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ABSTRACT. In the article (N.Gordeev and U. Rehmann. Dou-
ble cosets of stabilizers of totally isotropic subspaces in a spe-
cial unitary group I., Zapiski Nauch. Sem. POMI, v. 452 (2016),
86-107) we have considered the decomposition SU(D,h) =
U; Pyy; P, where SU(D, h) is a special unitary group over a di-
vision algebra D with an involution, h is a symmetric or skew
symmetric non-degenerated Hermitian form, and P,, P, are
stabilizers of totally isotropic subspaces of the unitary space.
Since I' = SU(D, h) is a point group of a classical algebraic
group I there is the “order of adherence” on the set of double
cosets {P,~iP,} which is induced by the Zariski topology on T".
In the current paper we describe the adherence of such double
cosets for the cases when I is an orthogonal or a symplectic
group (that is, for groups of types B.,C,, D).

INTRODUCTION

Let K be a field and let F'//K be a separable extension of degree

< 2. Further, let D be a division algebra over the center F' of index
¢ with a fixed anti-automorphism x — z* which is

trivial on K

(here we include the cases D = K when * is trivial and D = F). If

K = F, the involution * is called of the first kind and

the second kind if deg F/K = 2.

it is called of
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Let V be a (left) linear space over D of dimension d with a non-
degenerate Hermitian or skew-Hermitian form h = (, ) with re-
spect to the involution x (here we also consider symmetric and skew-
symmetric forms over K as Hermitian or skew-Hermitian forms with
D = F = K). We will call any linear space over D with a form h
(not necessarily non-degenerate) an h-space.

In [4] we have assumed that the h-space V satisfies the T-condi-
tion: ([1, IX, §4]):

For every © € V there is an element o € D such that a + ea* =
h(z,x) where € = 1 if h is a Hermitian form and € = —1 if h is a
skew Hermitian form.

In particular, the T-condition holds if h is skew-Hermitian or
charK # 2.

In this paper we assume that charK # 2.

We denote by n the dimension of a maximal totally isotropic
subspace of V' (Witt index). Below we assume n > 1.

We denote by U(D,h) the group of isometries of the h-space V
(the unitary group). The special unitary group is the subgroup of
U(D, h)

SU(D,h) :={g € U(D,h) | Nrdg =1}
(here Nrd is the reduced norm; see [1, VIII, §12]). We assume

dimp V =d < 0.

There exists a simple algebraic group T which is defined over ‘the
field K such that I' = T'(K) = SU(D, h) (see [6, 8]). The group I is
a group of the type A,, B, C;, or D,. In [4] we divided all possible
groups into two sets: we say that we are in the Special Case if Tisa
group of the type D,, which is completely split over a field K (that
is, I' = S04, (K)); in all other possibilities we say that we are in the
General Case.

Let £ < [ be positive integers and let Zy,Z; be the sets of all
totally isotropic subspaces of dimensions k and [, respectively, and
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let v € Iy, u € Z;. Further, let P,, P, be the stabilizers of the sub-
spaces u, v, respectively. Then there exist maximal K -defined para-
bolic subgroups P,, P, such that P,(K) = P,, P,(K) = P,. In [4]
we described the decomposition I' = U; P,y; P, in terms of the inter-
section distance

din(u, g(v)) = dimu — dimu N g(v)

(see, [3, 4]) and the Witt index of the unitary space u + ¢g(v) where
g is a representative of P,y;P,.

Namely, let I(U) be the codimension of a maximal isotropic sub-
space Up < U and let

Xpg={(p,q) | 0<p<minfk,n—1},0<g<k—p}
be the set of integers. Then for the General Case we have (see [4])
Theorem 1. The double cosets P,yP, can be enumerated as follows:

(i) I'= U(Pa'I)GXPq Puypg s
(ii) g € PyypePy < din(g(v),u) = l—k+p+q and I(u+g(v)) = gq.

To formulate the result for the Special Case we need to describe
the difference between this Case and the General Case. In the Gen-
eral Case all totally isotropic subspaces of the same dimension be-
long to a single I'-orbit. In the Special Case we have two [-orbits of
totally isotropic spaces of the maximal dimension n. We fix a max-
imal totally isotropic subspace ug and denote its '-orbit by Z;". By
1, , we denote the other I'-orbit. Two maximal isotropic subspases
u’, v’ belong to the same [-orbit if and only if sign (v, v’) = 1 where
sign (u/,v') = (=1)%n ") (see [4]). Further, let v, := u+g(v) where
g € I'. There exists a unique maximal totally isotropic subspace vy
in v, which contains the space u ([4]). In the Special Case when
dimu < n and vy = n, the double coset of g is defined not only
by dimw,, I(vg) but also by the “orientation” of vy , that is, either
vy € I; or vy € I, (see il) below).

Theorem 2. Let I' = SO(V) = SOg,(K) be a completely split
orthogonal group of the dimension 2n. The double cosets P,vyP, can
be enumerated in the following way:



DOUBLE COSETS OF STABILIZERS 85

(i1) If 0 <n—1 < k then

r=( U PwP)o( U Poi,P).

0<p<n—I, g<k+l—n
0<g<k—p

(i2) If k < n —1 then

I'= U Purypg Py

0<p<k,
0<g<k—p
(i3) If l =n,k < n then
r=J PP
q<k
(i4) If k =1=n then
r= U  PuvPs if sign (v,u) =1,
0<g=2m<n
r'= U Pyy,P, if sign(v,u) = —L1.

1<g=2m+1<n

(iil) g € PyypgPy, p #n — 1 & din(g9(v),u) =1 —k+p+q and
I(u+9g(v) =q g € Poyn—1¢Py & din(g(v),u) =n—Fk+q
and I(u +g(v)) = g, and vy € r,
9 Py 1Py ding(0)s) =n—k-+q and I(u + g(v) =g
and vy €1, ,
(ii2) g € PuvpgPy < dinlg
(ii3) g € PyygPy < din(g(
(ii4) g € PuvgPy < din(g(v

(v),u)=l—k+p+q and I(u+ g(v))=
v),u) =n —k+q and I(u+g(v ))—q,
),u) =q=1I(u+g(v)).

The main result. It is a well known fact that double cosets of par-
abolic subgroups of a simple algebraic group are locally open subsets
with respect to the Zariski topology and their closures are unions
of double cosets of the same parabolic subgroups (see [2]). It gives
an order on the set of such double cosets which, in the case of stan-
dard parabolic subgroups, is called the “Bruhat order.” This order
can be described in this case in terms of the decomposition of the
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elements of the Weyl group which corresponds to given cosets ([2]).
Here we describe the “Bruhat order” for double cosets P,vy; P, of
' = SU(D,h) in terms of the dimension and the Witt index of uni-
tary subspaces u + 7;(v) . We may define the “Bruhat order”< on
the set {P,vy; Py }:

P,yP, < P,y'P, & P,yP, C P,y'P,

(here X is the Zariski closure of X). In this paper we consider only
those cases where the group T is of the type By, Cy, D, (that is, the
cases where « is an involution of the first kind). The case where the
group I is of the type A, will be considered in the next paper.

Since in the Special Case there appear the double cosets Pu'yf,f]PU
and we will call any double coset of the form Puq/;;va = Pyype Py
positive and Py, P, negative. Note, that most of all double cosets
are positive except the Special Case i1), when p = n — [ (note, that
positivity or negativity here depends on our choice of the “positive”
orbit Z7). However, when considering the whole massive of double
cosets we will write Pu'y;q -

The main result of this paper is the following

Theorem. Let ' be a simple algebraic group of type By, C,, or D,
defined over a field K,charK # 2, and let T' = T'(K) = SU(D, h)
be the group of special unitary transformations of a unitary space
V' over a division algebra D with an involution. Further, let k <[
be integers and let v € I, u € Z;. Let P,, P, be the stabilizers of
u,v. Then P, = P,(K),P, = P,(K) for some mazimal K-defined
parabolic subgroups IBU,IBU of the group T and

PupgPs = Py Po & p+q <p'+q and ¢ < ¢ and (p,q) # (v',¢)
if  PuyiyPo # Puvyy Po-

The proof of the Theorem is contained in Sec. 3. In Sections 1, 2
we collect more or less known facts which we use in the proof of the
Theorem.
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Notations and terminology.
Unitary transformations.

K is a field with charK # 2;

K, K are, respectively, the separable or algebraic closure of K;

D is a division algebra over the center K with an involution x of
the first kind (possibly, D = K and x is a trivial involution);

V is a left linear space over D of the dimension d = dimp V < oo
with a non-degenerated symmetric or skew-symmetric Hermitian
form h=(, );

U(D, h) is the group of unitary transformations of V" and

I':=SU(D,h) :=={g € UD,h) | Nrdg =1}

is a special unitary group (Nrdg is a reduced norm of g € GL4(D)
(see [6], [1, VIIL, §12)));

n is the dimension of a maximal totally isotropic subspace of V'
(Witt index);

7y is the set of all totally isotropic subspaces of V of dimension
k< ng

T, T, are different T-orbits of maximal totally isotropic sub-
spaces of V' in the Special Case (see [4]); moreover, we assume below
that Z,7 is the T-orbit of V' = (ey,...,e,) and Z,, is the T-orbit
of V,o = (e1,...,en—1, fn) where {e;, f;} is a fixed basis of V' such
that (e;, e;) = (fi, f;) = 0 for every i, j and (e;, f;) = d;; (see [4]);

here k <1 < n,u € Z;,v € I}, and P,, P, are the stabilizers of v, u
in I';

if U < V, then I(U) is the codimension of a maximal totally
isotropic subspace Uy < U;

Hy = (e, f),(e,e) = (f,f) =0, (e, f) = 1 is the hyperbolic plane;

Hs, = Hy + --- + Hs is the 2s dimensional hyperbolic space.

————

s—times

Algebraic groups.
Here I' is a K-defined simple algebraic group of the type B, C,
D, such that I'(K) = T" (see [6, 8]); we use terminology of [7], in

particular, we identify the algebraic group I'" with T'(K);
for every subset X C I we denote by X the Zariski closure of X;
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G, is the one dimensional additive group: G, (K) = K.
§1 UNITARY GROUPS OVER DIVISION ALGEBRAS WITH AN
INVOLUTION

Here we use the notations and assumptions that have been made
above.

Division algebras with involutions.

There is a map i : D — M.(K;) which is induced by the isomor-
phism D ® g K, = M.(Kj). Since * is an involution of the first kind
we may choose the latter isomorphism and extend x on M.(Kj) so
that

X* = Xxt (1.1)
where X! is the transposed matrix of X (in this case the involution
* is called of the first type (orthogonal type) ), or

X*=J.Xtg ! (1.2)

where

and Oc, Ee € Me (K) is, respectively, the zero matrix and the iden-
tity matrix (in this case the involution « is called of the second type
(symplectic type) (see [6, 5]). Note that

JL=J " (1.3)

If x is an involution of the first kind then ¢ = 2% for some s > 1
(see [5, I. §2, Corollary 2.8]).

Unitary spaces over division algebras with involutions.
The h-space V has the Witt decomposition

V=VLlAyLV’

(here X 1Y denotes the direct sum of the orthogonal subspaces
X,Y < V) where V,,V? are maximal totally isotropic subspaces
such that V, LV? ~ Hy, (here Hy, is a hyperbolic space of dimension
2n and Ay is an anisotropic space). Let {eq,...,en}, {l1,...lg—2n},
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{fi,..., fn} be a basis of V,, Ay, V"’ such that (i, fj) = 0ij. Then

the Gram matrix of h for this basis e, ..., en, l1, ... lad—2n, fn,---, f1
of V has the form
Onxn 0n><(d—2n) I,

Sp = 0(d72n)><n A 0(d72n)><n € GLd(D) (14)
+I, 0n>< (d—2n) Onxn

where
0 0
=" € GLu(D),
10 --- 0 0
A € GL(g_an)x(d—2n) (D), (A" ==£A, 0gxp € Maxp(D)

is the zero matrix.

The chosen injection i : D — M.(K;) induces an injection i* :
M4(D) — Me(Ks) where the entry m,, € D of a matrix M €
GL4(D) is replaced by the matrix i(my,). (We may extend the em-
bedding i : D — M.(Kj) not only for the map i*: Mg(D) — Mcq(K5)
but for every embedding M,y ,(D) — Mepxcq(Ks) by replacing any
entry a;; of a matrix over D by the matrix i(a;;.) We also denote
this embedding by ¢*. Since 4 is a ring homomorphism we have
(XY Z) =i(X)i*(Y)i*(Z) for any matrices X,Y, Z over D such
that the multiplication XY Z is defined.)

Then

Ocnxen Ocn.><c(d72n) Z>k(Iﬂ)
Z*(Sh) = Oc(d—Qn)ch Z*(A) Oc(d—Qn)ch € GLcd(Ks)
O (:t[n) 00n><c(d—2n) Ocnxcn

where
0 O 0 E.
o o 0 --- E. O
i*(In) = € GLen(Ks),
E. 0 --- 0 O

E. € GL/(Kj) is the identity matrix.



90 N. GORDEEV, U. REHMANN

The adjoint involution ® on M.q(Ks) and the group I.

We may extend the involution x from D on a simple algebra
M.q(K5) according to formulas (1.1) or (1.2) on each block. Consider
the cases:

i. x is an involution of the first type and A is a symmetric form. Then
A* = A and in the down-left corner of the matrix S}, we have I,
(see (1.4)). Since the involution * is of the first type its extension on
M, (K) is a transposition of matrices. Every matrix of M.4(K) may
be considered as d x d-block-matrix X = (X;;) where each entry Xj;
is a matrix from M. (K;). Put

X® = (X3)® = (Xp)".
Then if we consider X as a matrix of M4 (K) we will have X® = X*.
In particular,
i*(Sp)® = i*(Sh)" = i*(Sh).
Thus,
{X € SLge(Ks) | Xi*(Sp)X® = Xi*(Sp) X" =*(Sp)}
= SOy (Ks,i*(Sh)).

ii. x is an involution of the second type and h is a skew-symmetric
form. Then A* = —A and in the down-left corner of the matrix Sj,
we have —1I;, (see (1.4)). Since the involution « is of the second type,
its extension on M.(Kj,) is a transformation (1.2). If X = (X;;) €
Mg(M(K)) with X;; € Mo(K;) then X7 = J.X[,J:'. Let us put

X® = (X;5)® = (X5)' = (Jea(X5) T 5!
= (L)X Ty = JaX T

where
J. 0. 0.
0. - 0. J.

(see (1.2)). Since h is a skew-symmetric form we have
*(Sh)® = Jea(i*(Sn)") g = = (6" (Sh))
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and therefore
ch(i*(Sh))t = —(3"(Sh) Jed-
The matrix J = J.4 is skew-symmetric. Hence

(@ (Sn)T)" = T (k)" = =T (" (S))'
= —(=("(Sn)T) = " (Sh)T

and therefore i*(S,)J € M.4(Ks) is a symmetric matrix. Now we
have

{X € SLae(Ky) | Xi*(Sh)X® =i*(Sh)}
= {X € SL4.(Ky) | Xi*(Sp)TXt =i*(Sp) T}
= SOdc(KSai*(Sh)j)'

iii. x is an involution of the first type and h is a skew-symmetric
form. The same arguments as above imply that i*(Sp) is a skew-
symmetric matrix and

{X € SLge(Ky) | Xi*(Sp)X® = Xi*(Sp) X" = i*(Sh)} = Spy.(Ks).

iv. * is an involution of the second type and h is a symmetric
form. The same arguments as above imply that i*(S,)J is a skew-
symmetric matrix and

{X €SLy(Ky) | Xi*(Sp)X®=Xi*(Sp) T X" =i*(Sp) T} =Spue(Ks).

The adjoint involution ® defines a simple algebraic group T of
the type By, Cp, D, which is defined by equations over Kj. Since
charK # 2 the group I' is defined and completely split over K. Also,
I'(K,) is dense in I' and is Gal(K/K)-stable. Hence I' is a K-defi-
ned group ([7, 11.2.8]). The Galois group G = Gal(K/K) acts on
f(K s) in the following way. The isomorphism D @ K, ~ M.(K;)
induces the action of G (namely, G acts on the right arguments of
D ®x Kj) such that M.(K,) = D. The group I'(K,) is presented
by c-block matrices (see i.-iv.) and the group G operates on each
block. Thus, the invariant subgroup I'(K)Y is the group SU(D, h).
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The comparison of the unitary space V' and orthogonal or symplectic
spaces V5 and V.

We fix a basis B = {e,...,en,l1,...lg—2n, fny---, f1} of the lin-
ear space V such that the Gram matrix of A in this basis is S}, (see
(1.4)). Let V; (respectively V') be the linear space over the field K
(respectively K) of the dimension cd with the fixed basis :

Bs(=B)
2{6117612,---610 €21,€22...€2¢,--.,€n1,En2...,Enc, (1 5)
bLiyliag .o liey, loryloae o iloey oo ylg—ontyla—2n2 -y la—2n ¢,

Intsfn2s o fnes foits fna2e o focies oo fi1, fiz oo fie)

We consider the space V* (resp. V) as an orthogonal or a sym-
plectic space which corresponds to the matrix i*(Sp) or i*(Sh)J
(see i-iv.) in the basis B, (resp. B). We denote the corresponding
bilinear form on V; (resp. V) by (, )s (resp. (, )aig)-

For every vector

n d—2n 1
Tr = Zaiei + Z b;l; +Zcifi eV,

where a;, b;,c; € D, we put
[z]=(i"(a1),...,3(an),i"(b1), ... " (ba—2n),3"(c1), - .., i"(cn))

1.6
EAfcxcd(Kvs)- ( )

Thus, [z] is the matrix that corresponds to the row of coordinates
() = (a1, -y an, b1,y .. bg—on,C1y. .., Cp) (1.7)

of the vector = in the basis B. Let [z]; be the j*-row of the ma-
trix [z]. Then the row [z]} defines a vector in V;

T = [2];B¢.

(Here we multiply the row of length cd of elements of K, with the
column of elements of the basis B,. Thus we get a vector in V).
We define the vector 2% = (z§,z5,...,23) € V¢ where

s _

T

the j-s row of the matrix [z].
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Denote the “Gram” matrix by
G(z*,y°) == ((#F,y])s) € Mexe(Ks).

Proposition 3. If z,y € V, then the matriz i*((z,y)) coincides
with the Gram matriz G(z®,y®) up to permutations and changing
the signs of columns.

Proof. Let (z),(y) be rows of coordinates of z,y in the basis B
(see (1.7)) and [z],[y] € Mcxcd(Ks) be the corresponding matrices
of the form (1.6). Then

(7,y) = (#)Sn(y")".
Thus
i ((,y)) = " (2)i" (Sh)i* ((1)")"). (1.8)
Now we consider the cases i. or iii. Then § = i*(S},) is a symmetric
matrix or a skew symmetric matrix over K, and i*((y)*)!) = i*((y))*

(recall that, in these cases, for every component y; € D of (y) we
have i(y}) =i(y;)! ). Then from (1.8) we have

i*((z,y)) = [2]S[y]" (1.9)

The definition of the Gram matrix G(z*, y*) implies that its ij-entry
is equal to [z];S [y]§ Now we have the statement from (1.9).

Now we consider the cases ii. or iv. Then §J = i*(S,)J is a
symmetric matrix or a skew symmetric matrix over K and

F (M) = Ti* () T

(recall that in these cases, for every component y; € D of (y), we
have i(yF) = Jei(y;)'J;1). Then from (1.8) we have

i*((z,y) = [2]STy]' I . (1.10)

The definition of the Gram matrix G(z*, y*) implies that its ij-entry
is equal to [2];ST[y]’. Now we have the statement from (1.10) be-
cause the right multiplication by J. ! is equivalent to a permutation
of columns and their multiplication for +1. O
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Corollary 4.
(z,y) =0 (z],y])s = 0 for every d,j=1,...,c
& (27,y])arg = 0 for every 0,5 =1,...,c
Proof. From Proposition 3
(z,y) =0<i*((z,y)) = zero matrix & G(z°,y°) = zero matrix.
Now the statement follows from the definition of G(z*,y*). O

The correspondence between totally isotropic subspaces in V and
i V3. Let U < V and let U; < V; be the subspaces generated
(over Ky) by all 23,5 = 1,..., ¢, where z € V. The subspace of V
which is generated (over K) by the same vectors will be denoted
by U. If U = (lIy,...,I}) then U is generated by vectors [j; for all
i=1,....kj=1,...,c ( here l; is the vector in V'* which corre-
sponds to the j'" row of the matrix [I;]). (Indeed, the coordinates
in the basis B, of vectors [f; are rows of the matrices [/;]. Fur-
ther, if a; € D then the rows of the matrix [a;l;] = i(a;)[l;] are
linear combinations over K of the rows [[;]. Then for any vector
x = Y a;l; the rows of [z] are linear combinations over K of the

7
rows of [l;],i =1,...,k.) Note that vectors [}, are linearly indepen-
dent over K. (It is obvious if {l1,...,l;} is a part of the basis 8B.) On
the other hand, there exists a non-degenerate matrix 7' € GLg(D)
such that the elements of the column

by b
b2 =T b are a part of the basis B.
b e
Then the definition of the operations z — [z],T — ¢*(T') implies
[01] (1]

B = [b2] — 7;* (T) [12]

i) ]



DOUBLE COSETS OF STABILIZERS 95

Since by,...,br € B, the rows of the matrix B € Mkxq(K) are
linearly independent and hence the rows of the matrix

[[1]

[12] € Mckxcd(K)

(k]
are also linearly independent. But the rows of this matrix are exactly
the coordinates of the vectors lfj.) Hence

dimg, Us = cdimp U.

The same arguments show

dimz U = cdimp U.
Proposition 5. Let U < V be a totally isotropic subspace with
respect to the form h = (,). Then Us (respectively, U) is a to-
tally isotropic subspace of Vs (respectively, V') with respect to the

form (a )s (respeCtivelya (a )alg)'
Proof. This follows directly from Corollary 4. U

Recall that a pseudo-hyperbolic subspace U < V is a linear sub-
space such that
U =rad UJ_HQS

where rad U is the radical of U and Hyy = Hy 1. Hy 1 --- L Hy
is the orthogonal sum of s hyperbolic surfaces ([4]). Note that all
pseudo-hyperbolic subspaces with given dim U and I(U) are in the
same SU(D, h)-orbit except when D = K and h is a totally split
symmetric form, SU(D,h) = SO9,(K), and dimU = n,I(U) = 0
([4, Proposition 3.1]).

Further, if Uy, Us < V are totally isotropic, then U = Uy + Us is
a pseudo-hyperbolic subspace of V' ([4], Lemma 4.1)

Proposition 6. Let Uy, Uy <V be totally isotropic spaces and U =
Ui+ Us. Then U =Uq 4+ Uy and

I(U) = cI(U).
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Proof. If D = K, then V = V @, K and the statement is obvious.
In other cases, the SU(D, h)-orbit of the pair (Uy,Us) is uniquely
defined by dim(U; +Us) and I(U1+Us) (see [3, Lemma 1.2 and The-
orem 1, 2 below]). Thus, we may assume that Uy, Us are generated
by elements of the basis B and therefore U, U, are generated over
K by elements of the basis Bag = B;,. Then the basis of Ui+ U,
can be chosen among the elements of B,;, = B,. The definition of
By = B, implies the statement. O

§2. MAXIMAL PARABOLIC SUBGROUPS P,, P,

Proposition 7. There exists a mazimal parabolic subgroup 131, off
which is defined over K and such that P, = P,(K). Moreover,

ﬁv(Ks) ={g¢€ f‘J(Kvs) | g(vs) = vs}, f’v ={g € r | g(v) =v}.

Proof. The stabilizer of 7 in the group I' = I'(K) is a maximal
parabolic subgroup because v is a totally isotropic subspace v < v
(see Proposition 5). Let us denote this group by P,. Since I is defined

and completely split over K, the group Pv is also defined over K.
Then

P,(K,) = {g € T(K,) < GL(V) | g(v) = }.
However, the space 7 = v, @, K is generated by the same basis as
vg, and for every g € GL.4(K;) < GL.4(K) we have
9(0) =0 & g(vs) = vs.

Hence

Py(K )_{QGF( s) < GL(Vs) | g(vs) = v}
Now we assume that v = (eq,...,ex) where k < n. The stabilizer
Sty in the group SL4 is the closed subgroup which is defined by zero
equations x;; = 0 for the appropriate entries of matrices. Obviously,
this algebraic group is a K-defined subgroup of SL.; and

Sty(Ks) = Sty, :={g € SLea(Ks) | g(vs) = vs}.
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The equations z;; = 0 defining the group Sty preserve the c-block
structure of SL.4, and therefore the group St,, is G-stable. Now
we have PU =In Sty. Note that PU is a Ks-defined group and
therefore P,(K,) = T(K,) N Sty(Kj). Since ['(K,) and St,, are
G-stable groups the group PU(K s) is G-stable and therefore PU is a
K-defined algebraic group ([7, 11.2.8]) such that

ﬁv(K):ﬁv(Ks)g:f(K)mStﬁ(K)' g

The double cosets Pu'yP and P,vyP,. Note that Theorems 1,2 hold
for groups T and T'(K,) (here D = K or D = K, and « is a trivial
involution). Recall that double cosets PufyZP are locally closed sets.

Proposition 8. Suppose Pu'va NT # &. Then the double coset
P,vP, is K-defined.

Proof. Suppose Pu'yP = ~u'y’ PU for some ~' € I'. Consider the
action of I x T on T by left-right multiplications: (91,92)(z) =
glxg2 . Since I' is a K-defined group this action endows ' with
the structure of I space, defined over K. Then T is also a
P X P -space which is also defined over K because P X PU is a
K-defined subgroup of T. The set P Y 'P, is an orbit in I' of the
clement 7/ € ['(K) = T. Hence P,y P, is K-defined ([7, Proposi-
tion 12.1.2, ii]). O

Definition 9. We say that the double coset PufyPU is properly K-
defined if P,yP, NT" # (.
Proposition 10. If the double coset Pu'va is properly K-defined
and vy €T then
P,yP,(K) = P,yP,.

Proof. We have L L

P,yP,(K) = P,yP,NT
(because of Proposition 8). If we are in the Special Case the group I'
is a Chevalley group where each double coset P,yP, can be defined
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by the same element v € T'" as a corresponding coset P,vyP,, and
therefore

P,yP,NT = P,yP,. (2.1)

Now we assume ' being in the General Case. Then every double
coset P,yP, = Pyvyp,P, is uniquely defined by dim(u + y(v)) =
l+p+qand ¢ = I(u+ g(v)). We have the inclusion P,yP, C
P,yP,NT. Suppose v’ € Puq/P ﬂF,y ¢ PyyPy. Then7 € Pyypg Py
where (p',¢") # (p,q). Thus, P, ufyquv = Pufyp q/P However, Propo-
sitions 7, 6 and Theorems 1, 2 imply that any double coset PufyP
uniquely defines the numbers cq = I(u+v(v)), dim(u+v(v)) —cl—cq.
This is a contradiction. Hence we have (2.1). O

If the group I' is in the Special Case then we have a one-to-one
correspondence between double cosets P,yP, of I' and f’ufyf’ of T.
Let I' and I be in the General Case. Then Propositions 6, 10 and
Theorem 1 show that the double coset PufyP is properly K-defined
if and only if

PPy = Puypg Py, 0 = cpyd = cq, (p,q) € Xpq. (2.2)

Let T be in the General Case and I' be in the Special Case. Then
in I we may have negative cosets if and only if the space (i+g()%)
is a maximal totally isotropic subspace which belongs to a negative
T-orbit. However, all subspaces of the form w, where w € Z,., are
in the same I'-orbit if the number r is fixed (because I' is in the
General Case) Thus, we always may assume that we choose the
orientation in ' such that all properly K-defined double cosets are
positive. Also, in the Special Case i4. we have sign (%, 7) = 1 because
¢ = 2% | dip(u,v). Hence Theorems 1, 2 imply that we also have (2.2)
when T is in the General Case and T is in the Special Case. We get

Proposition 11. Suppose I' is in the General Case. Then the double
coset P,yP, is properly K-defined if and only if

PP, = Pu'Yp’q’Pva pl = Cp, q/ = cq, (p, Q) € X:IJ!]'
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§3. THE PROOF OF THE THEOREM

We have to prove the result on adherence of properly K-defined
double cosets f’uq/]sv. Thus, if we prove the corresponding result on
adherence of all double cosets of I' we will have our statement. We
may and we will assume that D = K = K and T’ = f, P, = ﬁu,
P, =P,

Recall that, for g € I', we write v, = u + g(v).
Lemma 12. Let r be a non-negative integer. Then
Sp=( el | dimpvy <1}, Tr=(gel | I(vy) <r}
are closed subsets of T'.

Proof. Let r1,...,r; be any fixed basis of u and let sq,..., s; be any
fixed basis of v. For g € " put t; = g(s1),...,tx = g(sg). Further,
let us fix a basis of V and let Xy € M}y« q(K) be the matrix which
consists of the rows of coordinates of t1,...,%x,7r1,...,r in our fixed
basis of V. Then dimg v, = rankx X,. Hence

g € S; < every minor of the rank r+1 of the matrix X,

is equal to zero.

Thus, the set S, is defined by the system of algebraic equations on
the entries of M; 1) q(K). Since the values of entries of the matrix
X, can be expressed as polynomials on entries of g € I' < GL(V)
the set S, is defined by the system of algebraic equations on entries
of GL(V). Thus, S, is a closed subset of T.

Now let M, = (m;;) be the [ x k-matrix where m;; = (r4,t;). We
have

rank My = q = I(vg). (3.1)

Indeed, we may change the basis ry,...,r of u for a basis r{,...,7;
and the basis ¢1,...,¢ of g(v) by a basis t],...,t, such that the
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matrix My = ((r{,t;)) will have the block-form

where g = I(vg). Obviously,
rankM; =q and M; = AM,B
for some A € GL)(K), B € GLi(K).

Now (3.1) follows from (3.2).
The equality (3.1) implies

g € T, & every minor of the rank r+ 1 of the matrix M,

is equal to zero.

(3.2)

The same arguments as above show that 7T, is a closed subset of I.

Now we prove the implication

PyvpgPo C Py Py = p+a<p' +d,a<d.
We have
g e Pv'}’iqlpv

Theorems 1,2 .
= dimvg =14+p +4¢ = g € Siipiqg

Lemma 12

+
= Pu’Yp/q/P’U - Sl+p’+q/ = Pufy;)zpv - S[+p/+q/

Theorems 1,2
=

p+qg<p +dq.
Further,

Theorems 1,2 L 12 05~ £
g€ Pvfy;q/PU = geTy e Pu'y;)t,q,PU C Ty
= PPy CTy = q<q.

From (3.4) and (3.5) we get the implication (3.3).

(3.4)
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Let us prove
P’U.’Y;:)E]Pv C Pu’Y;)t/q/Pv <p+q<p+qd,9<q (3.6)

for two different pairs (p,q) # (p/,q').

Recall that by the symbol X,, we denote the set of all pairs
(p,q) in the General Case such that there exists a corresponding
double coset P,vy,,FP, of I'. By the same symbol we also denote
below the set of all pairs (p,q) in the Special Case such that there
exists a corresponding double coset P,7y,,FP, of I'. We may see from
Theorem 2 that the description of X, in the Special Case is the
same as in the General Case

(p,q) € Xpg & 0<p<min{k,n—-1}, 0<g<k—p (3.7)

except for the Special Case i4) when X, consists of the pairs (0, ¢)
where ¢ < n and all g are odd or all g are even.

Lemma 13. Assume we are in the General Case or in the Special
Case but not in (i4). Further, let (p',q') € X, and let (p”,q") be a
pair of non-negative integers such that

p//+q// gp/_i_q/’ p// g mln{k,n_l}
Then
(p//’q//) 6 qu.

Proof. The inequality 0 < p” < n—I holds because of the conditions
of the Lemma. Suppose, ¢ >k —p”. Thenp' +¢ > p" +q¢" > k
and therefore ¢’ > k — p’ which is a contradiction to (3.7). Thus, we
also have ¢’ < k —p” and, by (3.7), (0”,¢") € Xpq- O

Lemma 14. Suppose the implication (3.6) holds for all such cases:
case 1. ¢ =q+ 1,p' +1 =p,
case 2. ¢ = q,p' =p+1,
case 3. p' =p, ¢ =q+1,
case 4. (only for the case (i4) of Theorem 2) p' =p =0,¢ = q+2.
Then the implication (3.6) holds for any possible pairs (p,q) #
(0',q') € Xpg, where p+q<p'+¢,q< 4.
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Proof. Note that if

i

p+ag<p'+¢"<p'+¢ and ¢<¢" </,

then we have the implication

Pu'Y;:)sz C Pu’)’;/q//Pv
and = Py Py C Pw;%q,Pv. (3.8)
Pu'YI:,F/q//Pv - Pu'YI:)Fq/Pv

Consider the General Case or in the Special Case (i1)—(i3).

Let ¢ = q (or p' = p). Then p’ > p (resp. ¢ > q). Put p” =
p'—1,4" =q (vesp. ¢" = ¢ — 1,p' = p). Then p" > p (vesp. ¢" > q)
and the pair (p”,q"”) satisfies the conditions of Lemma (13) and
therefore (p”,¢") € Xpq.

Consider the Special Case (i4). Then p’ = p = 0 and therefore
¢ >q+2.Putp” =0,¢" = ¢ —2. Then (p”, ¢") € Xp, (Theorem 2).

Using the assertion for case 2 (resp. case 3) or for case 4 (if we
are in the Special Case (i4), (3.8) and the induction on p’ — p (resp.
¢ — q) we can get the statement for p,q,p’, ¢

If¢ > qgandp' > p, weput ¢’ =¢,p” =p'—1. Lemma 13 implies
(p”,q") € Xpq. Using the case 2, (3.8) and the induction we can get
the previous case ¢’ > q,p’ = p.

If ¢ > qandp < p, weput ¢ = ¢ — 1,p” = p’ + 1. Since
p'=p+1<p<n—1and p’+ ¢’ =p + ¢ Lemma (13) implies
(p”,q") € Xpq. Using the case 1, (3.8) and the induction on min{q’ —
q,p —p'} we can get one of the previous cases. O

Lemma 15. Suppose the numbers p,q,p’,q satisfy one of the con-
ditions of cases of Lemma 14. Then there exists a morphism x :
G, — T such that

x(a) € Puq/;'fq,Pv for every « #0
and x(0) € Pufy;EqPU.

Proof. Recall
V: <61’...,6n,f17"'f’n>
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or

V= <ela---aen3603flv"'fn>?

where (eiaej) = (flaf]) = 07 (elaf]) = 5ij7(60760) = 1. We may

assume
u={(er,...,e).

Further, we use the following scheme of the proof. We point out the
subspace vg which is generated by some elements of the basis e;, f;
and such that

dim(u +v9) =1+ p+q,

3.9
I(u+wvy) =¢q, wvo=r(v) for some yeT. (39)
Then we define the morphism ¢ : G, — I' such that the elements
go = ((«) satisfy the following conditions: gy = 1 and

dim(u + ga(v0)) =1+p"+ ¢,

I(u+ ga(vg)) =¢, forevery 0#acK. (8.10)
Then (3.9), (3.10) imply that the map x : G, — I', which is defined
by the formula x(«) = go7, satisfies the condition of the statement
of the Lemma.

The map ¢ : G, — T' will be constructed below by the following
scheme. We point out the subspace U < V which is either the hy-
perbolic space of dimension 2,4 or an orthogonal subspace of the
dimension 3, and we construct the appropriate map ¢ : G, — A
where A is the subgroup of I consisting of orthogonal or symplectic
transformations of V' which are trivial on UL. Here we have to point
out only the values g, (z) for elements of a fixed basis of U.

Below the consideration of cases 1.-4. has a splitting into subcases
which we have numerated using the lexicographical order.
Case 1.q¢ =q+1,p/ +1=p.



104 N. GORDEEV, U. REHMANN

Subcase 1.1: Pu'yf,f]PU = PyypePy and Pufy;q,PU = Pyyp g Py (that is,
both double cosets are positive). Put

vo 1= (f1,--, fg) + (€141, €r4p)
(€1 €115+ -+ s €1 (h—p—gq)41) if k—p—q>0,
{0} if k—p—q=0.
Since g <l —(k—p—q)+1=1—k+p+ q+ 1 the space v
is totally isotropic and vy satisfies the conditions (3.9). Note that

[—k+p+q+1>q+1 (becausep =p'+1 >0)andg+1=¢ <k <.
Hence

eqg+1 ¢ Vo, €q1 € U. (3.11)
Put U := (egt1, fg+1) + (€11p, fi+p) = Ha, and for every o € K we
may define the element g, € SL(V) by the formula
ga(er) =ep+ afq+17 9a(fq+1) = fq+17
ga(eg+1) = eqt1 £ firp,  Galfitp) = fiap

and g, (z) = = for every z € UL. It is easy to see that g, € I' (with
an appropriate choice of signs in gq(eq11) = eg+1 £ afip).
Further, the construction of g, implies
9a(v0) = (€l—ktptqtis-- s Clip—1,€itp + Afgr1s f1o. .o, fo).
Then, if o # 0 we have (see (3.11))

U+ ga (o)
= (e1, f1)L--- L{eg, fo) L{eqr1,e14p + afyr1)

=Hs(q41)

Liegt2,- s e1p-1)

and therefore we have (3.10). For @ = 0 we have g, = gp = 1
and therefore we have (3.9) instead of (3.10). Since vy is a totally
isotropic space of dimension k < [ < n (because [ + p < n and
p > 1) there is an element v € I' such that vg = y(v). Hence the
map x : G, — I, defined by the formula x(«) = 747, is a morphism
and it satisfies the condition of the Lemma.
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Subcase 1.2: Pufy;fIPv = u'Y;qPU and Pu'y;)t,q,PU = Pyyyqy Py where
p=mn—1>0 (see Theorem 2, il.), p’ = n — [ — 1 (that is, one
double coset is negative and one is positive). Note that the case
Pu'yf,f]PU = PypePy and Pufy;q,Pv = Pufyz;q,Pv is impossible here
because if p’ =n—1 then p = p' +1 > n—1, yielding a contradiction
to 3.7.

Recall that an element g € I" belongs to a negative double coset
only if vy € 7, (see Theorem 2, il.).

Put

vo = (f15- -5 fo) F (€rr1s- - en1; fn)

(€1,€1-15 -+ s Cnig—k+1) if k+l-n—qg>0,
{0} if k+l—-n—-q=0.

Since ¢ < n+ q¢ — k + 1, the space vy is totally isotropic. Also, vg
satisfies the condition (3.9), and

(u+gU(U0))u = <617"' 7en717fn> € IT?

Further, n —k+qg+1>¢q+1 (because k <[ <n)and g+ 1 =
¢’ < k <. Hence we have (3.11).

Put U = (eg+1, fg+1) + (en, fn) = Hy, and for every o € K define
the element g, € SL(V') by the formula

ga(fn) = fu+ afq+17 ga(fq+1) = fq+1a
ga(6q+1) = €g+1 + A, ga(en) = €n

and go(z) = z for every 2 € UL. Then g, € T' (with an appropriate
choice of signs in go(eq+1) = €g41 £ aey,).
Further, the construction of g, implies

9a(V0) = (Entqgkt1s---s€n—1,fn +afqrr, f1-- o, fq)-
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Then, if o # 0, we have (see (3.11))

U+ ga (o)
= (e1, f1)L--- L{eg, fo) L{egr1, fn + afgi1)

=Hy(g41)

J-<6q+27 cee 7en71>

and therefore we have (3.10). For & = 0 we have g, = go = 1 and
(3.9). Since k < I < n there is an element y € T" such that vy = y(v).

Also, (u 4 ga(vo))* = (€1,...,en—1) ¢ I, .

Case 2. ¢ =q,p =p+1.
Subcase 2.1: Pu'yf,f]PU = PyypgPy and Pu'y;)t,q,PU = Pyyy ¢ Py (that is,
both double cosets are positive). Here we put

00 = (f1,.. s fo) + (€115 - €1ap) + (€15 oo Cl—ktpiqgt1),
and
U = {€l—ktpigil, fimbtptqr1) + (€C1oprts fropti)
(since ¢’ + p' <k then ¢+ (p + 1) < k and therefore k —p —q¢ > 0
and [ —k+p+q+1<I<l+p+1)and

Ga(Cl—ktprqt1) = Cl—kiptqr1 + €1 1py1,

Jiap+1 £ A fimktptgt1s

) =
ga(€l4ps1) 1= €gpt1,
9a(fl+p+1)

) =

9o (fi—k4ptq+1 Ji-ktprqr1-

Then we have

U+ ga(vo) = (€1, ..y erypr1) + (f1,-- -, fo)
and (3.10).

Subcase 2.2: Pu'y;[qu = PyypePy and Pu'y;t,q,PU = Pu’yz;q,PU, where
p'=n—1>0,p=n—1—1 (that is, one double coset is positive and
one is negative). This is only one possibility in the case p’ = p+1 for
the pair of double cosets of the different signs (because p < p’ < n—I,
see 3.7). Here k <1 < n and p’ > 0 (because the negative cosets do
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appear only in the Special Case i1)). Hence g <n—k +¢q¢ <1 < n.
Put

vo = (f1,..., fq) + (€141, en—1) + (€1, s en—ktq),
U:= <en7k+q, fnfk+q> + <en7 fn>7

Jo(en— k+q ) =en- ktq + fn, 9o(fn) = fns
ga(en) =en Tafy k+q> ga(fnkarq) = fﬂ*k‘HI‘
We have

u+ga(v0) = <611"' 7en—lafn> + <f13"' afq>
and (3.10) and (u + go(v0))" = (€1,...,en—1, fn) €L, .
Case 3. ¢ =q+1,p =p.

Subcase 3.1 : ufyquv = PyypeP, and Pufy;)t/q/Pv = Py P, (that
is, both double cosets are positive). Here again vy := (f1,..., fq) +
(e141y- - eirp) + ety sl pyprgr1) and k—p—qg>k—p—q > 0.
Subcase 3.1.1. ¢+ 1 <. Put U := (e, fi) + (eg+1, fg+1)s
goler) =er +afer1, galfgr1) = fo41,
goleg+1) =eqr1 T afi, ga(fi) = fi.
Then for a # 0

U +ga(7)0) - <617' .. 76l+p> + <f17- .. 7fq7fq+1>
and (3.10).
Subcase 3.1.2. g+1=1. Thenl=k=q+1,p=0,v = (f1, ...,
fi-1, er).
Subcase 3.1.2.1. | =g+ 1 <n. Put U = (e, fi) L{er+1, fi+1) and
galer) = ep £ aeppy £ afi £ fi,

galerr1) = e £afi £ &2 fii1, galf)) = fis ga(fir1) = fry1 £ afi.
Then

w4 ga(vo) = (e1,... ey + (f1,..., fi—1,e £ ae1 £ afi :i:oz2fl>
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and we have (3.10).

Subcase 3.1.2.2. | = k = g+ 1 = n. Then we are in the General
Case. (Indeed, in the Special Case the assumption [ = k = n implies
that the values of the parameter ¢ are all odd or all even.). Thus,
I' = Spy, (K) or T' = SOy, 41 (K).

We have here u = (e1,...,e,) and vg = (f1,..., fn—1,€n)-

If I' = Spy,,(K) put U := (ey, fr) and

ga(en) =éep + afnaga(fn) = fn-
Then
u+ga(”0): <ela"'aen>+<en+afnafla"'afn—1> =V
and we have (3.10).

If ' = SO2,41(K), put U := (ep, €9, frn) and
2
«
ga(en) =ep + aey — ?fna ga(eo) =€y — afna ga(fn) = fn
Then

2
o
U+9a(vo) = <617 .. .,6n> + <6TL + aey — Efnafla s 7fn71>
and we have (3.10).
Subcase 3.2. Pufy;fIPv = Pyv,,P» and Pufy;q,Pv = Pu'yl;q,PU (that

is, both double cosets are negative). Here n — [ = p = p’ > 0 and
kE—p—q>0 (because k — p — ¢’ > 0). Also,

l—k4p+q+l=I—k+n—-D4+qg+l=n—k+qg+1>q+1
(because k£ <1 < n). Put
vo = (f1,.- ., fgr€it1, - sn—1, fn, €0 oy Cl—ktptgtl)s
U := (e, fi) + (eq+1, fgr1)
and
galer) = e+ afert,  ga(for1) = fos1s
Jal€gt1) = eq1 £ afl,  ga(f1) = fi-
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Then
U+ ga(vo) = (€1, en—1, fn) + (€1 + afgir, f1,.. 5 fg)
and we have (3.10) and
(u+v0)" = (u+ gal(v0))" = (e1,...,en—1,fn) €L,

Subcase 3.3. Pufy;fIPv = Pyype Py and Pufy;?q/Pv = Pufy;q/Pv (that
is, the first coset is positive and the second is negative). Here n—1 =
p=p >0and k—p—q >0 (because k —p — ¢’ > 0). Also,

l—k+ptqtl=I—k+m—-D+qg+l=n—k+qg+1>q+1
(because k <1 < n), and we put

00 := (Sl s fqr Clt1s -3 Cns €Ly e v s Clbtptg+1),s
U := <6l7fl> + <en7fﬂ>7

9a(61)1=61+04fm goc(fn)::fna ga(en):zen_afla ga(fl)::fl-
Then

U+ ga(vo) = (€1, -y en—1, fn, f1s- oy fgsen — afi)
and we have (3.10) and
(u+v9)" = {e1,...,en) €L},
(v + ga(v0))" = (e1,...,en—1,fn) €L,

Subcase 3.4. Puypiqu = Puq/p_qu and Pufy;?q/Pv = Pyyy g Py (that is,
the first coset is negative and the second is positive). Here we put

Vo = <f17 s 7fqvel+17 s 76n*17f77476l’ T 76l7k+p+q+1>7
U := <6[,fl> + <6n7fn>7

ga(fn) = fataf, ga(en) = €n, ga(el) = €[—Qep, ga(fl) = f1.
Then

u+ga(U0) = <617"'76n7176n7f17"'7fq7fn+afl>
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and we have (3.10) and (u + vg)" = (e1,...,en—1, fn) € L, ,(u +
ga(v0))" = (e1,...,en_1,en) € L.

Case 4. k=1=mn,p=p =0 and ¢+ 2 < n. Here we put

UO — <f1,---,fq,en,...’€q+1>’
U:= <eq+1’f‘I+1> + <enafn>a

ga(en) =en + afq—l—h ga(fq—l—l) = fq-i-la
ga(€q+1) = €g41 — afn, ga(fn) = fn-
Then

U +ga('U0) — <617 s 76n7176n7f17 s 7fq7fq+17fn>
and we have (3.10). Note, that we take u = (ey,...,e,) € Z,F and we
have sign (u,v) = (—1)dn(v0) = (—1)9. Also, Theorem 2, (i4) im-
plies that ¢ is odd if and only if sign (u, v) = —1. Thus, the subspaces
v,vo both are contained in Z,, or in Z," and therefore vy = y(v) for
some v € I'. O

Now we can prove the implication (3.6). Lemma 14 reduces the
general case to one of the cases 1.-4. of the Lemma 15. Lemma 15
shows that for cases 1.-4. we have the morphism x : G, — I of the
irreducible variety G, such that x(«) € Puq/;t,q,Pv for & # 0 and

x(0) € Pufy;f]Pv. Then we have the inclusion
PupyPy C Puyigy P

We may finish the proof of the theorem by a comparison of the
double cosets Puﬁf}Pv.

Lemma 16. P,y Py € PuypgPy and Pyryy, Py € PuypgPy.

Proof. Since we consider double cosets of different signs we are
in the Special Case il). Hence p = n — [ > 0. We may assume
u={er,...,e),l <n.Let

Uypg = U+ 71"](“)7 Voo = U + 7;0_(1(’0)'
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Then v} € Z; and v*_ € Z, (Theorem 2, (iil)).
pq ’ypq
Put vy = (e1,...,e). Since k < I < n, there is an element o € T’
such that o(vg) = v. Obviously, P, = o0 P,,0 . Hence

PyypaPy = PujoPyyo ™" (3.12)

Consider the pair of isotropic subspaces u,vy. We have
U+ Ypgo (Vo) = U+ Ypg(v) = vy, (3.13)
U+ Y0 (Vo) = 1+ Ypg (V) =0, '

Put Ypg = YpgTs Vpg = Vpg@- The formulas (3.13) show that Pufjfgf]on
are positive and negative double cosets which correspond to the
pair (u,vp) and to the parameters (p,q) (that is, dim(u + g(vg)) =
I+p+q,I(u+g(vg)) = q for every g € Puif;thUO). Now (3.12) shows
that we may prove our statement for the case v = vy.

Let 7 € Og,(K) be the orthogonal transformation such that

7(e;) = e, 7(fi) = fi for every i <n
and 7(ep) = fn, 7(fn) = en.

The definitions of u,v = vy and 7 imply 7(u) = u,7(v) = v and
therefore 7P,7—! = P,, 7TP,7~' = P,. Let us show

TPu'quPvT_l = u’)’p_qpv- (3.14)
We have
TPy Ypg Pyt = TP, 1y TP, = Py(Typm P,
and therefore to prove (3.14) we have to prove
T'yqufl € PuypyPo- (3.15)
First of all, note that
(7)) =1, . (3.16)
(Indeed, the definition of 7 implies 7(V,") = V.. Since
OQH(K) = <T> : SOQH(K) and I' = SOQH(K) < OQH(K)
then for every g € I' there is an element h € I' such that 7g =
hr. Now, if w = g(V,}) € Z,} then 7(w) = 7¢(V,}) = hr(V,}) =
h(V,)eI,.)
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Further,

T(Vnpe) = T(U + Ypg(v) = 1+ TYpe(v) = u + (TYpgm ) (v)-

Hence
dim(u+ (g7 ) (0)) = l+p+q, I(u+t(rypem () = g. (3.17)

Further, vﬁqu € I, because 7,, is an element of the positive double

coset and
u

T(v%q) =0

because of (3.16). Thus,

1 €1,

u
TYpqT ™

T’}’qu_l € Puvp,Py-
Hence we have (3.14) therefore the locally closed sets
P,ypgP, and Pufyp_qu

have the same dimension. It implies

PuypgPy Sl Pyypg Py
and
Py Po & PP
Now the Theorem has been proved. O
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