
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 462, 2017 Ç.A. ZhukovaDISCRETE MORSE THEORY FOR THEBARYCENTRIC SUBDIVISIONAbstrat. Let F be a disrete Morse funtion on a simpliial om-plex L. We onstrut a disrete Morse funtion �(F ) on the baryen-tri subdivision �(L). The onstruted funtion �(F ) \behaves thesame way" as F , i.e., has the same number of ritial simplies andthe same gradient path struture.
§1. IntrodutionWe work with disrete Morse theory, whih is a disrete analog of las-sial Morse theory. It was developed by R. Forman [1℄. This theory anbe applied to any simpliial omplexes and regular CW-omplexes, and,although its de�nition is quite simple, many lassial results analogous tothose of the ontinuous Morse theory arise in its sope.In 2010, E. Gallais [2℄ proved that for every smooth Morse funtion ona smooth manifold M there exists a PL-triangulation of this manifold thatadmits a disrete Morse funtion with the same number of ritial points(simplies). This work was ontinued by B. Benedetti [3℄.The lassial onstrution of the baryentri subdivision of simpliialomplexes an be used to approximate a smooth struture on a triangu-lated topologial manifold. We develop a simple algorithm to \transfer" adisrete Morse funtion, de�ned on a simpliial omplex, onto the baryen-tri subdivision of this omplex in suh a way that all important data aboutthis funtion (i.e., the number and dimensions of the ritial simplies andthe gradient path struture) stays unhanged. This an be done in severaldi�erent ways, and we an produe several di�erent Morse funtions. Themain result of our work is as follows.Theorem 1.1. Let F be a disrete Morse funtion on a simpliial om-plex L. Assume that for eah ritial simplex � ∈ Crit(F ), an orderingKey words and phrases: simpliial omplexes, disrete Morse theory.This work is supported by the Russian Siene Foundation, grant 16-11-10039. Theauthor is a Young Russian Mathematis award winner and would like to thank itssponsors and jury. 52



DISCRETE MORSE THEORY 53Ord� on its verties is hosen. Then the pairing on the baryentri subdi-vision �(L) onstruted in Se. 3 de�nes a disrete Morse funtion �(F )on �(L) suh that the following holds:(1) The ritial simplies of �(F ) are exatly those that have the ho-sen orderings Ord∗ as their labels. That is, every ritial k-simplexof F ontains exatly one ritial k-simplex of �(F ), whih an behosen arbitrarily before onstruting �(F ). This de�nes a bije-tion Crit(F ) → Crit(�(F )).(2) There exists a natural bijetion Gr(F ) → Gr(�(F )) that respetsthe bijetion Crit(F ) → Crit(�(F )) de�ned above.It is worthy to mention in this respet that E. Babson and P. Hersh [4℄introdued a tehnique that an be (as one partiular appliation) used tobuild a ertain Morse funtion on the baryentri subdivision of an arbi-trary simpliial omplex. This Morse funtion arises from a lexiographiorder on the maximal hains of simplies of L, i.e., on the maximal sim-plies of �(L). The question whether there are onnetions between ourwork and [4℄ remains open.The struture of this paper is as follows. In Se. 2, we give de�nitionsof a disrete Morse funtion and the baryentri subdivision. In Se. 3, weonstrut a Morse funtion on the baryentri subdivision of a simpliialomplex, and in Se. 4, we prove that the onstruted funtion satis�esthe required onditions.Aknowledgments. The author thanks G. Panina for formulating theproblem.
§2. PreliminariesWe start with de�nitions.A disrete Morse funtion on a simpliial omplex [1℄. Let L bea regular simpliial omplex. By �p; �p in this setion we denote its p-dimensional simplies, or, for short, p-simplies.A disrete vetor �eld on L is a set of pairs

(�p; �p+1)of its simplies suh that(1) eah simplex of the omplex ours in at most one pair;(2) in eah pair, the simplex �p is a faet of �p+1.



54 A. ZHUKOVAGiven a disrete vetor �eld, a path of dimension p+1, or a (p+1)-path,is a sequene of simplies�p+10 ; �p1; �p+11 ; �p2; �p+12 ; :::; �pm; �p+1m ; �pm+1that satis�es the following onditions:(1) eah (�pi ; �p+1i ) is a pair in this disrete vetor �eld for every i;(2) whenever � and � are neighbors in the path, � is a faet of �;(3) �i 6= �i+1.Every path onsists of \fae"-steps (that is, transitions from a simplex�p+1i to one of its faes �pi+1) and \pair"-steps (that is, transitions from asimplex �pi to the simplex �p+1i , where these simplies form a pair in thedisrete vetor �eld).A path is losed if �pm+1 = �p0.A disrete Morse funtion on a regular simpliial omplex is a disretevetor �eld with no losed paths in it.Assuming that a disrete Morse funtion is �xed, the ritial simpliesare those simplies of the omplex that are not paired. We denote the setof all ritial simplies of a disrete Morse funtion F by Crit(F ).A gradient (p + 1)-path of a disrete Morse funtion leading from oneritial simplex �p+1 to another ritial simplex �p is a (p+ 1)-path thatleads from �p+1 to �p:�p+1; �p1; �p+11 ; �p2; �p+12 ; :::; �pm; �p+1m ; �p:We denote the set of all gradient paths of a disrete Morse funtion Fby Gr (F ).2.1. The baryentri subdivision.De�nition 2.1. Let L be a simpliial omplex. Then its baryentri sub-division �(L) is a simpliial omplex suh that the verties of �(L) arein a bijetive orrespondene with the set of all simplies of L and thesubset of verties in �(L) forms a simplex if and only if the orrespondingsimplies form a hain in the poset of all simplies of L.For any two simplies �; � ∈ �(L), we have � ∈ � if and only if thehain that orresponds to � is a subhain of the hain that orrespondsto �.A regular realization of �(L) an be onstruted for any regular reali-sation of L as follows. We realize every vertex of �(L) as the baryenter



DISCRETE MORSE THEORY 55of the realization of the orresponding simplex of L, as depited in Fig. 1.The realization of a simplex � ∈ �(L) lies in the interior of the realizationof a simplex � ∈ L if and only if � is the last simplex in the hain ofsimplies that orresponds to �.
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b D b)(Fig. 1. The baryentri subdivision of a 2-simplex withthe hains orresponding to some simplies.To simplify our onstrution, we transform hains of simplies of L inthe following way. We turn the hains1 → s2 → · · · → sk+1that orresponds to a simplex  into the ordered set�() = {s1; s2 \ s1; : : : ; sk+1 \ sk};whih we all the label of . It is a linearly ordered partition of the set sk+1.In this notation, a simplex �′ ∈ �(L) is a fae of a simplex � ∈ �(L)if and only if the partition �(�) an be turned into a re�nement of thepartition �(�′) by deleting some sets from the end of �(�). We will usethis geometri piture in our proofs.Example. Consider the triangle in �(L) with the label({a; f} {d} {t}):Its faes have the following labels:



56 A. ZHUKOVA
• 1-dimensional (edges): ({a; f} {d; t}), ({a; f; d} {t}), ({a; f} {d});
• 0-dimensional (verties): ({a; f; d; t}); ({a; f; d}); ({a; f}).

§3. The pairing on the omplex �(L)Assume that we have a disrete Morse funtion F on a regular simpliialomplex L. In this setion, we de�ne a disrete vetor �eld on the omplex�(L). We deal with piees of ritial and nonritial simplies of L in twodi�erent ways.3.1. Nonritial simplies. Let (�n−1; �n) ∈ F . We renumber the ver-ties so that � = [n℄ = {1; 2; : : : ; n}; � = [n + 1℄ = {1; 2; : : : ; n + 1}. Thisrenumbering is almost arbitrary, exept that n + 1 = �\�. The pairingthat we de�ne below does not depend on this renumbering, so it is madeonly for onveniene.We de�ne pairings on all simplies of �(L) that lie in the interiors of� and �. They are exatly all simplies whose labels are the subdivisionsof [n℄ and [n + 1℄. Let  be a k-simplex with suh a label. Consider fourpossible ases:(1) �() is an ordered subdivision of [n℄, i.e.,  ∈ �(�). Then weobtain a pair for  by adding the singleton {n + 1} to the rightend of �(). We get a (k + 1)-simplex that belongs to ase 2.(2) The entry n+1 forms a singleton in �(), and it is the last set in�(). Then we obtain a pair for  by deleting {n+ 1} from �().We get a (k − 1)-simplex that belongs to ase 1.(3) The entry n + 1 forms a singleton in �(), and it is not the lastset in �(). Then we obtain a pair for  by uniting the singleton
{n+1} with the set that follows it. We get a (k− 1)-simplex thatbelongs to ase 4.(4) The entry n+1 lies in a non-singleton set in �(). Then we obtaina pair for  by splitting o� the entry n + 1 to the left of the setontaining it and forming a singleton {n + 1}. We get a (k + 1)-simplex that belongs to ase 3.It is easy to see that every simplex ours in exatly one pair.Example. If n + 1 = 5, then we will have pairs of simplies suh as thetwo below: (({1} {3; 4} {2; 5}); ({1} {3; 4} {5} {2}))



DISCRETE MORSE THEORY 57and ({1} {3; 4} {2}); ({1} {3; 4} {2} {5}))):Now we prove that this pairing de�nes a Morse funtion inside �(�).Lemma 3.1. There are no yli paths in the vetor �eld on �(�) de�nedabove.Proof. Assume that we have a path � in the pairing de�ned above. Con-sider the position of the entry n+ 1 in the labels of the simplies in �. Inevery pair-step, this entry leaves some non-singleton set and forms a sin-gleton. Therefore, every fae-step, exept maybe the �rst or the last stepin the path, is performed by adding this entry to the set next to it. If weadd this entry to the right set, then at the next pair-step we will immedi-ately return bak to this simplex, whih is forbidden. So every fae-step isde�ned uniquely, and the entry n + 1 travels to the left side of the labelduring the path. Therefore, no path is yli. �As we will see in Lemma 4.2, we are interested only in n-paths inside�(�). The lemma below follows from the onstrution of the pairing andthe de�nition of the baryentri subdivision.Lemma 3.2. Let �() = (I1 I2 : : : In+1) be an n-simplex in �(�) (notethat in this ase, all the sets Ii are singletons). Then the following state-ments hold.(1) There is exatly one (n− 1)-fae of  that lies on the boundary of�, and it is the simplex with the label (I1 I2 : : : In).(2) The simplex  is paired with the (n−1)-simplex given above if andonly if In+1 = {n+ 1}.(3) If I1 6= {n+ 1}, then there is exatly one (n− 1)-fae of  that ispaired with another n-simplex of �(�). It has the label obtained byuniting in �() the singleton {n+1} with the singleton that preedesit. This (n− 1)-fae of  is paired with the simplex ′ whose labelan be obtained from �() by interhanging the singleton {n+ 1}with the singleton that preedes it.(4) If I1 = {n+1}, then there are no (n−1)-faes of  that are pairedwith other n-simplies of �(�).This lemma shows that if we onstrut an n-path that goes through�(�), we do not have muh hoie. We an start from any (n− 1)-simplexin �(�) and follow the pairings. At eah fae step, we an either go to theboundary of �(�) in a uniquely de�ned way (Lemma 3.2, Claim 1), or go



58 A. ZHUKOVAfurther in a uniquely de�ned way (Lemma 3.2, Claim 3), until we arriveat simplies that lie near the vertex n + 1 and leave �(�) (Lemma 3.2,Claim 4).Informally, these paths form a \ow" from � in the diretion of thevertex p+ 1 (see Fig. 2 for an example).
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aFig. 2. The pairings on the baryentri subdivision of apair (�n; �n+1) for n+ 1 = 3.The next lemma follows from the above.Lemma 3.3. Assume that a gradient n-path of �(F ) goes through �(�)and the last simplex of �(�) in this path is the (n − 1)-simplex �() =(I1 I2 : : : In) on the boundary of �. Assume that Ij = {n + 1}. Then the�rst simplex of this path belongs to �(�) and has the label(I1 I2 : : : Ij−1 Ij+1 : : : In [n+ 1℄\ n
⋃i=1 Ii):Example. Let n+1 = 5. If an n-path goes through �(�) and the last sim-plex of �(�) in this path is the (n−1)-simplex labeled by ({1} {3} {5} {4}),then the �rst simplex of �(�) in this path is the simplex labeled by



DISCRETE MORSE THEORY 59({1} {3} {4} {2}) and the path looks as follows:({1} {3} {4} {2})({1} {3} {4} {2} {5})({1} {3} {4} {2; 5})({1} {3} {4} {5} {2})({1} {3} {4; 5} {2})({1} {3} {5} {4} {2})({1} {3} {5} {4}):3.2. Critial simplies. Let �n be a ritial n-simplex of F . We relabelits verties so that � = [n+1℄ = {1; 2; : : : ; n+1}. We will pair the simpliesof �(L) that lie in the inner part of �, i.e., those whose labels are theordered subdivisions of the set [n+ 1℄. We leave only one n-simplex non-paired, namely, the simplex with the label�(�′) = ({n+ 1} {n} : : :{1}):This simplex depends on our renumbering, and, given an arbitrary n-simplex in �(�) with label Ord�, we an renumber the verties in � in theorder opposite to Ord� to make this n-simplex ritial in our onstrution.Let  be a k-simplex in �(�) with the label �() = (I1 I1 : : : Ik+1). Leti be the length of the longest ommon suÆx of �() and �(�′) (i.e., forevery j 6 i, the jth sets from the end in �() and �(�′) oinide). Threeases are possible:(1) i = n. Then  = �′ and we do not pair it.(2) i < n and the entry i+ 1 forms a singleton in �(). Then we pairthe simplex  with the (k − 1)-simplex whose label is obtainedfrom �() by uniting this singleton with the set that follows it.This does not hange the longest ommon suÆx with �(�′).(3) i < n and the entry i+1 lies in a non-singleton set in �(). Then wepair the simplex  with the (k+1)-simplex whose label is obtainedfrom �() by splitting this entry o� this set to the left of it andforming a singleton. This does not hange the longest ommonsuÆx with �(�′).We always pair one simplex of type 2 with a unique simplex of type 3,so this pairing is well de�ned (see Fig. 3 for an example).



60 A. ZHUKOVAExample. For n = 5, we build suh pairs as(({1; 2} {3} {4; 5}); ({1} {2} {3} {4; 5}));where the length of the longest ommon suÆx with �(�′) is 0, and(({4; 5} {3} {2} {1}); ({4} {5} {3} {2} {1}));where the length of the longest ommon suÆx with �(�′) is 3.Now we prove that this pairing forms a Morse funtion on �(�).Lemma 3.4. There are no yli paths in the vetor �eld on �(�) de�nedabove.Proof. Let � be a path in this �eld. Consider the longest ommon suÆxof the labels of simplies in � and �(�′). It never grows during the path.If it gets shorter, then the path annot be yli.Assume that this suÆx stays the same during � and its length is i.Then all the pair-steps in � are performed by splitting the entry i+ 1 o�a non-singleton set to the left. Therefore, all the fae-steps in �, exeptmaybe the �rst and the last one, are performed by adding this entry tothe set to the left of it. So, the entry i+ 1 travels to the left in the label,and � annot be yli. �Lemma 3.5. For every (n−1)-simplex  ∈ �(�) that lies on the boundaryof � there is a unique n-path in �(�) that starts at �′ and exits �(�)through .Proof. As we already know, there is a unique n-simplex ′ ∈ �(�) thathas  on its boundary. Our path has to go through ′.The longest ommon suÆx with �(�′) an only derease during the path(at the start, its length is n+ 1). For arbitrary i, the entry i moves insidethe label during the path only when this suÆx has length i− 1. So, by thetime the length of this suÆx beomes smaller than i− 1, the permutationof the entries i; i + 1; : : : ; n + 1 in the label is �xed and does not hangeany more. If suh a path exists, then all entries appear in dereasing order,and this implies the uniqueness of the path. Knowing that, it is not hardto onstrut suh a path. For example, if n = 4 and  = ({2} {4} {5} {1}),then ′ = ({2} {4} {5} {1} {3})



DISCRETE MORSE THEORY 61and the path looks as follows:�′ = ({5} {4} {3} {2} {1})({4; 5} {3} {2} {1})({4} {5} {3} {2} {1})({4} {5} {2; 3} {1})({4} {5} {2} {3} {1})({4} {2; 5} {3} {1})({4} {2} {5} {3} {1})({2; 4} {5} {3} {1})({2} {4} {5} {3} {1})({2} {4} {5} {1; 3});′ = ({2} {4} {5} {1} {3}); = ({2} {4} {5} {1}): �
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3Fig. 3. The pairings on the baryentri subdivision of asimplex � for n = 2.



62 A. ZHUKOVAAny gradient path that ontains n-simplies from �(�) an look in oneof the two following ways.(1) It starts from �′ and makes steps inside �(�). Then at some fae-step, this path exits �(�) through an (n−1)-simplex on the bound-ary. Aording to Lemma 3.5, this path is uniquely determined byits exit simplex.(2) It enters �′ at some pair-step from some (n+1)-simplex  ∈ �(L).From the struture of the baryentri subdivision it follows thatthe simplex  lies in the baryentri subdivision of some (n + 1)-simplex � of L, and the simplex � is a faet of �. This path is an(n+ 1)-path, and it terminates at �′.
§4. Paths on the baryentri subdivisionClaim 1 of Theorem 1.1 follows from the onstrution of �(F ). In thissetion, we prove the rest of Theorem 1.1.Lemma 4.1. Let F be a disrete Morse funtion on a simpliial omplexF . Then the pairing �(F ) onstruted in Se. 3 is a Morse funtion.Proof. We need to prove that no path in �(F ) is yli. By Lemmas 3.1and 3.4, this is true for a path that stays inside one simplex of L.Let � be a path in �(F ), and let � inlude parts of more than onesimplex of L. Every simplex  ∈ � lies in the inner part of some simplexin L. Take these simplies as a sequene and delete the repetitions. Theresulting sequene �′ is yli if � is yli.From the de�nition of �(F ) it follows that for any two onseutivesimplies in �′, one is a faet of the other. Moreover, if the simplex withthe lower dimension preedes the simplex with the higher dimension, thenthese two simplies are paired. So, the sequene �′ onsists of fae-stepsand pair-steps. By the de�nition of a Morse funtion, no two pair-stepsan be onseutive.If no two fae-steps are onseutive in �′, then �′ is a path in F andannot be yli. If there are at least two onseutive fae-steps, then thedimension of the simplies dereases during �′ more times than it inreases,and �′ annot be yli. �Now we onsider, for arbitrary n, how the gradient n-paths behave in�(F ). If a gradient n-path starts at a ritial simplex �′, then it leavesthe orresponding simplex � of L through an (n − 1)-simplex that lies



DISCRETE MORSE THEORY 63in an (n − 1)-fae of �. If an n-path enters �(�), where � is nonritial,through an (n − 1)-simplex on its boundary, then it leaves this simplexthrough another (n−1)-simplex that lies on the boundary of � as well. So,this path never gets out of the n-simplies of L. We obtain the followinglemma.Lemma 4.2. Assume that � is a gradient n-path. Then all n-simplies in� lie in the interiors of n-simplies of L.In other words, a gradient n-path in �(F ) never gets inside the simpliesof L of dimensions higher than n.Now we prove that the ritial path struture of the funtion �(F ) isisomorphi to the gradient path struture of the funtion F . We do it byonstruting two maps between the set of gradient paths Gr (F ) of thefuntion F and the set of gradient paths Gr (�(F )) of the funtion �(F ).These maps are one-to-one, they are opposite to eah other, and theyrespet our bijetion Crit(F ) → Crit(�(F )).The map Gr (�(F )) → Gr (F ).Let � be a gradient n-path in �(F ). We onstrut the orrespondingsequene �′ of simplies of L, as we did in the proof of Lemma 4.1. ByLemma 4.2 and by the onstrution of �(F ), this sequene is an n-path inF . Moreover, it starts and ends in ritial points, sine only ritial pointsof F ontain ritial points of �(F ). These ritial simplies orrespondto the beginning and the end of �.Therefore, �′ is a gradient path of F .The map Gr (�(F )) → Gr (F ).Let � be a gradient n-path in F from a simplex � to a simplex �:� = �0; �1; �1; �2; �2; :::; �k; �k; �:We onstrut a orresponding path �(�) in �(F ) that goes from �′ to�′. We de�ne the path inside �(�i) for eah i suessively, starting fromthe end of �. Our path exits �(�k) through �′, whih, by Lemma 3.1,determines the path in �(�k) uniquely. For every i, 1 6 i 6 k, the �rstsimplex of the path onstruted in �(�i) beomes the last simplex of thepath in �(�i−1) and determines the path in �(�i−1) uniquely. For thesimplex �, the same holds by Lemma 3.4. Therefore, the path �(�) isde�ned uniquely.It is easy to see that for every gradient path � in F , we have (�(�))′ = �,and from Lemma 4.2 it follows that for every gradient path � in �(F ),



64 A. ZHUKOVAwe have (�(�′)) = �. Therefore, our maps de�ne a bijetion between thepath struture on F and �(F ). Theorem 1.1 is proved.Referenes1. R. Forman, Morse theory for ell omplexes. | Adv. Math. 134 (1998), 90{145.2. E. Gallais, Combinatorial realization of the Thom{Smale omplex via disreteMorse theory. | Ann. S. Norm. Super. Pisa Cl. Si. 9, No. 2 (2010), 229{252.3. B. Benedetti, Smoothing disrete Morse theory. | Ann. S. Norm. Super. Pisa Cl.S. 16, No. 2 (2016), 335{368.4. E. Babson, P. Hersh, Disrete Morse funtions from lexiographi orders. | Trans.Amer. Math. So. 357, No. 2 (2005), 509{534. ðÏÓÔÕ�ÉÌÏ 16 Á×ÇÕÓÔÁ 2017 Ç.ó.-ðÅÔÅÒÂÕÒÇÓËÉÊÇÏÓÕÄÁÒÓÔ×ÅÎÎÙÊ ÕÎÉ×ÅÒÓÉÔÅÔ,õÎÉ×ÅÒÓÉÔÅÔÓËÁÑ ÎÁÂ., Ä. 7/9,ó.-ðÅÔÅÒÂÕÒÇ 199034 òÏÓÓÉÑE-mail : millionnaya13�yandex.ru


