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DISCRETE MORSE THEORY FOR THE
BARYCENTRIC SUBDIVISION

ABSTRACT. Let F be a discrete Morse function on a simplicial com-
plex L. We construct a discrete Morse function A(F') on the barycen-
tric subdivision A(L). The constructed function A(F') “behaves the
same way” as F', i.e., has the same number of critical simplices and
the same gradient path structure.

§1. INTRODUCTION

We work with discrete Morse theory, which is a discrete analog of clas-
sical Morse theory. It was developed by R. Forman [1]. This theory can
be applied to any simplicial complexes and regular CW-complexes, and,
although its definition is quite simple, many classical results analogous to
those of the continuous Morse theory arise in its scope.

In 2010, E. Gallais [2] proved that for every smooth Morse function on
a smooth manifold M there exists a PL-triangulation of this manifold that
admits a discrete Morse function with the same number of critical points
(simplices). This work was continued by B. Benedetti [3].

The classical construction of the barycentric subdivision of simplicial
complexes can be used to approximate a smooth structure on a triangu-
lated topological manifold. We develop a simple algorithm to “transfer” a
discrete Morse function, defined on a simplicial complex, onto the barycen-
tric subdivision of this complex in such a way that all important data about
this function (i.e., the number and dimensions of the critical simplices and
the gradient path structure) stays unchanged. This can be done in several
different ways, and we can produce several different Morse functions. The
main result of our work is as follows.

Theorem 1.1. Let F be a discrete Morse function on a simplicial com-
plex L. Assume that for each critical simplex oo € Crit(F'), an ordering
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Ord, on its vertices is chosen. Then the pairing on the barycentric subdi-
vision A(L) constructed in Sec. 3 defines a discrete Morse function A(F)
on A(L) such that the following holds:

(1) The critical simplices of A(F) are exactly those that have the cho-
sen orderings Ord, as their labels. That is, every critical k-simplex
of F contains exactly one critical k-simplex of A(F), which can be
chosen arbitrarily before constructing A(F'). This defines a bijec-
tion Crit(F) — Crit(A(F)).

(2) There ezists a natural bijection Gr(F) — Gr(A(F)) that respects
the bijection Crit(F) — Crit(A(F)) defined above.

It is worthy to mention in this respect that E. Babson and P. Hersch [4]
introduced a technique that can be (as one particular application) used to
build a certain Morse function on the barycentric subdivision of an arbi-
trary simplicial complex. This Morse function arises from a lexicographic
order on the maximal chains of simplices of L, i.e., on the maximal sim-
plices of A(L). The question whether there are connections between our
work and [4] remains open.

The structure of this paper is as follows. In Sec. 2, we give definitions
of a discrete Morse function and the barycentric subdivision. In Sec. 3, we
construct a Morse function on the barycentric subdivision of a simplicial
complex, and in Sec. 4, we prove that the constructed function satisfies
the required conditions.

Acknowledgments. The author thanks G. Panina for formulating the
problem.

§2. PRELIMINARIES

We start with definitions.

A discrete Morse function on a simplicial complex [1]. Let L be
a regular simplicial complex. By aP, P in this section we denote its p-
dimensional simplices, or, for short, p-simplices.

A discrete vector field on L is a set of pairs

(a”, 5p+1)
of its simplices such that

(1) each simplex of the complex occurs in at most one pair;
(2) in each pair, the simplex a” is a facet of 3P,
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Given a discrete vector field, a path of dimension p+1, or a (p+ 1)-path,
is a sequence of simplices

p+1 p p+1 D p+1 p p+1 p
0 y O, 1 y O, 2 y ooy My ﬂm ) am+1

that satisfies the following conditions:

(1) each (af, BF 'H) is a pair in this discrete vector field for every i;
(2) whenever a and 8 are neighbors in the path, « is a facet of £;
(3) (677 75 Qjy1-

Every path consists of “face”-steps (that is, transitions from a simplex
55“ to one of its faces afﬂ) and “pair”-steps (that is, transitions from a
simplex af to the simplex 37 H, where these simplices form a pair in the
discrete vector field).

A path is closed if of | = af.

A discrete Morse function on a regqular simplicial complez is a discrete
vector field with no closed paths in it.

Assuming that a discrete Morse function is fixed, the critical simplices
are those simplices of the complex that are not paired. We denote the set
of all critical simplices of a discrete Morse function F' by Crit(F).

A gradient (p + 1)-path of a discrete Morse function leading from one
critical simplex 3P*! to another critical simplex a? is a (p + 1)-path that
leads from AP*! to a:

p+1 p pptl p pptl p p+1 D
B ,oay, B, ay, By, e b, BET, AP

We denote the set of all gradient paths of a discrete Morse function F
by Gr (F).

2.1. The barycentric subdivision.

Definition 2.1. Let L be a simplicial complex. Then its barycentric sub-
division A(L) is a simplicial complex such that the vertices of A(L) are
in a bijective correspondence with the set of all simplices of L and the
subset of vertices in A(L) forms a simplex if and only if the corresponding
simplices form a chain in the poset of all simplices of L.

For any two simplices «, 8 € A(L), we have o € § if and only if the
chain that corresponds to a is a subchain of the chain that corresponds
to 3.

A regular realization of A(L) can be constructed for any regular reali-
sation of L as follows. We realize every vertex of A(L) as the barycenter
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of the realization of the corresponding simplex of L, as depicted in Fig. 1.
The realization of a simplex a € A(L) lies in the interior of the realization
of a simplex 8 € L if and only if 8 is the last simplex in the chain of
simplices that corresponds to .

3 3

1,2

25 AP

Fig. 1. The barycentric subdivision of a 2-simplex with
the chains corresponding to some simplices.

To simplify our construction, we transform chains of simplices of L in
the following way. We turn the chain

81 = 82 = 77 Skl
that corresponds to a simplex 7 into the ordered set
A(Y) = {s1,82 \ s1,- -+, 5k41 \ Sk}
which we call the label of ~y. It is a linearly ordered partition of the set sgy1.
In this notation, a simplex o’ € A(L) is a face of a simplex a € A(L)
if and only if the partition A(«) can be turned into a refinement of the

partition A(a’) by deleting some sets from the end of A(a). We will use
this geometric picture in our proofs.

Example. Consider the triangle in A(L) with the label

({a, f} {d} {t}).

Its faces have the following labels:
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e 1l-dimensional (edges): ({a, f} {d,t}), ({a, f,d} {t}), ({a, f} {d});
e O-dimensional (vertices): ({a, f,d,t}), ({a, f,d}), ({a, f}).

§3. THE PAIRING ON THE COMPLEX A(L)

Assume that we have a discrete Morse function F on a regular simplicial
complex L. In this section, we define a discrete vector field on the complex
A(L). We deal with pieces of critical and noncritical simplices of L in two
different ways.

3.1. Noncritical simplices. Let (a1, 3") € F. We renumber the ver-
tices so that « = [n] = {1,2,...,n},8 =[n+1] = {1,2,...,n + 1}. This
renumbering is almost arbitrary, except that n + 1 = f\a. The pairing
that we define below does not depend on this renumbering, so it is made
only for convenience.

We define pairings on all simplices of A(L) that lie in the interiors of
a and (3. They are exactly all simplices whose labels are the subdivisions
of [n] and [n + 1]. Let v be a k-simplex with such a label. Consider four
possible cases:

(1) A(7) is an ordered subdivision of [n], i.e., v € A(a). Then we
obtain a pair for v by adding the singleton {n 4+ 1} to the right
end of A\(y). We get a (k + 1)-simplex that belongs to case 2.

(2) The entry n + 1 forms a singleton in A(7), and it is the last set in
A(7). Then we obtain a pair for v by deleting {n + 1} from A(%).
We get a (k — 1)-simplex that belongs to case 1.

(3) The entry n + 1 forms a singleton in A(y), and it is not the last
set in A(y). Then we obtain a pair for v by uniting the singleton
{n + 1} with the set that follows it. We get a (k — 1)-simplex that
belongs to case 4.

(4) The entry n+1 lies in a non-singleton set in A(+). Then we obtain
a pair for v by splitting off the entry n + 1 to the left of the set
containing it and forming a singleton {n + 1}. We get a (k + 1)-
simplex that belongs to case 3.

It is easy to see that every simplex occurs in exactly one pair.

Example. If n + 1 = 5, then we will have pairs of simplices such as the
two below:

({1} {3,4} {2,5}), ({1} {3,4} {5} {2}))
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and
({1} {34} {2}), ({1} {3,4} {2} {5})))-

Now we prove that this pairing defines a Morse function inside A(f).

Lemma 3.1. There are no cyclic paths in the vector field on A(B) defined
above.

Proof. Assume that we have a path I' in the pairing defined above. Con-
sider the position of the entry n + 1 in the labels of the simplices in I'. In
every pair-step, this entry leaves some non-singleton set and forms a sin-
gleton. Therefore, every face-step, except maybe the first or the last step
in the path, is performed by adding this entry to the set next to it. If we
add this entry to the right set, then at the next pair-step we will immedi-
ately return back to this simplex, which is forbidden. So every face-step is
defined uniquely, and the entry n + 1 travels to the left side of the label
during the path. Therefore, no path is cyclic. O

As we will see in Lemma 4.2, we are interested only in n-paths inside
A(B). The lemma below follows from the construction of the pairing and
the definition of the barycentric subdivision.

Lemma 3.2. Let A(y) = (I1 Iz ... I,11) be an n-simplex in A(B) (note
that in this case, all the sets I; are singletons). Then the following state-
ments hold.

(1) There is exactly one (n — 1)-face of y that lies on the boundary of
B, and it is the simplex with the label (I I ...I,).

(2) The simplex v is paired with the (n — 1)-simplex given above if and
only if I,y1 = {n + 1}.

(3) If Iy # {n + 1}, then there is exactly one (n — 1)-face of v that is
paired with another n-simplex of A(B). It has the label obtained by
uniting in A(y) the singleton {n+1} with the singleton that precedes
it. This (n — 1)-face of ~v is paired with the simplex ' whose label
can be obtained from A(y) by interchanging the singleton {n + 1}
with the singleton that precedes it.

(4) If I, = {n+1}, then there are no (n— 1)-faces of y that are paired
with other n-simplices of A(B).

This lemma shows that if we construct an n-path that goes through
A(p), we do not have much choice. We can start from any (n — 1)-simplex
in A(a) and follow the pairings. At each face step, we can either go to the
boundary of A(f) in a uniquely defined way (Lemma 3.2, Claim 1), or go
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further in a uniquely defined way (Lemma 3.2, Claim 3), until we arrive
at simplices that lie near the vertex n + 1 and leave A(f) (Lemma 3.2,
Claim 4).

Informally, these paths form a “flow” from «a in the direction of the
vertex p+ 1 (see Fig. 2 for an example).

Fig. 2. The pairings on the barycentric subdivision of a
pair (™, f"*1) forn +1 = 3.

The next lemma follows from the above.

Lemma 3.3. Assume that a gradient n-path of A(F') goes through A(f)
and the last simplex of A(B) in this path is the (n — 1)-simplex A(y) =
(I Ir...I,) on the boundary of 5. Assume that I; = {n + 1}. Then the
first simplex of this path belongs to A(a) and has the label

n
(Il IQ...Ij_l Ij+1 In [TL+1]\UIZ)
i=1

Example. Let n+1 = 5. If an n-path goes through A(3) and the last sim-
plex of A(f) in this path is the (n—1)-simplex labeled by ({1} {3} {5} {4}),
then the first simplex of A(f) in this path is the simplex labeled by
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({1} {3} {4} {2}) and the path looks as follows:

({1} {3} {4} {2})
({1} {3} {4} {2} {5})
({1} {3} {4} {2,5})
({1} {3} {4} {5} {2})
({1} {3} {4,5} {2})
({1} {3} {5} {4} {2})
({1} {3} {5} {4}).

3.2. Critical simplices. Let a” be a critical n-simplex of F. We relabel
its vertices so that « = [n+1] = {1,2,...,n+1}. We will pair the simplices
of A(L) that lie in the inner part of a, i.e., those whose labels are the
ordered subdivisions of the set [n + 1]. We leave only one n-simplex non-
paired, namely, the simplex with the label

Ao) = ({n+1} {n}...{1}).

This simplex depends on our renumbering, and, given an arbitrary n-
simplex in A(a) with label Ord,, we can renumber the vertices in « in the
order opposite to Ord, to make this n-simplex critical in our construction.

Let v be a k-simplex in A(«) with the label A(y) = (I3 I1 ... Ix41). Let
i be the length of the longest common suffix of A(y) and A(e’) (i.e., for
every j < i, the jth sets from the end in A(y) and A(a’) coincide). Three
cases are possible:

(1) ¢ = n. Then v = &' and we do not pair it.

(2) i < n and the entry 7 + 1 forms a singleton in A(7y). Then we pair
the simplex v with the (k — 1)-simplex whose label is obtained
from A(v) by uniting this singleton with the set that follows it.
This does not change the longest common suffix with A(a’).

(3) 4 < n and the entry +1 lies in a non-singleton set in A(y). Then we
pair the simplex 7 with the (k+ 1)-simplex whose label is obtained
from A(y) by splitting this entry off this set to the left of it and
forming a singleton. This does not change the longest common
suffix with A(a).

We always pair one simplex of type 2 with a unique simplex of type 3,
so this pairing is well defined (see Fig. 3 for an example).
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Example. For n = 5, we build such pairs as

(({1,2} {3} {4,5}), ({1} {2} {3} {4,5})),

where the length of the longest common suffix with A\(a’) is 0, and

(({4,5} {3} {2} {1}), ({4} {5} {3} {2} {1})),

where the length of the longest common suffix with A(a’) is 3.
Now we prove that this pairing forms a Morse function on A(a).

Lemma 3.4. There are no cyclic paths in the vector field on A(a) defined
above.

Proof. Let I' be a path in this field. Consider the longest common suffix
of the labels of simplices in I' and A(a’). It never grows during the path.
If it gets shorter, then the path cannot be cyclic.

Assume that this suffix stays the same during I' and its length is i.
Then all the pair-steps in ' are performed by splitting the entry ¢ + 1 off
a non-singleton set to the left. Therefore, all the face-steps in I, except
maybe the first and the last one, are performed by adding this entry to
the set to the left of it. So, the entry ¢ + 1 travels to the left in the label,
and I' cannot be cyclic. O

Lemma 3.5. For every (n—1)-simplex v € A(«a) that lies on the boundary
of a there is a unique n-path in A(a) that starts at o' and exits A(q)
through ~y.

Proof. As we already know, there is a unique n-simplex 7' € A(«a) that
has v on its boundary. Our path has to go through +’.

The longest common suffix with A(«’) can only decrease during the path
(at the start, its length is n + 1). For arbitrary ¢, the entry i moves inside
the label during the path only when this suffix has length i — 1. So, by the
time the length of this suffix becomes smaller than 7 — 1, the permutation
of the entries i,¢ + 1,...,n + 1 in the label is fixed and does not change
any more. If such a path exists, then all entries appear in decreasing order,
and this implies the uniqueness of the path. Knowing that, it is not hard
to construct such a path. For example, if n = 4 and v = ({2} {4} {5} {1}),
then

v = ({2} {4} {5} {1} {3})
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and the path looks as follows:

3

Fig. 3. The pairings on the barycentric subdivision of a

o = ({5} {4} {3} {2} {1})
({4,5} {3} {2} {1})

({4} {5} {3} {2} {1})

({4} {5} {2,3} {1})

({4} {5} {2} {3} {1})

({4} {2,5} {3} {1})

({4} {2} {33 {3} {1})
({2,4} {5} {3} {1})

({2} {4} {5} {3} {1})

({2} {4} {5} {1,3}),

v = ({2} {4} {5} {1} {3}),
v= ({2} {4} {5} {1}

simplex « for n = 2.
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Any gradient path that contains n-simplices from A(«) can look in one
of the two following ways.

(1) It starts from o’ and makes steps inside A(«). Then at some face-
step, this path exits A(«) through an (n—1)-simplex on the bound-
ary. According to Lemma 3.5, this path is uniquely determined by
its exit simplex.

(2) It enters o’ at some pair-step from some (n+ 1)-simplex v € A(L).
From the structure of the barycentric subdivision it follows that
the simplex -y lies in the barycentric subdivision of some (n + 1)-
simplex  of L, and the simplex « is a facet of §. This path is an
(n + 1)-path, and it terminates at «’'.

§4. PATHS ON THE BARYCENTRIC SUBDIVISION

Claim 1 of Theorem 1.1 follows from the construction of A(F). In this
section, we prove the rest of Theorem 1.1.

Lemma 4.1. Let F be a discrete Morse function on a simplicial complex
F. Then the pairing A(F') constructed in Sec. 3 is a Morse function.

Proof. We need to prove that no path in A(F) is cyclic. By Lemmas 3.1
and 3.4, this is true for a path that stays inside one simplex of L.

Let T be a path in A(F), and let I include parts of more than one
simplex of L. Every simplex v € T lies in the inner part of some simplex
in L. Take these simplices as a sequence and delete the repetitions. The
resulting sequence I" is cyclic if T is cyclic.

From the definition of A(F) it follows that for any two consecutive
simplices in T, one is a facet of the other. Moreover, if the simplex with
the lower dimension precedes the simplex with the higher dimension, then
these two simplices are paired. So, the sequence I' consists of face-steps
and pair-steps. By the definition of a Morse function, no two pair-steps
can be consecutive.

If no two face-steps are consecutive in I, then I is a path in F and
cannot be cyclic. If there are at least two consecutive face-steps, then the
dimension of the simplices decreases during I'' more times than it increases,
and IV cannot be cyclic. O

Now we consider, for arbitrary n, how the gradient n-paths behave in
A(F). If a gradient n-path starts at a critical simplex ', then it leaves
the corresponding simplex « of L through an (n — 1)-simplex that lies
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in an (n — 1)-face of a. If an n-path enters A(fS), where § is noncritical,
through an (n — 1)-simplex on its boundary, then it leaves this simplex
through another (n — 1)-simplex that lies on the boundary of 5 as well. So,
this path never gets out of the n-simplices of L. We obtain the following
lemma.

Lemma 4.2. Assume that T is a gradient n-path. Then all n-simplices in
I lie in the interiors of n-simplices of L.

In other words, a gradient n-path in A(F") never gets inside the simplices
of L of dimensions higher than n.

Now we prove that the critical path structure of the function A(F) is
isomorphic to the gradient path structure of the function F. We do it by
constructing two maps between the set of gradient paths Gr(F') of the
function F' and the set of gradient paths Gr (A(F')) of the function A(F).
These maps are one-to-one, they are opposite to each other, and they
respect our bijection Crit(F) — Crit(A(F)).

The map Gr (A(F)) — Gr (F).

Let T be a gradient n-path in A(F). We construct the corresponding
sequence I of simplices of L, as we did in the proof of Lemma 4.1. By
Lemma 4.2 and by the construction of A(F’), this sequence is an n-path in
F'. Moreover, it starts and ends in critical points, since only critical points
of F contain critical points of A(F'). These critical simplices correspond
to the beginning and the end of T'.

Therefore, I is a gradient path of F.

The map Gr (A(F)) — Gr (F).

Let T be a gradient n-path in F' from a simplex 8 to a simplex a:

/8:607 at, 617 a3, 627 sy Qg /Bka a.

We construct a corresponding path A(T) in A(F) that goes from 8’ to
o'. We define the path inside A(f;) for each i successively, starting from
the end of I'. Our path exits A(f) through ', which, by Lemma 3.1,
determines the path in A(fy) uniquely. For every i, 1 < i < k, the first
simplex of the path constructed in A(f;) becomes the last simplex of the
path in A(B;_1) and determines the path in A(8;—1) uniquely. For the
simplex 3, the same holds by Lemma 3.4. Therefore, the path A(T) is
defined uniquely.

It is easy to see that for every gradient path I' in F', we have (A(T'))’ =T,
and from Lemma 4.2 it follows that for every gradient path I' in A(F),
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we have (A(I”)) = I'. Therefore, our maps define a bijection between the
path structure on F' and A(F). Theorem 1.1 is proved.
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