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t. By a result 
laimed by Pogorza ly sel�nje
tive spe
ialbiserial algebras 
an be stably equivalent only to stably biserial al-gebras and these two 
lasses 
oin
ide. By an example of Ariki, Iijimaand Park the 
lasses of stably biserial and sel�nje
tive spe
ial bi-serial algebras do not 
oin
ide. In these notes we provide a detailedproof of the fa
t that a sel�nje
tive spe
ial biserial algebra 
an bestably equivalent only to a stably biserial algebra following someideas from the paper by Pogorza ly. We will analyse the stru
ture ofsymmetri
 stably biserial algebras and show that in 
hara
teristi
x 2 the 
lasses of symmetri
 spe
ial biserial (Brauer graph) alge-bras and symmetri
 stably biserial algebras indeed 
oin
ide. Also,we provide a proof of the Auslander{Reiten 
onje
ture for spe
ialbiserial algebras.
§1. Introdu
tionDerived equivalen
es of symmetri
 spe
ial biserial or equivalently Brauergraph algebras [19℄ have been extensively studied over the past few years[1{4, 9, 10, 13, 16{18, 21, 23{25℄. These studies 
on
ern mainly attempts to
lassify symmetri
 spe
ial biserial algebras up to derived equivalen
e, 
las-si�
ation of spe
ial tilting 
omplexes over su
h algebras or 
omputationof the derived Pi
ard groups. It is well known that the 
lass of symmet-ri
 spe
ial biserial algebras of �nite representation type is 
losed underderived equivalen
e. The fa
t that the 
lass of symmetri
 spe
ial biserialalgebras is 
losed under derived equivalen
e followed from the results ofPogorza ly [14℄. Unfortunately, in [5℄ 
ounterexamples for some of the state-ments of [14℄ were given.Key words and phrases: spe
ial biserial algebras, stable 
ategory, Auslander-Reiten
onje
ture.Mikhail Antipov was partially supported by grant NSh-9721.2016.1 of the Presidentof the Russian Federation; Alexandra Zvonareva was supported by the RFFI Grants16-31-60089 and 16-31-00004. 5



6 M. A. ANTIPOV, A. O. ZVONAREVAIn this paper we reprove the fa
t that if a sel�nje
tive algebra (notisomorphi
 to the Nakayama algebra with rad2 � 0) is stably equivalent to asel�nje
tive spe
ial biserial algebra, then it is stably biserial. We do not usethe original approa
h of Pogorza ly via Galois 
overings, instead we performall 
ombinatorial 
omputations dire
tly. We give a proof of the Auslander{Reiten 
onje
ture for spe
ial biserial algebras using the redu
tion to thesel�nje
tive 
ase obtained by Mart��nez-Villa. The 
onje
ture states thatthe number of non-isomorphi
 non-proje
tive simple modules is invariantunder stable equivalen
e. The proof for sel�nje
tive spe
ial biserial algebrasis more involved, sin
e we have to 
onsider systems of orthogonal stablebri
ks over stably biserial algebras. After that we des
ribe all symmetri
stably biserial algebras, showing that in 
hara
teristi
 x 2 this 
lass indeed
oin
ides with the 
lass of symmetri
 spe
ial biserial algebras. This is the�rst step towards the proof of the fa
t that the 
lass of symmetri
 spe
ialbiserial algebras is 
losed under derived equivalen
e.
§2. PreliminariesThroughout this paper A is a basi
, 
onne
ted, �nite dimensional alge-bra over an algebrai
ally 
losed �eld k, mod-A is the 
ategory of �nite-dimensional right A-modules, mod-A is the stable 
ategory of mod-A, i.e.the 
ategory of modules modulo the maps fa
toring through proje
tivemodules. In the 
ase where A is sel�nje
tive the 
ategory mod-A is trian-gulated. The Auslander-Reiten translation DTr will be denoted by � , theHom-spa
es in mod-A will be denoted by Hom, for f > mod-A its 
lass inmod-A will be denoted by f , the syzygy or the Heller's loop fun
tor willbe denoted by 
 � mod-A � mod-A. A module will be 
alled lo
al, if it isan epimorphi
 image of an inde
omposable proje
tive module.De�nition 1. Let Q be a quiver, I an admissible ideal of kQ. A sel�n-je
tive algebra A� is 
alled stably biserial if it is isomorphi
 to A � kQ~I,where Q and I satisfy the following 
onditions:(a) For ea
h vertex i > Q, the number of outgoing arrows and the numberof in
oming arrows are less than or equal to 2;(b) For ea
h arrow � > Q, there is at most one arrow � > Q that satis�es�� ~> �rad�A�� � so
�A�;(
) For ea
h arrow � > Q, there is at most one arrow � > Q that satis�es�� ~> �rad�A�� � so
�A�.The following des
ription of stably biserial algebras was provided in [5℄:



ON STABLY BISERIAL ALGEBRAS 7Proposition 1 (Proposition 7.5 [5℄). If A is stably biserial then thereexists a presentation of A � kQ~I su
h that the following 
onditions hold:(1) If �� x 0, �
 x 0, � x 
, for arrows �;�; 
 then either �� > so
�A�or �
 > so
�A�;(2) If �� x 0, 
� x 0, � x 
, for arrows �;�; 
 then either �� > so
�A�or 
� > so
�A�.De�nition 2. Let Q be a quiver, I an admissible ideal of kQ. An algebraA� is 
alled spe
ial biserial if it is isomorphi
 to A � kQ~I, where Q and Isatisfy the following 
onditions:(a) For ea
h vertex i > Q, the number of outgoing arrows and the numberof in
oming arrows are less than or equal to 2;(b) For ea
h arrow � > Q, there is at most one arrow � > Q that satis�es�� x 0;(
) For ea
h arrow � > Q, there is at most one arrow � > Q that satis�es�� x 0.If additionally A is sel�nje
tive, then it is 
alled sel�nje
tive spe
ialbiserial.
§3. Stable equivalen
esIn this se
tion we are going to prove following the ideas from [14℄ thatif an algebra is stably equivalent to a sel�nje
tive spe
ial biserial algebra(not isomorphi
 to the Nakayama algebra with rad2 � 0), then it is stablybiserial.Proposition 2 (Proposition 7.11 [5℄, see also Lemmas 5.3, 5.4 [14℄). LetB be an inde
omposable sel�nje
tive algebra whi
h is not a lo
al Nakayamaalgebra. Then, we have the following:(1) If P is inde
omposable proje
tive, then ��P ~so
�P �� ~� P ~so
�P �;(2) If S is simple, then S is non-proje
tive and ��S� ~� S.From now on we are not going to 
onsider lo
al Nakayama algebras.Thus, we 
an assume that A does not have any simple modules of � -period 1.De�nition 3. Let A be a sel�nje
tive k-algebra. An inde
omposable A-module M is said to be a stable bri
k if End�M� � k. A family �Mi�i>Iof mutually non-isomorphi
 stable bri
ks is a system of orthogonal stablebri
ks if the following 
onditions hold:(1) Mi is not of �-period 1 for every i > I ;



8 M. A. ANTIPOV, A. O. ZVONAREVA(2) Hom�Mi;Mj� � 0 for any i; j > I with i x j.A system of orthogonal stable bri
ks �Mi�i>I is 
alled maximal if forevery inde
omposable A-module N that is neither proje
tive nor of �-period1 there exist i; j > I su
h that Hom�Mi;N� x 0 and Hom�N;Mj� x 0.Remark 1. If there is an equivalen
e of 
ategories mod-B � mod-A,where A and B are sel�nje
tive, then the image of the set of representativesof the iso-
lasses of simple modules is a maximal system of orthogonalstable bri
ks.Sin
e we are interested in maximal systems of orthogonal stable bri
kswhi
h are images of the sets of simple modules, for now we 
an assume,that the 
ardinality ofM is �nite.De�nition 4. Let M � �M1;�;Mn� be a maximal system of orthogonalstable bri
ks. An inde
omposable A-module N is 
alled s-proje
tive withrespe
t toM if the following 
onditions are satis�ed:(1) N is not of �-period 1;(2) Hom�N;`ni�1Mi� � k;(3) If Hom�N;Mi� x 0, then for every non-zero f � X �Mi and g �N �Mi there exists h � N � X su
h that fh � g.An A-module N is 
alled s-proje
tive with respe
t toM if it is a sum ofinde
omposable s-proje
tive modules; s-inje
tive modules are de�ned dually.It is 
lear that for an inde
omposable s-proje
tive A-module N thereexists only one i > I su
h that Hom�N;Mi� x 0. In [15℄ it is proved thatan inde
omposable A-module N is s-proje
tive with respe
t toM if andonly if N � ��1
�M� for some M > M. Let N be an inde
omposables-proje
tive A-module with respe
t to M. We say that s-top�N� � M ifM >M and Hom�N;M� x 0. In this 
ase s-top���1
�M�� �M for M >M.See also [5, Proposition 7.13℄.Remark 2. If there is an equivalen
e of 
ategories mod-B � mod-A,where A and B are sel�nje
tive and M � �M1;�;Mn� is the image ofthe set of simple B-modules, then the image of the module of the formP ~so
�P �, where P is an inde
omposable proje
tive B-module, is inde-
omposable s-proje
tive with respe
t toM.We will denote by Q0 the set of verti
es of Q, by Q1 the set of arrowsof Q and by s���, e��� the maps from Q1 to Q0, whi
h map an arrow toits beginning and end respe
tively.



ON STABLY BISERIAL ALGEBRAS 9From now on, when 
onsidering a sel�nje
tive spe
ial biserial algebraA � kQ~I we will �x a presentation satisfying the 
onditions from De�ni-tion 2. Note that the generating set of relations in I 
an be 
hosen to 
onsistof relations of three kinds: zero relations �� � 0 for some �;� > Q1; rela-tions of the form �1��m � 
�1��n (
 > k�) for �1 x �1 and s��1� � s��1�;relations of the form �1��m � 0 in the 
ase when there is only one arrowleaving s��1� (�i; �j > Q1).Re
all that an inde
omposable non-proje
tive module over a sel�nje
-tive spe
ial biserial algebra A � kQ~I is either a string or a band module.Sin
e all the band modules are of � -period 1 we are not going to use them.Given an arrow � > Q1, we will denote by ��1 its formal inverse; thuss���1� � e���, e���1� � s���, ���1��1 � �. The set of formal inverse arrows���1��>Q1 will be denoted by Q�11 . A string of length n is a sequen
e of theform 
 � 
1�
n, where 
i > Q1 8Q�11 , s�
i�1� � e�
i�, 
i x 
�1i�1 and neither
i�
i�t nor 
�1i�t�
�1i belong to so
�A� for any i and t. Additionally, forevery vertex x > Q0, there is a string of length zero denoted by 1x withs�1x� � e�1x� � x. For a string 
 � 
1�
n of positive length, let s�
� �� s�
1�,e�
� �� e�
n�.Let 
 � 
1�
n be a string of length n C 1. A string module M
 is de�nedas follows: �x a basis �z0;�; zn�, given an idempotent ex, 
orrespondingto the vertex x, ziex � zi if x � e�
i� or x � s�
i�1� and zero otherwise.Given an arrow � > Q1, zi� � zi�1 if 
i � ��1, zi� � zi�1 if 
i�1 � � andzero otherwise. To the string of length zero 1x we asso
iate the simplemodule 
orresponding to the vertex x. Two string modules 
orrespondingto di�erent strings 
 and 
� are isomorphi
 if and only if 
 � 
1�
n and 
� �
�1n �
�11 . Usually we will depi
t the string and the 
orresponding moduleby the diagram of that module, e.g., the string ��1�
Æ�1 will be depi
tedas z1z0 z2 z3 z4� � 
 ÆWe will 
all zi a peak if there is no � > Q1 su
h that zi�1� � zi or zi�1� � zi.We will 
all zi a deep if for all � > Q1 we have zi� � 0. In the example abovez1; z4 are peaks and z0; z3 are deeps. Note that this is not the standard useof the terms peak and deep. In 
ases when it does not lead to 
onfusion,



10 M. A. ANTIPOV, A. O. ZVONAREVAwe will omit the names of the arrows in the diagrams and we will usediagrammati
 notation for the elements of the algebra A.We shall now des
ribe the Auslander{Reiten sequen
es in mod-A, 
on-taining string modules. The Auslander{Reiten sequen
es, 
ontaining aninde
omposable proje
tive module P in the middle term are of the form0� rad�P �� rad�P �~so
�P �` P � P ~so
�P �� 0:Assume now that M
 is a non-proje
tive inde
omposable module not iso-morphi
 to P ~so
�P � for any proje
tive module P . The module M
 is ofthe form ei1ej0 ej1 ejt�1 eit·eit ejtM
:where the �rst or the last dire
ted substring may be trivial. Let 
r be themaximal string extending 
 on the right by ejt � ejt¸ � � � eit�1 if su
ha string exists (adding a 
o-hook).ei1ej0 ej1 ejt�1 eit·eit ejtM
r : ejt¸ eit�1
If not, let 
r be the string obtained from 
 by 
an
ellation of the lastdire
ted substring in
luding the vertex eit (
r may be empty),ei1ej0 ej1 ejt�1 eit·M
r :(deleting a hook). Similarly let l
 be obtained from 
 by the 
orrespond-ing operations on the left-hand side of 
. Sin
e M
 is not isomorphi
 toP ~so
�P � for any proje
tive module P , at least one of the strings l�
r� or



ON STABLY BISERIAL ALGEBRAS 11�l
�r is non-empty, and if both are de�ned, then l�
r� � �l
�r, let l
r bethe non-trivial string l�
r� or �l
�r. Then the Auslander{Reiten sequen
eterminating at M
 is of the form0� ��M
� �Ml
r �M
r `Ml
 �M
 � 0:Similarly, ��1 
an be 
omputed by adding hooks if possible and deleting
o-hooks if not [8, 20, 22℄.The following lemma follows immediately from the des
ription of theAuslander{Reiten sequen
es.Lemma 1 (see Lemma 6.4 [14℄). Let A be a sel�nje
tive spe
ial biserial al-gebra and letM be a maximal system of orthogonal stable bri
ks in mod-A.Consider M >M and let N be an inde
omposable s-proje
tive module withrespe
t toM with s-top�N� �M .
ase (1): If M is of the formei1ej0 ej1 ejt�1 eit ejtt � 0;1;� then N is of the formej0ei�0 ei�1 ej1 ei�2 ei�t ejt ei�t�1where ej0 � � � ei�0 and ejt � � � ei�t�1 are maximal dire
ted strings(may be trivial), ei�k � � � ejk�1 � � � eik � 
kei�k � � � ejk � � � eikin A for k � 1;2;�; t and some 
k > k�.
ase (2): If M is of the formei1 ej1 ejt�1 eit
t � 2;3;� then N is of the form



12 M. A. ANTIPOV, A. O. ZVONAREVA
ei�1º ej1 ei�2 ei�t�1 ejt�1 ei�t¹where ei1 � � � ej1 � � � ei�1º and eit � � � ejt�1 � � � ei�t¹ (ej1may 
oin
ide with ei�1º, ejt�1 may 
oin
ide with ei�t¹) are maximal dire
tedstrings, ei�k � � � ejk�1 � � � eik � 
kei�k � � � ejk � � � eik in A fork � 2;3;�; t � 1 and 
k > k�.
ase (3): If M is of the formei1ej0 ej1 ejt�1 eit

t � 1;2;� then N is of the formej0ei�0 ei�1 ei�t�1 ejt�1 ei�t¹ej0 � � � ei�0 and eit � � � ejt�1 � � � ei�t¹ are maximal dire
tedstrings, ei�k � � � ejk�1 � � � eik � 
kei�k � � � ejk � � � eik in A fork � 1;2;�; t � 1 and 
k > k�.The 
anoni
al map from N to M sends ejk from the top of N to dkejkin the so
le of M (dk > k) with all dk but one equal to 0. In the stable
ategory all these maps belong to the same one-dimensional subspa
e ofHom�N;M�.Lemma 2. Let Q be a quiver of a sel�nje
tive spe
ial biserial algebra, andlet x be a vertex of Q. There is only one arrow entering x if and only ifthere is only one arrow leaving x.Proof. If there are no arrows entering vertex x, then the simple module
orresponding to x is inje
tive, and hen
e, it is proje
tive and there areno arrows leaving x, the 
ase with no arrows leaving x is similar. Assumethere is one arrow � entering some vertex and two arrows �; 
 leaving it.Then either �� � 0 or �
 � 0, say �� � 0. Then � > so
�A�, hen
e � is



ON STABLY BISERIAL ALGEBRAS 13equal to some path starting from 
, whi
h 
an not happen, sin
e the idealof relations is admissible. The 
ase of one arrow leaving the vertex and twoarrow entering is similar. �Lemma 3. Let A be a sel�nje
tive spe
ial biserial algebra and let M bea maximal system of orthogonal stable bri
ks in mod-A. For M > M,dim Hom���1M;`Mi>MMi� B 2 and dim Hom�`Mi>M��1Mi;M� B 2.Proof. We will prove only dim Hom���1M;`Mi>MMi� B 2, the otherstatement follows from the duality. Indeed, A is sel�nje
tive spe
ial bis-erial if and only if Aop is sel�nje
tive spe
ial biserial. There is a dualityD � mod-A � mod-Aop, whi
h sends �A to ��1Aop and maximal systems oforthogonal stable bri
ks in mod-A to maximal systems of orthogonal sta-ble bri
ks in mod-Aop. Hen
e, if we prove dim Hom���1M;`Mi>MMi� B 2for any maximal system of orthogonal stable bri
ks in mod-Aop, thendim Hom�`Mi>M��1Mi;M� B 2 holds for any maximal system of orthogo-nal stable bri
ks in mod-A.Let M >M be a module of the formzl0 zm0zm0º zl1 zls zms¹zms
zls�1

where the �rst or the last dire
ted substring may be trivial. The diagramof ��1M is formed by adding hooks zm�1 � � � zl0¹ � zl0 and zls�1 �zls�1º � �� zms�1 (
ase i) or by deleting 
o-hooks zl0 � �� zm0 � zm0ºand zms¹ � zms � � � zls�1 (
ase ii) or by adding a hook zm�1 � � �zl0¹ � zl0 and deleting a 
o-hook zms¹ � zms � � � zls�1 (
ase iii).Note that after deleting a 
o-hook of the form zl0 � � � zm0 � zm0ºthe vertex zm0º stays inta
t. If M � radP for a proje
tive module P then��1M � P ~so
P (
ase iv).We are going to use the same notation for morphisms in mod-A and the
orresponding morphisms in mod-A. There are 
anoni
al diagram mor-phisms M � ��1M indu
ed by the interse
tion of diagrams. In 
ase (i)there is a monomorphism f � M � ��1M , in 
ase (ii) there is an epimor-phism f � M � ��1M , in 
ase (iii) there is a 
omposition f � M � ��1Mof a monomorphism and an epimorphism. The map f is equal to zero in



14 M. A. ANTIPOV, A. O. ZVONAREVAthe stable 
ategory i� in 
ase (iii) module M is a maximal dire
ted stringzl0 � � � zm0 (
ase iii'). Note that in this last 
ase M 
an be a simplemodule 
orresponding to a vertex with one in
oming and one outgoingarrow. In 
ase (iv) there are two morphisms f and f �, with images equalto two inde
omposable summands of radP ~so
P (if P is not uniserial),f � 
f � x 0 (
 > k�) in mod-A. If P is uniserial, then f � 0.If there is a morphism g � ��1M �Mi, then it fa
tors through Cone�f�,sin
e gf � 0 in mod-A by the de�nition of the maximal system of orthog-onal stable bri
ks, even if Mi � M . Here Cone�f� denotes the 
one ofa morphism f in the triangulated stru
ture on mod-A. Let us 
omputeCone�f�.Case (i): Sin
e f is a monomorphism, Cone�f� � Coker�f� � zm�1 �� � zl0¹ ` zls�1º � � � zms�1 is a sum of two maximal dire
ted strings.(If the hook was trivial, then this is just a simple module.)Case (ii): Sin
e f is an epimorphism, Cone�f� � 
�1Ker�f� � 
�1�zl0 �� � zm0 ` zms � � � zls�1� � zm0º � � � zl1 � � � zl0¹ ` zls�1º � � �zls � � � zms¹ is a sum of two maximal dire
ted strings (in the 
ase, wherezm0 
orresponds to a vertex with one in
oming and one outgoing arrowand the 
o-hook is trivial there still is a maximal dire
ted string ending atzm0º and we are going to use the notation zm0º � � � zl1 � �� zl0¹ forit).Case (iii): The morphism f is a 
omposition of a monomorphism and anepimorphism, Cone�f� 
an be easily 
omputed by the o
tahedron axiomor by the de�nition of triangles in mod-A. As before, Cone�f� � zm�1 ��� zl0¹ ` zls�1º � � � zls � � � zms¹ is a sum of two maximal dire
tedstrings. In 
ase (iii') let M be of the form zms � zl0 � � � zls�1 , thenCone�f� � ��1M `
�1�M� � zm�1 � �� zl0¹ ` zls�1º � � � zms¹ � zl0¹.Case (iv): In this 
ase s � 0. Assume that the proje
tive module P isgiven by the relation zl0¹ � zl0 � � � zm0¹ � zm0 � 
zls�1º � zls�1 � � �zmsº � zms (
 > k�), where zl0¹ � zls�1º and zm0 � zms . By the de�nitionof triangles in mod-A we get Cone�f� � zl0¹ � zl0 � � � zm0¹ ` zls�1º �zls�1 � � � zmsº is again a sum of two maximal dire
ted strings. If P isuniserial, f � 0, then Cone�f� � P ~so
P ` 
�1�radP � � P ~so
P ` topP isa sum of two maximal dire
ted strings, one of whi
h is trivial.Let Mi be a module of the form (1), (2) or (3) from Lemma 1, assumethere is a non-zero morphism ~g � Cone�f��Mi in mod-A. Without loss ofgenerality assume there is a morphism ~g � �zm�1 � � � zl0¹� � Mi. Thismorphism is non-zero only in the following 
ases:



ON STABLY BISERIAL ALGEBRAS 15Y 
ase (1) ej0 � zl0¹ and the 
omposition of the last arrow in ej0 �� � ei1 and the �rst arrow in zm�1 � �� zl0¹ is zero;Y 
ase (1) ejt � zl0¹ and the 
omposition of the last arrow in ejt �� � eit and the �rst arrow in zm�1 � �� zl0¹ is zero;Y 
ase (2) ei1 � zl0¹ and ei1 � � � ej1 is a substring of zm�1 � � �zl0¹;Y 
ase (2) eit � zl0¹ and eit � � � ejt�1 is a substring of zm�1 � � �zl0¹;Y 
ase (3) ej0 � zl0¹ and the 
omposition of the last arrow in ej0 �� � ei1 and the �rst arrow in zm�1 � �� zl0¹ is zero;Y 
ase (3) eit � zl0¹ and eit � � � ejt�1 is a substring of zm�1 � � �zl0¹.Only one of all these 
ases 
an o

ur, and for only one Mi >M, otherwise,there would be a non-zero morphism between two obje
ts fromM, whi
his not identity in the 
ase they 
oin
ide. With the same 
ases for the othermaximal dire
ted string we get dim Hom���1M;`Mi>MMi� B 2. �Remark 3. We have seen that dim Hom���1M;`Mi>MMi� B 2. Now weare going to list all the 
ases, where g � ��1M � Mi x 0 in mod-A, i.e.~gh x 0, where h � ��1M � Cone�f�. In the above notation:Y For Mi of the form (1) from Lemma 1 the map g x 0, if and onlyif one of the following holds (we will write out the 
ondition onlyfor one end of the diagram):X M is of the form (i), ej0 � zl0¹ and the 
omposition of the lastarrow in ej0 � � � ei1 and the �rst arrow in zm�1 � � � zl0¹ iszero, additionally, the subdiagram of ��1M starting from zl0 and
oin
iding with the subdiagram of 
�Mi� starting from ej0· endsin a deep of ��1M whi
h is not a deep of 
�Mi� or it ends on apeak of 
�Mi� whi
h is not a peak of ��1M .X M is of the form (iii), the 
ondition is the same as in theprevious 
ase.X M is of the form (iii'), ej0 � zl0¹ and the 
omposition of thelast arrow in ej0 � � � ei1 and the �rst arrow in zm�1 � �� zl0¹is zero.Y For Mi of the form (2) from Lemma 1 the map g x 0, if and onlyif one on the following holds (we will write out the 
ondition onlyfor one end of the diagram):



16 M. A. ANTIPOV, A. O. ZVONAREVAX M is of the form (i), ei1 � zl0¹ and ei1 � �� ej1 is a subdia-gram of zm�1 � � � zl0¹.X M is of the form (ii) ei1 � zl0¹ and ei1 � � � ej1 is a subdia-gram of zm0º � zm�1 � �zl1�� zl0¹, zl1 belongs to ei1 � �� ej1 ,if zl1 � ej1 the subdiagram of ��1M starting from zl1 and 
oin
id-ing with the subdiagram of 
�Mi� starting from ej1 (going in thedire
tion of ej2) ends in a deep of ��1M whi
h is not a deep of
�Mi� or it ends on a peak of 
�Mi� whi
h is not a peak of ��1M .X M is of the form (iii), 
ondition here 
oin
ides with the pre-vious 
ase.X M is of the form (iii') ei1 � zl0¹ and ei1 � � � ej1 is asubdiagram of zm�1 � �zl1� � zl0¹.X M is of the form (iv) ei1 � zl0¹.Y For Mi of the form (3) from Lemma 1 
ondition for g to be non-zero 
an be easily obtained as a 
ombination of previous 
ases.In all other 
ases the 
omposition is either zero or fa
tors through a pro-je
tive module.Corollary 1. Let A be a sel�nje
tive spe
ial biserial algebra, let B bea sel�nje
tive algebra and let F � mod-B � mod-A be an equivalen
e of
ategories. Then in the quiver of B there are at most two in
oming and atmost two outgoing arrows at ea
h vertex.Proof. LetM � �M1;�;Mn� be the image of the set of simple B-modulesunder F . Let S;Si be simple B-modules sent to M;Mi >M. By Auslanderformula Ext1�S;Si� � DHom���1Si; S� and Ext1�Si; S��DHom���1S;Si�,but Hom���1Si; S��Hom���1Mi;M� and Hom���1S;Si��Hom���1M;Mi�.The number of arrows from the vertex 
orresponding to S to the vertex
orresponding to Si 
oin
ides with dim Ext1�S;Si�, thus by the previouslemma there are at most tow in
oming and at most two outgoing arrowsat the vertex 
orresponding to S. �De�nition 5. Let N be an inde
omposable s-proje
tive module with respe
tto a maximal system of orthogonal stable bri
ksM. An A-module R is saidto be the s-radi
al of N (we denote R by s-radN) if the following 
onditionsare satis�ed:(1) R does not 
ontain any proje
tive dire
t summands.(2) There is a proje
tive A-module P and a right minimal almost splitmorphism R` P �N in mod-A, here P may be zero.



ON STABLY BISERIAL ALGEBRAS 17Lemma 4 (see Lemma 6.6 [14℄). Let A be a sel�nje
tive spe
ial biserial al-gebra and letM be a maximal system of orthogonal stable bri
ks in mod-A.Let M >M and let N be an inde
omposable s-proje
tive A-module su
hthat s-top�N� �M . Then s-rad�N� � R1 `R2, where R1;R2 are inde
om-posable, in the notation of Lemma 1, R1 and R2 
an be 
omputed applyingoperations l��� and ���r to the string 
orresponding to N :
ase (1): R1 and R2 are of the formej0¸ ei�1 ej1 ei�2 ei�t ejt ei�t�1ej0ei�0 ei�1 ej1 ei�2 ei�t ejt·

ase (2): R1 and R2 are of the form

ei�1º
ej1 ei�2 ei�t�1

ejt�1 ei�t¹ei�1
ei1·
where ei1 � ei1· � � � ei�1 � 
ei1 � � � ej1 � � � ei�1º � ei�1 in A�
 > k��;
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ei�1º

ej1 ei�2 ei�t�1
ejt�1 ei�t¹ei�t

eit¸
where eit � � � ejt�1 � � � ei�t¹ � ei�t � 
eit � eit¸ � � � ei�t in A�
 > k��;
ase (3): R1 and R2 are of the formej0¸ ei�1 ei�t�1 ejt�1 ei�t¹ej0ei�0 ei�1 ei�t�1

ejt�1 ei�t¹ei�t
eit¸

where eit � � � ejt�1 � � � ei�t¹ � ei�t � 
eit � eit¸ � � � ei�t in A�
 > k��. Note that R1 may be zero.Corollary 2. Let mod-B � mod-A be an equivalen
e of 
ategories, whereB is sel�nje
tive and A is sel�nje
tive spe
ial biserial. LetM��M1; :::;Mn�be the image of the set of simple B-modules and let �N1;�;Nn� be the im-age of the 
orresponding modules of the form P ~so
P , where P is inde
om-posable proje
tive. Then s-rad�Ni� is the image of the module of the formradP ~so
P . Moreover, inde
omposable summands of s-rad�Ni� have sim-ple s-top, that is, if s-rad�Ni� � R1`R2, where R1;R2 are inde
omposable,then dim Hom�Rj ;`Mi>MMi� � 1 for non-zero Rj .Proof. Note that for an inde
omposable proje
tive module P ,dim top�radP ~so
P � 
orresponds to the number of arrows going out of the
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orresponding to P . By Corollary 1 there are at most two arrowsgoing out of the vertex 
orresponding to P ; thus, if radP ~so
P has two non-zero non-proje
tive summands ~R1 and ~R2, then both R1 and R2 are non-zero, hen
e dim Hom� ~Rj ;`Si>SSi� � 1 and dim Hom�Rj ;`Mi>MMi� � 1.Assume now that for some N the module s-rad�N� � R is inde
om-posable. By the des
ription of the Auslander{Reiten triangles in mod-A,the diagram of N is a maximal dire
ted string (whi
h may or may not
oin
ide with P ~so
P for a uniserial proje
tive module P ). Then, M �s-top�N� is a maximal dire
ted string or a simple module (in 
ase P ~so
P ).The Aop-module DM is also a maximal dire
ted string or a simple mod-ule. By arguments analogous to the proof of Lemma 3 and Remark 3,dim Hom���1DM;`Mi>MDMi� � 1. Note that, if DM is simple 
orre-sponding to a vertex with one in
oming and one outgoing arrow the resultfollows from Lemma 2. Asdim Hom���1DM; ?Mi>MDMi� � 1 � dim Hom���1 ?Mi>MMi;M�;there is one arrow going out of the vertex 
orresponding to P anddim Hom�R; ?Mi>MMi� � 1: �In the notation of Corollary 2, for an inde
omposable proje
tive B-module P with top�P � � S, the dimension of top�rad�P �� 
orresponds tothe dimension of Ext1�S;`Si�, where `Si is the sum of representatives ofiso-
lasses of simple B-modules. If Ext1�S;Si� x 0, then Si is a summand oftop�rad�P ��. Sin
e Ext1�S;Si� � Hom���1Si; S�, using the equivalen
e ofstable 
ategories, s-top�R� 
orresponds to Hom���1Mi;M�. The followinglemma follows easily from Remark 3. (The roles of M and Mi are swit
hed.)Lemma 5 (see Lemma 6.9 [14℄). Let A be a sel�nje
tive spe
ial biserial al-gebra and letM be a maximal system of orthogonal stable bri
ks in mod-A,assume additionally, that M is an image of the set of simple B-modulesunder some stable equivalen
e, where B is sel�je
tive. Let M >M be asin Lemma 1. Moreover, let N be an inde
omposable s-proje
tive A-modulesu
h that s-top�N� �M , in the notation of Lemma 4, s-rad�N� � R1`R2,then s-top�R1� and s-top�R2� are of the following form:
ase (1): s-top�R1� is
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where either the diagrams of s-top�R1� and R1 
oin
ide or the subdiagramof s-top�R1� starting from ej0¸ and 
oin
iding with the subdiagram of R1starting from ej0¸ ends on a deep of s-top�R1� whi
h is not a deep of R1or it ends on a peak of R1 whi
h is not a peak of s-top�R1� (note that thisguarantees the existen
e of a non-zero morphism from R1 to s-top�R1�whi
h sends ej0¸ to ej0¸ and is non-zero in the stable 
ategory; note alsothat this interse
tion 
an 
onsist of one vertex);s-top�R2� isejt· zm0 zl1 zls zms zls�1
where either the diagrams of s-top�R2� and R2 
oin
ide or the subdiagramof s-top�R2� starting from ejt· and 
oin
iding with the subdiagram of R2starting from ejt· ends on a deep of s-top�R2� whi
h is not a deep of R2or it ends on a peak of R2 whi
h is not a peak of s-top�R2�;
ase (2): s-top�R1� isei1· zm0 zl1 zls zms zls�1
where either the diagrams of s-top�R1� and R1 
oin
ide or the subdiagramof s-top�R1� starting from ei1· and 
oin
iding with the subdiagram of R1starting from ei1· ends on a deep of s-top�R1�, whi
h is not a deep of R1or it ends on a peak of R1 whi
h is not a peak of s-top�R1�;s-top�R2� is
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where either the diagrams of s-top�R2� and R2 
oin
ide or the subdiagramof s-top�R2� starting from eit¸ and 
oin
iding with the subdiagram of R2starting from eit¸ ends on a deep of s-top�R2� whi
h is not a deep of R2or it ends on a peak of R2 whi
h is not a peak of s-top�R2�;
ase (3): R1 is analogous to R1 from 
ase (1); R2 is analogous to R2from 
ase (2).We are going to use the following 
riterion to prove that a sel�nje
tivealgebra stably equivalent to a spe
ial biserial algebra is stably biserial. Herewe 
ite only the part of the result that we need. Note that this propositionwas reproved in [5℄:Proposition 3 (Proposition 2.7 [14℄, Proposition 7.8 [5℄). If a sel�nje
tivealgebra B satis�es the following 
onditions, then B is Morita equivalent toan algebra, that satis�es 
onditions (a) and (
) from De�nition 1.(a) For ea
h inde
omposable proje
tive module P , we haverad�P �~so
�P � � X � `X ��;(where X � x 0� su
h that top�X ��, top�X ���, so
�X ��, so
�X ��� are simplemodules (or zero, in 
ase X �� is zero).(b) Let X � X � or X ��, and let Q be the proje
tive 
over of X. ThenX is non-proje
tive and we denote by p the epimorphism Q~so
�Q� � X.Suppose that rad�Q�~so
�Q� � Y1`Y2, where Y1 and Y2 are inde
omposablemodules. Then, for irredu
ible morphisms w1 � Y1 � Q~so
�Q�, w2 � Y2 �Q~so
�Q�, pw1 or pw2 fa
tors through a proje
tive module.To use the 
riterion above we need the following lemma.Lemma 6 (see Proposition 7.1 [14℄). Let A be sel�nje
tive spe
ial biserial,letM be a maximal system of orthogonal stable bri
ks whi
h is an imageof the set of simple B-modules under some stable equivalen
e, where B issel�nje
tive. Let N be s-proje
tive andM >M be s-top�N�. For s-rad�N� �R1`R2, where R1;R2 are inde
omposable, let s-top�Ri� � Y >M and let Qbe an inde
omposable s-proje
tive su
h that s-top�Q� � Y , let L1`L2 be thes-radi
al of Q, where L1;L2 are inde
omposable. There exist f � Q� Ri and
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h that for irredu
ible morphisms g1 � L1 � Q,g2 � L2 � Q, we have fg1 � 0 or fg2 � 0.Proof. By Lemma 5 in all the 
ases Ri and s-top�Ri� start from the samevertex and their interse
tion ends on a deep of s-top�Ri� whi
h is not adeep of Ri, or it ends on a peak of Ri whi
h is not a peak of s-top�Ri� or Riand s-top�Ri� 
oin
ide. That guarantees the existen
e of a morphism fromRi to s-top�Ri�, whi
h sends this interse
tion to itself and this morphismis non-zero in mod-A, let us denote this morphism by h.Without loss of generality we 
an 
onsider the 
ase (1)-R1. In ea
h 
ases-top�R1� is itself a module of the form (1)-(3) from Lemma 1.If s-top�R1� has the form (1), then there is a non-zero morphism ffrom Q to R1, whose image 
onsists only of ej0¸. There is a summand L1of s-rad�Q� whi
h is formed by deleting the hook starting with ej0¸, 
learlyfg1 � 0 and hf x 0. If s-top�R1� has the form (2), then there is a non-zeromorphism f from Q to R1, indu
ed by zm0 � ei�1 . There is a summandL1 of s-rad�Q� whi
h is formed by adding a 
o-hook starting from ej�0¸,the 
omposition fg1 fa
tors through the proje
tive module with the top
orresponding to ej0¸, 
learly hf x 0. The 
ase when s-top�R1� has theform (3) is similar. �Theorem 1 (see Theorem 7.3 [14℄). Let A be a sel�nje
tive spe
ial biserialk-algebra not isomorphi
 to the Nakayama algebra with rad2 � 0. If B is abasi
 algebra stably equivalent to A, then B is stably biserial.Proof. Let � � mod-B � mod-A be an equivalen
e of 
ategories. Sin
e Ais a sel�nje
tive spe
ial biserial k-algebra not isomorphi
 to the Nakayamaalgebra with rad2 � 0 we 
an assume that B is sel�nje
tive. Indeed, sin
eover A for any Auslander{Reiten sequen
e 0 � M f�� N ` P � L � 0,where P is proje
tive and N is not proje
tive, we have f x 0, then by[7, Proposition 2.3℄ 0 � ��1�M� � ��1�N� ` Q � ��1�L� � 0 is theAuslander{Reiten sequen
e for some proje
tive Q. Hen
e, � and ��1 arede�ned for all not proje
tive modules, so B is sel�nje
tive.Let B be a sel�nje
tive algebra whi
h is not a lo
al Nakayama alge-bra. Then by Proposition 2 none of the simple B-modules �Si�i�1;:::n andnone of the modules of the form P ~so
P for an inde
omposable proje
tiveB-module P are of � -period 1. Thus ���Si��i�1;:::;n � M is a maximalsystem of orthogonal stable bri
ks over A. As ���Pi~so
Pi��i�1;:::;n is theset of s-proje
tive modules with respe
t toM, � sends rad�Pi~so
Pi� to
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Pi��. Corollary 2 implies that rad�Pi~so
Pi� is a sum of atmost two modules with simple top.The duality DB � mod-B �mod-Bop sends simple B-modules to simpleBop-modules, modules of the form rad�Pi~so
Pi� to modules of the sameform, top to so
le and so
le to top. The equivalen
e � indu
es an equiva-len
e mod-Bop � mod-Aop. Sin
e Aop is also sel�nje
tive spe
ial biserial,rad�Pi~so
Pi� is a sum of at most two modules with simple top. Hen
e,the B-module rad�Pi�~so
�Pi� is a sum of at most two modules with sim-ple so
le. Thus, the 
ondition (a) of Proposition 3 holds. These 
onditions
orrespond to the fa
t that there are at most two in
oming and at mosttwo outgoing arrows in the quiver of B.In the notations of Proposition 3, by Lemma 6 there exists p � Q~so
Q�X su
h that 
ondition (b) holds. Let us prove that 
ondition (b) holds forany p� � Q~so
Q�X . Let us denote by �X � Q� X the proje
tive 
over ofX and by � � Q� Q~so
Q the proje
tive 
over of Q~so
Q. By assumptionX has a simple top, thus without loss of generality we 
an assume that theimage of p�� � p�p� belongs to rad�X�. The morphism p�� 
an be lifted to amorphism ~p � Q� Q between the proje
tive 
overs (�X ~p � p���). The imageof ~p belongs to rad�Q�; hen
e ~p fa
tors through Q~so
�Q� and ~p � h� forsome h. Thus, �Xh� � p��� and sin
e � is an epimorphism �Xh � p��. Weget that p�� fa
tors through a proje
tive, and hen
e is zero in the stable
ategory, p � p� and 
ondition (b) of Proposition 3 holds. This 
ondition
orrespond to 
ondition (
) in De�nition 1.It is 
lear that the 
onditions (b) and (
) of De�nition 1 are dual to ea
hother. By the previous paragraph 
ondition (b) of Proposition 3 holds forBop, and thus 
ondition (
) in De�nition 1 holds for Bop; thus 
ondition(b) in De�nition 1 holds for B and B is stably biserial. �

§4. Auslander{Reiten 
onje
tureIn this se
tion we are going to prove the Auslander{Reiten 
onje
turefor spe
ial biserial algebras.Let B be a stably biserial algebra. It is 
lear that B~so
�B� is a string al-gebra, and hen
e the 
lassi�
ation of inde
omposable non-proje
tive mod-ules over B 
oin
ides with the usual 
lassi�
ation using string and bandmodules. Then by [6, Proposition 4.5℄ all Auslander{Reiten sequen
es overB and B~so
�B� not ending with a B-module of the form P ~so
�P � 
o-in
ide. Hen
e, if there is a system of orthogonal stable bri
ksM over B,then all the modules inM are string modules.
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ompare to Lemma 4.1 [14℄). Let A � kQ~I be a stably biserialalgebra and letM � �M1; : : : ;Mk� be a system of orthogonal stable bri
ks.Then every simple A-module 
an appear in the multiset of endpoints ofdiagrams 
orresponding to Mi >M at most twi
e.Proof. Let us �x some v > Q0. We will 
onsider the simple module 
orre-sponding to v and diagrams of Mi >M ending at v, that is Mi � 
1�
l,s�Mi� � v or e�Mi� � v. Suppose that some arrow � in
ident to v o

urstwi
e at the endpoint v of some diagrams Mi1 � 
1�
l;Mi2 � d1�dt forsome 1 B i1; i2 B k in the same manner. Taking the opposite strings M�1ij ifne
essary, we 
an assume that either s�Mij� � v, � � 
1 � d1 or s�Mij� � v,� � 
�11 � d�11 . In both 
ases, there is a non-zero morphism f � Mi1 �Mi2or f � Mi2 � Mi1 , 
orresponding to the 
ommon part of the diagramsMi1 ;Mi2 . The morphism f is non-zero in mod-B, this is a 
ontradi
tionto the de�nition of a system of orthogonal bri
ks.Now we are to show that at most two di�erent arrows, in
ident to v 
ano

ur at the endpoint v of the diagrams of Mi >M. If there is only onein
oming or outgoing arrow at v (and, 
onsequently, only one outgoing orin
oming arrow at v, see Lemma 2), there is nothing to prove. So supposethat there are �1; �2; �1; �2 with s��1� � s��2� � e��1� � e��2� � v and
onsider two 
ases (if there are loops at the vertex v, some arrows may
oin
ide): ��i�j�i;j�1;2 ~b so
�A� and ��i�j�i;j�1;2 b so
�A�.Y �1
''PPPPPP YYv �1 77nnnnnn �2

''PPPPPPY �2 77nnnnnn YCase 1. Without loss of generality we 
an assume �1�2 ¶ so
�A�. In this
ase, by stably biserial 
ondition, we have �1�1 > so
�A�; �2�2 > so
�A�.Also in this 
ase we have �2�1 x 0. Indeed, if �2�1 � 0, then 0 x �2�2 >so
�A� or �2 > so
�A�, whi
h is impossible, hen
e if we 
onsider a maximalpath q with q�1�2 x 0 (q is of positive length, sin
e �1�2 ¶ so
�A�) wehave �2�2 � lq�1�2 for some l > k�. As q�1�1 > q � so
�A� � 0, we have�2 � lq�1 > so
�A�, a 
ontradi
tion, and thus �2�1 x 0.Let us prove that at least one of ��11 ; �1 does not o

ur at the endpointof some Mi >M, and at least one of ��12 ; �2 does not o

ur at the endpointof some Mi >M { that is all we need. Take j > �1;2� and assume thatboth ��1j ; �j o

ur at the endpoint of some M;N >M.



ON STABLY BISERIAL ALGEBRAS 25Let M be a module with the diagram starting from �i (
1 � �i), x >Mbe an element 
orresponding to v, that is xev � x;x�i x 0; x�3�i � 0, notethat x is non-zero in the top of M . Let N be a module with diagramstarting with ��1i (d1 � ��1i ), y > N is an element 
orresponding to v.Note that y belongs to the so
le of N . Let f � M � N be the morphismwith f�x� � y, whi
h is zero in mod-�A� by the de�nition of a system oforthogonal stable bri
ks. We 
laim that in this 
ase �N � N { this also
ontradi
ts the de�nition of orthogonal stable bri
ks.xM � N � y r�i �i p
We prove the latter 
laim by indu
tion on the number of maximal dire
tedsubstrings of N . Let p�i, where p is a path, 
orrespond to the �rst maxi-mal dire
ted substring of N . Clearly p�i ¶ so
�A�, as N does not 
ontainproje
tive summands, and therefore p�i�s x 0 for some s. We 
an assumethat s x i. Indeed, if s � i, then �i�i > so
�A� implies p � es��i� and in this
ase p�i�3�i x 0 as well.Let t � s�p�. The proje
tive 
over of N is of the form �g1; g2� � P �Pt ` P � � N where g1�et� � r is the element of the basis 
orresponding tothe �rst peak of N (so we have rp�i � y) and y ¶ Im�g2�. If f � 0 > mod-A,we have f � gh � g1h1 � g2h2 for some h � � h1h2 � � M � Pt ` P �. Asg1�p�i� � y we 
an set h�x� � �p�i � z1; z2�, where �z1; z2� > Ker�g�. By
onstru
tion of the proje
tive 
over, z1 is a linear 
ombination of pathsnot equal to p�i or subpaths of p�i. Now �0;0� � h�x�3�i� � �p�i�3�i �z1�3�i; z2�3�i�, and therefore 0 x p�i�3�i � kp1�3�i for some path p1 x p�i(k > k�). The 
ase p1 � p�1�i is impossible (in this 
ase either both pathsp�i�3�i; p1�3�i have lengths at least 3 and 
ontain subpaths of the formÆ
; �
 { a 
ontradi
tion, or �i�3�i is equal to a longer path ending with�i�3�i, whi
h is also impossible), therefore, as �3�i�3�i > so
�A�, we havep1 � �3�i. Note, that we get p�i�3�i > so
�A�. Note that p x �3�ip2 for anypath p2 (else p1 � �3�i is a subpath of p�i).Now we 
an prove the base of our indu
tion. The previous paragraphshows that s�p� � s��3�i�. If N is a dire
ted string, 
orresponding to amaximal path p�i then ��1�N� is formed by adding a hook and deleting



26 M. A. ANTIPOV, A. O. ZVONAREVAa 
o-hook, as e��i� � e��3�i�, this hook is a maximal dire
ted string,
orresponding to p�i. We see that ��1�N� � N , as desired.Note that we 
an 
ompute ��1�N� in the usual way, sin
e N is notisomorphi
 to radP for some proje
tive module P .Now suppose that the diagram of N 
ontains more than one maximaldire
ted substrings. As 0 � f�x�i� � g�p�i�i � z1�i; z2�i� � g�z1�i; z2�i�we have g1�z1�i� � 0 (sin
e Im�g1��i 9 Im�g2��i � 0, as Im�g1�9 Im�g2� >so
�N�), and, as p�i�3�i > so
�Pt�, we have g1�p�i�3�i� � 0. This impliesthat g1��3�i�i� � 0, g1��3�i�3�i� � 0, sin
e �3�i�3�i > so
�A�, and hen
ethe se
ond maximal dire
ted substring of the diagram of N is an arrow �3�i(g1��3�i� � g1�z1� > so
�N�). Consider a module N � B N , 
orrespondingto the subdiagram, 
ontaining all but �rst two dire
ted substrings of N(deleting a hook of N). Then we have Im�g2� b N � and g2h�x� � g2�z2� ��g1�z1� � lr�3�i for some l > k� (sin
e 0 x g1��3�i� � g1�z1�). This meansthat the module N � and the morphism f � � g2h is of the same form asN and f (in parti
ular, N � begins with ��1i as well). By indu
tion, thestring 
orresponding to N is of the form ��1i p�1�3�i��1i p�1�3�i���1i p�1,and hen
e N has � -period 1.Case 2. ��i�j� b so
�A�. For ea
h i, �i ¶ so
�A�, so suppose that�i�3�i x 0 (note that we 
an 
hoose di�erent j1; j2 for �1; �2 with �1�j1 x 0,�2�j2 x 0, sin
e in the other 
ase we have �1�j � �2�j � 0 for some j and�j > so
�A�, whi
h is impossible). Let us prove, as above (and with abovenotation) that �j and ��1i 
annot o

ur as �rst arrows for some M , Nby 
he
king that the 
orresponding morphism f is non-zero in mod-A. Asabove, f�x�3�i� � 0 implies that there is a path p x �i and l > k� su
hthat �i�3�i � lp�3�i. As �i�3�i; �3�i�3�i > so
�A�, we obtain that p � �3�i(otherwise a so
le path would be a subpath of a longer path). This impliesthat s��1� � s��2�.Now we have that all dire
ted strings 
ontaining �i has length 1 and aremaximal dire
ted strings, and therefore N is of the form ��1i �3�i��1i �3�i : : : .If the length of this word is odd, then ��N� � N (deleting a 
o-hook andadding a hook doesn't 
hange N), 
ontradi
tion. In the 
ase of even length(i.e. if dim�N� � 2n � 1 is odd) let y1; : : : ; yn > N be the elements of thediagram of N 
orresponding to peaks. Then proje
tive 
over of N is of theform g � �es��i�A�n � N , g�zk� � yk for k � 1; : : : ; n, where zk is the gener-ator of the 
orresponding 
opy of es��i�A and Ker�g� � `�zk�3�i�zk�1�i�e.Now suppose that f � gh for some h. Then h�x� � z1�i �Pn�1k�1 lk�zk�3�i �



ON STABLY BISERIAL ALGEBRAS 27zk�1�i�. Multiplying this by �3�i, we obtain0 � h�x�3�i� � n�1Qk�1 zk�lk�3�i�3�i � lk�1�i�3�i� � ln�1zn�i�3�i;where l0 � �1. As all 
oeÆ
ients in the sum are to be zero, we obtain
onsequently that li x 0 for all i � 0; : : : n � 1, therefore the last summandis non-zero, 
ontradi
tion. �Re
all that a simple non-proje
tive, non-inje
tive module S is 
alled anode if the Auslander{Reiten sequen
e starting at S has the form0� S � P � ��1S � 0;where P is proje
tive. By the results of [11℄, any algebra with nodes is sta-bly equivalent to an algebra without nodes. Let A be an algebra with nodesS1;�; Sk, S � `ki�1Si. Let a be the tra
e of S in A, i.e. �h>Hom�S;A�Im�h�.Note that a is a two-sided ideal of A. Let b be a right annihilator of a, notethat A~b is semisimple and a is an A~a-A~b bimodule. Then the matrix al-gebra T̂A � �A~a a0 A~b� has no nodes and it is stably equivalent to A. The
onstru
tion of T̂A repla
es every node in the quiver of A by two simplemodules: a sink and a sour
e. It is 
lear, that the number of non-proje
tivesimple modules is preserved under this stable equivalen
e.Theorem 2 (
ompare to Theorem 0.1 [14℄). Let A, B be two �nite di-mensional algebras su
h that mod-A � mod-B and A is spe
ial biserial.Then the number of isomorphism 
lasses of non-proje
tive simple modulesover A and B 
oin
ides.Proof. Without loss of generality we 
an assume that A;B have no semi-simple summands. First, let us prove the statement for sel�nje
tive Aand B. If one of the algebras (and hen
e the other as well) has isolatedverti
es in the Auslander{Reiten quiver of the stable 
ategory, then they
orrespond to P ~so
P or to radP for some proje
tive module P of length 2.Hen
e A and B have as summands Nakayama algebras with rad2 � 0, thenumber of simple modules over these algebras is the number of isolatedverti
es in the Auslander{Reiten quiver of the stable 
ategory, hen
e it isthe same for A;B. From now on we 
an assume, that A;B do not havea Nakayama algebra with rad2 � 0 as a summand. By Theorem 1, B isstably biserial. LetM � �M1; : : : ;Mk� be the images of simple A-modulesunder equivalen
e F � mod-A � mod-B. Then M is a maximal system
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ks. If some Mi is a simple module, then it 
annot o

ur as an endpoint of any other diagram in M. The diagram ofea
h non-simple Mi has two endpoints, labelled by simple B-modules S1iand S2i . Suppose that the number of simple B-modules is less than k,then Sj1i1 � Sj2i2 � Sj3i3 for some il; jl. This 
ontradi
ts the previous lemma.The same argument for the quasi-inverse ~F � mod-B � mod-A shows thatthe number of simple B-modules is less or equal to the number of simpleA-modules and we are done.Let us now 
onsider arbitrary A;B, where A is spe
ial biserial. If A or Bhas nodes, we 
an repla
e it by the matrix algebra T̂A or T̂B , respe
tively.If A is spe
ial biserial, then so is T̂A, so we 
an assume that A;B have nonodes. To algebras A;B one 
an asso
iate sel�nje
tive algebras �A; �Bin the following way: let PA be the set of iso
lasses of proje
tive-inje
tiveA-modules that remain proje
tive-inje
tive under the a
tion of any powerof the Nakayama fun
tor �k. De�ne �A �� End�`P >PAP �. If A is spe
ialbiserial, then �A is sel�nje
tive spe
ial biserial. By [12℄ (sin
e A;B haveno nodes) the algebras �A; �B are stably equivalent, and hen
e by theprevious paragraph they have the same number of simple modules. By [12℄A;B have the same number of isomorphism 
lasses of non-proje
tive simplemodules. �

§5. Symmetri
 stably biserial algebrasRe
all the standard des
ription of a symmetri
 spe
ial biserial algebra[19℄. We will assume that all quivers are 
onne
ted. Consider the followingdata:(1) A quiver Q su
h that every vertex has two in
oming and two out-going arrows or one in
oming and one outgoing arrow.(2) A permutation � on Q1 with e��� � s������ for all � > Q1(3) A fun
tion m � C���� N, where C��� is the set of 
y
les of �.We are going to denote the 
y
le 
ontaining � by `�e� and its order byS`�e�S. Now 
onsider the ideal I b kQ generated by the following elements:(1) �� for all �;� > Q1, � x ����;(2) �������2��� : : : �S`�e�S�1����m�`�e����������2��� : : : �S`�e�S�1����m�`�e�� for all �;� > Q1 with s��� �s���;



ON STABLY BISERIAL ALGEBRAS 29(3) �������2��� : : : �S`�e�S�1����m�`�e��� and��1����������2��� : : : �S`�e�S�1����m�`�e�� for all � > Q1 su
hthat s��� has only one in
oming and one outgoing arrow.Then kQ~I is a symmetri
 spe
ial biserial algebra (SSB-algebra), andea
h SSB-algebra 
an be des
ribed uniquely in this way, up to obviousisomorphisms. Note that one of the relations from (3) is redundant.The main aim of this se
tion is to show that any symmetri
 stablybiserial algebra is in a sense a deformation of some SSB-algebra. To obtainthis, we are going to de�ne the permutation � and the multipli
ities of�-
y
les for the algebras from this 
lass.From now on let A � kQ~I be an arbitrary stably biserial algebra, withI admissible. Let s
�A� � so
�A� � �0�.Case I. For � > Q1 we put ���� � � if �� ¶ so
�A�, � > Q1. The de�nitionof a stably biserial algebra implies that we have at most one su
h arrow.If �rad�A� b so
�A� we are to de�ne ���� a bit more 
arefully.Note that �rad�A� � 0 only for the 
ase A � k���~�2 of the algebrawith one vertex and one loop �, for that 
ase ���� � �, we are not goingto 
onsider this 
ase from here on. We 
an assume �rad�A� x 0 for any� > Q1. Then (if �rad�A� b so
�A�) we have the following 
ases:Case II. There exist �1; �2 > Q1 (�1 x �2) with ��i > s
�A� (i � 1;2).If SQ0S � 1 and Q1 
onsists of two loops �;�, then �2; �� > s
�A� implies�� > s
�A�. If �2 � 0 set ���� � �;���� � �, if �2 > s
�A� we 
an 
hose���� � �;���� � �. If �2 ¶ so
�A�, set ���� � �;���� � �. From now onSQ0S A 1.The arrow � isn't a loop { otherwise �1; �2 are loops in the same vertexand we have SQ0S � 1. Due to the symmetry, we have e��i� � s���; i � 1;2.If SQ0S A 2 there exists a unique 
 > Q1 with s�
� � s���; e�
� x e���and there exists a unique Æ > Q1 with e�Æ� � e���; s�Æ� x s���. Then wehave Æ�i ¶ so
�A� and �i
 ¶ so
�A� for some i and Æ�3�i � 0 and �3�i
 � 0(as Æ�3�i and �3�i
 belong to so
�A� by stably biserial 
ondition and arenot 
y
les). Then ��Æ� � �i; ���i� � 
 as de�ned in Case I, and we 
an put���� � �3�i; ���3�i� � �.Now 
onsider the 
ase SQ0S � 2. Due to the symmetry �1�;�2� x 0 and
learly �1�;�2� > s
�A�, �1� � 
�2�, 
 > k�. By symmetry ��1 � 
��2as well. As �1 � 
�2 ¶ s
�A� (as a 
ombination of non-
losed paths), there



30 M. A. ANTIPOV, A. O. ZVONAREVAexists �2 > Q1 with �1�2 � 
�2�2 x 0. Then by stably biserial 
ondition�i�2 > so
�A� for some i, and hen
e �2�i > so
�A� for the same i. If�i�2 � 0, then �2�i � 0 and we 
an set ���i� � �, ���� � �i, ���3�i� � �2,���2� � �3�i and �3�i�2 x 0; �2�3�i x 0. If �i�2 x 0 but �3�i�2 ¶ so
�A�,then �2�3�i ¶ so
�A� and we 
an set ���i� � �, ���� � �i, ���3�i� � �2,���� � �3�i and �3�i�2 x 0; �2�3�i x 0. If �3�i�2 > s
�A�, �i�2 > s
�A�,then we 
an 
hoose � arbitrary, e.g. ���i� � �, ���� � �i, ���3�i� � �2,���2� � �3�i. The remaining 
ase is when �3�i�2 � 0, then �2�3�i � 0 andwe set ���3�i� � �, ���� � �3�i, ���i� � �2, ���2� � �i.Case III: Let � > Q1 be su
h that �� x 0 for a unique arrow � and�� > so
�A�. Consider 
� for 
 x �, if 
� � 0; we 
an set ���� � �. If
� x 0, then there exist a path p and 
 > k� su
h that p
� � 
�� � 0, sothere is �2 su
h that �p
�
���2 x 0. Sin
e ��2 � 0 by assumption p
�2 x 0,so p is a path of length 0 and we 
an set ���� � �, ��
� � �2.Now � is de�ned on all Q1 and 
learly it is inje
tive (��x� x ��y� forx x y by stably biserial 
ondition if both x; y belong to 
ase I, otherwise��x� x ��y� by 
onstru
tion). Then, indeed, � is a permutation and it hasthe following properties:(1) ����� x 0;(2) If � x ����, then �� > so
�A�.For any � > Q1 let `�e� � �� � �1; �2; : : : ; �n��. We de�ne �i for allnatural i by the 
ondition �i�n� � �i and �nd maximal integer k� with�1�2 : : : �k� x 0. Note that k� A 1 by �1�, and therefore �1�2 : : : �k�� � 0for � x �k��1 as well (by �2�), i.e. p� � �1�2 : : : �k� > s
�A�. A
tuallyp� > es���Aes��� by symmetry. Let us de�ne s
��� � �1 : : : �k� .Lemma 8.1. For ea
h � > Q1 we have k� � n�m� for some integer m�.2. If �;� > Q1 lie on the 
ommon 
y
le of �, then k� � k� (andm� �m�).3. If alpha, � > Q1 with s��� � s���, then s
��� � 
�;� � s
��� forsome 
�;� > k�.We say that m� is the multipli
ity of the 
y
le `�e�.Proof. Put k � k�.1. Sin
e �1�2�3 : : : �k > s
�A�, we have �2�3 : : : �k�1 x 0. If k A 2then �k�1 ¶ so
�A�. Therefore, by �2�, �k�1 � �1 as required. If k � 2,i.e. �1�2 > s
�A�, then � belongs to Case II or to Case III and we haven� � 2 � k�.



ON STABLY BISERIAL ALGEBRAS 312. This follows from 1 and from the fa
t that a so
le path 
annot be asubpath of another so
le path.3. It follows from the fa
t that so
�es���A� is one-dimensional. �Let us 
all a non-zero path �1 : : : �k admissible if ���i� � �i�1 for all i.In parti
ular, for any v > Q0 we have an admissible path s
��� > s
�evA�with s��� � ev. So it follows from �2� that any non-zero non-admissiblepath is of length 2 and is equal (in A) to an admissible so
le path: �
 �k � s
��� for some � > Q1; k > k�. Su
h an equality we 
all a so
le relation.Note that repla
ing in any so
le relation right-hand side by 0 we obtain astandard des
ription of SSB-algebra (up to 
oeÆ
ients in the relations ofthe form s
��� � k � s
���, k > k� but these 
oeÆ
ients 
an be eliminatedfor symmetri
 algebras).Lemma 9. In the notations of the previous lemma, we 
an assume that
�;� � 1 for all �;� > Q1 with s��� � s��� (i.e. s
��� � s
���).Proof. Let 'A�x� � `x;1e be indu
ed by the symmetri
 form `�;�e onA, put 
� � 'A�s
����. As the form is symmetri
, for �;� belonging tothe same �-orbit 
� � 
�, it follows that 
�;� � 1 for su
h �;�. Now let��1; : : : ; �k� be a set of representatives of �-orbits. Put ��i � �i
i , where
m�ii � 
�i . Then, repla
ing �i by ��i, 1 B i B k, for any new so
le paths
���� we obtain 'A�s
����� � 'A�s
����~
m�ii � 1, where i is de�ned by�i > `�e�. Therefore, we obtain that if p1 � kp2 for so
le paths and k x 0,then k � 1 as required. Clearly we have not 
hanged any relations ex
eptfor, possibly, 
hanging non-zero 
oeÆ
ients in so
le relations. �Lemma 10. Let A � kQ~I be a stably biserial algebra with permutation�, multipli
ities m and ideal I generated by the following relations:(1) s
��� � s
��� for ea
h ��;�� with s��� � s���.(2) s
����, ��1���s
��� for ea
h vertex s��� with one in
oming andone outgoing arrow.(3) �
 � l�;
s
��� for all �
 > Q1, 
 x ���� (l�;
 > k).Consider the ideal I1 obtained from I by repla
ing generators of the form�
 � l�;
s
��� by �
 for 
hark x 2. If 
hark � 2 we make this repla
ementonly in the 
ases with � x 
. Then kQ~I1 � A.Proof. We are going to prove this lemma by indu
tion on the number ofnon-zero l�;
. Suppose that l�0;
0 x 0. Put s
��0� � �0p. Then we have�0�
0 � l�0;
0p� � 0. Let us 
onsider two 
ases:



32 M. A. ANTIPOV, A. O. ZVONAREVA1. Suppose that �0 x 
0. Let us show that the substitution 
0 � 
1,
1 � 
0� l�0;
0p de
reases the number of non-zero l�;
 (preserving all otherrelations).Looking at the values of 'A we get'A�
0�0� � 'A��0
0� � 'A�l�0;
0�0p� � 'A�l�0;
0p�0� x 0:Let us 
onsider two 
ases.Case I. ��
0� x �0. Then 
0�0 > s
�A�, this implies that 
0�0 � l�0;
0p�0.So in this 
ase we have �0
1 � 0 and also 
1�0 � 0.If ��1�
0�p � p��
0� � 0, then the substitution 
0 � 
1 
learly does not
hange any other relations and we are done.If ��1�
0�p x 0 or p��
0� x 0 then p is an arrow with s�p� � s�
0�,e�p� � e�
0� and ��1�
0� is an arrow with s���1�
0�� � s��0�, e���1�
0�� �e��0� (as ��1�
0�p > so
�A�) and we have SQ0S � 2 or SQ0S � 1. If SQ0S � 2,then 
learly, ��1�
0�p x 0 implies p��
0� x 0 and visa versa. Then thesubstitution of 
0 for 
1 does not 
reate any new non-zero l�;
 . If SQ0S � 1and Q has two loops �;�, with ���� � �;���� � �, and say � plays the roleof 
0, then �� � � � l�;�p satis�es the desired relations. A 
oeÆ
ient 
anappear in the relation s
��� � 
 � s
���, but we 
an make it equal to 1 asbefore. Thus, in this 
ase we have 
hanged exa
tly two relations, obtainingl�0;
1 � l
1;�0 � 0.Case II. ��
0� � �0. Then we have 
0�0 ¶ s
�A� (else we have ���0� � 
0as well). Then 
1�0 � 
0�0�l�0;
0p�0, with l�0;
0p�0 > so
�A�, and thereforeany other path, 
ontaining 
1�0 is equal to the 
orresponding path after thesubstitution 
1 � 
0. Also we have ��1�
0�
1 � ��1�
0�
0�l�0;
0��1�
0�p ���1�
0�
0, as ��1�
0�p is of length at least 3 and p x 
0p� for any path p�.By the same reasons 
1Æ � 
0Æ where Æ x �, s�Æ� � s���. Thus, in this 
asewe have 
hanged exa
tly one relation, obtaining l�0;
1 � 0.2. Suppose 
hark x 2 and �0 � 
0, SQ0S x 1. In this 
ase s��0� � e��0�,p is a path of length more than 1 (else we have two loops at one vertex),�0p � p�0 > s
�A�. Put ��0 � �0 � l�0;
0p~2. Then ���0�2 � ��0 � p~2�2 ��20 � l�0;
0�0p � l�0;
0p�0 � 0 � 0. As �p � p� � 0 for all arrows � x �0 (p isnot an arrow), all other relations are preserved.If SQ0S � 1 and p is a path of length more than 1, the proof goes similar.If p is a path of length 1, by 
onstru
tion of � we have p2 � 0 and lemmaalso holds. �
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tion on the number of non-zero l�;
 we get thefollowing theorem:Theorem 3. 1. Any symmetri
 stably biserial algebra over an algebrai
ally
losed �eld k with 
hark x 2 is isomorphi
 to a spe
ial biserial algebra.2. Consider a standard des
ription of a symmetri
 spe
ial biserial alge-bra A � kQ~I and any set of loops ��1; : : : ; �k� in Q1, where ���i� x �ifor all i (so that �2i � 0 in A), 
onsider a set �
�1 ; : : : ; 
�k�, 
�i > k�.Repla
ing in the standard set of relations �2i by �2i � 
�is
��i� we obtain anew algebra A� and all stably biserial algebras 
an be obtained in this way.Referen
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