
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 459, 2015 Ç.T. ShilkinON THE LOCAL SMOOTHNESS OF SOME CLASSOF AXI{SYMMETRIC SOLUTIONS TO THE MHDEQUATIONSAbstra
t. In this paper we 
onsider a spe
ial 
lass of weak axi-symmetri
 solutions to the MHD equations for whi
h the velo
ity�eld has only poloidal 
omponent and the magneti
 �eld is toroidal.We prove lo
al regularity for su
h solutions. The global strong solv-ability of the initial-boundary value problem for the 
orrespondingsystem in a 
ylindri
al domain with non-slip boundary 
onditionsfor the velo
ity on the 
ylindri
al surfa
e is established as well.
§1. Introdu
tion and Main ResultsLet 
 ⊂ R
3 be a 
ylindri
al domain with the axis of symmetry x3. Inthis paper we study regularity of some spe
ial 
lass of weak axi-symmetri
solutions to the equations of magnetohydrodynami
s (MHD) in QT :=
 × (0; T ). The MHD system des
ribes the dynami
s of a 
ondu
tive in-
ompressible vis
ous 
uid:


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�tu+ rotu× u−�u+∇
(p+ |u|22 ) = rotH ×Hdiv u = 0�tH −�H = rot(u×H)divH = 0 in QT :(1.1)Key words and phrases: magnetohydrodynami
s, axially symmetri
 solutions,regularity.The resear
h leading to these results has re
eived funding from the People Pro-gramme (Marie Curie A
tions) of the European Union's Seventh Framework ProgrammeFP7/2007-2013/ under REA grant agreement n- 319012 and from the Funds for Inter-national Co-operation under Polish Ministry of S
ien
e and Higher Edu
ation grantagreement n- 2853/7.PR/2013/2. The author is also supported by RFBR, grant 17-01-00099-a. 127



128 T. SHILKINHere u : QT → R
3 is the velo
ity �eld, p : QT → R is pressure andH : QT → R

3 is the magneti
 �eld, and for any a, b ∈ R
3 we denote bya× b its ve
tor produ
t in R

3.Let (x1; x2; x3) be Cartesian and (r; '; z) be 
ylindri
al 
oordinates ofthe point x ∈ R
3, i.e. x1 = r 
os', x2 = r sin', x3 = z. Denote the basisve
tors of orthonormal 
ylindri
al 
oordinate system by er, e', ez. Forevery ve
tor �eld u : 
 → R

3, u = urer + u'e' + uzez we denote by uPand uT its poloidal and toroidal 
omponents respe
tively:u = uP + uT ; uP = urer + uzez; uT = u'e':We say the s
alar fun
tion is axi-symmetri
 if (been represented in 
ylin-dri
al 
oordinates) it does not depend on '. The ve
tor �eld u is axi-symmetri
 if fun
tions ur, u', uz are axi-symmetri
. We say the ve
tor�eld u is poloidal if its toroidal 
omponent is identi
ally zero and toroidalif it has no poloidal 
omponent.In this paper we are interested in those axi-symmetri
 solutions to thesystem (1.1) whi
h possess some additional symmetry. To analyze the pos-sible symmetries of solutions to the MHD equations we proje
t the equa-tions onto the subspa
es of toroidal and poloidal ve
tor �elds. Note thatin the spa
e of axi-symmetri
 ve
tor �elds the toroidal and poloidal sub-spa
es are invariant under the Lapla
ian. Hen
e from (1.1) we obtain thattoroidal and poloidal 
omponents of the velo
ity and magneti
 �elds in theaxi-symmetri
 
ase satisfy the following equations:�tuT −�uT + rotuT × uP = rotHT ×HP (1.2)�tuP −�uP + rotuT × uT + rotuP × uP +∇p̃= rotHP ×HP + rotHT ×HT�tHT −�HT = rot(uT ×HP ) + rot(uP ×HT )�tHP −�HP = rot(uP ×HP ) (1.3)div uP = 0; divHP = 0As the equation (1.3) is linear with respe
t to HP , we 
an expe
t that forthe apropriate initial boundary-value problem the poloidal part of mag-neti
 �eld is zero if it vanishes at the initial moment of time. On the otherhand, from (1.2) we see that the toroidal 
omponent of the velo
ity is gov-erned by the external for
e rotHT ×HP and hen
e vT is identi
ally zeroif HP is absent and vT vanishes at the initial moment of time. So, we 
an



ON THE LOCAL SMOOTHNESS OF SOME CLASS 129expe
t that for the MHD system the following symmetry of solutions ispreserved under the evolution:uT (·; 0) = 0; HP (·; 0) = 0 =⇒ uT (·; t) = 0; HP (·; t) = 0; ∀ t > 0In this paper we study the 
lass of weak axi-symmetri
 solutions to theMHD equations for whi
h the velo
ity �eld has only poloidal 
omponentand the magneti
 �eld is toroidal:u(x; t) = uP (x; t); H(x; t) = HT (x; t); ∀ t > 0; x ∈ 
: (1.4)In this 
ase we haveu(x; t) = ur(r; z; t)er + uz(r; z; t)ez; H(x; t) = H'(r; z; t)e' (1.5)and the system (1.1) in 
ylindri
al 
oordinates redu
es to the equations forevolution of the poloidal part of the velo
ity �eld 
oupled by the equationwhi
h is linear with respe
t to the s
alar fun
tion H'�tur + (urur;r + uzur;z)− (�r;zur − urr2 ) + (p+ H2'2 );r = −
H2'r�tuz + (uruz;r + uzuz;z)−�r;zuz + (p+ H2'2 );z = 0ur;r + uz;z + urr = 0�tH' + (urH';r + uzH';z)− (�r;zH' −

H'r2 ) = urH'r (1.6)
Here by �r;z we denote the Lapla
ian of an axi-symmetri
 s
alar fun
tionwith respe
t to 
ylindri
al 
oordinates:�r;z =  ;rr +  ;zz +  ;rr :Our main interest to the system (1.6) is due to its formal similarity tothe system des
ribing the axi-symmetri
 solutions to the Navier-Stokesequations with swirl. The latter 
onsists of the equations for evolution ofthe poloidal part of the velo
ity �eld 
oupled by the equation whi
h is



130 T. SHILKINlinear with respe
t to the angular 
omponent of the velo
ity �eld u':�tur + (urur;r + uzur;z)− (�r;zur − urr2 ) + p;r = u2'r�tuz + (uruz;r + uzuz;z)−�r;zuz + p;z = 0ur;r + uz;z + urr = 0�tu' + (uru';r + uzu';z)− (�r;zu' −
u'r2 ) = −

uru'r (1.7)As we see, after the repla
ement H' ↔ u' the both systems are almostidenti
al with the only di�eren
e in the signs of the right-hand sides in(1.6) and (1.7). Although the system (1.7) is widely studied, its globalstrong solvability remains open for now. To the 
ontrast, for the system(1.6) we are able to prove the global existen
e of smooth solutions. Roughlyspeaking the reason for it is following: it is well-known that for the system(1.7) the quantity ru' is governed by the equation�t(ru') + ur(ru');r + uz(ru');z −�r;z(ru') + 2r (ru');r = 0This relation provides some extra 
ontrol for the quantity ru'. The dif-ferent sign in the equations (1.6) results in the fa
t that in the 
ase of(1.6) the 
orresponding quantity that \moves with the 
ow" is not rH'but r−1H':�t(H'r ) + ur(H'r );r + uz(H'r );z −�r;z(H'r )
−

2r(H'r );r = 0This relation provides some extra 
ontrol for the quantity r−1H' whi
himplies that in the 
ase (1.6) the fun
tion H' is mu
h more regular near theaxis of the symmetry than the fun
tion u' in the 
ase of (1.7). Essentiallythis is the reason why the global strong solvability for the system (1.6)turns out to be mu
h easier than the analogous result for the system (1.7).The global smooth solvability of the Cau
hy problem for the system(1.6) was proved in [9℄. The method of [9℄ was based on the ideas des
ribedabove and it allowed the author to obtain the result even in the 
ase wherethe magneti
 di�usion is ignored.In this paper we are interested in the study of the initial boundaryvalue problem for the MHD system. Hen
e we need to supply our systemwith some boundary 
onditions. One of the 
ommon te
hni
al tools in thestudy of axi-symmetri
 solutions to the equations of hydrodynami
s is the



ON THE LOCAL SMOOTHNESS OF SOME CLASS 131transfer of the equations for the velo
ity �eld to the vorti
ity form. Thatis why many authors 
onsider slip boundary 
onditions for the velo
ity,see, for example, [12, 20, 21℄. Indeed, 
onditions of su
h type allow one tointrodu
e the 
ux fun
tion for the velo
ity �eld or to use vorti
ity itselfas a test fun
tion for the equations and hen
e to deal with the initial-boundary value problem roughly speaking in the same way as it was donefor the Cau
hy problem.In this paper we 
onsider non-slip boundary 
onditions for the velo
ity�eld. In this 
ase the dire
t transfer to the vorti
ity equations fails asvorti
ity \looses" information about boundary data. So, we use instead themethod based on the lo
al regularity theory developed in [15℄, see also [5℄.As in the 
ase of non-slip boundary 
onditions the boundary regularity ofaxi-symmetri
 solutions without swirl near points of interse
tion of the axisof symmetry with the boundary of the domain is an open issue even forthe Navier-Stokes equations (see, for example, [3℄), to avoid this diÆ
ultywe impose 
onditions of periodi
ity in x3-dire
tion. We assume that 
 =S × (−L;L), where S = { (x1; x2) ∈ R
2 : x21 + x22 < a2 } and we imposethe following boundary 
onditions for the velo
ity �eld for all t ∈ (0; T ):u|�S×(−L;L) = 0; u|S×{x3=−L} = u|S×{x3=L} (1.8)For the magneti
 �eld we also 
onsider 
onditions of periodi
ity in x3dire
tion and on the 
ylindri
al surfa
e of 
 we 
an take, for example,
onditions of ideal 
ondu
tor:H� |�S×(−L;L) = 0; (rotH)� |�S×(−L;L) = 0; H |S×{x3=−L} = H |S×{x3=L}:(1.9)Here we denote by � the external normal to �
 and H� := H · �, H� :=H − �H� . Note that for a toroidal ve
tor �eld H = H'e' these 
onditionsredu
e to

(H';r + H'a )∣∣∣�S×(−L;L) = 0; H'|S×{x3=−L} = H'|S×{x3=L}:Finally, we supply the system (1.1) by the initial 
onditionsu|t=0 = u0; u|t=0 = H0; (1.10)where u0 and H0 are the divergen
e-free ve
tor �elds satisfying (1.8), (1.9)in the appropriate sense. Namely, for u0, H0 ∈ W 12 (
) we assume 
ondi-tions u0|�S×(−L;L) = 0, (H0 ·�)|�S×(−L;L) = 0 on the 
ylindri
al surfa
e of
 and periodi
ity 
onditions on the top and the bottom of 
 hold in the



132 T. SHILKINsense of tra
es while the 
ondition on the tangential part of rotH0 on the
ylindri
al surfa
e is omitted.Our �rst main result is 
on
erned with the existen
e of global strongsolutions to the initial boundary value problem (1.1), (1.8){(1.10) (see thede�nition of strong solutions in Se
tion 2):Theorem 1.1. Let u0, H0 ∈ W 12(
) be axi-symmetri
 divergen
e-free ini-tial data satisfying the stru
ture 
onditions (1.4) and the boundary 
ondi-tions (1.8), (1.9) (in the sense des
ribed above). Then for any T > 0 thereis a strong solution u, H, p to the initial boundary value problem (1.1),(1.8){(1.10) in QT su
h that for any moment of time (1.4) is satis�ed.Moreover, this solution is unique in the 
lass of all weak Leray{Hopf typesolutions to the problem (see the de�nition of the Leray-Hopf-type solutionsin Se
tion 2).As we mentioned above, in the 
ase of non-slip boundary 
onditionsfor the velo
ity we 
an not pass dire
tly to the vorti
ity equations for uand use the method developed in [9℄ to get the result. So, we employ adi�erent approa
h based on partial regularity of suitable weak solutions tothe MHD system with further lo
al analysis of the regularity of suitableweak solutions satisfying (1.4) near the axis of symmetry.The theory of partial regularity for the MHD equations was developedin [2℄ in the internal 
ase, in [18℄ near the plane part of the boundary(under boundary 
onditions (1.8), (1.9)) and in [19℄ in the 
ase of a 
urvedboundary (under the same boundary 
onditions). This theory guaranteesthat for a suitable weak solution to the system (1.1) both u and H areH�older 
ontinuous (up to the boundary) everywhere ex
ept for a 
losedset � ⊂ �
× (0; T ℄ (
alled a singular set) whose one-dimensional paraboli
Hausdor� measure is zero:
P1(�) = 0:For an axi-symmetri
 suitable weak solutions this implies that singularity
an o

ur only on the axis of symmetry.The idea of the lo
al analysis of regularity of axi-symmetri
 solutionsnear the axis of symmetry we employ is borrowed from [15℄, see also [3℄.This idea in
ludes the redu
tion of our problem to the problem of the�rst-time-singularity, i.e. to the problem in the 
anoni
al domain in whi
hsolution is smooth up to the last moment of time. Then we transfer ourequation for the magneti
 �eld H' to the auxiliary equation for H'r andfollowing to [15℄ interpret the obtained relation as the heat equation with



ON THE LOCAL SMOOTHNESS OF SOME CLASS 133a drift term in 5-dimensional spa
e. This allows us to apply the maximumprin
iple and obtain the estimate of the maximum of H'r . Then we goba
k to the equations for the velo
ity, transfer them to the s
alar equationfor the angular 
omponent of vorti
ity !' and applying the same ideaobtain the estimate of the maximum of !'r . With these two estimates theregularity of u and u at the initial moment of time easily follows from the"-regularity theory for the MHD equations, see, for example, [4℄.So, our se
ond main result 
on
erning the lo
al regularity of axi-sym-metri
 suitable weak solutions (to be de�ned in Se
tion 2) to the MHDequations under the symmetry 
onditions (1.4) 
an be formulated as fol-lows:Theorem 1.2. Denote CR := {x ∈ R
3 : x21 + x22 < R2; |x3| < R},

QR := CR × (−R2; 0). Let u, H and p be a suitable weak solution to theMHD system in Q1. Assume additionally fun
tions u, H and p are axiallysymmetri
, the ve
tor �eld u is poloidal and the ve
tor �eld H is toroidal,i.e. (1.5) holds. Then u, H ∈ C�;�2 ( �Q�) with any � ∈ (0; 1) and any� ∈ (0; 23 ). Here we denote by C�;�2 ( �Q�) the set of fun
tions whi
h areH�older 
ontinuous on �Q� with the exponent � with respe
t to the paraboli
metri
.Finally we would like to remark that as our approa
h is based on thepartial regularity theory for the MHD equations with our method we 
annot ignore the magneti
 di�usivity (i.e. the Lapla
ian term) in the magneti
equation in (1.1) and hen
e to prove a 
omplete analogue of the resultobtained in [9℄ for the Cau
hy problem.Our paper is organized as follows: in Se
tion 2 we present the de�nitionsof strong, Leray-Hopf-type and suitabe weak solutions to the MHD systemand re
all some known properties of them. In Se
tion 3 we 
onsider themodel lo
al problem for the MHD system \until the �rst singularity". InSe
tion 4 we present the proofs of our main results (Theorems 1.1 and1.2).We use the following notation. For any a, b ∈ R
n we denote by a · bits s
alar produ
t in R

n. For any q ∈ [1;+∞) we denote by Lq(
) andW kq (
) the usual Lebesgue and Sobolev spa
es. The spa
e Lq(
; d�) is theLebesgue spa
e with respe
t to Borel measure � on 
. We do not distin-guish between spa
es of s
alar fun
tions and ve
tor �elds in the notation.The spa
e of measurable fun
tions whose values are essentially bounded



134 T. SHILKINin 
 is denoted by L∞(
). We denote by C∞(�
) the set of all in�nitelysmooth fun
tions on �
 and by D′(
) the set of distributions on 
.In 
ontrast to traditional setting, we repla
e the usual balls with 
ylin-ders (whi
h is quite 
onvenient in the 
ase of axial symmetry) and denote
CR(x∗) := { x ∈ R

3 : (x1 − x∗1)2 + (x1 − x∗1)2 < R2; |x3 − x∗3| < R },
CR = CR(0)

QR(z∗) = CR(x∗)× (t∗ −R2; t∗), z∗ = (x∗; t∗), QR = QR(0; 0)We de�ne some \paraboli
" fun
tional spa
es as follows:W 1;0q (QT ) ≡ Lq(0; T ;W 1q (
)) = {u ∈ Lq(QT ) : ∇u ∈ Lq(QT )};W 2;1q (QT ) = {u ∈ W 1;0q (QT ) : ∇2u; �tu ∈ Lq(QT )};Lq;∞(QT ) = L∞(0; T ;Lq(
)):
§2. PreliminariesWe start with the de�nition of strong solutions:De�nition 2.1. We 
all fun
tions u, H, p a strong solution to the MHDsystem if u;H ∈ W 2;12 (QT ); p ∈ L2(QT );and u, H, p satisfy (1.1) a.e. in QT .Similar to the Navier-Stokes equations, it turns out that a strong solu-tion to the MHD equations, if exists, is unique in the 
lass of weak solutionswhi
h are analogues to the Leray-Hopf solutions in the Navier-Stokes the-ory. To be pre
ise we need to de�ne Leray-Hopf-type solutions to the MHDequations. Below we denote by J�(
) the 
losure in L2(
) of the set of allin�nitely smooth divergen
e-free ve
tor �elds in 
 whi
h vanish near the
ylindri
al surfa
e of 
 and satisfy periodi
ity 
ondition (with the period2L) in x3-dire
tion.De�nition 2.2. Assume u0, H0 ∈ J�(
). We say the divergen
e-freeve
tor �elds u and H are a weak Leray{Hopf{type solution to the initial-boundary value problem (1.1), (1.8){(1.10), ifu;H ∈ L2;∞(QT ) ∩W 1;02 (QT );u and H are weakly 
ontinuous in time as fun
tions with values in L2(
),satisfy the boundary 
onditions (1.8), (1.9), satisfy the initial 
onditions



ON THE LOCAL SMOOTHNESS OF SOME CLASS 135(1.10) in sense of strong 
onvergen
e in L2(
), satisfy the equations (1.1)in the sense of distributions and also satisfy the global energy inequality
‖u(t)‖2L2(
)+‖H(t)‖2L2(
) + 2 t∫0 (

‖∇u(�)‖2L2(
)+‖ rotH(�)‖2L2(
)) d�
6 ‖u0‖2L2(
) + ‖H0‖2L2(
)Note that while Diri
hlet-type and periodi
al boundary 
onditions inDe�nition 2.2 are understood in the sense of tra
es, the Neuman-typeboundary 
onditions 
an be taken into a

ount by the proper 
hoi
e of the
lass of test fun
tions in the integral identities for u and H , see pre
isede�nition, for example, in [7℄ or [18℄. So, we have the following theorem:Theorem 2.1. Assumeu0; H0 ∈ W 12(
) are divergen
e-free and satisfy (1.8); (1.9): (2.1)If u, H and p is a strong solution to the problem (1.1), (1.8){(1.10) in QTand ũ, H̃ is a Leray-Hopf-type solution in QT whi
h 
orresponds to thesame initial data u0 and H0 then u = ũ and H = H̃ a.e. in QT .Though the global existen
e of strong solution for the MHD system is anopen problem, for suÆ
iently smooth initial data we 
an always guaranteelo
al existen
e of strong solutions:Theorem 2.2. Assume (2.1) holds. Then there exists T0 > 0 dependingon ‖u0‖W 12 (
) and ‖H0‖W 12 (
) su
h that there exists a strong solution u,H and p to the problem (1.1), (1.8){(1.10) in 
× (0; T0).Strong solutions to the MHD equations are lo
ally smooth. Namely, weneed the following fa
t:Theorem 2.3. Assume u, H and p are a strong solution to (1.1) in QT .Then for any k ∈ N the in
lusions ∇k−1u, ∇k−1H ∈ C�;�2lo
 (
×(0; T ℄) holdwith any � ∈ (0; 1).Theorems 2.1{2.3 are analogues to the known fa
ts in the Navier-Stokestheory. Their proofs 
an be found, for example, in [7℄, or 
an be obtained bystraightforward modi�
ations of the 
orresponding results for the Navier-Stokes equations.Now we turn to the investigation of the spe
i�
 
lass of strong solutionsto the MHD system. Namely, we 
onsider axially symmetri
al solutions to



136 T. SHILKINthe initial-boundary value problem and show that for the axial symmetry ispreserved during the evolution as long as the solution remains a strong one.Moreover, for axially symmetri
 strong solutions we also have preservationof the poloidal-toroidal stru
ture of the MHD 
ow if the initial data possessthe 
orresponding stru
ture.Theorem 2.4. Let u0, H0 ∈ W 12 (
) be divergen
e-free ve
tor �elds sat-isfying the boundary 
onditions (1.8), (1.9). Assume that for some T > 0there exists a strong solution u, H, p to the problem (1.1), (1.8){(1.10) inQT . Then1) if the ve
tor �elds u0 and H0 are axially symmetri
 then for anyt ∈ (0; T ) the fun
tions u(·; t), H(·; t) and p(·; t) are also axiallysymmetri
;2) moreover, if u0 and H0 satisfy additionally the stru
ture assump-tions (1.4) then for any t ∈ (0; T ) the fun
tions u(·; t) and H(·; t)also satisfy (1.4).The �rst part of Theorem 2.4 is a trivial 
onsequen
e of the uniquenesstheorem for the initial-boundary value problem, see Theorem 2.1. These
ond part follows from the linearity of the equations (1.2) and (1.3).Now we turn to the dis
ussion of so-
alled suitable weak solutions tothe MHD system. We de�ne them as follows:De�nition 2.3. We say the fun
tions u, H, p are a suitable weak solutionto the system (1.1) if u, H ∈ L2;∞(QT ) ∩W 1;02 (QT ) are divergen
e free,p ∈ L 32 (QT ), u, H, p satisfy equations (1.1) in the sense of distributionsand the lo
al energy inequality holds: for any � ∈ C∞0 (R3 × (0; T ℄) su
hthat ���� ∣∣∣�S×(−L;L) = 0, �|S×{x3=−L} = �|S×{x3=L} we havesupt∈(0;T ) ∫
 �(|u|2 + |H |2) dx+2 T∫0 ∫
 �(|∇u|2+| rotH |2) dxdt
6

T∫0 ∫
 (
|u|2+|H |2)(�t� +��) dxdt+ T∫0 ∫
 (

|u|2 + 2p)u · ∇� dxdt+ 2 T∫0 ∫
 (H ⊗H) : ∇2� dxdt+2 T∫0 ∫
 (u×H)(∇� ×H) dxdt



ON THE LOCAL SMOOTHNESS OF SOME CLASS 137For the initial-boundary value problem the existen
e of suitable weaksolutions to the MHD system in QT 
orresponding to the initial data u0,H0 ∈ J�(
) 
an be proved for arbitrary T > 0 by standard regularizationmethod, see, for example, [18℄. Namely, we have the following theorem:Theorem 2.5. Assume u0, H0 ∈ J�(
) and T > 0 is arbitrary. Thenthere exist u, H and p su
h that fun
tions u and H are a Leray-Hopf-type solution to the initial-boundary value problem (1.1), (1.8){(1.10) inQT and simultaneously u, H, p are a suitable weak solution to the system(1.1) in QT .The important property of suitable weak solutions is so-
alled partialregularity. To des
ribe it we de�ne a singular point z0 = (x0; t0) ∈ �
 ×(0; T ℄ of a suitable weak solution u, H and p of the system (1.1) in QTas a point su
h that the fun
tion |u|+ |H | is unbounded in any paraboli
neighborhood of z0 (i.e. in any set QR(z0) ∩ QT with arbitrary R > 0).Then we de�ne a singular set � ⊂ �
× (0; T ℄ of the suitable weak solutionu, H , p as a set of all its singular points. All other points of the set(�
× (0; T ℄)\� are 
alled regular points of the suitable weak solution. Notethat thanks to the assumption on pressure p ∈ L 32 (QT ) every regular pointz0 of a suitable weak solution u, H , p has some paraboli
 neighborhood
QR(z0) ∩QT su
h that u, H ∈ C�;�2 (QR(z0) ∩QT ) with any � ∈ (0; 23 ).The main result on partial regularity of suitable weak solutions to theMHD system is the following theorem:Theorem 2.6. Assume u, H, p is a suitable weak solution to the system(1.1) in QT and denote by � ⊂ �
× (0; T ℄ the singular set of this solution.Then

P1(�) = 0;where P1 is the one-dimensional paraboli
 Hausdor� measure on R
3 × R.Internal partial regularity for the Navier-Stokes equations (whi
h is aparti
ular 
ase of (1.1) if H ≡ 0) was established in the 
elebrated pa-per [1℄. Boundary partial regularity for the Navier-Stokes equations withnon-slip boundary 
onditions was established in [13, 14℄ in the 
ase of
at boundary and in [16℄ in the 
ase of 
urved boundary, see also [17℄.The internal partial regularity for the MHD equations was proved in [2℄.Boundary partial regularity for the MHD equations with boundary 
ondi-tions (1.8), (1.9) was proved in [18℄ in the 
ase of 
at boundary and in [19℄in the 
ase of 
urved boundary. So, our Theorem 2.6 is a 
ombination ofresults of [2, 18℄ and [19℄.



138 T. SHILKINNote that the 
ondition of axial symmetry of solutions impose signi�
antrestri
tions on the stru
ture of the singular set of a suitable weak solutionto the MHD system. Namely, a suitable weak solution 
an not have singularpoints away from the axis of symmetry (be
ause if a point whi
h does notbelong to the axis of symmetry is singular then due to axial symmetry itimmediately generates a singular 
urve, but a singular 
urve is forbiddenby Theorem 2.6). So, the following theorem holds:Theorem 2.7. Assume u0, H0 ∈ J�(
) and let u, H, p be a suitable weaksolution to the problem (1.1), (1.8){(1.10) in QT . Denote by � ⊂ �
×(0; T ℄the singular set of this solution. Then� ⊂
{ (x; t) ∈ 
× (0; T ℄ : x1 = x2 = 0}:

§3. Model problemIn this se
tion we investigate the model problem \until the �rst sin-gularity". This means that we assume that a lo
al solution 
an developsingularity only at the �nal moment of time. Remind we denote CR =
{ x ∈ R

3 : x21 + x22 < R2; |x3| < R }, QR = CR × (−R2; 0) and C = C1,
Q = Q1. The following theorem is the main result of this se
tion:Theorem 3.1. Assume u, H, p are an axially symmetri
 suitable weaksolution to (1.1) in Q su
h that u is poloidal and H is toroidal in Q,i.e. (1.5) holds. Assume that for some � ∈ (0; 23 ) the in
lusions u, H ∈C�;�2 ( �C×[−1; t′℄) hold for any t′ ∈ (−1; 0) and besides u, H∈C�;�2 ( �Q\QR)for some R ∈ (0; 1). Then u, H ∈ C�;�2 ( �Q).We split the proof of Theorem 3.1 into few steps. First we obtain someadditional regularity of !' := ur;z − uz;r and H' on the internal subsetsof Q.Theorem 3.2. Assume all 
onditions of Theorem 3.1 hold. Denote ! :=rotu, ! = !'e'. Then !'r , H'r ∈ W 1;0

∞;lo
(Q). Moreover, for any R1, R2,su
h that R < R1 < R2 < 1, the fun
tions !'r and H'r are 
ontinuous onthe set �QR2 \ QR1 and lo
ally 
ontinuous in Q.Proof of Theorem 3.2. Theorem 3.2 is the dire
t 
onsequen
e of theusual regularity theory for paraboli
 and the Navier-Stokes equations. In-deed, as u andH are H�older 
ontinuous on the sets �C×[−1; t′℄, ∀ t′ ∈ (−1; 0)and on �Q\QR by Theorem 2.3 we obtain that for any k ∈ N the derivatives
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∇ku, ∇kH are also lo
ally H�older 
ontinuous in Q and H�older 
ontinuouson the set �QR2 \ QR1 for any R < R1 < R2 < 1.Denote h := H'r ,  := !'r . Then in 
ylindri
al 
oordinates we have

∇2H = H';rre' ⊗ er ⊗ er +H';rz(er ⊗ er ⊗ ez + e' ⊗ ez ⊗ er)+H';zze' ⊗ ez ⊗ ez ++h;r(e' ⊗ e' ⊗ e' − er ⊗ er ⊗ e'
− er ⊗ e' ⊗ er)− h;z(er ⊗ e' ⊗ ez + h;zer ⊗ ez ⊗ e')Hen
e we have pointwise double-sided estimate

|∇2H |2 ≍ H2';rr +H2';rz +H2';zz + h2;r + h2;zSimilarly we have
|∇2!|2 ≍ !2';rr + !2';rz + !2';zz +  2;r +  2;zSo, from ∇2H , ∇2! ∈ L∞;lo
(Q) we obtain ∇h, ∇ ∈ L∞;lo
(Q).Next, as the fun
tions !'(0; z; t) = 0 and H'(0; z; t) = 0 we 
an de�ne (r; z; t) and h(r; z; t) for r = 0 by the values !';r(0; z; t) and H';r(0; z; t)respe
tively. It is easy to see that the obtained fun
tions are 
ontinuouson �QR2 \ QR1 and lo
ally 
ontinuous in Q. Theorem 3.2 is proved. �Next get the estimate of the magneti
 �eld:Theorem 3.3. Assume u, H ∈ L2;∞(Q)∩W 1;02 (Q) are axially symmetri
divergen
e-free ve
tor �elds su
h that u is poloidal and H is toroidal in

Q, i.e. (1.5) holds. Let u and H satisfy the equations (in the sense ofdistributions) �tH −�H = rot(u×H) in QAssume additionally that u is H�older 
ontinuous in �C × [−1; t′℄ for anyt′ < 0 and besides H'r ∈ L∞(�′QR) for some R < 1. Then H'r ∈ L∞(QR)and the following estimate holds:esssup
QR ∣∣∣

H'r ∣∣∣ 6 esssup�′QR ∣∣∣
H'r ∣∣∣: (3.1)Proof of Theorem 3.3. It turns out that H'r satis�es to the equationwhi
h 
an be redu
ed to the heat equation with a drift term in the 5-dimensional spa
e. This idea is borrowed from [15℄, see also [3℄.



140 T. SHILKINDenote D := K×(−1; 0) whereK := { (r; z) ∈ R
2 : r ∈ (0; 1); |z| < 1 }.Then H' satis�es the identity

∫D (
−H'�t� +H';r�;r +H';z�;z + H'�r2 + urH';r�+uzH';z�− urH'�r ) r dr dz dt = 0for any test fun
tion � ∈ C∞0 (D). De�ne the fun
tion h byh(r; z; t) := H'(r; z; t)r :Then h satis�es the integral identity

∫D (
−h�t�+h;r�;r+h;z�;z−2 h;r�r +urh;r�+uzh;z� ) rdr dz dt = 0 (3.2)for any � ∈ C∞0 (D). In Cartesian 
oordinates this means that h(x; t) =H'(x;t)

|x′| is a weak solution to the equation�th−�h+ u · ∇h− 2 x′
|x′|2 · ∇h = 0 in D′(Q \ �);where x′ := (x1; x2; 0)T and � := {(x; t) ∈ Q : x′ = 0}. Moreover,repla
ing in (3.2) the test fun
tion � by r2� we obtain that h and u alsosatisfy the integral identity

∫D (
− h�t� + h;r�;r + h;z�;z + urh;r� + uzh;z�) r3 dr dz dt = 0;

∀ � ∈ C∞0 (D): (3.3)Denote
C5 := {y ∈ R

5 : y21+y22+y23+y24 < 1; |y5| < 1}; Q5 := C5×(−1; 0) (3.4)r = √y21 + y22 + y23 + y24 ; z = y5; (3.5)b�(y; t) = ur(r; z; t) y�r ; � = 1; 2; 3; 4; b5(y; t) = uz(r; z; t): (3.6)Denote also w(y; t) = h(r; z; t):Then by Theorem 3.2 we have w ∈W 1;0
∞;lo
(Q5), and u ∈ C�;�2 ( �C× [−1; t′℄)implies b ∈ L∞(C5 × (−1; t′)) for any t′ ∈ (−1; 0).
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hange of variables in (3.3) and adding to the obtainedidentity the spheri
al part of the Lapla
ian in (y1; y2; y3; y4) ∈ R
4 (whi
his zero due to the 
ylindri
al symmetry of w) we arrive at the identity

∫

Q5 (
−w�t�+∇w · ∇�+ b · ∇w �) dydt = 0; ∀ � ∈ C∞0 (Q5 \�5); (3.7)where �5 := { (y; t) ∈ Q5 : y′ = 0 } and y′ = (y1; y2; y3; y4; 0)T . As the set�5 is removable in the 5-dimensional spa
e we 
on
lude that (3.7) remainstrue for any � ∈ C∞0 (Q5). Hen
e w ∈ W 1;02;lo
(Q5) is a weak solution to theequation �tw −�w + b · ∇w = 0 in Q5:Now we 
an apply the following version of the maximum prin
iple (see, forexample, [11℄, Corollary 3.5 and remarks at the end of Se
tion 3).Theorem 3.4. Denote Cn := {y ∈ R

n : |y′| < 1; |yn| < 1}, n > 3,
Qn = Cn×(−1; 0) and assume that w ∈ W 1;02 (Qn), b ∈ Ls;l(Qn), ns+ 2l = 1,s > n, satisfy the integral identity

∫

Qn (
− w�t� +∇w · ∇� + b · ∇w�) dy dt = 0; ∀ � ∈ C∞0 (Qn):Assume also w|�′Qn = '; where ' ∈ L∞(�′Qn)(the boundary 
ondition is understood in the sense of tra
es and the ini-tial 
ondition makes sense as under above assumptions on b we have in-
lusions �tw ∈ L2(−1; 0;W−12 (Cn)) and w ∈ C([−1; 0℄;L2(Cn))). Thenw ∈ L∞(Qn) and w satis�es the estimate:esssup

Qn |w| 6 esssup�′Qn |'|:Denote C′R := { y ∈ R
5 : |y′| < R; |y5| < R } and Q′R := C′R× (−R2; 0).Now we 
an apply Theorem 3.4 to our fun
tion w in the paraboli
 
ylinder

C′R × (−R2; t′) with some t′ ∈ (−1; 0). By assumption w ∈ L∞(�′Q′R) andwe obtainesssup
C′R×(−1;t′) |w| 6 esssup�′Q′R |w| =⇒ esssup

CR×(−R2;t′) ∣∣∣H'r ∣∣∣ 6 esssup�′QR ∣∣∣
H'r ∣∣∣:As the right-hand side in this inequalities is independent on t′ we 
on
ludethat H'r is bounded in QR and (3.1) holds. Theorem 3.3 is proved. �



142 T. SHILKINNow we turn to the estimates for the vorti
ity of the velo
ity �eld.Theorem 3.5. Assume u, H ∈ L2;∞(Q)∩W 1;02 (Q) are axially symmetri
divergen
e-free ve
tor �elds su
h that u is poloidal and H is toroidal in
Q, i.e. (1.5) holds. Denote ! = rotu = !'e', where !' := ur;z − uz;r.Assume u, ! and H satisfy the equation (in the sense of distributions)�t! −�! + rot(! × u) = rot(rotH ×H) in Q: (3.8)Assume additionally that u is H�older 
ontinuous in �C × [−1; t′℄ for anyt′ ∈ (−1; 0) and besides !'r ∈ L∞(�′QR) and H'r ∈ L∞(QR) for someR < 1. Then !'r ∈ L∞(QR) and the following estimate holds:esssup

QR ∣∣∣
!'r ∣∣∣ 6 esssup�′QR ∣∣∣

!'r ∣∣∣ + 
 esssup
QR ∣∣∣

H'r ∣∣∣
2 (3.9)where 
 is some absolute 
onstant.Proof of Theorem 3.5. We explore the ideas from [11℄. De�ne the fun
-tion  (r; z; t) := !'(r; z; t)rand represent  in Cartesian 
oordinates. Then from Theorem 3.2 weobtain  ∈ W 1;0

∞;lo
(Q) and by assumption  ∈ L∞(�′QR). Moreover, thefun
tion  is smooth away from the set � := { (x; t) : |x′| = 0 } andsatis�es the identity�t −� + u · ∇ = 2 x′
|x′|2 · ∇ − F a.e. in Q; (3.10)where x′ := (x1; x2; 0)T and F is the representation in Cartesian 
oordi-nates of the fun
tion F := (H2'r2 );z:Take arbitrary " ∈ (0; R), t′ ∈ (−R2; 0) and denote

C̃" := { x ∈ CR : " < |x′| < R }; Q̃" := C̃" × (−R2; t′); k0 := sup�′QR | |Taking k > k0 we see that the fun
tion ( −k)+ vanishes on the paraboli
boundary of QR. Here we denote ( − k)+ := max{ − k; 0}.



ON THE LOCAL SMOOTHNESS OF SOME CLASS 143Multiplying (3.10) by ( −k)+, integrating the result over C̃" we obtain12 ddt‖( − k)+‖2L2(C̃") + ‖∇( − k)+‖2L2(C̃")= ∫

C̃" ( x′
|x′|2 −

u2)
· ∇|( − k)+|2 dx + ∫

C̃" F ��x3 ( − k)+ dx:Using the divergen
e-free 
ondition div u = 0 and the fa
t that the diver-gen
e of the ve
tor �eld x′

|x′|2 is sign-de�nite in D′(Q) (see [11, Appendix℄),namely, div x′
|x′|2 = −2�Æ� 6 0 in D′(Q);integrating by parts we obtain

∫

C̃" ( x′
|x′|2 −

u2)
· ∇|( − k)+|2 dx = −

1" ∫

|x′|=" |( − k)+|2 dsx:Dis
arding the non-positive term in the right-hand side and passing to thelimit as "→ 0 we arrive at12 ddt‖( − k)+‖2L2(CR) + ‖∇( − k)+‖2L2(CR) 6

∫

CR F ��x3 ( − k)+ dx:Applying the H�older inequality and integrating over t ∈ (−R2; t′) we obtainsupt∈(−R2;t′) ‖( − k)+‖2L2(CR) + ‖∇( − k)+‖2L2(CR×(−R2;t′))
6 C ∫Ak∩QR |F |2 dxwhere Ak := { (x; t) ∈ CR × (−R2; t′) |  (x; t) > k }. From Theorem 3.3we know that F ∈ L∞(QR) and hen
esupt∈(−R2;t′) ‖( − k)+‖2L2(CR) + ‖∇( − k)+‖2L2(CR×(−R2;t′))

6 C ‖F‖2L∞(QR) |Ak|; ∀ k > k0:From [8, Theorem 6.1℄ we obtainesssup
CR×(−R2;t′)( − k0)+ 6 C ‖F‖L∞(QR); ∀ t′ ∈ (−R2; 0):



144 T. SHILKINRepla
ing  by − and repeating the same arguments we obtain
‖ ‖L∞(CR×(−R2;t′)) 6 k0 + C ‖F‖L∞(QR); ∀ t′ ∈ (−R2; 0):As the right-hand side of the last inequality is independent on t′ ∈ (−R2; 0)we arrive at the desired result. Theorem 3.5 is proved. �Estimates (3.3) and (3.9) imply that for any x∗ ∈ CR belonging to theaxis of symmetry (i.e. su
h that x∗1 = x∗2 = 0) at the �nal moment of timet = 0 the following identities hold:lim sup�→0 1�2 ∫

Q�(z∗) |H |3 dxdt = 0; lim sup�→0 1� ∫

Q�(z∗) |!|2 dxdt = 0: (3.11)Here we denote z∗ := (x∗; 0), Q�(z∗) = C�(x∗)× (−�2; 0). Now Theorem3.1 is a dire
t 
onsequen
e of the following "{regularity 
ondition for theMHD system whi
h 
an be found, for example, in [4℄, see Theorem 1.2 (b)(we present even a weaker version of the result in [4℄ whi
h is suÆ
ient forour purpose):Theorem 3.6. Assume u, H ∈ L2;∞(Q) ∩W 1;02 (Q) and p ∈ L 32 (Q) area suitable weak solution to the system (1.1) in Q and denote ! = rotu.Assume that for some point z∗ ∈ C×(−1; 0℄ the identities (3.11) hold. Thenthere exists a paraboli
 neighborhood Q�∗(z∗) of the point z∗ su
h that uand H are H�older 
ontinuous in �Q�∗(z∗) with any exponent � ∈ (0; 23 ).Theorem 3.1 is proved. �

§4. Proof of Theorems 1.2 and 1.1We start this se
tion with the proof of Theorem 1.2.Proof of Theorem 1.2. We assume that u, H and p is a suitable weaksolution satisfying all assumptions of Theorem 1.2. By 
ontradi
tion, weassume that the singular set � ⊂ C × (−1; 0℄ of this solution is non-empty.Then we redu
e our problem to the model problem \until the �rst singu-larity" investigated in the previous se
tion and obtain a 
ontradi
tion.First we establish existen
e of a \
ylindri
al layer" in whi
h our solutionis smooth. Indeed, from Theorem 2.6 the existen
e of the radius R ∈ (0; 1)follows su
h that �′QR ∩ � = ∅ (otherwise we obtain P1(�) > 0 whi
h
ontradi
ts to the partial regularity established in Theorem 2.6). As the set
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losed in �
×(0; T ℄ the existen
e of 0 < R1 < R2 < 1 followssu
h that � ∩
( �QR2 \ QR1) = ∅. Moreover, without loss of generality we
an assume that � ∩ QR1 6= ∅.Now we de�ne the �rst singular moment of time t0 of our solution inthe 
ylinder QR1 . For any t ∈ (−R21; 0℄ we denote�t = { x ∈ CR1 : (x; t) ∈ � }and de�ne t0 := inf { t ∈ (−R21; 0℄ : �t 6= ∅

}:The set �t0 is non-empty (it follows from 
losedness of the set �). So, we
an take x0 ∈ CR1 su
h that (x0; t0) ∈ � (and hen
e the fun
tion |u|+ |H |is unbounded in any paraboli
 neighborhood of (x0; t0)). Then there existr1 and r2, 0 < r1 < r2, su
h that
Cr2(x0) ⋐ CR1 and ( �Cr2(x0) \ Cr1(x0)) ∩ �t0 = ∅:So, the fun
tions u andH are H�older 
ontinuous in �Cr2(x0)×[t0−r22 ; t′℄ withany t′ ∈ (t0− r22 ; t0), as well as they are H�older 
ontinuous in �Qr2(x0; t0) \

Qr1(x0; t0), where we denote Q�(x0; t0) = C�(x0)× (t0 − �2; t0).Now for any (x; t) ∈ Q we de�ne fun
tionsũ(x; t) := r2u(x0 + r2x; t0 + r22t);H̃(x; t) := r2H(x0 + r2x; t0 + r22t);p̃(x; t) := r22p(x0 + r2x; t0 + r22t):Then the fun
tions ũ, H̃ and p̃ satisfy all 
onditions of Theorem 3.1 (ifwe take R := r1r2 ). By Theorem 3.1 we obtain that ũ and H̃ are H�older
ontinuous in �Q and hen
e the original fun
tions u and H are H�older
ontinuous in the 
ylinder �Qr2(x0; t0). This 
ontradi
ts to the assumptionthat the point (x0; t0) is singular. The obtained 
ontradi
tion implies that� = ∅. Theorem 1.2 is proved. �Now we turn to the proof of Theorem 1.1.Proof of Theorem 1.1. From the lo
al well-posedness of the MHD sys-tem (see [7℄) we know that for any divergen
e-free initial data u0 and H0satisfying (1.8), (1.9) there exists T0 = T0(u0; H0), T0 > 0, su
h that the



146 T. SHILKINsystem (1.1), (1.8), (1.9), (1.10) has the unique strong solution u, H andp in 
× (0; T0). DenoteT∗ := sup{ T > T0 :there exists a strong solution to(1.1), (1.8){(1.10) in
× (0; T )}:Note that if the initial data u0 and H0 are axially symmetri
 and satisfy(1.4) then from Theorem 2.4 we obtain that for any T < T∗ the strongsolution u, H , p in 
 × (0; T ) 
orresponding to u0 and H0 is also axiallysymmetri
 and satis�es (1.4).Our goal is to show that T∗ = +∞. By 
ontradi
tion, assume T∗ < +∞.Let ũ, H̃ , p̃ be any suitable weak solution to the problem (1.1), (1.8){(1.10)in 
 × (0; T∗). Then for any T ∈ (0; T∗) the fun
tions ũ, H̃ 
oin
ide withthe strong solution u,H . Hen
e the fun
tions ũ, H̃ , p̃ are axially symmetri
and satisfy (1.4). Denote by � the singular set of the suitable weak solutionũ, H̃ , p̃ in �
× [0; T∗℄. Then evidently � ⊂ �
×{t = T∗}. Moreover, � layson the axis of symmetry {x ∈ R
3 : x′ = 0}. Assume z0 := (x0; T∗) ∈ �.By de�nition of a singular point |u| + |H | must be unbounded in anyparaboli
 neighborhood of z0. On the other hand, if we take R > 0 su
hthat QR(z0) ⊂ 
× (0; T∗) then all 
onditions of Theorem 1.2 are satis�edfor a suitable weak solution ũ, H̃ , p̃ in the 
ylinderQR(z0). Thus |u|+|H | isbounded in some paraboli
 neighborhood of z0. The obtained 
ontradi
tionimplies that � = ∅ and the strong solution u, H , p 
an be extended onto
× (0; T∗ + ") for some " > 0, but this 
ontradi
ts to the de�nition of T∗.Thus T∗ = +∞. Theorem 1.1 is proved. �Referen
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