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ON AN INVERSE DYNAMIC PROBLEM FOR THE
WAVE EQUATION WITH A POTENTIAL ON A REAL
LINE

ABSTRACT. We consider the inverse dynamic problem for the wave
equation with a potential on a real line. The forward initial-boundary
value problem is set up with a help of boundary triplets. As an
inverse data we use an analog of a response operator (dynamic
Dirichlet-to-Neumann map). We derive equations of inverse prob-
lem and also point out the relationship between dynamic inverse
problem and spectral inverse problem from a matrix-valued mea-
sure.

§1. INTRODUCTION

For a potential ¢ € C?(R) N Ly (R) we consider an operator H in Ly(R)
given by

(Hf)(z) = —f"(@) +q(@)f(z), z€R,
dom H = {f € H*(R)| £(0) = f'(0) = 0}.
Then
(H*f)(z) = —f"(z) + q(2)f(z), zE€R,
dom H* = {f € Ly(R) | f € H*(—00,0), f € H*(—00,0)}.
For a continuous function g we denote
g+ = lim (0 £ ¢).

Let B := R2. The boundary operators [y : dom H* — B are introduced

by the rules
_ 1 1 1
Foyw := (w;,_ w/_)’ INw ::_(w++w_ )
wy —w 2 \—wp —w_
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A. S. Mikhaylov and V. S. Mikhaylov were partly supported by RSF 17-11-01064.

212



ON AN INVERSE DYNAMIC PROBLEM FOR THE WAVE EQUATION 213

Integrating by parts for u,v € dom H* shows that the abstract second
Green identity holds:

(H"u,v)p, &) — (0, H0) gy = (T1u,Tov) 5 — (Fou, T'1v) 5 .
The mapping

= (FU) :dom H* — B x B
Iy

evidently is surjective. Then a triplet {B, 9,1 } is a boundary triplet for
H* (see [9]). With the help of boundary triplets one can describe self-
adjoint extensions of H, see [10,12,16]. In [6] the authors used the concept
of boundary triplets to set up and study a boundary value problem for
abstract dynamical system with boundary control in Hilbert space, they
also used it for the purpose of describing the special (wave) model of the
one-dimensional Schrddinger operator on an interval [8].

Let T > 0 be fixed. We use the triplet {B,To,T'1 } to set up the dynam-
ical system with special boundary control (acting in the origin) for a wave
equation with a potential on a real line:

ug + H'u=0, t>0, (1.1)
(Tow)(t) = (@8) , t>0, (1.2)
u(-,0) =u(-,0) =0. (1.3)

Here the function F = (§1>, f1 f2 € Lx(0,T), is interpreted as a bound-
2

ary control. The solution to (1.1)—(1.3) is denoted by uf’. The response
operator, the analog of a Dirichlet-to-Neumann map is introduced by the
rule
(RTF) (t) .= (Twu) (), t>0.

The speed of the wave propagation in the system (1.1)—(1.3) equal to one,
that is why the natural set up of the dynamic inverse problem is to find
a potential g(z), z € (=T,T) from the knowledge of a response operator
R*T (cf. [1,3,7]).

In the second section we derive the representation formula for the so-
lution u™ and introduce the operators of the Boundary Control method.
In the third section we derive Krein and Gelfand—Levitan equations of
the dynamic inverse problem and point out the the relationship between
dynamic and spectral inverse problems.
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§2. FORWARD PROBLEM, OPERATORS OF THE BOUNDARY
CONTROL METHOD

It is straightforward to check that when ¢ = 0, the solution to (1.1)—
(1.3) is given by:

%fl(t—x)—%fg(t—a:), ill'>0,
%fl(t-F.’E)—%fQ(t-FIE), z <0,
0, 0<t< |zl

Everywhere we consider operators acting in Ls—spaces, that is why it is
reasonable to introduce the outer space of the system (1.1)—(1.3), the space

of controls as FT := Ly(0,T;R?), F€ FT', F = (;1 )
2

Theorem 1. The solution to (1.1)~(1.3) with a control F € FTNC§(R,),
admits the following representation:

Lii(t—2) = Lfolt — )
[ wi(a, ) fit - )

+wo(z,8)fo(t —s)ds, 0<z<t,
uf (z,t) = —3filt+z) — 3 f2(t + @) (2.1)

+j wi(z,8)f1(t — s)

+ws(z,s)fa(t —s)ds, 0< —z <t
0, 0<t< |zl

where kernels wy (z,t) and wa(x,t) satisfy the following Goursat problems:

wltt(wat) - wlmﬁ(wat) + q(w)wl(x,t), 0< |$| <t,

%’wl(ﬂf,ﬂ?) = *#7 x>0, (2.2)
%wl(a:,fa:) :fq(Tz, x <0,

w2tt(x7t) - w2xx(x7t) + q(x)UJ?(xat)a 0< |£L‘| <t,
%’wg(ﬂf,ﬂ?) =17 z >0, (23)
d

Twa(x, —x) = =T, x < 0.
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Proof. Take arbitrary F' € FT NC§°(0,T;R?) and look for u¥ in the form
(2.1). Then for x > 0 we have:

Uge (T,1) = % V(t—z) — % S (t—1z) — %wl(a:,a:)fl(t — )
+ wl(xax)f{(t - :L‘) - %’w?(xax)f?(t - x) + w2(x7x)fé(t - x)
- wlx(xax)fl (t - :L‘) - w2x(xax)f2(t - :L‘)
b [ (e A~ 5) + waral5)alt -~ 5) s,

T

un(,0) = SF(0 ) = S~ )+ wn (2, 2) £ ¢ - 2)
+wa(m,z) fo(t —x) + wig(z,2) fr (t — ) + was(z,x) f2(t — x)
¢

+ / (wlss(xas)fl(t - S) + w2ss(x73)f2(t - S)) dS,

T

Plugging these expressions into (1.1), we obtain that for z > 0 the following
relation holds true:
t

0= / (w155 (2, 8) — w100 (2, 8) + g1 (2,8)) f1 ¢ — 5)

T

+ (W25(2, 8) — w2e (7, 8) + q(2)wa(, 5)) f2(t — 5)) ds

(2.4)
+ At - 2) {2%11)1(91:,91:) + @}
+ fo(t — o) {2%102(55,:5) — @}

Similarly, for z < 0:

1 1
Ugy (T, 1) = — B V(4 x) — 3 S (t+ )

b s, )t +2) + wa ) (14 )

b Ly, ) falt +7) + w0, —) F31 4 )

+wiy(z, —x) f1(t + ) + way(x, —2) fo(t + )
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t
+/mm@ﬁMU*$+wm@@ﬁU*$M

un (1) = = S +0) 5 F(E+ )
+wi(z, —x) f{ (t + ) + wa(z, —x) f3(t + x)

+ wls(wa _x)fl(t + ZE) + wQs(wa —ﬂ?)fg(t + ZE)
t

+/Wm@@ﬁ@ﬂHwM@@hWﬂ»%

—x
Then for < 0 we have the equality:

o=/&mm4a@—qu%@+qmmx%@vmvw>

—Z

+ (UJQSS(QT, 3) - w2zz(x7 5) + q(a:)w2(a:, 5))f2(t - 5)) ds

+f1(t+w)[—2%wl(x’ ) - %w)}
+f2(t+a:)[f2%w2(x, —z) - &293)}

The condition I'yu = F at z = 0 yields that

u+(-,t)—u ('vt) fl

+
/
+ (wa™(0,5) —wa™(0,5)) fo(t — ) ds,
ug (-,t) —ug (-,t) = fo(t)
+/ —wy, (0,8))f1(t —s)
+ (w2 (0,8) — wa, (0,5)) f2(t — s)ds,

~(0,9))f1(t — s)

(2.5)



ON AN INVERSE DYNAMIC PROBLEM FOR THE WAVE EQUATION 217

The above equalities imply the continuity of kernels wy, ws at z = 0:
w1 t(0,8) =wy(0,8), waT(0,5) =wa(0,s), (2.6)
wi(0,8) =wyi, (0,8), wai(0,s) =ws (0,s). (2.7
Using the arbitrariness of F € 71 NC§°(0,T;R?) in (2.4), (2.5) and conti-
nuity conditions (2.6), (2.6), we obtain that w;, w, satisfy (2.2), (2.3). O

Remark 1. When F € F7| the function u!" defined by (2.1) is a general-
ized solution to (1.1)—(1.3).

The response operator RT : FT +— FT with the domain
r={FTNC50,T;R?)}
is defined by
(R'F)(t) := (Twur)(t), 0<t<T.

Representation (2.1) implies that the response operator has a form:

o) (i )

)+ [ (w10, ) f1(t—s)+w2,(0,8) fa(t—s))ds | (2.8)

¢
J(

— 0
2 F2(t)=[ (w1 (0, 8) fr(t—s)+w2(0, s) f2(t—s)) ds

0

where

wo= (00 1oio) = (“a o)

is a response matriz. We introduce the inner space, the space of states of
system (1.1)—(1.3) as H” := Lo(—T,T). The representation (2.1) implies
that u?' (-,7) € HT.

A control operator W7 : FT s HT is defined by the formula WTF :=
uf (-, T). The reachable set is defined by the rule

Ul =wTr" = {u"(-,T)|FeF"}.
We introduce the notations:
i1t -1 T . T T T

S::§ (_1 _1), JUFt = FY (JTF) (t) = F(T - t),

and note that 1
S=8%88= 5[.
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It will be convenient for us to associate the outer space HT = Lo(—T,T)
with a vector space L2 (0, T;R?) by setting for a € Lo(—T,T) (we keep the
same notation for a function)

a:<ZlE§§)€L2(0,T;R2), ai(r):=a(x), as(z):=a(-x), x€(0,T).

Thus, bearing in mind this association, we consider the control operator
W7, which maps FT to HT = Ly(0,T;R?), acting (cf. (2.1)) by the rule:

LA (T —2) = L foT —2)
wrE e = ()

T

Jun (e ) (T — 5) + ws(,8) fo (T — s d
+ Tm
Jwi(=z,8)f1 (T —s) + wa(—z,8) fo(T — s)ds

On introducing the operator W : FT s HT = L,(0,T;R?) defined by the
formula

T
[ wi(x,8) f1(5) + wa(,5) f2(5) ds
(WF)@) = | ,*
Jwi(==,8)fi(s) + wa(—2,s) fa(s) ds

and noting that F7 = HT, we can without abusing the notations rewrite
WT in a form:

WI'F =8I +2SW)J'F=S(I+K)J'F, (2.9)
where
T
J ki1 (z, 8) f1(s) + ki2(z, ) f2(s) ds
K =28W, (KF)z)=|% . (2.10)
[ k21(z,8) f1(s) + k2o (2, 8) f2(s) ds

Theorem 2. The control operator is a boundedly invertible isomorphism
between F1 and HT, and UT = HT.

Proof. It is clear that in representation (2.9) each of the operators S :
H s HT, T+ K : FT' — HT, JT : FT + FT is boundedly invertible
isomorphism. O
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The connecting operator CT : FT — FT is introduced via the quadratic
form:

(CTF15F2)]:T = (UFI( 7T)7U'F2( : vT))'HT .

The crucial fact in the Boundary Control method is that the connecting
operator is expressed in terms of inverse dynamic data:

Theorem 3. The connecting operator CT admits the following represen-

tation:
0= (18) + [ v (i) o

S

Cui(t,8)=p1 (2T —t—8)—py (|t —s|), pl(s):/rn(a)da,

where

[ri2(a)da, s >0,
Cia(t,s)=p (2T —t—s)—pi(t—s), pi(s)=¢ 5
— [ri2(a)da, s<0,

02’1(15, S) :7F21 (t*S)f’TT21(2T7t78), ’7721 (S): 21 (S), 5= 0,
—ro1(—s), s<0,

Caa(t,8) = —raa(|t — 5]) — ro2(2T — t — 5).

Proof. We take F,G € FT N C§°(0,T;R?) and introduce the Blagoves-
chenskii function by setting

\I’(tas) = (UF( : 7t)7uG( '73))HT )

Our aim is to show that ¥ satisfy the wave equation. Indeed, using that

ulf; = —H*u% and the Green identity, we can evaluate:

Uy (t,s)—Uss(t, 9= (—H*uF( ), u( "S))HT+ (UF( ), H uC (- ,S))HT

= ((Tou")(t), (T1u)(5)) 5 — (T1u")(2), (Tou)(s))
=: P(t,s).

s,t > 0.

Note that ¥ satisfy ¥(0,s) = ¥4(0,s) =0, and that
\I’(Ta T) = (UF( : 7T)7UG( : 7T))HT = (CTF, G)]:T .
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So, by d’Alembert formula:

2T —1

(CTF,G) 1r /T / P(r,0)do dr. (2.11)
0

T

We rewrite the right hand side:

P = () exw) - (@wpe.(40)) . @

and continue the functions g;, go (we keep the same notations) from (0,7")
to the interval (0,27) by the rule:

gl(s):{ g1(s), 0<s<T,

-1 (2T —s), T <s<2T,
(2.13)

92(s), 0<s<T,
92(s) =
92(2T —5), T <s<2T.

After such a continuation the second term in (2.12) become odd in s with
respect to s = T and disappears after integration in (2.11), so we come to
the following expression for the quadratic form:

2T —1

(CTF,G) 1 /T / << :),(RG)(U))BdadT. (2.14)
0

T

Integrating by parts in (2.14) and using that CT = (CT)" and arbitrariness
of F yields

2T —1
(R2G)(1) + (R2G) (2T — 1)
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Evaluating (2.15) making use of (2.8) and continuation of g, g2 (2.13), we
obtain that

6 =3 (27)
2T—1 o

1 f frll s)gi(o — s) +112(5)g2(0 — 5)) ds

T3 r° (2.16)

Of r21(8)g1 (T — ) + 122(8)g2(T — 5)) ds

+ 2T —1 0 .
[ (r21(8)91(2T — 7 — 5) +722(5)92(2T — 7 — 5)) ds

0

Consider the term

2T—1 o
/ /r11 s)g1(o — s)dsdo = I(2T — 1) — I(1), (2.17)
0

T

where

T) = /T/Tm(a — a)g1 () do da.

We evaluate (2.17) using that g; is odd with respect to T':

T |T—al

/ / r11(o) dogi () da = /p1(|7' —a])g1 (@) da, (2.18)
where pi (s fr11 )da. We can rewrite the first term in (2.17) in a
form:
T 2T — 2T —1—«
12T —71)= (/+ / > / r11(0) dogy (o) da
0 T

N , (2.19)
p(2T — 7 — a)g1(a)da — [ p1(a— 1)1 (a) da.
| /
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Then from (2.18) and (2.19) we obtain that

2T—1 o T
| [reae-sisio= [ e -7 -a) - pla-rho() da
T 0 0

which proves the formula for C';;. Now we consider the term

2T —1 o

/ /r12(s)g2(a —s)dsdo. (2.20)
T 0

Note that it has the same structure as (2.17), but we should take into
account that go(s) is odd with respect to s = T. Counting this, we have
that:

T T
12T — 1) :/p2(2Tfoa)g2(a) da+/p2(a77)g2(a) da,
0 T

where po(s) = [r12() da. Then
0

T
I2T —71)—I(1) :/pg(QTfoa)gg(a)da
0

. (2.21)

T
+/p2(a77)g2(a) daf/p2(|a77'|)g2(a) da,
T 0

After we introduce the notation

p2(s), s>0,

pl(S) = —S —pQ(—S), s < 0,

— [ ri2(a)da, s<0,
0

[ ri2(a) da, s> 0, {
~ 0 _

we can rewrite (2.20), taking into account (2.21), as
2T —1 o T
/ /7"12(5)92(0 —8)dsdo = /(;51(2T —7—a)—pi (1t — a)) g2(a) da,
T 0 0

which proves the formula for Cy5. Similarly one can prove formulas for
Ca1, Cas. O
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We note that the symmetry of C7 implies the restriction on the entries,
specifically, the following relation should hold:

C1(t,s) = Cr2(t,8).
This equality is equivalent to
—ror(t =) =TT —t—s) =p1(2T —t —s) = p1(s — 1),
which yields:
—721(s) = pa(s)-

Remark 2. The components of the response matrix have to be connected
by the relation:

rh(s) = —r12(s), s>0.

§3. DYNAMIC INVERSE PROBLEM

In this section we derive equations of inverse dynamic problem, using
them we answer the question on recovering a potential ¢(z), z € (-=T,T)
from the response operator R>T.

3.1. Krein equations. Let y(z) be a solution to the following Cauchy
problem:
—y" =0 -T,T
y" +aqy =0, w/E( 1), (3.1)
y(0) =0, y'(0) =1

We set up the special control problem: to find F € FT such that WTF =
y in HT. By Theorem 2, such a control F exists, but we can say even more:
Theorem 4. The solution to a special control problem is a unique solution
to the following equation:

(CTF) (t) = (T - 1) (é) ., te(0,T). (3.2)

Proof. We observe that if G € F* N C§°(0,T;R?), then integration by
parts shows that

T
uC(z,T) = [ (T — t)uli(z,t) dt.
/
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Using this observation, we can evaluate the quadratic form:

(CTF7 G)]—"T = (WTFa WTG)HT = (y( ) )7UG( : 7T))HT
T T

/y(x)/(T*t)US(a:,t) dt dz

0

(T —1t) (y(-), —H*uC(- ,t))HT dx dt

(t = T) | ((Toy(- (1), (T1u)()

S— 5 ~— &

— ((Tey())(8), (Tou®) (t))B} dt

- Jor-o((3).(6))

from where (3.2) follows due to the arbitrariness of G. O

Representation formulas (2.1) imply that that the solution F' to a special
control problem satisfies relations:

y(T) = uf (T,7) = 2£(0) - 3 £:(0).
Y-T) =l (T, T) = 2 £1(0) — 5 £0).

Thus solving (3.2) for all T € (0,T'), we recover the solution y(z) to (3.1)
on the interval (—T,T). Then the potential ¢(z), € (=T,T) can be

recovered as g(z) = %(f)), xz € (-T,T).

3.2. Gelfand—Levitan equations. We introduce the notation:

T
cT = %(I+ C), (CF)() = 2/O(t,s) <£) ds. (3:3)
0
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For F,G € FT we set WI'F = a, WT'G = b, where a,b € HT, on using
the controllability (Theorem 2), we have that (see (2.9))

F=J'I+K)'S'a=2J"(I+K)'Sa,
G=J'T+K)'S'b=2J"(I+K)'Sb.

Using above representations we can rewrite the quadratic form as:

(CTF,G)pr = (%(1 +0)2JT(I + K)'Sa,2J7(I + K)‘ISb)HT o1
= (2(T+ K)) I (T + 0TI+ K) S0, Sh) '
On the other hand:
(CTF,G),r = (WIE,WTG), r = (a,b)3r = (25a,Sb)yr.  (3.5)
On comparing (3.4) and (3.5), we obtain the following operator identity:

(T+K) ) J'I+0)J'I+K) ' =1 (3.6)
We introduce the following notations
I+M=(I+K)", (3.7
T
Jmai(z,5)fi(s) + mis(z, s) fo(s) ds
(MF)(z) = | %

[ moi(z,8)fi(s) + maa(z, s) f2(s) ds
fmll(z, t)ai (z) + ma1(z,t)as(s) dx
(M*a)(t) = | &
bfmm(z, t)ai(s) + mas(z,t)as(x) dz

It is easy to check that on a diagonal the kernels of operators K and M
satisfy a relation

mij(z,z) = —kij(z,2), 1,7 ={1,2}, x¢€(0,T). (3.8)
Rewritten in new notations, the operator equality (3.6), has a form:
(I+My*I+C)I+M)=1I, (3.9)

where

T
C=JroJt, (C*F) (t) = / Ot s)F(s) ds. (3.10)
0
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The relation (3.9) is equivalent to the equality
M* + (I + M)* (M+5+5M) =0. (3.11)

On introducing a function
T
®(z,s) = m(z,s) + C(z, s) —l—/C’ ,8)da, x,s € (0,T),
0

we can write down an equality on the kernel for the operator in the left
hand side in (3.11) M* + ® + M*® = 0:

t
m(s,z) + ®(z,s) +/m ,8)da =0, xz,s€(0,T).
0
Since m(s,z) = 0 when = < s, we obtain that ® satisfies the relation:
O(z,s) + /m(a,x)(}(a,s) da =0, z<s.

Thus the function ® satisfies a Volterra equation of a second kind, and due
to this we obtain that ®(z,s) = 0 for < s, which immediately yields the
following equation on the matrix function m:

m(z,s) + C(z,s) +/5(a:,a)m(a,s) da=0, 0<z<s<T. (3.12)

As a result we can formulate the following

Theorem 5. The matriz kernel of the operator M (3.7) satisfy the Gel-

fand-Levitan equation (3.12), where the kernel C is defined by (3.3), (3.10).
Solving this equation, one can recover the potential using relations between
kernels (2.10), (3.8) and relations on diagonals {x = t}, {—x = t} in

(2.2), (2.3):

q(z) = 2% (mi1(z,z) — mi2(z,z)), =€ (0,T),

q(—x) = —2% (m1(z,x) + mi2(z,x)), =€ (0,T).
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3.3. Relationship between dynamic and spectral inverse data.

The problem of finding relationships between different types of inverse data

is very important in inverse problems theory. We can mention [2,4,5,14,15]

on some recent results in this direction. Below we show the relationship

between the dynamic response function and matrix spectral measure.
Consider two solution to the equation

—¢" 4+ q(z)p = \p, —o0 <z < 00, (3.13)
satisfying the Cauchy data:
90(07/\) = Oa (pl(oa/\) = 15 6(07/\) = _15 6/(07/\) =0.

Fo(p = 0, F00 = 0, Fl(p = (é) , F10 = <(1)> .

We fix some N > 0 and prescribe self-adjoint boundary conditions at
r==+N:

Note that

a1¢)(*N7 )‘) + b1¢)/(*N7 )‘) =0, a% + b% 7& 0, (314)
asd(N,\) +b2¢'(N,\) =0, a3 +b5#0. (3.15)

Eigenvalues and normalized eigenfunctions of (3.13), (3.14), (3.15) are de-
noted by {An,yn}S2;. Let B, vn € R be such that

yn(2) = Bnp(w, An) +mb(2, An),  then Ty, = (gn) .

Let F € FI' N Cge(0,T;R?), and v be a solution to (1.1)—(1.3), (3.14),
(3.15), i.e., a solution to the initial boundary value problem for a wave
equation on the interval (—N, N). Multiplying the wave equation for v*
by y. and integrating by parts, we get the following relation:

T N N

0= /Ugyn dx — / vfzyn dx + / q(a:)UFyn dx
“r N N
N
= [ ohndo + 7, Hya) + (T20” Toyn)a = (Too” Trn)
N

T
- /va;yn dz + An (V" yn) — ((ggg) : (g:) )B.
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Looking for the solution to (1.1)—(1.3) in a form

of = er(t)yr(a), (3.16)

<f1 (t)> (m) >
5(1)) " \m B
Thus we obtain that ¢, (t), n > 1, satisfies the following Cauchy problem:
" fl (t) Bn )
t + /\n n t = 9 )
(0) + Mnen(t) ((fé(ﬂ) <7> )
cn(0) =0, c,(0) =0.

the solution of which is given by the formula

i [T

Then for v¥" (3.16) we have the expansion:

(f1(5)Bn + f5(s)7n) ds

0

< f sin /Ay, (t—s) ,
F(xat): - A~ (fl(s)ﬂn+f2 n) ds (Bn (xa/\n)+ ne(xa)‘n))
kZ/ e ¥ " ¥

S R ()= () () )

:/ /M# <d2N(A) (ggjg) , (‘gg;;)) (3.17)

Where dXn () is a matrix measure (see [13]). Due to the finite speed of
the wave propagation in system (1.1)-(1.3) (equal to one), we have the
relation

o (1) =ul(-,t), fort <N, (3.18)
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and for T < N holds that R>*TF = I';v”. Thus the response operator RT
for T < 2N, is given by

(RF)(t) =T1o" ch TTaye = > c(t) < )

= ki/t sin \//\k)\(: ) (f1(8)Br + fayx) ds (5’;) (3.19)
=17 V
= 7]M#d2N( ) <§;Ejg> ds, 0<t<2N.
—oo 0

Taking F,G € FTNC§(0,T;R?), for T < N we evaluate the quadratic
form using (3.17) and (3.18):

(CTF,G)rr = (uf, u)yr = (07, 0%)yr (3.20)
—Z//S‘“*/_ L (1B + fiva) d Sm“j’g” (91Bn + Glyyn) d7

:0/0/4 sin\/i(XtS) Sin\/_:\/(xtT) (dEN(/\) (}28) (glg:;))deT

We observe that in view of the unite speed of wave propagation in sys-
tem (1.1)—(1.3), in representation formulas for response operator (3.19) and
for connecting operator (3.20), we can substitute dXn(X) by any d¥pr(A),
M > N, where d¥;(\) corresponds to some selfadjoint boundary condi-
tions at =M, or we can let N go to infinity, and substitute dXx(A) by a
limit measure dX(X) (see [13]).

The inverse problem for a Schrédinger operator on a half-line from a
spectral measure is solved in [11], in [13] the inverse spectral problem for a
Schridinger operator on a real line from a matrix measure is discussed, but
some questions remain open. At the same time, in the case of a half-line
n [1,2,14] the authors established the relationships between the dynamic
and spectral inverse problems.

Remark 3. The control, response and connecting operators admit repre-
sentations in terms of spectral inverse data (matrix measure dX (X)), see
(3.17), (3.19) and (3.20). This circumstance makes it possible to assume
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that the progress in studying the inverse spectral problem from a matrix
measure will be greatly stimulated by the progress in studying the inverse
dynamic problem in the spirit of [1,2,14].

10.

11.

12.

13.

14.

REFERENCES

. S. A. Avdonin, V. S. Mikhaylov. The boundary control approach to inverse spectral
theory. — Inverse Problems 26, No. 4 (2010), 045009, 19 pp.

. S. A. Avdonin, V. S. Mikhaylov, A. V. Rybkin. The boundary control approach
to the Titchmarsh-Weyl m—function. — Comm. Math. Phys. 275, No. 3 (2007),
791-803.

. M. I. Belishev, Recent progress in the boundary control method. — Inverse Prob-
lems 23 2007.
. M. I. Belishev, On relation between spectral and dynamical inverse data. — J. Inv.

Ill-posed problems, 9, No. 6, 2001, 647-665.

. M. 1. Belishev, On a relation between data of dynamic and spectral inverse problems.
— Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI). 297 (2003),
30-48, translation in J. Math. Sci. (N. Y.). 127, No. 6 (2005), 2353-2363.

. M. I. Belishev, M. N. Demchenko, A dynamical system with a boundary control
associated with o semibounded symmetric operator. — (Russian. English, Rus-
sian summary) Zap. Nauchn. Semin. POMI 409, Matematicheskie Voprosy Teorii
Rasprostraneniya Voln. 42 (2012), 17-39; translation in J. Math. Sci. (N.Y.), 194,
No. 1 (2013), 8-20.

. M. I. Belishev, V. S. Mikhaylov, Unified approach to classical equations of inverse
problem theory. — J. Inverse and Ill-posed Problems 20, No. 4 (2012), 461-488.

. M. L. Belishev, S. A. Simonov, A wave model of the Sturm-Liouville operator on
the half-line. — Algebra i Analiz, 29, No. 2 (2017), 3-33.

. J. Behrndt, M. M. Malamud, H. Neidhart, Scattering matrices and Weyl functions.

V. A. Derkach, M. M. Malamud, On the Weyl function and Hermite operators wit

gaps. — Dokl. Akad. Nauk SSSR 293, No. 5 (1987), 1041-1046.

I. M. Gel’fand, B. M. Levitan, On the determination of a differential equation from

its spectral function. Izvestiya Akad. Nauk SSSR. Ser. Mat. 15 (1951), 309-360 (in

Russian)

IL.M. Gel’fand, B.M. Levitan 1955 Amer. Math. Soc. Transl. (2) 1 (1955), 253-304

(Engl. Transl.)

A. N. Kocubei, Ezxtensions of symmetric operators and of symmetric binary rela-

tions. — Mat. Zametki 17 (1975), 41-48.

B. M. Levitan, Inverse Sturm-Liouville problems. VNU Science Press, Utreht,

Netherlands, 1987.

A. S. Mikhaylov, V. S. Mikhaylov, Relationship between different types of inverse

data for the one-dimensional Schrédinger operator on the half-line. — Zap. Nauchn.

Semin. POMI 451 (2016), 134-155.



ON AN INVERSE DYNAMIC PROBLEM FOR THE WAVE EQUATION 231

15. A. S. Mikhaylov, V. S. Mikhaylov, Quantum and acoustic scattering on R4+ and a
representation of the scattering matriz, Proceeding of the conference IEEE, Days
on Diffractions 2017, pp. 237-240.

16. V. Ryzhov, A general boundary value problem and its Weyl function. — Opuscula
Math. 27, No. 2 (2007), 3005-331.

St.Petersburg Department Mocrymmio 8 oxrsadps 2017 r.
of the Steklov Mathematical Institute,

Fontanka 27, 191023;

St.Petersburg State University,
7/9 Universitetskaya nab.,
199034 St. Petersburg, Russia

FE-mail: mikhaylov@pdmi.ras.ru
E-mail: ftvsm78@gmail.com



