
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 460, 2017 Ç.M. A. Antipov, A. O. ZvonarevaON STABLY BISERIAL ALGEBRAS AND THEAUSLANDER{REITEN CONJECTURE FOR SPECIALBISERIAL ALGEBRASAbstrat. By a result laimed by Pogorza ly sel�njetive speialbiserial algebras an be stably equivalent only to stably biserial al-gebras and these two lasses oinide. By an example of Ariki, Iijimaand Park the lasses of stably biserial and sel�njetive speial bi-serial algebras do not oinide. In these notes we provide a detailedproof of the fat that a sel�njetive speial biserial algebra an bestably equivalent only to a stably biserial algebra following someideas from the paper by Pogorza ly. We will analyse the struture ofsymmetri stably biserial algebras and show that in harateristix 2 the lasses of symmetri speial biserial (Brauer graph) alge-bras and symmetri stably biserial algebras indeed oinide. Also,we provide a proof of the Auslander{Reiten onjeture for speialbiserial algebras.
§1. IntrodutionDerived equivalenes of symmetri speial biserial or equivalently Brauergraph algebras [19℄ have been extensively studied over the past few years[1{4, 9, 10, 13, 16{18, 21, 23{25℄. These studies onern mainly attempts tolassify symmetri speial biserial algebras up to derived equivalene, las-si�ation of speial tilting omplexes over suh algebras or omputationof the derived Piard groups. It is well known that the lass of symmet-ri speial biserial algebras of �nite representation type is losed underderived equivalene. The fat that the lass of symmetri speial biserialalgebras is losed under derived equivalene followed from the results ofPogorza ly [14℄. Unfortunately, in [5℄ ounterexamples for some of the state-ments of [14℄ were given.Key words and phrases: speial biserial algebras, stable ategory, Auslander-Reitenonjeture.Mikhail Antipov was partially supported by grant NSh-9721.2016.1 of the Presidentof the Russian Federation; Alexandra Zvonareva was supported by the RFFI Grants16-31-60089 and 16-31-00004. 5



6 M. A. ANTIPOV, A. O. ZVONAREVAIn this paper we reprove the fat that if a sel�njetive algebra (notisomorphi to the Nakayama algebra with rad2 � 0) is stably equivalent to asel�njetive speial biserial algebra, then it is stably biserial. We do not usethe original approah of Pogorza ly via Galois overings, instead we performall ombinatorial omputations diretly. We give a proof of the Auslander{Reiten onjeture for speial biserial algebras using the redution to thesel�njetive ase obtained by Mart��nez-Villa. The onjeture states thatthe number of non-isomorphi non-projetive simple modules is invariantunder stable equivalene. The proof for sel�njetive speial biserial algebrasis more involved, sine we have to onsider systems of orthogonal stablebriks over stably biserial algebras. After that we desribe all symmetristably biserial algebras, showing that in harateristi x 2 this lass indeedoinides with the lass of symmetri speial biserial algebras. This is the�rst step towards the proof of the fat that the lass of symmetri speialbiserial algebras is losed under derived equivalene.
§2. PreliminariesThroughout this paper A is a basi, onneted, �nite dimensional alge-bra over an algebraially losed �eld k, mod-A is the ategory of �nite-dimensional right A-modules, mod-A is the stable ategory of mod-A, i.e.the ategory of modules modulo the maps fatoring through projetivemodules. In the ase where A is sel�njetive the ategory mod-A is trian-gulated. The Auslander-Reiten translation DTr will be denoted by � , theHom-spaes in mod-A will be denoted by Hom, for f > mod-A its lass inmod-A will be denoted by f , the syzygy or the Heller's loop funtor willbe denoted by 
 � mod-A � mod-A. A module will be alled loal, if it isan epimorphi image of an indeomposable projetive module.De�nition 1. Let Q be a quiver, I an admissible ideal of kQ. A sel�n-jetive algebra A� is alled stably biserial if it is isomorphi to A � kQ~I,where Q and I satisfy the following onditions:(a) For eah vertex i > Q, the number of outgoing arrows and the numberof inoming arrows are less than or equal to 2;(b) For eah arrow � > Q, there is at most one arrow � > Q that satis�es�� ~> �rad�A�� � so�A�;() For eah arrow � > Q, there is at most one arrow � > Q that satis�es�� ~> �rad�A�� � so�A�.The following desription of stably biserial algebras was provided in [5℄:



ON STABLY BISERIAL ALGEBRAS 7Proposition 1 (Proposition 7.5 [5℄). If A is stably biserial then thereexists a presentation of A � kQ~I suh that the following onditions hold:(1) If �� x 0, � x 0, � x , for arrows �;�;  then either �� > so�A�or � > so�A�;(2) If �� x 0, � x 0, � x , for arrows �;�;  then either �� > so�A�or � > so�A�.De�nition 2. Let Q be a quiver, I an admissible ideal of kQ. An algebraA� is alled speial biserial if it is isomorphi to A � kQ~I, where Q and Isatisfy the following onditions:(a) For eah vertex i > Q, the number of outgoing arrows and the numberof inoming arrows are less than or equal to 2;(b) For eah arrow � > Q, there is at most one arrow � > Q that satis�es�� x 0;() For eah arrow � > Q, there is at most one arrow � > Q that satis�es�� x 0.If additionally A is sel�njetive, then it is alled sel�njetive speialbiserial.
§3. Stable equivalenesIn this setion we are going to prove following the ideas from [14℄ thatif an algebra is stably equivalent to a sel�njetive speial biserial algebra(not isomorphi to the Nakayama algebra with rad2 � 0), then it is stablybiserial.Proposition 2 (Proposition 7.11 [5℄, see also Lemmas 5.3, 5.4 [14℄). LetB be an indeomposable sel�njetive algebra whih is not a loal Nakayamaalgebra. Then, we have the following:(1) If P is indeomposable projetive, then ��P ~so�P �� ~� P ~so�P �;(2) If S is simple, then S is non-projetive and ��S� ~� S.From now on we are not going to onsider loal Nakayama algebras.Thus, we an assume that A does not have any simple modules of � -period 1.De�nition 3. Let A be a sel�njetive k-algebra. An indeomposable A-module M is said to be a stable brik if End�M� � k. A family �Mi�i>Iof mutually non-isomorphi stable briks is a system of orthogonal stablebriks if the following onditions hold:(1) Mi is not of �-period 1 for every i > I ;



8 M. A. ANTIPOV, A. O. ZVONAREVA(2) Hom�Mi;Mj� � 0 for any i; j > I with i x j.A system of orthogonal stable briks �Mi�i>I is alled maximal if forevery indeomposable A-module N that is neither projetive nor of �-period1 there exist i; j > I suh that Hom�Mi;N� x 0 and Hom�N;Mj� x 0.Remark 1. If there is an equivalene of ategories mod-B � mod-A,where A and B are sel�njetive, then the image of the set of representativesof the iso-lasses of simple modules is a maximal system of orthogonalstable briks.Sine we are interested in maximal systems of orthogonal stable brikswhih are images of the sets of simple modules, for now we an assume,that the ardinality ofM is �nite.De�nition 4. Let M � �M1;�;Mn� be a maximal system of orthogonalstable briks. An indeomposable A-module N is alled s-projetive withrespet toM if the following onditions are satis�ed:(1) N is not of �-period 1;(2) Hom�N;`ni�1Mi� � k;(3) If Hom�N;Mi� x 0, then for every non-zero f � X �Mi and g �N �Mi there exists h � N � X suh that fh � g.An A-module N is alled s-projetive with respet toM if it is a sum ofindeomposable s-projetive modules; s-injetive modules are de�ned dually.It is lear that for an indeomposable s-projetive A-module N thereexists only one i > I suh that Hom�N;Mi� x 0. In [15℄ it is proved thatan indeomposable A-module N is s-projetive with respet toM if andonly if N � ��1
�M� for some M > M. Let N be an indeomposables-projetive A-module with respet to M. We say that s-top�N� � M ifM >M and Hom�N;M� x 0. In this ase s-top���1
�M�� �M for M >M.See also [5, Proposition 7.13℄.Remark 2. If there is an equivalene of ategories mod-B � mod-A,where A and B are sel�njetive and M � �M1;�;Mn� is the image ofthe set of simple B-modules, then the image of the module of the formP ~so�P �, where P is an indeomposable projetive B-module, is inde-omposable s-projetive with respet toM.We will denote by Q0 the set of verties of Q, by Q1 the set of arrowsof Q and by s���, e��� the maps from Q1 to Q0, whih map an arrow toits beginning and end respetively.



ON STABLY BISERIAL ALGEBRAS 9From now on, when onsidering a sel�njetive speial biserial algebraA � kQ~I we will �x a presentation satisfying the onditions from De�ni-tion 2. Note that the generating set of relations in I an be hosen to onsistof relations of three kinds: zero relations �� � 0 for some �;� > Q1; rela-tions of the form �1��m � �1��n ( > k�) for �1 x �1 and s��1� � s��1�;relations of the form �1��m � 0 in the ase when there is only one arrowleaving s��1� (�i; �j > Q1).Reall that an indeomposable non-projetive module over a sel�nje-tive speial biserial algebra A � kQ~I is either a string or a band module.Sine all the band modules are of � -period 1 we are not going to use them.Given an arrow � > Q1, we will denote by ��1 its formal inverse; thuss���1� � e���, e���1� � s���, ���1��1 � �. The set of formal inverse arrows���1��>Q1 will be denoted by Q�11 . A string of length n is a sequene of theform  � 1�n, where i > Q1 8Q�11 , s�i�1� � e�i�, i x �1i�1 and neitheri�i�t nor �1i�t��1i belong to so�A� for any i and t. Additionally, forevery vertex x > Q0, there is a string of length zero denoted by 1x withs�1x� � e�1x� � x. For a string  � 1�n of positive length, let s�� �� s�1�,e�� �� e�n�.Let  � 1�n be a string of length n C 1. A string module M is de�nedas follows: �x a basis �z0;�; zn�, given an idempotent ex, orrespondingto the vertex x, ziex � zi if x � e�i� or x � s�i�1� and zero otherwise.Given an arrow � > Q1, zi� � zi�1 if i � ��1, zi� � zi�1 if i�1 � � andzero otherwise. To the string of length zero 1x we assoiate the simplemodule orresponding to the vertex x. Two string modules orrespondingto di�erent strings  and � are isomorphi if and only if  � 1�n and � ��1n ��11 . Usually we will depit the string and the orresponding moduleby the diagram of that module, e.g., the string ��1�Æ�1 will be depitedas z1z0 z2 z3 z4� �  ÆWe will all zi a peak if there is no � > Q1 suh that zi�1� � zi or zi�1� � zi.We will all zi a deep if for all � > Q1 we have zi� � 0. In the example abovez1; z4 are peaks and z0; z3 are deeps. Note that this is not the standard useof the terms peak and deep. In ases when it does not lead to onfusion,



10 M. A. ANTIPOV, A. O. ZVONAREVAwe will omit the names of the arrows in the diagrams and we will usediagrammati notation for the elements of the algebra A.We shall now desribe the Auslander{Reiten sequenes in mod-A, on-taining string modules. The Auslander{Reiten sequenes, ontaining anindeomposable projetive module P in the middle term are of the form0� rad�P �� rad�P �~so�P �` P � P ~so�P �� 0:Assume now that M is a non-projetive indeomposable module not iso-morphi to P ~so�P � for any projetive module P . The module M is ofthe form ei1ej0 ej1 ejt�1 eit·eit ejtM:where the �rst or the last direted substring may be trivial. Let r be themaximal string extending  on the right by ejt � ejt¸ � � � eit�1 if suha string exists (adding a o-hook).ei1ej0 ej1 ejt�1 eit·eit ejtMr : ejt¸ eit�1
If not, let r be the string obtained from  by anellation of the lastdireted substring inluding the vertex eit (r may be empty),ei1ej0 ej1 ejt�1 eit·Mr :(deleting a hook). Similarly let l be obtained from  by the orrespond-ing operations on the left-hand side of . Sine M is not isomorphi toP ~so�P � for any projetive module P , at least one of the strings l�r� or



ON STABLY BISERIAL ALGEBRAS 11�l�r is non-empty, and if both are de�ned, then l�r� � �l�r, let lr bethe non-trivial string l�r� or �l�r. Then the Auslander{Reiten sequeneterminating at M is of the form0� ��M� �Mlr �Mr `Ml �M � 0:Similarly, ��1 an be omputed by adding hooks if possible and deletingo-hooks if not [8, 20, 22℄.The following lemma follows immediately from the desription of theAuslander{Reiten sequenes.Lemma 1 (see Lemma 6.4 [14℄). Let A be a sel�njetive speial biserial al-gebra and letM be a maximal system of orthogonal stable briks in mod-A.Consider M >M and let N be an indeomposable s-projetive module withrespet toM with s-top�N� �M .ase (1): If M is of the formei1ej0 ej1 ejt�1 eit ejtt � 0;1;� then N is of the formej0ei�0 ei�1 ej1 ei�2 ei�t ejt ei�t�1where ej0 � � � ei�0 and ejt � � � ei�t�1 are maximal direted strings(may be trivial), ei�k � � � ejk�1 � � � eik � kei�k � � � ejk � � � eikin A for k � 1;2;�; t and some k > k�.ase (2): If M is of the formei1 ej1 ejt�1 eit
t � 2;3;� then N is of the form



12 M. A. ANTIPOV, A. O. ZVONAREVA
ei�1º ej1 ei�2 ei�t�1 ejt�1 ei�t¹where ei1 � � � ej1 � � � ei�1º and eit � � � ejt�1 � � � ei�t¹ (ej1may oinide with ei�1º, ejt�1 may oinide with ei�t¹) are maximal diretedstrings, ei�k � � � ejk�1 � � � eik � kei�k � � � ejk � � � eik in A fork � 2;3;�; t � 1 and k > k�.ase (3): If M is of the formei1ej0 ej1 ejt�1 eit

t � 1;2;� then N is of the formej0ei�0 ei�1 ei�t�1 ejt�1 ei�t¹ej0 � � � ei�0 and eit � � � ejt�1 � � � ei�t¹ are maximal diretedstrings, ei�k � � � ejk�1 � � � eik � kei�k � � � ejk � � � eik in A fork � 1;2;�; t � 1 and k > k�.The anonial map from N to M sends ejk from the top of N to dkejkin the sole of M (dk > k) with all dk but one equal to 0. In the stableategory all these maps belong to the same one-dimensional subspae ofHom�N;M�.Lemma 2. Let Q be a quiver of a sel�njetive speial biserial algebra, andlet x be a vertex of Q. There is only one arrow entering x if and only ifthere is only one arrow leaving x.Proof. If there are no arrows entering vertex x, then the simple moduleorresponding to x is injetive, and hene, it is projetive and there areno arrows leaving x, the ase with no arrows leaving x is similar. Assumethere is one arrow � entering some vertex and two arrows �;  leaving it.Then either �� � 0 or � � 0, say �� � 0. Then � > so�A�, hene � is



ON STABLY BISERIAL ALGEBRAS 13equal to some path starting from , whih an not happen, sine the idealof relations is admissible. The ase of one arrow leaving the vertex and twoarrow entering is similar. �Lemma 3. Let A be a sel�njetive speial biserial algebra and let M bea maximal system of orthogonal stable briks in mod-A. For M > M,dim Hom���1M;`Mi>MMi� B 2 and dim Hom�`Mi>M��1Mi;M� B 2.Proof. We will prove only dim Hom���1M;`Mi>MMi� B 2, the otherstatement follows from the duality. Indeed, A is sel�njetive speial bis-erial if and only if Aop is sel�njetive speial biserial. There is a dualityD � mod-A � mod-Aop, whih sends �A to ��1Aop and maximal systems oforthogonal stable briks in mod-A to maximal systems of orthogonal sta-ble briks in mod-Aop. Hene, if we prove dim Hom���1M;`Mi>MMi� B 2for any maximal system of orthogonal stable briks in mod-Aop, thendim Hom�`Mi>M��1Mi;M� B 2 holds for any maximal system of orthogo-nal stable briks in mod-A.Let M >M be a module of the formzl0 zm0zm0º zl1 zls zms¹zms
zls�1

where the �rst or the last direted substring may be trivial. The diagramof ��1M is formed by adding hooks zm�1 � � � zl0¹ � zl0 and zls�1 �zls�1º � �� zms�1 (ase i) or by deleting o-hooks zl0 � �� zm0 � zm0ºand zms¹ � zms � � � zls�1 (ase ii) or by adding a hook zm�1 � � �zl0¹ � zl0 and deleting a o-hook zms¹ � zms � � � zls�1 (ase iii).Note that after deleting a o-hook of the form zl0 � � � zm0 � zm0ºthe vertex zm0º stays intat. If M � radP for a projetive module P then��1M � P ~soP (ase iv).We are going to use the same notation for morphisms in mod-A and theorresponding morphisms in mod-A. There are anonial diagram mor-phisms M � ��1M indued by the intersetion of diagrams. In ase (i)there is a monomorphism f � M � ��1M , in ase (ii) there is an epimor-phism f � M � ��1M , in ase (iii) there is a omposition f � M � ��1Mof a monomorphism and an epimorphism. The map f is equal to zero in



14 M. A. ANTIPOV, A. O. ZVONAREVAthe stable ategory i� in ase (iii) module M is a maximal direted stringzl0 � � � zm0 (ase iii'). Note that in this last ase M an be a simplemodule orresponding to a vertex with one inoming and one outgoingarrow. In ase (iv) there are two morphisms f and f �, with images equalto two indeomposable summands of radP ~soP (if P is not uniserial),f � f � x 0 ( > k�) in mod-A. If P is uniserial, then f � 0.If there is a morphism g � ��1M �Mi, then it fators through Cone�f�,sine gf � 0 in mod-A by the de�nition of the maximal system of orthog-onal stable briks, even if Mi � M . Here Cone�f� denotes the one ofa morphism f in the triangulated struture on mod-A. Let us omputeCone�f�.Case (i): Sine f is a monomorphism, Cone�f� � Coker�f� � zm�1 �� � zl0¹ ` zls�1º � � � zms�1 is a sum of two maximal direted strings.(If the hook was trivial, then this is just a simple module.)Case (ii): Sine f is an epimorphism, Cone�f� � 
�1Ker�f� � 
�1�zl0 �� � zm0 ` zms � � � zls�1� � zm0º � � � zl1 � � � zl0¹ ` zls�1º � � �zls � � � zms¹ is a sum of two maximal direted strings (in the ase, wherezm0 orresponds to a vertex with one inoming and one outgoing arrowand the o-hook is trivial there still is a maximal direted string ending atzm0º and we are going to use the notation zm0º � � � zl1 � �� zl0¹ forit).Case (iii): The morphism f is a omposition of a monomorphism and anepimorphism, Cone�f� an be easily omputed by the otahedron axiomor by the de�nition of triangles in mod-A. As before, Cone�f� � zm�1 ��� zl0¹ ` zls�1º � � � zls � � � zms¹ is a sum of two maximal diretedstrings. In ase (iii') let M be of the form zms � zl0 � � � zls�1 , thenCone�f� � ��1M `
�1�M� � zm�1 � �� zl0¹ ` zls�1º � � � zms¹ � zl0¹.Case (iv): In this ase s � 0. Assume that the projetive module P isgiven by the relation zl0¹ � zl0 � � � zm0¹ � zm0 � zls�1º � zls�1 � � �zmsº � zms ( > k�), where zl0¹ � zls�1º and zm0 � zms . By the de�nitionof triangles in mod-A we get Cone�f� � zl0¹ � zl0 � � � zm0¹ ` zls�1º �zls�1 � � � zmsº is again a sum of two maximal direted strings. If P isuniserial, f � 0, then Cone�f� � P ~soP ` 
�1�radP � � P ~soP ` topP isa sum of two maximal direted strings, one of whih is trivial.Let Mi be a module of the form (1), (2) or (3) from Lemma 1, assumethere is a non-zero morphism ~g � Cone�f��Mi in mod-A. Without loss ofgenerality assume there is a morphism ~g � �zm�1 � � � zl0¹� � Mi. Thismorphism is non-zero only in the following ases:



ON STABLY BISERIAL ALGEBRAS 15Y ase (1) ej0 � zl0¹ and the omposition of the last arrow in ej0 �� � ei1 and the �rst arrow in zm�1 � �� zl0¹ is zero;Y ase (1) ejt � zl0¹ and the omposition of the last arrow in ejt �� � eit and the �rst arrow in zm�1 � �� zl0¹ is zero;Y ase (2) ei1 � zl0¹ and ei1 � � � ej1 is a substring of zm�1 � � �zl0¹;Y ase (2) eit � zl0¹ and eit � � � ejt�1 is a substring of zm�1 � � �zl0¹;Y ase (3) ej0 � zl0¹ and the omposition of the last arrow in ej0 �� � ei1 and the �rst arrow in zm�1 � �� zl0¹ is zero;Y ase (3) eit � zl0¹ and eit � � � ejt�1 is a substring of zm�1 � � �zl0¹.Only one of all these ases an our, and for only one Mi >M, otherwise,there would be a non-zero morphism between two objets fromM, whihis not identity in the ase they oinide. With the same ases for the othermaximal direted string we get dim Hom���1M;`Mi>MMi� B 2. �Remark 3. We have seen that dim Hom���1M;`Mi>MMi� B 2. Now weare going to list all the ases, where g � ��1M � Mi x 0 in mod-A, i.e.~gh x 0, where h � ��1M � Cone�f�. In the above notation:Y For Mi of the form (1) from Lemma 1 the map g x 0, if and onlyif one of the following holds (we will write out the ondition onlyfor one end of the diagram):X M is of the form (i), ej0 � zl0¹ and the omposition of the lastarrow in ej0 � � � ei1 and the �rst arrow in zm�1 � � � zl0¹ iszero, additionally, the subdiagram of ��1M starting from zl0 andoiniding with the subdiagram of 
�Mi� starting from ej0· endsin a deep of ��1M whih is not a deep of 
�Mi� or it ends on apeak of 
�Mi� whih is not a peak of ��1M .X M is of the form (iii), the ondition is the same as in theprevious ase.X M is of the form (iii'), ej0 � zl0¹ and the omposition of thelast arrow in ej0 � � � ei1 and the �rst arrow in zm�1 � �� zl0¹is zero.Y For Mi of the form (2) from Lemma 1 the map g x 0, if and onlyif one on the following holds (we will write out the ondition onlyfor one end of the diagram):



16 M. A. ANTIPOV, A. O. ZVONAREVAX M is of the form (i), ei1 � zl0¹ and ei1 � �� ej1 is a subdia-gram of zm�1 � � � zl0¹.X M is of the form (ii) ei1 � zl0¹ and ei1 � � � ej1 is a subdia-gram of zm0º � zm�1 � �zl1�� zl0¹, zl1 belongs to ei1 � �� ej1 ,if zl1 � ej1 the subdiagram of ��1M starting from zl1 and oinid-ing with the subdiagram of 
�Mi� starting from ej1 (going in thediretion of ej2) ends in a deep of ��1M whih is not a deep of
�Mi� or it ends on a peak of 
�Mi� whih is not a peak of ��1M .X M is of the form (iii), ondition here oinides with the pre-vious ase.X M is of the form (iii') ei1 � zl0¹ and ei1 � � � ej1 is asubdiagram of zm�1 � �zl1� � zl0¹.X M is of the form (iv) ei1 � zl0¹.Y For Mi of the form (3) from Lemma 1 ondition for g to be non-zero an be easily obtained as a ombination of previous ases.In all other ases the omposition is either zero or fators through a pro-jetive module.Corollary 1. Let A be a sel�njetive speial biserial algebra, let B bea sel�njetive algebra and let F � mod-B � mod-A be an equivalene ofategories. Then in the quiver of B there are at most two inoming and atmost two outgoing arrows at eah vertex.Proof. LetM � �M1;�;Mn� be the image of the set of simple B-modulesunder F . Let S;Si be simple B-modules sent to M;Mi >M. By Auslanderformula Ext1�S;Si� � DHom���1Si; S� and Ext1�Si; S��DHom���1S;Si�,but Hom���1Si; S��Hom���1Mi;M� and Hom���1S;Si��Hom���1M;Mi�.The number of arrows from the vertex orresponding to S to the vertexorresponding to Si oinides with dim Ext1�S;Si�, thus by the previouslemma there are at most tow inoming and at most two outgoing arrowsat the vertex orresponding to S. �De�nition 5. Let N be an indeomposable s-projetive module with respetto a maximal system of orthogonal stable briksM. An A-module R is saidto be the s-radial of N (we denote R by s-radN) if the following onditionsare satis�ed:(1) R does not ontain any projetive diret summands.(2) There is a projetive A-module P and a right minimal almost splitmorphism R` P �N in mod-A, here P may be zero.



ON STABLY BISERIAL ALGEBRAS 17Lemma 4 (see Lemma 6.6 [14℄). Let A be a sel�njetive speial biserial al-gebra and letM be a maximal system of orthogonal stable briks in mod-A.Let M >M and let N be an indeomposable s-projetive A-module suhthat s-top�N� �M . Then s-rad�N� � R1 `R2, where R1;R2 are indeom-posable, in the notation of Lemma 1, R1 and R2 an be omputed applyingoperations l��� and ���r to the string orresponding to N :ase (1): R1 and R2 are of the formej0¸ ei�1 ej1 ei�2 ei�t ejt ei�t�1ej0ei�0 ei�1 ej1 ei�2 ei�t ejt·
ase (2): R1 and R2 are of the form

ei�1º
ej1 ei�2 ei�t�1

ejt�1 ei�t¹ei�1
ei1·
where ei1 � ei1· � � � ei�1 � ei1 � � � ej1 � � � ei�1º � ei�1 in A� > k��;
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ei�1º

ej1 ei�2 ei�t�1
ejt�1 ei�t¹ei�t

eit¸
where eit � � � ejt�1 � � � ei�t¹ � ei�t � eit � eit¸ � � � ei�t in A� > k��;ase (3): R1 and R2 are of the formej0¸ ei�1 ei�t�1 ejt�1 ei�t¹ej0ei�0 ei�1 ei�t�1

ejt�1 ei�t¹ei�t
eit¸

where eit � � � ejt�1 � � � ei�t¹ � ei�t � eit � eit¸ � � � ei�t in A� > k��. Note that R1 may be zero.Corollary 2. Let mod-B � mod-A be an equivalene of ategories, whereB is sel�njetive and A is sel�njetive speial biserial. LetM��M1; :::;Mn�be the image of the set of simple B-modules and let �N1;�;Nn� be the im-age of the orresponding modules of the form P ~soP , where P is indeom-posable projetive. Then s-rad�Ni� is the image of the module of the formradP ~soP . Moreover, indeomposable summands of s-rad�Ni� have sim-ple s-top, that is, if s-rad�Ni� � R1`R2, where R1;R2 are indeomposable,then dim Hom�Rj ;`Mi>MMi� � 1 for non-zero Rj .Proof. Note that for an indeomposable projetive module P ,dim top�radP ~soP � orresponds to the number of arrows going out of the



ON STABLY BISERIAL ALGEBRAS 19vertex orresponding to P . By Corollary 1 there are at most two arrowsgoing out of the vertex orresponding to P ; thus, if radP ~soP has two non-zero non-projetive summands ~R1 and ~R2, then both R1 and R2 are non-zero, hene dim Hom� ~Rj ;`Si>SSi� � 1 and dim Hom�Rj ;`Mi>MMi� � 1.Assume now that for some N the module s-rad�N� � R is indeom-posable. By the desription of the Auslander{Reiten triangles in mod-A,the diagram of N is a maximal direted string (whih may or may notoinide with P ~soP for a uniserial projetive module P ). Then, M �s-top�N� is a maximal direted string or a simple module (in ase P ~soP ).The Aop-module DM is also a maximal direted string or a simple mod-ule. By arguments analogous to the proof of Lemma 3 and Remark 3,dim Hom���1DM;`Mi>MDMi� � 1. Note that, if DM is simple orre-sponding to a vertex with one inoming and one outgoing arrow the resultfollows from Lemma 2. Asdim Hom���1DM; ?Mi>MDMi� � 1 � dim Hom���1 ?Mi>MMi;M�;there is one arrow going out of the vertex orresponding to P anddim Hom�R; ?Mi>MMi� � 1: �In the notation of Corollary 2, for an indeomposable projetive B-module P with top�P � � S, the dimension of top�rad�P �� orresponds tothe dimension of Ext1�S;`Si�, where `Si is the sum of representatives ofiso-lasses of simple B-modules. If Ext1�S;Si� x 0, then Si is a summand oftop�rad�P ��. Sine Ext1�S;Si� � Hom���1Si; S�, using the equivalene ofstable ategories, s-top�R� orresponds to Hom���1Mi;M�. The followinglemma follows easily from Remark 3. (The roles of M and Mi are swithed.)Lemma 5 (see Lemma 6.9 [14℄). Let A be a sel�njetive speial biserial al-gebra and letM be a maximal system of orthogonal stable briks in mod-A,assume additionally, that M is an image of the set of simple B-modulesunder some stable equivalene, where B is sel�jetive. Let M >M be asin Lemma 1. Moreover, let N be an indeomposable s-projetive A-modulesuh that s-top�N� �M , in the notation of Lemma 4, s-rad�N� � R1`R2,then s-top�R1� and s-top�R2� are of the following form:ase (1): s-top�R1� is



20 M. A. ANTIPOV, A. O. ZVONAREVAej0¸ zm0 zl1 zls zms zls�1
where either the diagrams of s-top�R1� and R1 oinide or the subdiagramof s-top�R1� starting from ej0¸ and oiniding with the subdiagram of R1starting from ej0¸ ends on a deep of s-top�R1� whih is not a deep of R1or it ends on a peak of R1 whih is not a peak of s-top�R1� (note that thisguarantees the existene of a non-zero morphism from R1 to s-top�R1�whih sends ej0¸ to ej0¸ and is non-zero in the stable ategory; note alsothat this intersetion an onsist of one vertex);s-top�R2� isejt· zm0 zl1 zls zms zls�1
where either the diagrams of s-top�R2� and R2 oinide or the subdiagramof s-top�R2� starting from ejt· and oiniding with the subdiagram of R2starting from ejt· ends on a deep of s-top�R2� whih is not a deep of R2or it ends on a peak of R2 whih is not a peak of s-top�R2�;ase (2): s-top�R1� isei1· zm0 zl1 zls zms zls�1
where either the diagrams of s-top�R1� and R1 oinide or the subdiagramof s-top�R1� starting from ei1· and oiniding with the subdiagram of R1starting from ei1· ends on a deep of s-top�R1�, whih is not a deep of R1or it ends on a peak of R1 whih is not a peak of s-top�R1�;s-top�R2� is
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where either the diagrams of s-top�R2� and R2 oinide or the subdiagramof s-top�R2� starting from eit¸ and oiniding with the subdiagram of R2starting from eit¸ ends on a deep of s-top�R2� whih is not a deep of R2or it ends on a peak of R2 whih is not a peak of s-top�R2�;ase (3): R1 is analogous to R1 from ase (1); R2 is analogous to R2from ase (2).We are going to use the following riterion to prove that a sel�njetivealgebra stably equivalent to a speial biserial algebra is stably biserial. Herewe ite only the part of the result that we need. Note that this propositionwas reproved in [5℄:Proposition 3 (Proposition 2.7 [14℄, Proposition 7.8 [5℄). If a sel�njetivealgebra B satis�es the following onditions, then B is Morita equivalent toan algebra, that satis�es onditions (a) and () from De�nition 1.(a) For eah indeomposable projetive module P , we haverad�P �~so�P � � X � `X ��;(where X � x 0� suh that top�X ��, top�X ���, so�X ��, so�X ��� are simplemodules (or zero, in ase X �� is zero).(b) Let X � X � or X ��, and let Q be the projetive over of X. ThenX is non-projetive and we denote by p the epimorphism Q~so�Q� � X.Suppose that rad�Q�~so�Q� � Y1`Y2, where Y1 and Y2 are indeomposablemodules. Then, for irreduible morphisms w1 � Y1 � Q~so�Q�, w2 � Y2 �Q~so�Q�, pw1 or pw2 fators through a projetive module.To use the riterion above we need the following lemma.Lemma 6 (see Proposition 7.1 [14℄). Let A be sel�njetive speial biserial,letM be a maximal system of orthogonal stable briks whih is an imageof the set of simple B-modules under some stable equivalene, where B issel�njetive. Let N be s-projetive andM >M be s-top�N�. For s-rad�N� �R1`R2, where R1;R2 are indeomposable, let s-top�Ri� � Y >M and let Qbe an indeomposable s-projetive suh that s-top�Q� � Y , let L1`L2 be thes-radial of Q, where L1;L2 are indeomposable. There exist f � Q� Ri and



22 M. A. ANTIPOV, A. O. ZVONAREVAh � Ri � Y with hf x 0 suh that for irreduible morphisms g1 � L1 � Q,g2 � L2 � Q, we have fg1 � 0 or fg2 � 0.Proof. By Lemma 5 in all the ases Ri and s-top�Ri� start from the samevertex and their intersetion ends on a deep of s-top�Ri� whih is not adeep of Ri, or it ends on a peak of Ri whih is not a peak of s-top�Ri� or Riand s-top�Ri� oinide. That guarantees the existene of a morphism fromRi to s-top�Ri�, whih sends this intersetion to itself and this morphismis non-zero in mod-A, let us denote this morphism by h.Without loss of generality we an onsider the ase (1)-R1. In eah ases-top�R1� is itself a module of the form (1)-(3) from Lemma 1.If s-top�R1� has the form (1), then there is a non-zero morphism ffrom Q to R1, whose image onsists only of ej0¸. There is a summand L1of s-rad�Q� whih is formed by deleting the hook starting with ej0¸, learlyfg1 � 0 and hf x 0. If s-top�R1� has the form (2), then there is a non-zeromorphism f from Q to R1, indued by zm0 � ei�1 . There is a summandL1 of s-rad�Q� whih is formed by adding a o-hook starting from ej�0¸,the omposition fg1 fators through the projetive module with the toporresponding to ej0¸, learly hf x 0. The ase when s-top�R1� has theform (3) is similar. �Theorem 1 (see Theorem 7.3 [14℄). Let A be a sel�njetive speial biserialk-algebra not isomorphi to the Nakayama algebra with rad2 � 0. If B is abasi algebra stably equivalent to A, then B is stably biserial.Proof. Let � � mod-B � mod-A be an equivalene of ategories. Sine Ais a sel�njetive speial biserial k-algebra not isomorphi to the Nakayamaalgebra with rad2 � 0 we an assume that B is sel�njetive. Indeed, sineover A for any Auslander{Reiten sequene 0 � M f�� N ` P � L � 0,where P is projetive and N is not projetive, we have f x 0, then by[7, Proposition 2.3℄ 0 � ��1�M� � ��1�N� ` Q � ��1�L� � 0 is theAuslander{Reiten sequene for some projetive Q. Hene, � and ��1 arede�ned for all not projetive modules, so B is sel�njetive.Let B be a sel�njetive algebra whih is not a loal Nakayama alge-bra. Then by Proposition 2 none of the simple B-modules �Si�i�1;:::n andnone of the modules of the form P ~soP for an indeomposable projetiveB-module P are of � -period 1. Thus ���Si��i�1;:::;n � M is a maximalsystem of orthogonal stable briks over A. As ���Pi~soPi��i�1;:::;n is theset of s-projetive modules with respet toM, � sends rad�Pi~soPi� to



ON STABLY BISERIAL ALGEBRAS 23s-rad���Pi~soPi��. Corollary 2 implies that rad�Pi~soPi� is a sum of atmost two modules with simple top.The duality DB � mod-B �mod-Bop sends simple B-modules to simpleBop-modules, modules of the form rad�Pi~soPi� to modules of the sameform, top to sole and sole to top. The equivalene � indues an equiva-lene mod-Bop � mod-Aop. Sine Aop is also sel�njetive speial biserial,rad�Pi~soPi� is a sum of at most two modules with simple top. Hene,the B-module rad�Pi�~so�Pi� is a sum of at most two modules with sim-ple sole. Thus, the ondition (a) of Proposition 3 holds. These onditionsorrespond to the fat that there are at most two inoming and at mosttwo outgoing arrows in the quiver of B.In the notations of Proposition 3, by Lemma 6 there exists p � Q~soQ�X suh that ondition (b) holds. Let us prove that ondition (b) holds forany p� � Q~soQ�X . Let us denote by �X � Q� X the projetive over ofX and by � � Q� Q~soQ the projetive over of Q~soQ. By assumptionX has a simple top, thus without loss of generality we an assume that theimage of p�� � p�p� belongs to rad�X�. The morphism p�� an be lifted to amorphism ~p � Q� Q between the projetive overs (�X ~p � p���). The imageof ~p belongs to rad�Q�; hene ~p fators through Q~so�Q� and ~p � h� forsome h. Thus, �Xh� � p��� and sine � is an epimorphism �Xh � p��. Weget that p�� fators through a projetive, and hene is zero in the stableategory, p � p� and ondition (b) of Proposition 3 holds. This onditionorrespond to ondition () in De�nition 1.It is lear that the onditions (b) and () of De�nition 1 are dual to eahother. By the previous paragraph ondition (b) of Proposition 3 holds forBop, and thus ondition () in De�nition 1 holds for Bop; thus ondition(b) in De�nition 1 holds for B and B is stably biserial. �

§4. Auslander{Reiten onjetureIn this setion we are going to prove the Auslander{Reiten onjeturefor speial biserial algebras.Let B be a stably biserial algebra. It is lear that B~so�B� is a string al-gebra, and hene the lassi�ation of indeomposable non-projetive mod-ules over B oinides with the usual lassi�ation using string and bandmodules. Then by [6, Proposition 4.5℄ all Auslander{Reiten sequenes overB and B~so�B� not ending with a B-module of the form P ~so�P � o-inide. Hene, if there is a system of orthogonal stable briksM over B,then all the modules inM are string modules.



24 M. A. ANTIPOV, A. O. ZVONAREVALemma 7 (ompare to Lemma 4.1 [14℄). Let A � kQ~I be a stably biserialalgebra and letM � �M1; : : : ;Mk� be a system of orthogonal stable briks.Then every simple A-module an appear in the multiset of endpoints ofdiagrams orresponding to Mi >M at most twie.Proof. Let us �x some v > Q0. We will onsider the simple module orre-sponding to v and diagrams of Mi >M ending at v, that is Mi � 1�l,s�Mi� � v or e�Mi� � v. Suppose that some arrow � inident to v ourstwie at the endpoint v of some diagrams Mi1 � 1�l;Mi2 � d1�dt forsome 1 B i1; i2 B k in the same manner. Taking the opposite strings M�1ij ifneessary, we an assume that either s�Mij� � v, � � 1 � d1 or s�Mij� � v,� � �11 � d�11 . In both ases, there is a non-zero morphism f � Mi1 �Mi2or f � Mi2 � Mi1 , orresponding to the ommon part of the diagramsMi1 ;Mi2 . The morphism f is non-zero in mod-B, this is a ontraditionto the de�nition of a system of orthogonal briks.Now we are to show that at most two di�erent arrows, inident to v anour at the endpoint v of the diagrams of Mi >M. If there is only oneinoming or outgoing arrow at v (and, onsequently, only one outgoing orinoming arrow at v, see Lemma 2), there is nothing to prove. So supposethat there are �1; �2; �1; �2 with s��1� � s��2� � e��1� � e��2� � v andonsider two ases (if there are loops at the vertex v, some arrows mayoinide): ��i�j�i;j�1;2 ~b so�A� and ��i�j�i;j�1;2 b so�A�.Y �1
''PPPPPP YYv �1 77nnnnnn �2

''PPPPPPY �2 77nnnnnn YCase 1. Without loss of generality we an assume �1�2 ¶ so�A�. In thisase, by stably biserial ondition, we have �1�1 > so�A�; �2�2 > so�A�.Also in this ase we have �2�1 x 0. Indeed, if �2�1 � 0, then 0 x �2�2 >so�A� or �2 > so�A�, whih is impossible, hene if we onsider a maximalpath q with q�1�2 x 0 (q is of positive length, sine �1�2 ¶ so�A�) wehave �2�2 � lq�1�2 for some l > k�. As q�1�1 > q � so�A� � 0, we have�2 � lq�1 > so�A�, a ontradition, and thus �2�1 x 0.Let us prove that at least one of ��11 ; �1 does not our at the endpointof some Mi >M, and at least one of ��12 ; �2 does not our at the endpointof some Mi >M { that is all we need. Take j > �1;2� and assume thatboth ��1j ; �j our at the endpoint of some M;N >M.



ON STABLY BISERIAL ALGEBRAS 25Let M be a module with the diagram starting from �i (1 � �i), x >Mbe an element orresponding to v, that is xev � x;x�i x 0; x�3�i � 0, notethat x is non-zero in the top of M . Let N be a module with diagramstarting with ��1i (d1 � ��1i ), y > N is an element orresponding to v.Note that y belongs to the sole of N . Let f � M � N be the morphismwith f�x� � y, whih is zero in mod-�A� by the de�nition of a system oforthogonal stable briks. We laim that in this ase �N � N { this alsoontradits the de�nition of orthogonal stable briks.xM � N � y r�i �i p
We prove the latter laim by indution on the number of maximal diretedsubstrings of N . Let p�i, where p is a path, orrespond to the �rst maxi-mal direted substring of N . Clearly p�i ¶ so�A�, as N does not ontainprojetive summands, and therefore p�i�s x 0 for some s. We an assumethat s x i. Indeed, if s � i, then �i�i > so�A� implies p � es��i� and in thisase p�i�3�i x 0 as well.Let t � s�p�. The projetive over of N is of the form �g1; g2� � P �Pt ` P � � N where g1�et� � r is the element of the basis orresponding tothe �rst peak of N (so we have rp�i � y) and y ¶ Im�g2�. If f � 0 > mod-A,we have f � gh � g1h1 � g2h2 for some h � � h1h2 � � M � Pt ` P �. Asg1�p�i� � y we an set h�x� � �p�i � z1; z2�, where �z1; z2� > Ker�g�. Byonstrution of the projetive over, z1 is a linear ombination of pathsnot equal to p�i or subpaths of p�i. Now �0;0� � h�x�3�i� � �p�i�3�i �z1�3�i; z2�3�i�, and therefore 0 x p�i�3�i � kp1�3�i for some path p1 x p�i(k > k�). The ase p1 � p�1�i is impossible (in this ase either both pathsp�i�3�i; p1�3�i have lengths at least 3 and ontain subpaths of the formÆ; � { a ontradition, or �i�3�i is equal to a longer path ending with�i�3�i, whih is also impossible), therefore, as �3�i�3�i > so�A�, we havep1 � �3�i. Note, that we get p�i�3�i > so�A�. Note that p x �3�ip2 for anypath p2 (else p1 � �3�i is a subpath of p�i).Now we an prove the base of our indution. The previous paragraphshows that s�p� � s��3�i�. If N is a direted string, orresponding to amaximal path p�i then ��1�N� is formed by adding a hook and deleting



26 M. A. ANTIPOV, A. O. ZVONAREVAa o-hook, as e��i� � e��3�i�, this hook is a maximal direted string,orresponding to p�i. We see that ��1�N� � N , as desired.Note that we an ompute ��1�N� in the usual way, sine N is notisomorphi to radP for some projetive module P .Now suppose that the diagram of N ontains more than one maximaldireted substrings. As 0 � f�x�i� � g�p�i�i � z1�i; z2�i� � g�z1�i; z2�i�we have g1�z1�i� � 0 (sine Im�g1��i 9 Im�g2��i � 0, as Im�g1�9 Im�g2� >so�N�), and, as p�i�3�i > so�Pt�, we have g1�p�i�3�i� � 0. This impliesthat g1��3�i�i� � 0, g1��3�i�3�i� � 0, sine �3�i�3�i > so�A�, and henethe seond maximal direted substring of the diagram of N is an arrow �3�i(g1��3�i� � g1�z1� > so�N�). Consider a module N � B N , orrespondingto the subdiagram, ontaining all but �rst two direted substrings of N(deleting a hook of N). Then we have Im�g2� b N � and g2h�x� � g2�z2� ��g1�z1� � lr�3�i for some l > k� (sine 0 x g1��3�i� � g1�z1�). This meansthat the module N � and the morphism f � � g2h is of the same form asN and f (in partiular, N � begins with ��1i as well). By indution, thestring orresponding to N is of the form ��1i p�1�3�i��1i p�1�3�i���1i p�1,and hene N has � -period 1.Case 2. ��i�j� b so�A�. For eah i, �i ¶ so�A�, so suppose that�i�3�i x 0 (note that we an hoose di�erent j1; j2 for �1; �2 with �1�j1 x 0,�2�j2 x 0, sine in the other ase we have �1�j � �2�j � 0 for some j and�j > so�A�, whih is impossible). Let us prove, as above (and with abovenotation) that �j and ��1i annot our as �rst arrows for some M , Nby heking that the orresponding morphism f is non-zero in mod-A. Asabove, f�x�3�i� � 0 implies that there is a path p x �i and l > k� suhthat �i�3�i � lp�3�i. As �i�3�i; �3�i�3�i > so�A�, we obtain that p � �3�i(otherwise a sole path would be a subpath of a longer path). This impliesthat s��1� � s��2�.Now we have that all direted strings ontaining �i has length 1 and aremaximal direted strings, and therefore N is of the form ��1i �3�i��1i �3�i : : : .If the length of this word is odd, then ��N� � N (deleting a o-hook andadding a hook doesn't hange N), ontradition. In the ase of even length(i.e. if dim�N� � 2n � 1 is odd) let y1; : : : ; yn > N be the elements of thediagram of N orresponding to peaks. Then projetive over of N is of theform g � �es��i�A�n � N , g�zk� � yk for k � 1; : : : ; n, where zk is the gener-ator of the orresponding opy of es��i�A and Ker�g� � `�zk�3�i�zk�1�i�e.Now suppose that f � gh for some h. Then h�x� � z1�i �Pn�1k�1 lk�zk�3�i �



ON STABLY BISERIAL ALGEBRAS 27zk�1�i�. Multiplying this by �3�i, we obtain0 � h�x�3�i� � n�1Qk�1 zk�lk�3�i�3�i � lk�1�i�3�i� � ln�1zn�i�3�i;where l0 � �1. As all oeÆients in the sum are to be zero, we obtainonsequently that li x 0 for all i � 0; : : : n � 1, therefore the last summandis non-zero, ontradition. �Reall that a simple non-projetive, non-injetive module S is alled anode if the Auslander{Reiten sequene starting at S has the form0� S � P � ��1S � 0;where P is projetive. By the results of [11℄, any algebra with nodes is sta-bly equivalent to an algebra without nodes. Let A be an algebra with nodesS1;�; Sk, S � `ki�1Si. Let a be the trae of S in A, i.e. �h>Hom�S;A�Im�h�.Note that a is a two-sided ideal of A. Let b be a right annihilator of a, notethat A~b is semisimple and a is an A~a-A~b bimodule. Then the matrix al-gebra T̂A � �A~a a0 A~b� has no nodes and it is stably equivalent to A. Theonstrution of T̂A replaes every node in the quiver of A by two simplemodules: a sink and a soure. It is lear, that the number of non-projetivesimple modules is preserved under this stable equivalene.Theorem 2 (ompare to Theorem 0.1 [14℄). Let A, B be two �nite di-mensional algebras suh that mod-A � mod-B and A is speial biserial.Then the number of isomorphism lasses of non-projetive simple modulesover A and B oinides.Proof. Without loss of generality we an assume that A;B have no semi-simple summands. First, let us prove the statement for sel�njetive Aand B. If one of the algebras (and hene the other as well) has isolatedverties in the Auslander{Reiten quiver of the stable ategory, then theyorrespond to P ~soP or to radP for some projetive module P of length 2.Hene A and B have as summands Nakayama algebras with rad2 � 0, thenumber of simple modules over these algebras is the number of isolatedverties in the Auslander{Reiten quiver of the stable ategory, hene it isthe same for A;B. From now on we an assume, that A;B do not havea Nakayama algebra with rad2 � 0 as a summand. By Theorem 1, B isstably biserial. LetM � �M1; : : : ;Mk� be the images of simple A-modulesunder equivalene F � mod-A � mod-B. Then M is a maximal system



28 M. A. ANTIPOV, A. O. ZVONAREVAof orthogonal stable briks. If some Mi is a simple module, then it annot our as an endpoint of any other diagram in M. The diagram ofeah non-simple Mi has two endpoints, labelled by simple B-modules S1iand S2i . Suppose that the number of simple B-modules is less than k,then Sj1i1 � Sj2i2 � Sj3i3 for some il; jl. This ontradits the previous lemma.The same argument for the quasi-inverse ~F � mod-B � mod-A shows thatthe number of simple B-modules is less or equal to the number of simpleA-modules and we are done.Let us now onsider arbitrary A;B, where A is speial biserial. If A or Bhas nodes, we an replae it by the matrix algebra T̂A or T̂B , respetively.If A is speial biserial, then so is T̂A, so we an assume that A;B have nonodes. To algebras A;B one an assoiate sel�njetive algebras �A; �Bin the following way: let PA be the set of isolasses of projetive-injetiveA-modules that remain projetive-injetive under the ation of any powerof the Nakayama funtor �k. De�ne �A �� End�`P >PAP �. If A is speialbiserial, then �A is sel�njetive speial biserial. By [12℄ (sine A;B haveno nodes) the algebras �A; �B are stably equivalent, and hene by theprevious paragraph they have the same number of simple modules. By [12℄A;B have the same number of isomorphism lasses of non-projetive simplemodules. �

§5. Symmetri stably biserial algebrasReall the standard desription of a symmetri speial biserial algebra[19℄. We will assume that all quivers are onneted. Consider the followingdata:(1) A quiver Q suh that every vertex has two inoming and two out-going arrows or one inoming and one outgoing arrow.(2) A permutation � on Q1 with e��� � s������ for all � > Q1(3) A funtion m � C���� N, where C��� is the set of yles of �.We are going to denote the yle ontaining � by `�e� and its order byS`�e�S. Now onsider the ideal I b kQ generated by the following elements:(1) �� for all �;� > Q1, � x ����;(2) �������2��� : : : �S`�e�S�1����m�`�e����������2��� : : : �S`�e�S�1����m�`�e�� for all �;� > Q1 with s��� �s���;



ON STABLY BISERIAL ALGEBRAS 29(3) �������2��� : : : �S`�e�S�1����m�`�e��� and��1����������2��� : : : �S`�e�S�1����m�`�e�� for all � > Q1 suhthat s��� has only one inoming and one outgoing arrow.Then kQ~I is a symmetri speial biserial algebra (SSB-algebra), andeah SSB-algebra an be desribed uniquely in this way, up to obviousisomorphisms. Note that one of the relations from (3) is redundant.The main aim of this setion is to show that any symmetri stablybiserial algebra is in a sense a deformation of some SSB-algebra. To obtainthis, we are going to de�ne the permutation � and the multipliities of�-yles for the algebras from this lass.From now on let A � kQ~I be an arbitrary stably biserial algebra, withI admissible. Let s�A� � so�A� � �0�.Case I. For � > Q1 we put ���� � � if �� ¶ so�A�, � > Q1. The de�nitionof a stably biserial algebra implies that we have at most one suh arrow.If �rad�A� b so�A� we are to de�ne ���� a bit more arefully.Note that �rad�A� � 0 only for the ase A � k���~�2 of the algebrawith one vertex and one loop �, for that ase ���� � �, we are not goingto onsider this ase from here on. We an assume �rad�A� x 0 for any� > Q1. Then (if �rad�A� b so�A�) we have the following ases:Case II. There exist �1; �2 > Q1 (�1 x �2) with ��i > s�A� (i � 1;2).If SQ0S � 1 and Q1 onsists of two loops �;�, then �2; �� > s�A� implies�� > s�A�. If �2 � 0 set ���� � �;���� � �, if �2 > s�A� we an hose���� � �;���� � �. If �2 ¶ so�A�, set ���� � �;���� � �. From now onSQ0S A 1.The arrow � isn't a loop { otherwise �1; �2 are loops in the same vertexand we have SQ0S � 1. Due to the symmetry, we have e��i� � s���; i � 1;2.If SQ0S A 2 there exists a unique  > Q1 with s�� � s���; e�� x e���and there exists a unique Æ > Q1 with e�Æ� � e���; s�Æ� x s���. Then wehave Æ�i ¶ so�A� and �i ¶ so�A� for some i and Æ�3�i � 0 and �3�i � 0(as Æ�3�i and �3�i belong to so�A� by stably biserial ondition and arenot yles). Then ��Æ� � �i; ���i� �  as de�ned in Case I, and we an put���� � �3�i; ���3�i� � �.Now onsider the ase SQ0S � 2. Due to the symmetry �1�;�2� x 0 andlearly �1�;�2� > s�A�, �1� � �2�,  > k�. By symmetry ��1 � ��2as well. As �1 � �2 ¶ s�A� (as a ombination of non-losed paths), there



30 M. A. ANTIPOV, A. O. ZVONAREVAexists �2 > Q1 with �1�2 � �2�2 x 0. Then by stably biserial ondition�i�2 > so�A� for some i, and hene �2�i > so�A� for the same i. If�i�2 � 0, then �2�i � 0 and we an set ���i� � �, ���� � �i, ���3�i� � �2,���2� � �3�i and �3�i�2 x 0; �2�3�i x 0. If �i�2 x 0 but �3�i�2 ¶ so�A�,then �2�3�i ¶ so�A� and we an set ���i� � �, ���� � �i, ���3�i� � �2,���� � �3�i and �3�i�2 x 0; �2�3�i x 0. If �3�i�2 > s�A�, �i�2 > s�A�,then we an hoose � arbitrary, e.g. ���i� � �, ���� � �i, ���3�i� � �2,���2� � �3�i. The remaining ase is when �3�i�2 � 0, then �2�3�i � 0 andwe set ���3�i� � �, ���� � �3�i, ���i� � �2, ���2� � �i.Case III: Let � > Q1 be suh that �� x 0 for a unique arrow � and�� > so�A�. Consider � for  x �, if � � 0; we an set ���� � �. If� x 0, then there exist a path p and  > k� suh that p� � �� � 0, sothere is �2 suh that �p����2 x 0. Sine ��2 � 0 by assumption p�2 x 0,so p is a path of length 0 and we an set ���� � �, ��� � �2.Now � is de�ned on all Q1 and learly it is injetive (��x� x ��y� forx x y by stably biserial ondition if both x; y belong to ase I, otherwise��x� x ��y� by onstrution). Then, indeed, � is a permutation and it hasthe following properties:(1) ����� x 0;(2) If � x ����, then �� > so�A�.For any � > Q1 let `�e� � �� � �1; �2; : : : ; �n��. We de�ne �i for allnatural i by the ondition �i�n� � �i and �nd maximal integer k� with�1�2 : : : �k� x 0. Note that k� A 1 by �1�, and therefore �1�2 : : : �k�� � 0for � x �k��1 as well (by �2�), i.e. p� � �1�2 : : : �k� > s�A�. Atuallyp� > es���Aes��� by symmetry. Let us de�ne s��� � �1 : : : �k� .Lemma 8.1. For eah � > Q1 we have k� � n�m� for some integer m�.2. If �;� > Q1 lie on the ommon yle of �, then k� � k� (andm� �m�).3. If alpha, � > Q1 with s��� � s���, then s��� � �;� � s��� forsome �;� > k�.We say that m� is the multipliity of the yle `�e�.Proof. Put k � k�.1. Sine �1�2�3 : : : �k > s�A�, we have �2�3 : : : �k�1 x 0. If k A 2then �k�1 ¶ so�A�. Therefore, by �2�, �k�1 � �1 as required. If k � 2,i.e. �1�2 > s�A�, then � belongs to Case II or to Case III and we haven� � 2 � k�.



ON STABLY BISERIAL ALGEBRAS 312. This follows from 1 and from the fat that a sole path annot be asubpath of another sole path.3. It follows from the fat that so�es���A� is one-dimensional. �Let us all a non-zero path �1 : : : �k admissible if ���i� � �i�1 for all i.In partiular, for any v > Q0 we have an admissible path s��� > s�evA�with s��� � ev. So it follows from �2� that any non-zero non-admissiblepath is of length 2 and is equal (in A) to an admissible sole path: � �k � s��� for some � > Q1; k > k�. Suh an equality we all a sole relation.Note that replaing in any sole relation right-hand side by 0 we obtain astandard desription of SSB-algebra (up to oeÆients in the relations ofthe form s��� � k � s���, k > k� but these oeÆients an be eliminatedfor symmetri algebras).Lemma 9. In the notations of the previous lemma, we an assume that�;� � 1 for all �;� > Q1 with s��� � s��� (i.e. s��� � s���).Proof. Let 'A�x� � `x;1e be indued by the symmetri form `�;�e onA, put � � 'A�s����. As the form is symmetri, for �;� belonging tothe same �-orbit � � �, it follows that �;� � 1 for suh �;�. Now let��1; : : : ; �k� be a set of representatives of �-orbits. Put ��i � �ii , wherem�ii � �i . Then, replaing �i by ��i, 1 B i B k, for any new sole paths���� we obtain 'A�s����� � 'A�s����~m�ii � 1, where i is de�ned by�i > `�e�. Therefore, we obtain that if p1 � kp2 for sole paths and k x 0,then k � 1 as required. Clearly we have not hanged any relations exeptfor, possibly, hanging non-zero oeÆients in sole relations. �Lemma 10. Let A � kQ~I be a stably biserial algebra with permutation�, multipliities m and ideal I generated by the following relations:(1) s��� � s��� for eah ��;�� with s��� � s���.(2) s����, ��1���s��� for eah vertex s��� with one inoming andone outgoing arrow.(3) � � l�;s��� for all � > Q1,  x ���� (l�; > k).Consider the ideal I1 obtained from I by replaing generators of the form� � l�;s��� by � for hark x 2. If hark � 2 we make this replaementonly in the ases with � x . Then kQ~I1 � A.Proof. We are going to prove this lemma by indution on the number ofnon-zero l�;. Suppose that l�0;0 x 0. Put s��0� � �0p. Then we have�0�0 � l�0;0p� � 0. Let us onsider two ases:



32 M. A. ANTIPOV, A. O. ZVONAREVA1. Suppose that �0 x 0. Let us show that the substitution 0 � 1,1 � 0� l�0;0p dereases the number of non-zero l�; (preserving all otherrelations).Looking at the values of 'A we get'A�0�0� � 'A��00� � 'A�l�0;0�0p� � 'A�l�0;0p�0� x 0:Let us onsider two ases.Case I. ��0� x �0. Then 0�0 > s�A�, this implies that 0�0 � l�0;0p�0.So in this ase we have �01 � 0 and also 1�0 � 0.If ��1�0�p � p��0� � 0, then the substitution 0 � 1 learly does nothange any other relations and we are done.If ��1�0�p x 0 or p��0� x 0 then p is an arrow with s�p� � s�0�,e�p� � e�0� and ��1�0� is an arrow with s���1�0�� � s��0�, e���1�0�� �e��0� (as ��1�0�p > so�A�) and we have SQ0S � 2 or SQ0S � 1. If SQ0S � 2,then learly, ��1�0�p x 0 implies p��0� x 0 and visa versa. Then thesubstitution of 0 for 1 does not reate any new non-zero l�; . If SQ0S � 1and Q has two loops �;�, with ���� � �;���� � �, and say � plays the roleof 0, then �� � � � l�;�p satis�es the desired relations. A oeÆient anappear in the relation s��� �  � s���, but we an make it equal to 1 asbefore. Thus, in this ase we have hanged exatly two relations, obtainingl�0;1 � l1;�0 � 0.Case II. ��0� � �0. Then we have 0�0 ¶ s�A� (else we have ���0� � 0as well). Then 1�0 � 0�0�l�0;0p�0, with l�0;0p�0 > so�A�, and thereforeany other path, ontaining 1�0 is equal to the orresponding path after thesubstitution 1 � 0. Also we have ��1�0�1 � ��1�0�0�l�0;0��1�0�p ���1�0�0, as ��1�0�p is of length at least 3 and p x 0p� for any path p�.By the same reasons 1Æ � 0Æ where Æ x �, s�Æ� � s���. Thus, in this asewe have hanged exatly one relation, obtaining l�0;1 � 0.2. Suppose hark x 2 and �0 � 0, SQ0S x 1. In this ase s��0� � e��0�,p is a path of length more than 1 (else we have two loops at one vertex),�0p � p�0 > s�A�. Put ��0 � �0 � l�0;0p~2. Then ���0�2 � ��0 � p~2�2 ��20 � l�0;0�0p � l�0;0p�0 � 0 � 0. As �p � p� � 0 for all arrows � x �0 (p isnot an arrow), all other relations are preserved.If SQ0S � 1 and p is a path of length more than 1, the proof goes similar.If p is a path of length 1, by onstrution of � we have p2 � 0 and lemmaalso holds. �



ON STABLY BISERIAL ALGEBRAS 33By Lemma 10 and indution on the number of non-zero l�; we get thefollowing theorem:Theorem 3. 1. Any symmetri stably biserial algebra over an algebraiallylosed �eld k with hark x 2 is isomorphi to a speial biserial algebra.2. Consider a standard desription of a symmetri speial biserial alge-bra A � kQ~I and any set of loops ��1; : : : ; �k� in Q1, where ���i� x �ifor all i (so that �2i � 0 in A), onsider a set ��1 ; : : : ; �k�, �i > k�.Replaing in the standard set of relations �2i by �2i � �is��i� we obtain anew algebra A� and all stably biserial algebras an be obtained in this way.Referenes1. T. Adahi, T. Aihara, A. Chan, Classi�ation of two-term tilting omplexes overBrauer graph algebras. | arXiv:1504.04827, (2015).2. T. Aihara, Derived equivalenes between symmetri speial biserial algebras. | J.Pure App. Algebra 219, No. 5 (2015), 1800{1825.3. M. Antipov, Derived equivalene of symmetri speial biserial algebras. | Zap.Nauhn. Semin. POMI 343 (2007), 5{32. (J. Math. Si. 147, No. 5 (2007), 6981{6994.)4. M. Antipov, A. Zvonareva, Two-term partial tilting omplexes over Brauer treealgebras. | Zap. Nauhn. Semin. POMI 413 (2013), 5{25. (J. Math. Si. 202,No. 3 (2014), 333{345.)5. S. Ariki, K. Iijima, E. Park, Representation type of �nite quiver Heke algebrasof type A�1�l for arbitrary parameters. | Int. Math. Researh Noties 15 (2015),6070{6135.6. M. Auslander, I. Reiten, Representation theory of artin algebras V: Invariants givenby almost split sequenes. | Commun. Algebra 5, No. 5 (1977), 519{554.7. M. Auslander, I. Reiten, Representation theory of artin algebras VI: A funtorialapproah to almost split sequenes. | Commun. Algebra 6, No. 3 (1978), 257{300.8. M. C. R. Butler, C. M. Ringel, Auslander{Reiten sequenes with few middle termsand appliations to string algebras. | Commun. Algebra 15, No. 1{2 (1987), 145{179.9. M. Kauer, Derived equivalene of graph algebras. | Contemp. Math. 229 (1998),201{214.10. R. J. Marsh, S. Shroll, The geometry of Brauer graph algebras and luster muta-tions. | J. Algebra 419 (2014), 141{166.11. R. Mart��nez-Villa, Algebras stably equivalent to l-hereditary. | Representation the-ory II, Let. Notes Math. 832 (1980), 396{431.12. R. Mart��nez-Villa, Properties that are left invariant under stable equivalene. |Commun. Algebra 18, No. 12 (1990), 4141{4169.13. I. Muhtadi-Alamsyah, Braid ation on derived ategory Nakayama algebras. |Commun. Algebra 36, No. 7 (2008), 2544{2569.14. Z. Pogorza ly, Algebras stably equivalent to sel�njetive speial biserial algebras. |Commun. Algebra 22, No. 4 (1994), 1127{1160.
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