
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 459, 2015 Ç.T. ShilkinON THE LOCAL SMOOTHNESS OF SOME CLASSOF AXI{SYMMETRIC SOLUTIONS TO THE MHDEQUATIONSAbstrat. In this paper we onsider a speial lass of weak axi-symmetri solutions to the MHD equations for whih the veloity�eld has only poloidal omponent and the magneti �eld is toroidal.We prove loal regularity for suh solutions. The global strong solv-ability of the initial-boundary value problem for the orrespondingsystem in a ylindrial domain with non-slip boundary onditionsfor the veloity on the ylindrial surfae is established as well.
§1. Introdution and Main ResultsLet 
 ⊂ R
3 be a ylindrial domain with the axis of symmetry x3. Inthis paper we study regularity of some speial lass of weak axi-symmetrisolutions to the equations of magnetohydrodynamis (MHD) in QT :=
 × (0; T ). The MHD system desribes the dynamis of a ondutive in-ompressible visous uid:





�tu+ rotu× u−�u+∇
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128 T. SHILKINHere u : QT → R
3 is the veloity �eld, p : QT → R is pressure andH : QT → R

3 is the magneti �eld, and for any a, b ∈ R
3 we denote bya× b its vetor produt in R

3.Let (x1; x2; x3) be Cartesian and (r; '; z) be ylindrial oordinates ofthe point x ∈ R
3, i.e. x1 = r os', x2 = r sin', x3 = z. Denote the basisvetors of orthonormal ylindrial oordinate system by er, e', ez. Forevery vetor �eld u : 
 → R

3, u = urer + u'e' + uzez we denote by uPand uT its poloidal and toroidal omponents respetively:u = uP + uT ; uP = urer + uzez; uT = u'e':We say the salar funtion is axi-symmetri if (been represented in ylin-drial oordinates) it does not depend on '. The vetor �eld u is axi-symmetri if funtions ur, u', uz are axi-symmetri. We say the vetor�eld u is poloidal if its toroidal omponent is identially zero and toroidalif it has no poloidal omponent.In this paper we are interested in those axi-symmetri solutions to thesystem (1.1) whih possess some additional symmetry. To analyze the pos-sible symmetries of solutions to the MHD equations we projet the equa-tions onto the subspaes of toroidal and poloidal vetor �elds. Note thatin the spae of axi-symmetri vetor �elds the toroidal and poloidal sub-spaes are invariant under the Laplaian. Hene from (1.1) we obtain thattoroidal and poloidal omponents of the veloity and magneti �elds in theaxi-symmetri ase satisfy the following equations:�tuT −�uT + rotuT × uP = rotHT ×HP (1.2)�tuP −�uP + rotuT × uT + rotuP × uP +∇p̃= rotHP ×HP + rotHT ×HT�tHT −�HT = rot(uT ×HP ) + rot(uP ×HT )�tHP −�HP = rot(uP ×HP ) (1.3)div uP = 0; divHP = 0As the equation (1.3) is linear with respet to HP , we an expet that forthe apropriate initial boundary-value problem the poloidal part of mag-neti �eld is zero if it vanishes at the initial moment of time. On the otherhand, from (1.2) we see that the toroidal omponent of the veloity is gov-erned by the external fore rotHT ×HP and hene vT is identially zeroif HP is absent and vT vanishes at the initial moment of time. So, we an



ON THE LOCAL SMOOTHNESS OF SOME CLASS 129expet that for the MHD system the following symmetry of solutions ispreserved under the evolution:uT (·; 0) = 0; HP (·; 0) = 0 =⇒ uT (·; t) = 0; HP (·; t) = 0; ∀ t > 0In this paper we study the lass of weak axi-symmetri solutions to theMHD equations for whih the veloity �eld has only poloidal omponentand the magneti �eld is toroidal:u(x; t) = uP (x; t); H(x; t) = HT (x; t); ∀ t > 0; x ∈ 
: (1.4)In this ase we haveu(x; t) = ur(r; z; t)er + uz(r; z; t)ez; H(x; t) = H'(r; z; t)e' (1.5)and the system (1.1) in ylindrial oordinates redues to the equations forevolution of the poloidal part of the veloity �eld oupled by the equationwhih is linear with respet to the salar funtion H'�tur + (urur;r + uzur;z)− (�r;zur − urr2 ) + (p+ H2'2 );r = −
H2'r�tuz + (uruz;r + uzuz;z)−�r;zuz + (p+ H2'2 );z = 0ur;r + uz;z + urr = 0�tH' + (urH';r + uzH';z)− (�r;zH' −

H'r2 ) = urH'r (1.6)
Here by �r;z we denote the Laplaian of an axi-symmetri salar funtionwith respet to ylindrial oordinates:�r;z =  ;rr +  ;zz +  ;rr :Our main interest to the system (1.6) is due to its formal similarity tothe system desribing the axi-symmetri solutions to the Navier-Stokesequations with swirl. The latter onsists of the equations for evolution ofthe poloidal part of the veloity �eld oupled by the equation whih is



130 T. SHILKINlinear with respet to the angular omponent of the veloity �eld u':�tur + (urur;r + uzur;z)− (�r;zur − urr2 ) + p;r = u2'r�tuz + (uruz;r + uzuz;z)−�r;zuz + p;z = 0ur;r + uz;z + urr = 0�tu' + (uru';r + uzu';z)− (�r;zu' −
u'r2 ) = −

uru'r (1.7)As we see, after the replaement H' ↔ u' the both systems are almostidential with the only di�erene in the signs of the right-hand sides in(1.6) and (1.7). Although the system (1.7) is widely studied, its globalstrong solvability remains open for now. To the ontrast, for the system(1.6) we are able to prove the global existene of smooth solutions. Roughlyspeaking the reason for it is following: it is well-known that for the system(1.7) the quantity ru' is governed by the equation�t(ru') + ur(ru');r + uz(ru');z −�r;z(ru') + 2r (ru');r = 0This relation provides some extra ontrol for the quantity ru'. The dif-ferent sign in the equations (1.6) results in the fat that in the ase of(1.6) the orresponding quantity that \moves with the ow" is not rH'but r−1H':�t(H'r ) + ur(H'r );r + uz(H'r );z −�r;z(H'r )
−

2r(H'r );r = 0This relation provides some extra ontrol for the quantity r−1H' whihimplies that in the ase (1.6) the funtion H' is muh more regular near theaxis of the symmetry than the funtion u' in the ase of (1.7). Essentiallythis is the reason why the global strong solvability for the system (1.6)turns out to be muh easier than the analogous result for the system (1.7).The global smooth solvability of the Cauhy problem for the system(1.6) was proved in [9℄. The method of [9℄ was based on the ideas desribedabove and it allowed the author to obtain the result even in the ase wherethe magneti di�usion is ignored.In this paper we are interested in the study of the initial boundaryvalue problem for the MHD system. Hene we need to supply our systemwith some boundary onditions. One of the ommon tehnial tools in thestudy of axi-symmetri solutions to the equations of hydrodynamis is the



ON THE LOCAL SMOOTHNESS OF SOME CLASS 131transfer of the equations for the veloity �eld to the vortiity form. Thatis why many authors onsider slip boundary onditions for the veloity,see, for example, [12, 20, 21℄. Indeed, onditions of suh type allow one tointrodue the ux funtion for the veloity �eld or to use vortiity itselfas a test funtion for the equations and hene to deal with the initial-boundary value problem roughly speaking in the same way as it was donefor the Cauhy problem.In this paper we onsider non-slip boundary onditions for the veloity�eld. In this ase the diret transfer to the vortiity equations fails asvortiity \looses" information about boundary data. So, we use instead themethod based on the loal regularity theory developed in [15℄, see also [5℄.As in the ase of non-slip boundary onditions the boundary regularity ofaxi-symmetri solutions without swirl near points of intersetion of the axisof symmetry with the boundary of the domain is an open issue even forthe Navier-Stokes equations (see, for example, [3℄), to avoid this diÆultywe impose onditions of periodiity in x3-diretion. We assume that 
 =S × (−L;L), where S = { (x1; x2) ∈ R
2 : x21 + x22 < a2 } and we imposethe following boundary onditions for the veloity �eld for all t ∈ (0; T ):u|�S×(−L;L) = 0; u|S×{x3=−L} = u|S×{x3=L} (1.8)For the magneti �eld we also onsider onditions of periodiity in x3diretion and on the ylindrial surfae of 
 we an take, for example,onditions of ideal ondutor:H� |�S×(−L;L) = 0; (rotH)� |�S×(−L;L) = 0; H |S×{x3=−L} = H |S×{x3=L}:(1.9)Here we denote by � the external normal to �
 and H� := H · �, H� :=H − �H� . Note that for a toroidal vetor �eld H = H'e' these onditionsredue to

(H';r + H'a )∣∣∣�S×(−L;L) = 0; H'|S×{x3=−L} = H'|S×{x3=L}:Finally, we supply the system (1.1) by the initial onditionsu|t=0 = u0; u|t=0 = H0; (1.10)where u0 and H0 are the divergene-free vetor �elds satisfying (1.8), (1.9)in the appropriate sense. Namely, for u0, H0 ∈ W 12 (
) we assume ondi-tions u0|�S×(−L;L) = 0, (H0 ·�)|�S×(−L;L) = 0 on the ylindrial surfae of
 and periodiity onditions on the top and the bottom of 
 hold in the



132 T. SHILKINsense of traes while the ondition on the tangential part of rotH0 on theylindrial surfae is omitted.Our �rst main result is onerned with the existene of global strongsolutions to the initial boundary value problem (1.1), (1.8){(1.10) (see thede�nition of strong solutions in Setion 2):Theorem 1.1. Let u0, H0 ∈ W 12(
) be axi-symmetri divergene-free ini-tial data satisfying the struture onditions (1.4) and the boundary ondi-tions (1.8), (1.9) (in the sense desribed above). Then for any T > 0 thereis a strong solution u, H, p to the initial boundary value problem (1.1),(1.8){(1.10) in QT suh that for any moment of time (1.4) is satis�ed.Moreover, this solution is unique in the lass of all weak Leray{Hopf typesolutions to the problem (see the de�nition of the Leray-Hopf-type solutionsin Setion 2).As we mentioned above, in the ase of non-slip boundary onditionsfor the veloity we an not pass diretly to the vortiity equations for uand use the method developed in [9℄ to get the result. So, we employ adi�erent approah based on partial regularity of suitable weak solutions tothe MHD system with further loal analysis of the regularity of suitableweak solutions satisfying (1.4) near the axis of symmetry.The theory of partial regularity for the MHD equations was developedin [2℄ in the internal ase, in [18℄ near the plane part of the boundary(under boundary onditions (1.8), (1.9)) and in [19℄ in the ase of a urvedboundary (under the same boundary onditions). This theory guaranteesthat for a suitable weak solution to the system (1.1) both u and H areH�older ontinuous (up to the boundary) everywhere exept for a losedset � ⊂ �
× (0; T ℄ (alled a singular set) whose one-dimensional paraboliHausdor� measure is zero:
P1(�) = 0:For an axi-symmetri suitable weak solutions this implies that singularityan our only on the axis of symmetry.The idea of the loal analysis of regularity of axi-symmetri solutionsnear the axis of symmetry we employ is borrowed from [15℄, see also [3℄.This idea inludes the redution of our problem to the problem of the�rst-time-singularity, i.e. to the problem in the anonial domain in whihsolution is smooth up to the last moment of time. Then we transfer ourequation for the magneti �eld H' to the auxiliary equation for H'r andfollowing to [15℄ interpret the obtained relation as the heat equation with



ON THE LOCAL SMOOTHNESS OF SOME CLASS 133a drift term in 5-dimensional spae. This allows us to apply the maximumpriniple and obtain the estimate of the maximum of H'r . Then we gobak to the equations for the veloity, transfer them to the salar equationfor the angular omponent of vortiity !' and applying the same ideaobtain the estimate of the maximum of !'r . With these two estimates theregularity of u and u at the initial moment of time easily follows from the"-regularity theory for the MHD equations, see, for example, [4℄.So, our seond main result onerning the loal regularity of axi-sym-metri suitable weak solutions (to be de�ned in Setion 2) to the MHDequations under the symmetry onditions (1.4) an be formulated as fol-lows:Theorem 1.2. Denote CR := {x ∈ R
3 : x21 + x22 < R2; |x3| < R},

QR := CR × (−R2; 0). Let u, H and p be a suitable weak solution to theMHD system in Q1. Assume additionally funtions u, H and p are axiallysymmetri, the vetor �eld u is poloidal and the vetor �eld H is toroidal,i.e. (1.5) holds. Then u, H ∈ C�;�2 ( �Q�) with any � ∈ (0; 1) and any� ∈ (0; 23 ). Here we denote by C�;�2 ( �Q�) the set of funtions whih areH�older ontinuous on �Q� with the exponent � with respet to the parabolimetri.Finally we would like to remark that as our approah is based on thepartial regularity theory for the MHD equations with our method we annot ignore the magneti di�usivity (i.e. the Laplaian term) in the magnetiequation in (1.1) and hene to prove a omplete analogue of the resultobtained in [9℄ for the Cauhy problem.Our paper is organized as follows: in Setion 2 we present the de�nitionsof strong, Leray-Hopf-type and suitabe weak solutions to the MHD systemand reall some known properties of them. In Setion 3 we onsider themodel loal problem for the MHD system \until the �rst singularity". InSetion 4 we present the proofs of our main results (Theorems 1.1 and1.2).We use the following notation. For any a, b ∈ R
n we denote by a · bits salar produt in R

n. For any q ∈ [1;+∞) we denote by Lq(
) andW kq (
) the usual Lebesgue and Sobolev spaes. The spae Lq(
; d�) is theLebesgue spae with respet to Borel measure � on 
. We do not distin-guish between spaes of salar funtions and vetor �elds in the notation.The spae of measurable funtions whose values are essentially bounded



134 T. SHILKINin 
 is denoted by L∞(
). We denote by C∞(�
) the set of all in�nitelysmooth funtions on �
 and by D′(
) the set of distributions on 
.In ontrast to traditional setting, we replae the usual balls with ylin-ders (whih is quite onvenient in the ase of axial symmetry) and denote
CR(x∗) := { x ∈ R

3 : (x1 − x∗1)2 + (x1 − x∗1)2 < R2; |x3 − x∗3| < R },
CR = CR(0)

QR(z∗) = CR(x∗)× (t∗ −R2; t∗), z∗ = (x∗; t∗), QR = QR(0; 0)We de�ne some \paraboli" funtional spaes as follows:W 1;0q (QT ) ≡ Lq(0; T ;W 1q (
)) = {u ∈ Lq(QT ) : ∇u ∈ Lq(QT )};W 2;1q (QT ) = {u ∈ W 1;0q (QT ) : ∇2u; �tu ∈ Lq(QT )};Lq;∞(QT ) = L∞(0; T ;Lq(
)):
§2. PreliminariesWe start with the de�nition of strong solutions:De�nition 2.1. We all funtions u, H, p a strong solution to the MHDsystem if u;H ∈ W 2;12 (QT ); p ∈ L2(QT );and u, H, p satisfy (1.1) a.e. in QT .Similar to the Navier-Stokes equations, it turns out that a strong solu-tion to the MHD equations, if exists, is unique in the lass of weak solutionswhih are analogues to the Leray-Hopf solutions in the Navier-Stokes the-ory. To be preise we need to de�ne Leray-Hopf-type solutions to the MHDequations. Below we denote by J�(
) the losure in L2(
) of the set of allin�nitely smooth divergene-free vetor �elds in 
 whih vanish near theylindrial surfae of 
 and satisfy periodiity ondition (with the period2L) in x3-diretion.De�nition 2.2. Assume u0, H0 ∈ J�(
). We say the divergene-freevetor �elds u and H are a weak Leray{Hopf{type solution to the initial-boundary value problem (1.1), (1.8){(1.10), ifu;H ∈ L2;∞(QT ) ∩W 1;02 (QT );u and H are weakly ontinuous in time as funtions with values in L2(
),satisfy the boundary onditions (1.8), (1.9), satisfy the initial onditions



ON THE LOCAL SMOOTHNESS OF SOME CLASS 135(1.10) in sense of strong onvergene in L2(
), satisfy the equations (1.1)in the sense of distributions and also satisfy the global energy inequality
‖u(t)‖2L2(
)+‖H(t)‖2L2(
) + 2 t∫0 (

‖∇u(�)‖2L2(
)+‖ rotH(�)‖2L2(
)) d�
6 ‖u0‖2L2(
) + ‖H0‖2L2(
)Note that while Dirihlet-type and periodial boundary onditions inDe�nition 2.2 are understood in the sense of traes, the Neuman-typeboundary onditions an be taken into aount by the proper hoie of thelass of test funtions in the integral identities for u and H , see preisede�nition, for example, in [7℄ or [18℄. So, we have the following theorem:Theorem 2.1. Assumeu0; H0 ∈ W 12(
) are divergene-free and satisfy (1.8); (1.9): (2.1)If u, H and p is a strong solution to the problem (1.1), (1.8){(1.10) in QTand ũ, H̃ is a Leray-Hopf-type solution in QT whih orresponds to thesame initial data u0 and H0 then u = ũ and H = H̃ a.e. in QT .Though the global existene of strong solution for the MHD system is anopen problem, for suÆiently smooth initial data we an always guaranteeloal existene of strong solutions:Theorem 2.2. Assume (2.1) holds. Then there exists T0 > 0 dependingon ‖u0‖W 12 (
) and ‖H0‖W 12 (
) suh that there exists a strong solution u,H and p to the problem (1.1), (1.8){(1.10) in 
× (0; T0).Strong solutions to the MHD equations are loally smooth. Namely, weneed the following fat:Theorem 2.3. Assume u, H and p are a strong solution to (1.1) in QT .Then for any k ∈ N the inlusions ∇k−1u, ∇k−1H ∈ C�;�2lo (
×(0; T ℄) holdwith any � ∈ (0; 1).Theorems 2.1{2.3 are analogues to the known fats in the Navier-Stokestheory. Their proofs an be found, for example, in [7℄, or an be obtained bystraightforward modi�ations of the orresponding results for the Navier-Stokes equations.Now we turn to the investigation of the spei� lass of strong solutionsto the MHD system. Namely, we onsider axially symmetrial solutions to



136 T. SHILKINthe initial-boundary value problem and show that for the axial symmetry ispreserved during the evolution as long as the solution remains a strong one.Moreover, for axially symmetri strong solutions we also have preservationof the poloidal-toroidal struture of the MHD ow if the initial data possessthe orresponding struture.Theorem 2.4. Let u0, H0 ∈ W 12 (
) be divergene-free vetor �elds sat-isfying the boundary onditions (1.8), (1.9). Assume that for some T > 0there exists a strong solution u, H, p to the problem (1.1), (1.8){(1.10) inQT . Then1) if the vetor �elds u0 and H0 are axially symmetri then for anyt ∈ (0; T ) the funtions u(·; t), H(·; t) and p(·; t) are also axiallysymmetri;2) moreover, if u0 and H0 satisfy additionally the struture assump-tions (1.4) then for any t ∈ (0; T ) the funtions u(·; t) and H(·; t)also satisfy (1.4).The �rst part of Theorem 2.4 is a trivial onsequene of the uniquenesstheorem for the initial-boundary value problem, see Theorem 2.1. Theseond part follows from the linearity of the equations (1.2) and (1.3).Now we turn to the disussion of so-alled suitable weak solutions tothe MHD system. We de�ne them as follows:De�nition 2.3. We say the funtions u, H, p are a suitable weak solutionto the system (1.1) if u, H ∈ L2;∞(QT ) ∩W 1;02 (QT ) are divergene free,p ∈ L 32 (QT ), u, H, p satisfy equations (1.1) in the sense of distributionsand the loal energy inequality holds: for any � ∈ C∞0 (R3 × (0; T ℄) suhthat ���� ∣∣∣�S×(−L;L) = 0, �|S×{x3=−L} = �|S×{x3=L} we havesupt∈(0;T ) ∫
 �(|u|2 + |H |2) dx+2 T∫0 ∫
 �(|∇u|2+| rotH |2) dxdt
6

T∫0 ∫
 (
|u|2+|H |2)(�t� +��) dxdt+ T∫0 ∫
 (

|u|2 + 2p)u · ∇� dxdt+ 2 T∫0 ∫
 (H ⊗H) : ∇2� dxdt+2 T∫0 ∫
 (u×H)(∇� ×H) dxdt



ON THE LOCAL SMOOTHNESS OF SOME CLASS 137For the initial-boundary value problem the existene of suitable weaksolutions to the MHD system in QT orresponding to the initial data u0,H0 ∈ J�(
) an be proved for arbitrary T > 0 by standard regularizationmethod, see, for example, [18℄. Namely, we have the following theorem:Theorem 2.5. Assume u0, H0 ∈ J�(
) and T > 0 is arbitrary. Thenthere exist u, H and p suh that funtions u and H are a Leray-Hopf-type solution to the initial-boundary value problem (1.1), (1.8){(1.10) inQT and simultaneously u, H, p are a suitable weak solution to the system(1.1) in QT .The important property of suitable weak solutions is so-alled partialregularity. To desribe it we de�ne a singular point z0 = (x0; t0) ∈ �
 ×(0; T ℄ of a suitable weak solution u, H and p of the system (1.1) in QTas a point suh that the funtion |u|+ |H | is unbounded in any parabolineighborhood of z0 (i.e. in any set QR(z0) ∩ QT with arbitrary R > 0).Then we de�ne a singular set � ⊂ �
× (0; T ℄ of the suitable weak solutionu, H , p as a set of all its singular points. All other points of the set(�
× (0; T ℄)\� are alled regular points of the suitable weak solution. Notethat thanks to the assumption on pressure p ∈ L 32 (QT ) every regular pointz0 of a suitable weak solution u, H , p has some paraboli neighborhood
QR(z0) ∩QT suh that u, H ∈ C�;�2 (QR(z0) ∩QT ) with any � ∈ (0; 23 ).The main result on partial regularity of suitable weak solutions to theMHD system is the following theorem:Theorem 2.6. Assume u, H, p is a suitable weak solution to the system(1.1) in QT and denote by � ⊂ �
× (0; T ℄ the singular set of this solution.Then

P1(�) = 0;where P1 is the one-dimensional paraboli Hausdor� measure on R
3 × R.Internal partial regularity for the Navier-Stokes equations (whih is apartiular ase of (1.1) if H ≡ 0) was established in the elebrated pa-per [1℄. Boundary partial regularity for the Navier-Stokes equations withnon-slip boundary onditions was established in [13, 14℄ in the ase ofat boundary and in [16℄ in the ase of urved boundary, see also [17℄.The internal partial regularity for the MHD equations was proved in [2℄.Boundary partial regularity for the MHD equations with boundary ondi-tions (1.8), (1.9) was proved in [18℄ in the ase of at boundary and in [19℄in the ase of urved boundary. So, our Theorem 2.6 is a ombination ofresults of [2, 18℄ and [19℄.



138 T. SHILKINNote that the ondition of axial symmetry of solutions impose signi�antrestritions on the struture of the singular set of a suitable weak solutionto the MHD system. Namely, a suitable weak solution an not have singularpoints away from the axis of symmetry (beause if a point whih does notbelong to the axis of symmetry is singular then due to axial symmetry itimmediately generates a singular urve, but a singular urve is forbiddenby Theorem 2.6). So, the following theorem holds:Theorem 2.7. Assume u0, H0 ∈ J�(
) and let u, H, p be a suitable weaksolution to the problem (1.1), (1.8){(1.10) in QT . Denote by � ⊂ �
×(0; T ℄the singular set of this solution. Then� ⊂
{ (x; t) ∈ 
× (0; T ℄ : x1 = x2 = 0}:

§3. Model problemIn this setion we investigate the model problem \until the �rst sin-gularity". This means that we assume that a loal solution an developsingularity only at the �nal moment of time. Remind we denote CR =
{ x ∈ R

3 : x21 + x22 < R2; |x3| < R }, QR = CR × (−R2; 0) and C = C1,
Q = Q1. The following theorem is the main result of this setion:Theorem 3.1. Assume u, H, p are an axially symmetri suitable weaksolution to (1.1) in Q suh that u is poloidal and H is toroidal in Q,i.e. (1.5) holds. Assume that for some � ∈ (0; 23 ) the inlusions u, H ∈C�;�2 ( �C×[−1; t′℄) hold for any t′ ∈ (−1; 0) and besides u, H∈C�;�2 ( �Q\QR)for some R ∈ (0; 1). Then u, H ∈ C�;�2 ( �Q).We split the proof of Theorem 3.1 into few steps. First we obtain someadditional regularity of !' := ur;z − uz;r and H' on the internal subsetsof Q.Theorem 3.2. Assume all onditions of Theorem 3.1 hold. Denote ! :=rotu, ! = !'e'. Then !'r , H'r ∈ W 1;0

∞;lo(Q). Moreover, for any R1, R2,suh that R < R1 < R2 < 1, the funtions !'r and H'r are ontinuous onthe set �QR2 \ QR1 and loally ontinuous in Q.Proof of Theorem 3.2. Theorem 3.2 is the diret onsequene of theusual regularity theory for paraboli and the Navier-Stokes equations. In-deed, as u andH are H�older ontinuous on the sets �C×[−1; t′℄, ∀ t′ ∈ (−1; 0)and on �Q\QR by Theorem 2.3 we obtain that for any k ∈ N the derivatives
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∇ku, ∇kH are also loally H�older ontinuous in Q and H�older ontinuouson the set �QR2 \ QR1 for any R < R1 < R2 < 1.Denote h := H'r ,  := !'r . Then in ylindrial oordinates we have

∇2H = H';rre' ⊗ er ⊗ er +H';rz(er ⊗ er ⊗ ez + e' ⊗ ez ⊗ er)+H';zze' ⊗ ez ⊗ ez ++h;r(e' ⊗ e' ⊗ e' − er ⊗ er ⊗ e'
− er ⊗ e' ⊗ er)− h;z(er ⊗ e' ⊗ ez + h;zer ⊗ ez ⊗ e')Hene we have pointwise double-sided estimate

|∇2H |2 ≍ H2';rr +H2';rz +H2';zz + h2;r + h2;zSimilarly we have
|∇2!|2 ≍ !2';rr + !2';rz + !2';zz +  2;r +  2;zSo, from ∇2H , ∇2! ∈ L∞;lo(Q) we obtain ∇h, ∇ ∈ L∞;lo(Q).Next, as the funtions !'(0; z; t) = 0 and H'(0; z; t) = 0 we an de�ne (r; z; t) and h(r; z; t) for r = 0 by the values !';r(0; z; t) and H';r(0; z; t)respetively. It is easy to see that the obtained funtions are ontinuouson �QR2 \ QR1 and loally ontinuous in Q. Theorem 3.2 is proved. �Next get the estimate of the magneti �eld:Theorem 3.3. Assume u, H ∈ L2;∞(Q)∩W 1;02 (Q) are axially symmetridivergene-free vetor �elds suh that u is poloidal and H is toroidal in

Q, i.e. (1.5) holds. Let u and H satisfy the equations (in the sense ofdistributions) �tH −�H = rot(u×H) in QAssume additionally that u is H�older ontinuous in �C × [−1; t′℄ for anyt′ < 0 and besides H'r ∈ L∞(�′QR) for some R < 1. Then H'r ∈ L∞(QR)and the following estimate holds:esssup
QR ∣∣∣

H'r ∣∣∣ 6 esssup�′QR ∣∣∣
H'r ∣∣∣: (3.1)Proof of Theorem 3.3. It turns out that H'r satis�es to the equationwhih an be redued to the heat equation with a drift term in the 5-dimensional spae. This idea is borrowed from [15℄, see also [3℄.



140 T. SHILKINDenote D := K×(−1; 0) whereK := { (r; z) ∈ R
2 : r ∈ (0; 1); |z| < 1 }.Then H' satis�es the identity

∫D (
−H'�t� +H';r�;r +H';z�;z + H'�r2 + urH';r�+uzH';z�− urH'�r ) r dr dz dt = 0for any test funtion � ∈ C∞0 (D). De�ne the funtion h byh(r; z; t) := H'(r; z; t)r :Then h satis�es the integral identity

∫D (
−h�t�+h;r�;r+h;z�;z−2 h;r�r +urh;r�+uzh;z� ) rdr dz dt = 0 (3.2)for any � ∈ C∞0 (D). In Cartesian oordinates this means that h(x; t) =H'(x;t)

|x′| is a weak solution to the equation�th−�h+ u · ∇h− 2 x′
|x′|2 · ∇h = 0 in D′(Q \ �);where x′ := (x1; x2; 0)T and � := {(x; t) ∈ Q : x′ = 0}. Moreover,replaing in (3.2) the test funtion � by r2� we obtain that h and u alsosatisfy the integral identity

∫D (
− h�t� + h;r�;r + h;z�;z + urh;r� + uzh;z�) r3 dr dz dt = 0;

∀ � ∈ C∞0 (D): (3.3)Denote
C5 := {y ∈ R

5 : y21+y22+y23+y24 < 1; |y5| < 1}; Q5 := C5×(−1; 0) (3.4)r = √y21 + y22 + y23 + y24 ; z = y5; (3.5)b�(y; t) = ur(r; z; t) y�r ; � = 1; 2; 3; 4; b5(y; t) = uz(r; z; t): (3.6)Denote also w(y; t) = h(r; z; t):Then by Theorem 3.2 we have w ∈W 1;0
∞;lo(Q5), and u ∈ C�;�2 ( �C× [−1; t′℄)implies b ∈ L∞(C5 × (−1; t′)) for any t′ ∈ (−1; 0).



ON THE LOCAL SMOOTHNESS OF SOME CLASS 141Making the hange of variables in (3.3) and adding to the obtainedidentity the spherial part of the Laplaian in (y1; y2; y3; y4) ∈ R
4 (whihis zero due to the ylindrial symmetry of w) we arrive at the identity

∫

Q5 (
−w�t�+∇w · ∇�+ b · ∇w �) dydt = 0; ∀ � ∈ C∞0 (Q5 \�5); (3.7)where �5 := { (y; t) ∈ Q5 : y′ = 0 } and y′ = (y1; y2; y3; y4; 0)T . As the set�5 is removable in the 5-dimensional spae we onlude that (3.7) remainstrue for any � ∈ C∞0 (Q5). Hene w ∈ W 1;02;lo(Q5) is a weak solution to theequation �tw −�w + b · ∇w = 0 in Q5:Now we an apply the following version of the maximum priniple (see, forexample, [11℄, Corollary 3.5 and remarks at the end of Setion 3).Theorem 3.4. Denote Cn := {y ∈ R

n : |y′| < 1; |yn| < 1}, n > 3,
Qn = Cn×(−1; 0) and assume that w ∈ W 1;02 (Qn), b ∈ Ls;l(Qn), ns+ 2l = 1,s > n, satisfy the integral identity

∫

Qn (
− w�t� +∇w · ∇� + b · ∇w�) dy dt = 0; ∀ � ∈ C∞0 (Qn):Assume also w|�′Qn = '; where ' ∈ L∞(�′Qn)(the boundary ondition is understood in the sense of traes and the ini-tial ondition makes sense as under above assumptions on b we have in-lusions �tw ∈ L2(−1; 0;W−12 (Cn)) and w ∈ C([−1; 0℄;L2(Cn))). Thenw ∈ L∞(Qn) and w satis�es the estimate:esssup

Qn |w| 6 esssup�′Qn |'|:Denote C′R := { y ∈ R
5 : |y′| < R; |y5| < R } and Q′R := C′R× (−R2; 0).Now we an apply Theorem 3.4 to our funtion w in the paraboli ylinder

C′R × (−R2; t′) with some t′ ∈ (−1; 0). By assumption w ∈ L∞(�′Q′R) andwe obtainesssup
C′R×(−1;t′) |w| 6 esssup�′Q′R |w| =⇒ esssup

CR×(−R2;t′) ∣∣∣H'r ∣∣∣ 6 esssup�′QR ∣∣∣
H'r ∣∣∣:As the right-hand side in this inequalities is independent on t′ we onludethat H'r is bounded in QR and (3.1) holds. Theorem 3.3 is proved. �



142 T. SHILKINNow we turn to the estimates for the vortiity of the veloity �eld.Theorem 3.5. Assume u, H ∈ L2;∞(Q)∩W 1;02 (Q) are axially symmetridivergene-free vetor �elds suh that u is poloidal and H is toroidal in
Q, i.e. (1.5) holds. Denote ! = rotu = !'e', where !' := ur;z − uz;r.Assume u, ! and H satisfy the equation (in the sense of distributions)�t! −�! + rot(! × u) = rot(rotH ×H) in Q: (3.8)Assume additionally that u is H�older ontinuous in �C × [−1; t′℄ for anyt′ ∈ (−1; 0) and besides !'r ∈ L∞(�′QR) and H'r ∈ L∞(QR) for someR < 1. Then !'r ∈ L∞(QR) and the following estimate holds:esssup

QR ∣∣∣
!'r ∣∣∣ 6 esssup�′QR ∣∣∣

!'r ∣∣∣ +  esssup
QR ∣∣∣

H'r ∣∣∣
2 (3.9)where  is some absolute onstant.Proof of Theorem 3.5. We explore the ideas from [11℄. De�ne the fun-tion  (r; z; t) := !'(r; z; t)rand represent  in Cartesian oordinates. Then from Theorem 3.2 weobtain  ∈ W 1;0

∞;lo(Q) and by assumption  ∈ L∞(�′QR). Moreover, thefuntion  is smooth away from the set � := { (x; t) : |x′| = 0 } andsatis�es the identity�t −� + u · ∇ = 2 x′
|x′|2 · ∇ − F a.e. in Q; (3.10)where x′ := (x1; x2; 0)T and F is the representation in Cartesian oordi-nates of the funtion F := (H2'r2 );z:Take arbitrary " ∈ (0; R), t′ ∈ (−R2; 0) and denote

C̃" := { x ∈ CR : " < |x′| < R }; Q̃" := C̃" × (−R2; t′); k0 := sup�′QR | |Taking k > k0 we see that the funtion ( −k)+ vanishes on the paraboliboundary of QR. Here we denote ( − k)+ := max{ − k; 0}.



ON THE LOCAL SMOOTHNESS OF SOME CLASS 143Multiplying (3.10) by ( −k)+, integrating the result over C̃" we obtain12 ddt‖( − k)+‖2L2(C̃") + ‖∇( − k)+‖2L2(C̃")= ∫

C̃" ( x′
|x′|2 −

u2)
· ∇|( − k)+|2 dx + ∫

C̃" F ��x3 ( − k)+ dx:Using the divergene-free ondition div u = 0 and the fat that the diver-gene of the vetor �eld x′

|x′|2 is sign-de�nite in D′(Q) (see [11, Appendix℄),namely, div x′
|x′|2 = −2�Æ� 6 0 in D′(Q);integrating by parts we obtain

∫

C̃" ( x′
|x′|2 −

u2)
· ∇|( − k)+|2 dx = −

1" ∫

|x′|=" |( − k)+|2 dsx:Disarding the non-positive term in the right-hand side and passing to thelimit as "→ 0 we arrive at12 ddt‖( − k)+‖2L2(CR) + ‖∇( − k)+‖2L2(CR) 6

∫

CR F ��x3 ( − k)+ dx:Applying the H�older inequality and integrating over t ∈ (−R2; t′) we obtainsupt∈(−R2;t′) ‖( − k)+‖2L2(CR) + ‖∇( − k)+‖2L2(CR×(−R2;t′))
6 C ∫Ak∩QR |F |2 dxwhere Ak := { (x; t) ∈ CR × (−R2; t′) |  (x; t) > k }. From Theorem 3.3we know that F ∈ L∞(QR) and henesupt∈(−R2;t′) ‖( − k)+‖2L2(CR) + ‖∇( − k)+‖2L2(CR×(−R2;t′))

6 C ‖F‖2L∞(QR) |Ak|; ∀ k > k0:From [8, Theorem 6.1℄ we obtainesssup
CR×(−R2;t′)( − k0)+ 6 C ‖F‖L∞(QR); ∀ t′ ∈ (−R2; 0):



144 T. SHILKINReplaing  by − and repeating the same arguments we obtain
‖ ‖L∞(CR×(−R2;t′)) 6 k0 + C ‖F‖L∞(QR); ∀ t′ ∈ (−R2; 0):As the right-hand side of the last inequality is independent on t′ ∈ (−R2; 0)we arrive at the desired result. Theorem 3.5 is proved. �Estimates (3.3) and (3.9) imply that for any x∗ ∈ CR belonging to theaxis of symmetry (i.e. suh that x∗1 = x∗2 = 0) at the �nal moment of timet = 0 the following identities hold:lim sup�→0 1�2 ∫

Q�(z∗) |H |3 dxdt = 0; lim sup�→0 1� ∫

Q�(z∗) |!|2 dxdt = 0: (3.11)Here we denote z∗ := (x∗; 0), Q�(z∗) = C�(x∗)× (−�2; 0). Now Theorem3.1 is a diret onsequene of the following "{regularity ondition for theMHD system whih an be found, for example, in [4℄, see Theorem 1.2 (b)(we present even a weaker version of the result in [4℄ whih is suÆient forour purpose):Theorem 3.6. Assume u, H ∈ L2;∞(Q) ∩W 1;02 (Q) and p ∈ L 32 (Q) area suitable weak solution to the system (1.1) in Q and denote ! = rotu.Assume that for some point z∗ ∈ C×(−1; 0℄ the identities (3.11) hold. Thenthere exists a paraboli neighborhood Q�∗(z∗) of the point z∗ suh that uand H are H�older ontinuous in �Q�∗(z∗) with any exponent � ∈ (0; 23 ).Theorem 3.1 is proved. �

§4. Proof of Theorems 1.2 and 1.1We start this setion with the proof of Theorem 1.2.Proof of Theorem 1.2. We assume that u, H and p is a suitable weaksolution satisfying all assumptions of Theorem 1.2. By ontradition, weassume that the singular set � ⊂ C × (−1; 0℄ of this solution is non-empty.Then we redue our problem to the model problem \until the �rst singu-larity" investigated in the previous setion and obtain a ontradition.First we establish existene of a \ylindrial layer" in whih our solutionis smooth. Indeed, from Theorem 2.6 the existene of the radius R ∈ (0; 1)follows suh that �′QR ∩ � = ∅ (otherwise we obtain P1(�) > 0 whihontradits to the partial regularity established in Theorem 2.6). As the set



ON THE LOCAL SMOOTHNESS OF SOME CLASS 145� is relatively losed in �
×(0; T ℄ the existene of 0 < R1 < R2 < 1 followssuh that � ∩
( �QR2 \ QR1) = ∅. Moreover, without loss of generality wean assume that � ∩ QR1 6= ∅.Now we de�ne the �rst singular moment of time t0 of our solution inthe ylinder QR1 . For any t ∈ (−R21; 0℄ we denote�t = { x ∈ CR1 : (x; t) ∈ � }and de�ne t0 := inf { t ∈ (−R21; 0℄ : �t 6= ∅

}:The set �t0 is non-empty (it follows from losedness of the set �). So, wean take x0 ∈ CR1 suh that (x0; t0) ∈ � (and hene the funtion |u|+ |H |is unbounded in any paraboli neighborhood of (x0; t0)). Then there existr1 and r2, 0 < r1 < r2, suh that
Cr2(x0) ⋐ CR1 and ( �Cr2(x0) \ Cr1(x0)) ∩ �t0 = ∅:So, the funtions u andH are H�older ontinuous in �Cr2(x0)×[t0−r22 ; t′℄ withany t′ ∈ (t0− r22 ; t0), as well as they are H�older ontinuous in �Qr2(x0; t0) \

Qr1(x0; t0), where we denote Q�(x0; t0) = C�(x0)× (t0 − �2; t0).Now for any (x; t) ∈ Q we de�ne funtionsũ(x; t) := r2u(x0 + r2x; t0 + r22t);H̃(x; t) := r2H(x0 + r2x; t0 + r22t);p̃(x; t) := r22p(x0 + r2x; t0 + r22t):Then the funtions ũ, H̃ and p̃ satisfy all onditions of Theorem 3.1 (ifwe take R := r1r2 ). By Theorem 3.1 we obtain that ũ and H̃ are H�olderontinuous in �Q and hene the original funtions u and H are H�olderontinuous in the ylinder �Qr2(x0; t0). This ontradits to the assumptionthat the point (x0; t0) is singular. The obtained ontradition implies that� = ∅. Theorem 1.2 is proved. �Now we turn to the proof of Theorem 1.1.Proof of Theorem 1.1. From the loal well-posedness of the MHD sys-tem (see [7℄) we know that for any divergene-free initial data u0 and H0satisfying (1.8), (1.9) there exists T0 = T0(u0; H0), T0 > 0, suh that the



146 T. SHILKINsystem (1.1), (1.8), (1.9), (1.10) has the unique strong solution u, H andp in 
× (0; T0). DenoteT∗ := sup{ T > T0 :there exists a strong solution to(1.1), (1.8){(1.10) in
× (0; T )}:Note that if the initial data u0 and H0 are axially symmetri and satisfy(1.4) then from Theorem 2.4 we obtain that for any T < T∗ the strongsolution u, H , p in 
 × (0; T ) orresponding to u0 and H0 is also axiallysymmetri and satis�es (1.4).Our goal is to show that T∗ = +∞. By ontradition, assume T∗ < +∞.Let ũ, H̃ , p̃ be any suitable weak solution to the problem (1.1), (1.8){(1.10)in 
 × (0; T∗). Then for any T ∈ (0; T∗) the funtions ũ, H̃ oinide withthe strong solution u,H . Hene the funtions ũ, H̃ , p̃ are axially symmetriand satisfy (1.4). Denote by � the singular set of the suitable weak solutionũ, H̃ , p̃ in �
× [0; T∗℄. Then evidently � ⊂ �
×{t = T∗}. Moreover, � layson the axis of symmetry {x ∈ R
3 : x′ = 0}. Assume z0 := (x0; T∗) ∈ �.By de�nition of a singular point |u| + |H | must be unbounded in anyparaboli neighborhood of z0. On the other hand, if we take R > 0 suhthat QR(z0) ⊂ 
× (0; T∗) then all onditions of Theorem 1.2 are satis�edfor a suitable weak solution ũ, H̃ , p̃ in the ylinderQR(z0). Thus |u|+|H | isbounded in some paraboli neighborhood of z0. The obtained ontraditionimplies that � = ∅ and the strong solution u, H , p an be extended onto
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