊗l∈L V ⊗ (V ⊗ V ⊗ V; �i)⊗∞:The group GK ats on this produt by permutations of fators. Namely,S∞ ats by permutations of the fators (V ⊗ V ⊗ V; �). The opies of Z3at by yli permutations of fators of the produts V ⊗V ⊗V . The groupG ats by permutations of the fators V .3.7. Another pair. The subgroup K⊛. Let Z, �, G = G[Z; �℄ be asabove and onsider the pair(G;K) := (G(Z; �);K⊛(Z)) = (S�+3∞; S∞):Return to Lemma 3.2. Now we remove the numbers of triangles but pre-serve the melodies. We also remove all pure envelopes.In the onstrution of the representation, we an replae (2) by anarbitrary unit vetor � ∈ V ⊗ V ⊗ V:



82 YU. A. NERETIN3.8. Another pair. The subgroup K◦. Let Z, �, G = G[Z; �℄ be asabove. Consider the pair(G;K) := (G(Z; �);K◦(Z)) = (S�+3∞; S∞ ⋉ (S3)∞):First, we onstrut representations. In the onstrution of Se. 3.6, we take� ∈ S3V ⊂ V ⊗ V ⊗ V;where S3V is the third symmetri power of V .An attempt to repeat the onstrution of the train meets an obviousdiÆulty: permutations of the melodies hange the orientations of the tri-angles. However, we an pass from triangulations to dual graphs. Now wean enumerate the double osets by trivalent graphs. See the next setion.
§4. The general ase, K = K◦ is a wreath produt4.1. The group. Here we onsider an arbitrary matrix Z and an arbi-trary vetor �. Now
j = Lj ⊔ p

∐i=1(Ni × I(�ji));G := G[Z;�℄ = q
∏j=1 S∞(
j);K := K◦[Z℄ = p

∏i=1(S∞(Ni) ⋉

(∏j S�ji)∞):Reall that we attributed a olor to eah 
j , a smell to eah Ni, and amelody to eah in�nite orbit of S∞(Ni) on 
j .We denote 
 := ∐j6q
iand regardG[Z;�℄ as a subgroup in S∞(
). For a multi-index � = (�1; : : : ; �p),we denote by 
[�℄ the set of all K�-�xed points of 
,
[�℄ = q
∐j=1(Lj ⊔ p

∐i=1(M(�i)× I(�ji))):
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a) A node.
+
ω

+
ν

−

λ

−

+

−

+

b) A double oset.
− +) A trivial omponent of a graph.Fig. 6. Referene to Se. 4.2.4.2. The enoding of elements of symmetri groups. For eah el-ement of G[Z;�℄, we onstrut a graph equipped with some additionaldata.



84 YU. A. NERETINFor eah smell i, we draw a node T [ℵi℄ (see Fig. 6). It ontains a vertex ofsmell ℵi and ∑j �ji semi-edges. The edges are olored, eah olor jג is usedfor oloring �ji edges. To eah edge of a given olor we attribute a melodyfrom the orresponding list of �ji melodies (di�erent edges have di�erentmelodies). Thus, the semi-edges of T [ℵi℄ are in a one-to-one orrespondenewith the orbits of S∞(Ni) on 
.Now we prepare the following olletion of items.a) For eah smell ℵi and eah k ∈ N, we draw two opies T±[ℵi; k℄ ofthe node T [ℵi℄, their verties are labeled by k and ±. We throw out thenodes T+[ℵi; k℄ with k 6 �i and the nodes T−[ℵi;m℄ with m 6 �ib) For eah olor jג and eah element ! of 
j ∩ 
[�℄, we draw a tagD+(!) and mark this tag by !, the olor of !, and \+". We draw similartags D−(!) for the elements ! ∈ 
[�℄. We imagine a tag as a vertex and asemi-edge.Thus, the set 
 is in a one-to-one orrespondene with the sets
E+ = { all semi-edges ofall nodes T+[ℵi; k℄}⋃
[�℄and
E− = { all semi-edges ofall nodes T−[ℵi; k℄}⋃
[�℄:Denote the bijetions 
 → E± by H±.Now for eah ! ∈ 
 we onnet a semi-edge H+(!) ∈ E+ with thesemi-edge H−(g!) ∈ E−. We obtain a graph with the following properties.(i) The graph onsists of a ountable number of ompat omponents.(ii) There are two types of verties, interior verties2 and terminal ver-ties (ends of semi-edges).(iii) Eah interior vertex has a smell ℵi and a sign \+" or \−".(iv) The interior plus-verties are indexed by the set {�i+1; �i+2; : : :};the interior minus-verties, by {�i + 1; �i + 2; : : : }.(v) The terminal verties fall into two lasses, entries and exits. Theentries are indexed by the elements of 
[�℄ and the labels \+". The exitsare indexed by the elements of 
[�℄ and the labels \−".(v) Neighboring verties have di�erent signs.2The ase ∑j �ji = 1 is admissible.



COMBINATORIAL ENCODINGS 85(vi) The edges are olored, the number of edges of olor jג oming toan interior vertex of smell ℵi is �ji. The edge adjaent to a terminal vertexwith label ! has the olor of !.(vii) To eah semi-edge adjaent to an interior vertex, a melody is at-tributed ompatible with its olor. At eah vertex of smell ℵi, eah melodyompatible with the smell is present preisely one.(viii) All but a �nite number of omponents onsist of two interiorverties and edges onneting these verties.We all omponents desribed in (viii) trivial. We say that a omponentis ompletely trivial if for every edge the smells of both semi-edges oinide.Theorem 4.1. There is a one-to-one orrespondene between the set ofall graphs satisfying (i){(viii) and the in�nite symmetri group S∞(
).Proof. Consider an edge. It has a plus-semi-edge and a minus-semi-edge.Consider the orresponding elements � ∈ E+ and  ∈ E−. Set g� =  . �4.3. The projetion to double osets.Proposition 4.2. a) The right multipliations by elements of S�∞(Ni) or-respond to permutations of the labels {�+1; �+2; : : : } on plus-verties ofsmell ℵi.b) The right multipliations by elements of S−�i+∞�ji ⊂ S∞(
j) orre-spond to permutations of the melodies of semi-edges of olor ij adjaentto �xed verties of smell ℵi.Corollary 4.3. Passing to double osets orresponds to forgetting the la-bels ∈ N and melodies.The olors, smells, signs, and also labels on tags are preserved.4.4. The multipliation of double osets. Given two morphisms
G : � → �, H : � → , we glue the exits of g with the orrespondingentries of h (and forget the verties of gluings).The involution is the inversion of the signs and also the entries/exits.Theorem 4.4. This produt oinides with the produt in the train T(G;K).



86 YU. A. NERETIN4.5. Some representations of (G;K). We onsider a olletion of Hilbertspaes W1, . . . , Wq indexed by olors. Fix i. Consider the tensor produt
Hi = p

⊗j=1W⊗�jij : (3)Note that the fators of the produt are in a one-to-one orrespondenewith the semi-edges of T [ℵi℄.Fix a unit vetor �i ∈ p
⊗j=1 S�jiWj ⊂ Hi: (4)Consider the tensor produt

W := q
⊗j=1W⊗�jj ⊗

q
⊗i=1 (Hi; �i)⊗∞ = q

⊗j=1W⊗�jj ⊗

q
⊗i=1( p

⊗j=1W⊗�jij ; �i)⊗∞:Note that the fatorsW of this tensor produt are indexed by the elementsof ⊔
j . Formally, we an write q
⊗j=1 ⊗!∈
jWj :However, this makes no sense without distinguished vetors.Eah group S∞(
j) ats by permutations of the fators Wj . This de-termines an ation of G. Eah group S∞(Ni) ats by permutations of thefators (Hi; �i). For eah opy of (Hi; �i) we have an ation of ∏j S�ji ,namely, the symmetri group S�ji permutes the fators Wj in (4).Thus we obtain an ation of GK.

§5. The general ase, K = K⊛ is a produt of symmetrigroupsThe onstrution of this setion is more or less a version of the previousonstrution. For the smaller group K = K⊛, we an replae a graph bya fat graph, and after this draw a two-dimensional surfae. We repeat theonstrution independently.
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♯

≻

♮
∇

♥

♭

‡Fig. 7. Referene to Se. 5.2. A polygon T+[ℵi℄.5.1. The group. We onsider an arbitrary matrix Z and an arbitraryvetor �. Now
j = Lj ⊔ p
∐i=1(Ni × I(�ji));G := G[Z;�℄ = q

∏j=1 S∞(
j); K := K⊛[Z℄ = p
∏i=1 S∞(Ni):We denote 
 := ∐j6q
i:For a multi-index � = (�1; : : : ; �p), we denote by 
[�℄ the set of all K�-�xed points of 
,
[�℄ = q

∐j=1(Lj ⊔ p
∐i=1(M(�i)× I(�ji))):5.2. Construtions of the train. Fix a smell ℵi. The nontrivial orbitsof S∞(Ni) on ⊔
j are indexed by pairs (olor, melody). The total numberof suh orbits is ∑j �ij :We hoose an arbitrary yli order on the set of suh pairs (the onstru-tion below depends on this hoie). Next, we draw a polygon T+[ℵi℄ ofsmell ℵi whose sides are marked by pairs (olor, melody) aording to theyli order. We also de�ne the polygon T−[ℵi℄, whose sides are markedaording to the reversed yli order.Consider the following types of items.



88 YU. A. NERETIN{ Plus-polygons and minus-polygons. For eah i 6 p, for eah k ∈ Ni,we draw the pair of oriented polygons T±[ℵi; k℄ desribed above; they areadditionally labeled by k ∈ N. Every side of every polygon T±[ℵi; k℄ has asmell (the smell of the polygon), a olor, and a melody; therefore, a sidedetermines an element of 
.{ Plus-tags and minus-tags. For eah element ! ∈ 
, we draw two tagsD±(!) labeled by ! and ±, see Fig. 3. The side of a tag is olored by theolor of !.Fix multi-indies �, �.We take the following olletion:{ the polygons T+[ℵi; k℄ if k > �i;{ the polygons T−[ℵi;m℄ if m > �i;{ the tags T+[!℄ if ! ∈ 
+[�℄;{ the tags T−[!℄ if ! ∈ 
−[�℄.Now we have one-to-one orrespondenes between the set 
 and the setof all edges of all plus-triangles and plus-tags. Also, we have one-to-oneorrespondenes between the set 
 and the set of all edges of all minus-triangles and minus-tags.For eah g ∈ G, we glue a polygonal omplex. For eah ! ∈ 
, we iden-tify the (oriented) edge of a plus-polygon or a plus-tag orresponding to !with the (oriented) edge of a minus-polygon or a minus-tag orrespondingto g!.Thus we obtain a polygonal two-dimensional oriented surfae with tagson the boundary satisfying the following properties:(i) The surfae onsists of a ountable number of ompat omponents.(ii) Eah omponent is tiled by polygons of types T±[ℵi℄ and has tagsD± on the boundary.(iii) Eah polygon is labeled by \+" or \−", neighboring polygons havedi�erent signs.(iv) Eah edge has a olor, whih is ommon for both (plus and minus)sides of the edge.(v) Eah edge has two melodies, on the plus-side and on the minus-side.(vi) A yli order of pairs (olor, melody) around the perimeter of eahpolygon T±[ℵi℄ is �xed.



COMBINATORIAL ENCODINGS 89(vii) The plus-polygons (respetively, minus-polygons) of a �xed smell
ℵi are indexed by �i + 1, �i + 2 . . . (respetively �i + 1, �i + 2, . . . ).(viii) The plus-tags are indexed by the points of 
[�℄, and the minus-tags, by points of 
[�℄.(ix) All but a �nite number of omponents of the surfae are unions ofpairs T+[ℵj ; k℄ and T−[ℵj ; l℄. We all suh omponents \envelopes." A pureenvelope is an envelope suh that the melodies on the plus and minus sidesof eah edge oinide.Theorem 5.1. The data of this type are in a one-to-one orrespondenewith the group G.The inverse onstrution. For eah g!, we �nd ! inside the pairs (plus-polygon, side). This side is also a side of a minus-polygon and enodes theelement g!.5.3. Passing to double osets K� \G=K�. The literal analog of Lem-ma 3.2 holds.In order to pass to double osets K� \G=K�, we forget the labels k ∈ Nand remove all envelopes.We obtain a ompat surfae tiled by polygons.{ Polygons are equipped with signs ± and smells.{ Eah edge is equipped with a olor and a pair of melodies on the neg-ative side and the positive side of the edge (the oloring and melodizationof the edges of eah polygon is �xed up to a yli permutation of sides,as above).3{ The boundary edges of the surfae are equipped with signs, the posi-tive edges are indexed by the points of 
[�℄, the negative edges are indexedby the points of 
[�℄.We say that suh a surfae is a morphism �→ �.Let G : � → �, H : � →  be two surfaes. For eah ! ∈ 
[�℄, weglue the !-exit of G with the !-entry of H (aording to the orientation).Removing the envelopes, we arrive at a omplex of the same type.Theorem 5.2. This multipliation oinides with the multipliation in thetrain.Proof is the same as for Theorem 3.5.3Reall that in many ases melodies an be uniquely reonstruted from olors andmay be forgotten.



90 YU. A. NERETIN
Fig. 8. Referene to Se. 5.5. A digonal omplex and theorresponding one-dimensional hain.

a) 1-gon

tag b) 1-gon

1-gon

Fig. 9. Referene to Se. 5.5. The only possible onneted1-gonal omplexes.5.4. The involution in the train. We reverse the signs ± and reversethe orientation.5.5. Simple ases. Note that our onstrution admits 2-gons and 1-gons,see Figs. 8, 9. Let the matrix Z satisfy ∑j �ij = 2 for all i. Then all ourpolygons are 2-gons. A digonal omplex an be regarded as a union ofhains (see Fig. 8), and we an use the language of hips, see [15℄ andalso [10℄.If Z = (1 : : : 1), then our omplex onsists of 1-gons. This orre-sponds to Nessonov's ase, see [10℄.5.6. Construtions of representations. In the onstrution of a tensorprodut from Se. 4.5, we an hoose arbitrary unit vetors�i ∈ p
⊗j=1W⊗�jij =: Hiinstead of (4).
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