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THE WEAK SOLUTIONS OF HOPF TYPE TO 2D
MAXWELL FLOWS WITH INFINITE NUMBER OF
RELAXATION TIMES

ABSTRACT. The system of equations, describing motion of fluids of
Maxwell type is considered

¢
%v«kv-va/K(th)Av(m,'r) dr + Vp = f(z,t), dive=0.
0

o0
Here K(t) is exponential series K (t) = > Bse~%st. The existence
s=
of weak solution for initial boundary value problem
v(z,0) =vo(x), v-nlga =0, rotv|ga =0

is proved.

§1. INTRODUCTION

Consider the system of equations which describes Maxwell flows. This
system has a form

¢
%’U+’U~V’U*/K(t77')A’U(a?,T) dr + Vp = f(z,t) (1)
0

divo =0 (2)
The kernel K (7) is represented here as a sum

K(r) = 26367%7, s, Bs > 0. (3)
s=1

The system is considered in a domain Q@ C R? with smooth boundary
00 from class C'. Here v(z,t) is a velocity, p(z,t) is a pressure, f(z,t) is
a vector of external forces.

Such systems describe motion of fluids with infinite numbers of relax-
ation and retardation times. These fluids have property: when the stress
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equals zero then the velocity decreases like exponent. And conversely when
the velocity is zero then the stress vanishes with respect to exponential low.
System (1,2) with the kernel K represented in the form of finite sum

K(r) = Zﬁse_o‘”, ag, s >0 (4)
s=1

was studied in the papers of Oskolkov, Cotsiolis and other authors [2, 3].
The authors introduced m new variables (where m is the number of the
summands in sum (4)). In the case when the number of the summands is
infinite such method can not be applied.

If we omit the nonlinear term, then the system may be reduced to the
Gurtin-Pipkin equation in the space of solenoidal vectors. Such equations
were investigated in the papers of Vlasov, Ivanov and some other [8,10].

For the sake of simplicity we introduce the notation

KM%ﬂ:i/K@—TM@J)W (5)

We consider boundary value problem for arbitrary bounded domain
QCR? 00eCt
v-nlapg =0, 1ot v|sn =0 (6)
Here by the operator rot we mean the scalar operator in two-dimensional
space

0
rot v = —vy — —v
8.271 2 8.272 !

Let the function v(z,t) satisfy initial condition
vlt=o0 = vo (7)

Use the notation. Symbol || . ||2,o is used for the norm in the space L2 (),
and | . ||p,q is the norm in the space L4(0,T'; L,(€2)). The scalar product
in the space L2(Q) is denoted (u,v)q. The expression (u,, v, )q is used for

the sum
2

Z(uwuvm)ﬂ = (Uxavm)fl- (8)
i=1
By J:() we denote the space of infinite differentiable finite solenoidal
functions

J(Q) = {u € C®(Q)|div u = 0} (9)
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J() is a supplement of J-(Q) in Ly-norm. The symbol J(ln) is used for
the space
Tty (Q) = {ulu € W3 (Q),div u = 0,u-n|se = 0}. (10)

And by J'(Q) we denote a supplement J-(Q) in W.-norm.

Hopf introduced the notion of weak solution for the Navier—Stockes
equations [5,6]. We introduce similar notion for Maxwell flows. Function
v(z,t) is a weak solution for of problem (1), (2), (6),(7), if v satisfies the
integral identity

/(71;@,5 — 0Py, + (Kvg)®,) dzdt = / fe (11)

Qr Qr

for any solenoidal ®(x,t) € L2(0,T; J(ln)) which equals zero on the ends

of cylinder Qr, ®(z,0) = ®(x,T) = 0, and such that ®,,®; € L2(Q71).

Moreover v should satisfy initial conditions (7) in the following sense
lv(z,t) — voll2,0 — 0, t— 0. (12)

The main result of the paper is the following theorem

Theorem 1. Let f € Ly(Q7), fr € L2(Q7), vo € J(ln) Let the coefficients
as,Bs satisfy

Zﬁsas < o0, Zﬁs < oo (13)
s=1 s=1

Then initial boundary value problem has a weak solution in Qr = Qx[0,T].
This solution v € Lo (0, T} J(ln)(Q)), furthermore

Ve € Loo(0,T; J()).
§2. A PRIORI ESTIMATES

In this section we obtain some a priori estimates for the solutions of
initial boundary value problem (6), (7).

At first we multiply equation (1) by v in the spaceLs(2) (By equation
(2) the nonlinear term vanishes)

1d
5@”””3,9 + (Kvg, vz)a = (f,v)a. (14)
Then transform the term with the operator K. This operator commu-

tates with the differential operator a%- Moreover for solenoidal vectors it

holds
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(Kvg,v)o = (86 (Kv),v ) = (rot (Kv),rot v)q = (Krot v,rot v)q.
z Q
(15)
Let us introduce new function 7*
¢
0 = / e~ (T 7) dr (16)
0
Then we have
0
o =v—aw a7)

Substitution of function (16) into (14) yields

—||v||2 ot /ZBS s(=Trot, v(z, 7) dr,rot v(z,t) = (f,v)a (18)
Q
With the help of the new function n° we transform the second term

n (14)

t o0

(Krot v, rot v) /Zﬁse_as E=rot, v(z, 7) dr,rot v(z,t)

0 Q

Zﬁsrot n®, rot n° 4+ asrot n°)q

l\:Jlr—A
Q.|Q‘

o0
2 lrot o+ S Baaslirot 30 (19)

s=1

Thus by (19) and (14) we get

ol ot thZBsIIrotn BatY. Aualrot i 3o = (oo (20)

s=1

Identity (20) implies estimates of the norms ||v(t)||2,0 and |[rot n°||2,0.
Indeed let us introduce the function ¢

£(t) = llo@)lI3.0 + D Bsllrot n°|l3. (21)
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With the help of the function £(t) identity (20) may be re-written in this
way

; dt€+ZBsasllr0t Pla < I7O)Bq + (22

By (22) and by Gronwall lemma we have

sup [[jv(t) ||2Q+Zﬂs [rot 7°|[3.0] < C1, (23)

te[0,T] o—1

t
where C1 = €/ (£(0) + [[|f]13.q)- Since rot 7,(0) = 0, then
0

t
Ci= e (ulia + [ 1150 |- 49
0

Now let us apply the operator rot to both sides of equation (1) and multiply
the obtained expression by rot v

5 dtHrOt v3.q — (KArot v,rot v)q = (rot f,rot v)g (25)
Proceeding in the similar way we transform the second term in (25)

— (KArot v,rot v)g = (KAv, Av)g
= (ZBSAWS, Av)Q = (ZBSAWS, %Ans + asAns)Q
s=1 =

= dt(ZBs A l3a) + - BeasllAn’lEq  (26)
s=1

Thus the following inequality is true

1d
S lot vl g + 52 (ZBSIIAU ||m) +ZﬁsasIIAn I3
<ot ol + ok SI3a @7

Define a new function ((#)

((t) = [[rot v(t ||29+ZBsIIAn )30 (28)
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With the help of the function ¢ we reduce (25) to the relation

d . s
i > Bsas| An°|l3.q < [Irot fl30 +¢ (29)
s=1
By virtue of Gronwall lemma inequality (29) yields the estimate
t S[ltl)pT][lllfOt vlse+ D BsllAn*|3 0] < Co (30)
€lo,

s=1
§3. PROOF OF THE THEOREM

The theorem is proved by the Galerkin method. Let h;(z) be funda-
mental system of functions in the space J(ln). Then initial data vg(z) may
be expressed as a limit of finite sums in Ly-topology

N
N = Z Civhe — Y, N — o0 (31)
=1

We shall seek the approximations v™ for the solution of problem (1),
(2),(6), (7) like
N
wN(z,t) =Y Cin(®h(x) N=1,2,... (32)
=1

Then the functions Cyn(t) should satisfy the initial conditions
Cin(0) = Ciy, l1=1,2,...,N. (33)
We shall try to find vV which satisfy the following integral identity
(v, h)a+ (ol e+ (Kvl  hi)o = (f, l)e, [=1,2,...,N. (34)

Substitution (32) into (34) yields

N N
%CIN(t) + ”2:1 a1;;Cin (t)Cjn (t) + ;(K[Cil(t)hlz]a hiz) = (f, ), (35)

where ay;j are constants.

System (35) is the system of ordinary integro-differential equations. It
can be solved locally by method of succesive approximations of Picard.
The global existence of a solution is deduced from boundedness of Cjy.
Indeed the functions Cjy (t) are bounded because v are bounded. The last
conclusion may be proved in the following way. Let us multiply identity
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(34) by Cin(t) and summarize with respect to ! = 1,..., N.The functions
v satisfy (34) so vV satisfy integral identity (11). Thus (23) is true for
v™ and the norms [[vV||2,q and the coefficients Ciy(t) can be estimated
by the constant Cf.

As a result of this we have constructed the sequence v, N = 1,...,
such that the norms ||v"V |2 o and |[vY |2, are bounded.Then for T < oo
we get the estimates for the norms |[v"V||2,0, and |[v) ||2,0.. They will be
estimated by the constant v/T'C;. Since a bounded set in the Hilbert space
is weakly compact then we may choose a weakly converging subsequence
vNe from the sequence vV. (Let us denote this sequence also by v™.)
Reasoning in similar way we may affirm that v)¥ converges to v, weakly in
L»(Qr). Moreover the sequence of products {v"Vv)} is also bounded and
we may choose the subsequence such that vNvY converges weakly to vv,
in the space La(Q7).

Furthermore the set {Kv™}, N = 1,... is also bounded because the
operator K is continuous in Ls(Q7). Proceeding in similar way we prove
that Kv™ converges weakly to Kv in Ly(Q7).

This convergence is enough to come to the limit with respect to N — oo
in the relation

/(—vN<I>t —opoN®,, + (Ko)®,)dedt = /f<1> (36)
Qr QT

for any ®(x,t) € Ly(0,T;J,(Q)) such that ®,,& € L»(Qr)
and ®(z,0) = ®(z,T) = 0. Boundary condition (6) and incompressibil-
ity condition (2) are fulfilled for the limit function v.

Now we shall prove that v satisfies initial condition (12). We knew
that |[vN(z,t) — vo(7)||2,0 — 0 when N — co. Moreover we proved that
vV (z,t) —v(z,t) converges weakly in L»(Q) for any ¢. Thus we have weak
convergence of v(z, t) —uvg(x) to zero when ¢t — 0. So we get that ||vg2,0 <
lim, , ||v(z,t)||2,0. On the other hand vV satisfies inequality (23). Passage
to the limit in (23) when N — oo gives

t
o BlBa < lloolo+ [ 1710 @7
0

and so limy_o [|[v(z,1)|]2.0 < |Jvol2.o. Consequently we get the existence
of limit |[v(z,t)||2,o when ¢ — 0 and lim; o ||v(z,%)|]2,0 = ||voll2,0. Weak
convergence and convergence of norms yield (12).
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