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t. Let F be a dis
rete Morse fun
tion on a simpli
ial 
om-plex L. We 
onstru
t a dis
rete Morse fun
tion �(F ) on the bary
en-tri
 subdivision �(L). The 
onstru
ted fun
tion �(F ) \behaves thesame way" as F , i.e., has the same number of 
riti
al simpli
es andthe same gradient path stru
ture.
§1. Introdu
tionWe work with dis
rete Morse theory, whi
h is a dis
rete analog of 
las-si
al Morse theory. It was developed by R. Forman [1℄. This theory 
anbe applied to any simpli
ial 
omplexes and regular CW-
omplexes, and,although its de�nition is quite simple, many 
lassi
al results analogous tothose of the 
ontinuous Morse theory arise in its s
ope.In 2010, E. Gallais [2℄ proved that for every smooth Morse fun
tion ona smooth manifold M there exists a PL-triangulation of this manifold thatadmits a dis
rete Morse fun
tion with the same number of 
riti
al points(simpli
es). This work was 
ontinued by B. Benedetti [3℄.The 
lassi
al 
onstru
tion of the bary
entri
 subdivision of simpli
ial
omplexes 
an be used to approximate a smooth stru
ture on a triangu-lated topologi
al manifold. We develop a simple algorithm to \transfer" adis
rete Morse fun
tion, de�ned on a simpli
ial 
omplex, onto the bary
en-tri
 subdivision of this 
omplex in su
h a way that all important data aboutthis fun
tion (i.e., the number and dimensions of the 
riti
al simpli
es andthe gradient path stru
ture) stays un
hanged. This 
an be done in severaldi�erent ways, and we 
an produ
e several di�erent Morse fun
tions. Themain result of our work is as follows.Theorem 1.1. Let F be a dis
rete Morse fun
tion on a simpli
ial 
om-plex L. Assume that for ea
h 
riti
al simplex � ∈ Crit(F ), an orderingKey words and phrases: simpli
ial 
omplexes, dis
rete Morse theory.This work is supported by the Russian S
ien
e Foundation, grant 16-11-10039. Theauthor is a Young Russian Mathemati
s award winner and would like to thank itssponsors and jury. 52



DISCRETE MORSE THEORY 53Ord� on its verti
es is 
hosen. Then the pairing on the bary
entri
 subdi-vision �(L) 
onstru
ted in Se
. 3 de�nes a dis
rete Morse fun
tion �(F )on �(L) su
h that the following holds:(1) The 
riti
al simpli
es of �(F ) are exa
tly those that have the 
ho-sen orderings Ord∗ as their labels. That is, every 
riti
al k-simplexof F 
ontains exa
tly one 
riti
al k-simplex of �(F ), whi
h 
an be
hosen arbitrarily before 
onstru
ting �(F ). This de�nes a bije
-tion Crit(F ) → Crit(�(F )).(2) There exists a natural bije
tion Gr(F ) → Gr(�(F )) that respe
tsthe bije
tion Crit(F ) → Crit(�(F )) de�ned above.It is worthy to mention in this respe
t that E. Babson and P. Hers
h [4℄introdu
ed a te
hnique that 
an be (as one parti
ular appli
ation) used tobuild a 
ertain Morse fun
tion on the bary
entri
 subdivision of an arbi-trary simpli
ial 
omplex. This Morse fun
tion arises from a lexi
ographi
order on the maximal 
hains of simpli
es of L, i.e., on the maximal sim-pli
es of �(L). The question whether there are 
onne
tions between ourwork and [4℄ remains open.The stru
ture of this paper is as follows. In Se
. 2, we give de�nitionsof a dis
rete Morse fun
tion and the bary
entri
 subdivision. In Se
. 3, we
onstru
t a Morse fun
tion on the bary
entri
 subdivision of a simpli
ial
omplex, and in Se
. 4, we prove that the 
onstru
ted fun
tion satis�esthe required 
onditions.A
knowledgments. The author thanks G. Panina for formulating theproblem.
§2. PreliminariesWe start with de�nitions.A dis
rete Morse fun
tion on a simpli
ial 
omplex [1℄. Let L bea regular simpli
ial 
omplex. By �p; �p in this se
tion we denote its p-dimensional simpli
es, or, for short, p-simpli
es.A dis
rete ve
tor �eld on L is a set of pairs

(�p; �p+1)of its simpli
es su
h that(1) ea
h simplex of the 
omplex o

urs in at most one pair;(2) in ea
h pair, the simplex �p is a fa
et of �p+1.



54 A. ZHUKOVAGiven a dis
rete ve
tor �eld, a path of dimension p+1, or a (p+1)-path,is a sequen
e of simpli
es�p+10 ; �p1; �p+11 ; �p2; �p+12 ; :::; �pm; �p+1m ; �pm+1that satis�es the following 
onditions:(1) ea
h (�pi ; �p+1i ) is a pair in this dis
rete ve
tor �eld for every i;(2) whenever � and � are neighbors in the path, � is a fa
et of �;(3) �i 6= �i+1.Every path 
onsists of \fa
e"-steps (that is, transitions from a simplex�p+1i to one of its fa
es �pi+1) and \pair"-steps (that is, transitions from asimplex �pi to the simplex �p+1i , where these simpli
es form a pair in thedis
rete ve
tor �eld).A path is 
losed if �pm+1 = �p0.A dis
rete Morse fun
tion on a regular simpli
ial 
omplex is a dis
reteve
tor �eld with no 
losed paths in it.Assuming that a dis
rete Morse fun
tion is �xed, the 
riti
al simpli
esare those simpli
es of the 
omplex that are not paired. We denote the setof all 
riti
al simpli
es of a dis
rete Morse fun
tion F by Crit(F ).A gradient (p + 1)-path of a dis
rete Morse fun
tion leading from one
riti
al simplex �p+1 to another 
riti
al simplex �p is a (p+ 1)-path thatleads from �p+1 to �p:�p+1; �p1; �p+11 ; �p2; �p+12 ; :::; �pm; �p+1m ; �p:We denote the set of all gradient paths of a dis
rete Morse fun
tion Fby Gr (F ).2.1. The bary
entri
 subdivision.De�nition 2.1. Let L be a simpli
ial 
omplex. Then its bary
entri
 sub-division �(L) is a simpli
ial 
omplex su
h that the verti
es of �(L) arein a bije
tive 
orresponden
e with the set of all simpli
es of L and thesubset of verti
es in �(L) forms a simplex if and only if the 
orrespondingsimpli
es form a 
hain in the poset of all simpli
es of L.For any two simpli
es �; � ∈ �(L), we have � ∈ � if and only if the
hain that 
orresponds to � is a sub
hain of the 
hain that 
orrespondsto �.A regular realization of �(L) 
an be 
onstru
ted for any regular reali-sation of L as follows. We realize every vertex of �(L) as the bary
enter



DISCRETE MORSE THEORY 55of the realization of the 
orresponding simplex of L, as depi
ted in Fig. 1.The realization of a simplex � ∈ �(L) lies in the interior of the realizationof a simplex � ∈ L if and only if � is the last simplex in the 
hain ofsimpli
es that 
orresponds to �.
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b D b)(Fig. 1. The bary
entri
 subdivision of a 2-simplex withthe 
hains 
orresponding to some simpli
es.To simplify our 
onstru
tion, we transform 
hains of simpli
es of L inthe following way. We turn the 
hains1 → s2 → · · · → sk+1that 
orresponds to a simplex 
 into the ordered set�(
) = {s1; s2 \ s1; : : : ; sk+1 \ sk};whi
h we 
all the label of 
. It is a linearly ordered partition of the set sk+1.In this notation, a simplex �′ ∈ �(L) is a fa
e of a simplex � ∈ �(L)if and only if the partition �(�) 
an be turned into a re�nement of thepartition �(�′) by deleting some sets from the end of �(�). We will usethis geometri
 pi
ture in our proofs.Example. Consider the triangle in �(L) with the label({a; f} {d} {t}):Its fa
es have the following labels:
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• 1-dimensional (edges): ({a; f} {d; t}), ({a; f; d} {t}), ({a; f} {d});
• 0-dimensional (verti
es): ({a; f; d; t}); ({a; f; d}); ({a; f}).

§3. The pairing on the 
omplex �(L)Assume that we have a dis
rete Morse fun
tion F on a regular simpli
ial
omplex L. In this se
tion, we de�ne a dis
rete ve
tor �eld on the 
omplex�(L). We deal with pie
es of 
riti
al and non
riti
al simpli
es of L in twodi�erent ways.3.1. Non
riti
al simpli
es. Let (�n−1; �n) ∈ F . We renumber the ver-ti
es so that � = [n℄ = {1; 2; : : : ; n}; � = [n + 1℄ = {1; 2; : : : ; n + 1}. Thisrenumbering is almost arbitrary, ex
ept that n + 1 = �\�. The pairingthat we de�ne below does not depend on this renumbering, so it is madeonly for 
onvenien
e.We de�ne pairings on all simpli
es of �(L) that lie in the interiors of� and �. They are exa
tly all simpli
es whose labels are the subdivisionsof [n℄ and [n + 1℄. Let 
 be a k-simplex with su
h a label. Consider fourpossible 
ases:(1) �(
) is an ordered subdivision of [n℄, i.e., 
 ∈ �(�). Then weobtain a pair for 
 by adding the singleton {n + 1} to the rightend of �(
). We get a (k + 1)-simplex that belongs to 
ase 2.(2) The entry n+1 forms a singleton in �(
), and it is the last set in�(
). Then we obtain a pair for 
 by deleting {n+ 1} from �(
).We get a (k − 1)-simplex that belongs to 
ase 1.(3) The entry n + 1 forms a singleton in �(
), and it is not the lastset in �(
). Then we obtain a pair for 
 by uniting the singleton
{n+1} with the set that follows it. We get a (k− 1)-simplex thatbelongs to 
ase 4.(4) The entry n+1 lies in a non-singleton set in �(
). Then we obtaina pair for 
 by splitting o� the entry n + 1 to the left of the set
ontaining it and forming a singleton {n + 1}. We get a (k + 1)-simplex that belongs to 
ase 3.It is easy to see that every simplex o

urs in exa
tly one pair.Example. If n + 1 = 5, then we will have pairs of simpli
es su
h as thetwo below: (({1} {3; 4} {2; 5}); ({1} {3; 4} {5} {2}))



DISCRETE MORSE THEORY 57and ({1} {3; 4} {2}); ({1} {3; 4} {2} {5}))):Now we prove that this pairing de�nes a Morse fun
tion inside �(�).Lemma 3.1. There are no 
y
li
 paths in the ve
tor �eld on �(�) de�nedabove.Proof. Assume that we have a path � in the pairing de�ned above. Con-sider the position of the entry n+ 1 in the labels of the simpli
es in �. Inevery pair-step, this entry leaves some non-singleton set and forms a sin-gleton. Therefore, every fa
e-step, ex
ept maybe the �rst or the last stepin the path, is performed by adding this entry to the set next to it. If weadd this entry to the right set, then at the next pair-step we will immedi-ately return ba
k to this simplex, whi
h is forbidden. So every fa
e-step isde�ned uniquely, and the entry n + 1 travels to the left side of the labelduring the path. Therefore, no path is 
y
li
. �As we will see in Lemma 4.2, we are interested only in n-paths inside�(�). The lemma below follows from the 
onstru
tion of the pairing andthe de�nition of the bary
entri
 subdivision.Lemma 3.2. Let �(
) = (I1 I2 : : : In+1) be an n-simplex in �(�) (notethat in this 
ase, all the sets Ii are singletons). Then the following state-ments hold.(1) There is exa
tly one (n− 1)-fa
e of 
 that lies on the boundary of�, and it is the simplex with the label (I1 I2 : : : In).(2) The simplex 
 is paired with the (n−1)-simplex given above if andonly if In+1 = {n+ 1}.(3) If I1 6= {n+ 1}, then there is exa
tly one (n− 1)-fa
e of 
 that ispaired with another n-simplex of �(�). It has the label obtained byuniting in �(
) the singleton {n+1} with the singleton that pre
edesit. This (n− 1)-fa
e of 
 is paired with the simplex 
′ whose label
an be obtained from �(
) by inter
hanging the singleton {n+ 1}with the singleton that pre
edes it.(4) If I1 = {n+1}, then there are no (n−1)-fa
es of 
 that are pairedwith other n-simpli
es of �(�).This lemma shows that if we 
onstru
t an n-path that goes through�(�), we do not have mu
h 
hoi
e. We 
an start from any (n− 1)-simplexin �(�) and follow the pairings. At ea
h fa
e step, we 
an either go to theboundary of �(�) in a uniquely de�ned way (Lemma 3.2, Claim 1), or go



58 A. ZHUKOVAfurther in a uniquely de�ned way (Lemma 3.2, Claim 3), until we arriveat simpli
es that lie near the vertex n + 1 and leave �(�) (Lemma 3.2,Claim 4).Informally, these paths form a \
ow" from � in the dire
tion of thevertex p+ 1 (see Fig. 2 for an example).
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aFig. 2. The pairings on the bary
entri
 subdivision of apair (�n; �n+1) for n+ 1 = 3.The next lemma follows from the above.Lemma 3.3. Assume that a gradient n-path of �(F ) goes through �(�)and the last simplex of �(�) in this path is the (n − 1)-simplex �(
) =(I1 I2 : : : In) on the boundary of �. Assume that Ij = {n + 1}. Then the�rst simplex of this path belongs to �(�) and has the label(I1 I2 : : : Ij−1 Ij+1 : : : In [n+ 1℄\ n
⋃i=1 Ii):Example. Let n+1 = 5. If an n-path goes through �(�) and the last sim-plex of �(�) in this path is the (n−1)-simplex labeled by ({1} {3} {5} {4}),then the �rst simplex of �(�) in this path is the simplex labeled by



DISCRETE MORSE THEORY 59({1} {3} {4} {2}) and the path looks as follows:({1} {3} {4} {2})({1} {3} {4} {2} {5})({1} {3} {4} {2; 5})({1} {3} {4} {5} {2})({1} {3} {4; 5} {2})({1} {3} {5} {4} {2})({1} {3} {5} {4}):3.2. Criti
al simpli
es. Let �n be a 
riti
al n-simplex of F . We relabelits verti
es so that � = [n+1℄ = {1; 2; : : : ; n+1}. We will pair the simpli
esof �(L) that lie in the inner part of �, i.e., those whose labels are theordered subdivisions of the set [n+ 1℄. We leave only one n-simplex non-paired, namely, the simplex with the label�(�′) = ({n+ 1} {n} : : :{1}):This simplex depends on our renumbering, and, given an arbitrary n-simplex in �(�) with label Ord�, we 
an renumber the verti
es in � in theorder opposite to Ord� to make this n-simplex 
riti
al in our 
onstru
tion.Let 
 be a k-simplex in �(�) with the label �(
) = (I1 I1 : : : Ik+1). Leti be the length of the longest 
ommon suÆx of �(
) and �(�′) (i.e., forevery j 6 i, the jth sets from the end in �(
) and �(�′) 
oin
ide). Three
ases are possible:(1) i = n. Then 
 = �′ and we do not pair it.(2) i < n and the entry i+ 1 forms a singleton in �(
). Then we pairthe simplex 
 with the (k − 1)-simplex whose label is obtainedfrom �(
) by uniting this singleton with the set that follows it.This does not 
hange the longest 
ommon suÆx with �(�′).(3) i < n and the entry i+1 lies in a non-singleton set in �(
). Then wepair the simplex 
 with the (k+1)-simplex whose label is obtainedfrom �(
) by splitting this entry o� this set to the left of it andforming a singleton. This does not 
hange the longest 
ommonsuÆx with �(�′).We always pair one simplex of type 2 with a unique simplex of type 3,so this pairing is well de�ned (see Fig. 3 for an example).



60 A. ZHUKOVAExample. For n = 5, we build su
h pairs as(({1; 2} {3} {4; 5}); ({1} {2} {3} {4; 5}));where the length of the longest 
ommon suÆx with �(�′) is 0, and(({4; 5} {3} {2} {1}); ({4} {5} {3} {2} {1}));where the length of the longest 
ommon suÆx with �(�′) is 3.Now we prove that this pairing forms a Morse fun
tion on �(�).Lemma 3.4. There are no 
y
li
 paths in the ve
tor �eld on �(�) de�nedabove.Proof. Let � be a path in this �eld. Consider the longest 
ommon suÆxof the labels of simpli
es in � and �(�′). It never grows during the path.If it gets shorter, then the path 
annot be 
y
li
.Assume that this suÆx stays the same during � and its length is i.Then all the pair-steps in � are performed by splitting the entry i+ 1 o�a non-singleton set to the left. Therefore, all the fa
e-steps in �, ex
eptmaybe the �rst and the last one, are performed by adding this entry tothe set to the left of it. So, the entry i+ 1 travels to the left in the label,and � 
annot be 
y
li
. �Lemma 3.5. For every (n−1)-simplex 
 ∈ �(�) that lies on the boundaryof � there is a unique n-path in �(�) that starts at �′ and exits �(�)through 
.Proof. As we already know, there is a unique n-simplex 
′ ∈ �(�) thathas 
 on its boundary. Our path has to go through 
′.The longest 
ommon suÆx with �(�′) 
an only de
rease during the path(at the start, its length is n+ 1). For arbitrary i, the entry i moves insidethe label during the path only when this suÆx has length i− 1. So, by thetime the length of this suÆx be
omes smaller than i− 1, the permutationof the entries i; i + 1; : : : ; n + 1 in the label is �xed and does not 
hangeany more. If su
h a path exists, then all entries appear in de
reasing order,and this implies the uniqueness of the path. Knowing that, it is not hardto 
onstru
t su
h a path. For example, if n = 4 and 
 = ({2} {4} {5} {1}),then 
′ = ({2} {4} {5} {1} {3})



DISCRETE MORSE THEORY 61and the path looks as follows:�′ = ({5} {4} {3} {2} {1})({4; 5} {3} {2} {1})({4} {5} {3} {2} {1})({4} {5} {2; 3} {1})({4} {5} {2} {3} {1})({4} {2; 5} {3} {1})({4} {2} {5} {3} {1})({2; 4} {5} {3} {1})({2} {4} {5} {3} {1})({2} {4} {5} {1; 3});
′ = ({2} {4} {5} {1} {3});
 = ({2} {4} {5} {1}): �

1

2

3Fig. 3. The pairings on the bary
entri
 subdivision of asimplex � for n = 2.



62 A. ZHUKOVAAny gradient path that 
ontains n-simpli
es from �(�) 
an look in oneof the two following ways.(1) It starts from �′ and makes steps inside �(�). Then at some fa
e-step, this path exits �(�) through an (n−1)-simplex on the bound-ary. A

ording to Lemma 3.5, this path is uniquely determined byits exit simplex.(2) It enters �′ at some pair-step from some (n+1)-simplex 
 ∈ �(L).From the stru
ture of the bary
entri
 subdivision it follows thatthe simplex 
 lies in the bary
entri
 subdivision of some (n + 1)-simplex � of L, and the simplex � is a fa
et of �. This path is an(n+ 1)-path, and it terminates at �′.
§4. Paths on the bary
entri
 subdivisionClaim 1 of Theorem 1.1 follows from the 
onstru
tion of �(F ). In thisse
tion, we prove the rest of Theorem 1.1.Lemma 4.1. Let F be a dis
rete Morse fun
tion on a simpli
ial 
omplexF . Then the pairing �(F ) 
onstru
ted in Se
. 3 is a Morse fun
tion.Proof. We need to prove that no path in �(F ) is 
y
li
. By Lemmas 3.1and 3.4, this is true for a path that stays inside one simplex of L.Let � be a path in �(F ), and let � in
lude parts of more than onesimplex of L. Every simplex 
 ∈ � lies in the inner part of some simplexin L. Take these simpli
es as a sequen
e and delete the repetitions. Theresulting sequen
e �′ is 
y
li
 if � is 
y
li
.From the de�nition of �(F ) it follows that for any two 
onse
utivesimpli
es in �′, one is a fa
et of the other. Moreover, if the simplex withthe lower dimension pre
edes the simplex with the higher dimension, thenthese two simpli
es are paired. So, the sequen
e �′ 
onsists of fa
e-stepsand pair-steps. By the de�nition of a Morse fun
tion, no two pair-steps
an be 
onse
utive.If no two fa
e-steps are 
onse
utive in �′, then �′ is a path in F and
annot be 
y
li
. If there are at least two 
onse
utive fa
e-steps, then thedimension of the simpli
es de
reases during �′ more times than it in
reases,and �′ 
annot be 
y
li
. �Now we 
onsider, for arbitrary n, how the gradient n-paths behave in�(F ). If a gradient n-path starts at a 
riti
al simplex �′, then it leavesthe 
orresponding simplex � of L through an (n − 1)-simplex that lies



DISCRETE MORSE THEORY 63in an (n − 1)-fa
e of �. If an n-path enters �(�), where � is non
riti
al,through an (n − 1)-simplex on its boundary, then it leaves this simplexthrough another (n−1)-simplex that lies on the boundary of � as well. So,this path never gets out of the n-simpli
es of L. We obtain the followinglemma.Lemma 4.2. Assume that � is a gradient n-path. Then all n-simpli
es in� lie in the interiors of n-simpli
es of L.In other words, a gradient n-path in �(F ) never gets inside the simpli
esof L of dimensions higher than n.Now we prove that the 
riti
al path stru
ture of the fun
tion �(F ) isisomorphi
 to the gradient path stru
ture of the fun
tion F . We do it by
onstru
ting two maps between the set of gradient paths Gr (F ) of thefun
tion F and the set of gradient paths Gr (�(F )) of the fun
tion �(F ).These maps are one-to-one, they are opposite to ea
h other, and theyrespe
t our bije
tion Crit(F ) → Crit(�(F )).The map Gr (�(F )) → Gr (F ).Let � be a gradient n-path in �(F ). We 
onstru
t the 
orrespondingsequen
e �′ of simpli
es of L, as we did in the proof of Lemma 4.1. ByLemma 4.2 and by the 
onstru
tion of �(F ), this sequen
e is an n-path inF . Moreover, it starts and ends in 
riti
al points, sin
e only 
riti
al pointsof F 
ontain 
riti
al points of �(F ). These 
riti
al simpli
es 
orrespondto the beginning and the end of �.Therefore, �′ is a gradient path of F .The map Gr (�(F )) → Gr (F ).Let � be a gradient n-path in F from a simplex � to a simplex �:� = �0; �1; �1; �2; �2; :::; �k; �k; �:We 
onstru
t a 
orresponding path �(�) in �(F ) that goes from �′ to�′. We de�ne the path inside �(�i) for ea
h i su

essively, starting fromthe end of �. Our path exits �(�k) through �′, whi
h, by Lemma 3.1,determines the path in �(�k) uniquely. For every i, 1 6 i 6 k, the �rstsimplex of the path 
onstru
ted in �(�i) be
omes the last simplex of thepath in �(�i−1) and determines the path in �(�i−1) uniquely. For thesimplex �, the same holds by Lemma 3.4. Therefore, the path �(�) isde�ned uniquely.It is easy to see that for every gradient path � in F , we have (�(�))′ = �,and from Lemma 4.2 it follows that for every gradient path � in �(F ),



64 A. ZHUKOVAwe have (�(�′)) = �. Therefore, our maps de�ne a bije
tion between thepath stru
ture on F and �(F ). Theorem 1.1 is proved.Referen
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