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ON THE LOCAL SMOOTHNESS OF SOME CLASS
OF AXI-SYMMETRIC SOLUTIONS TO THE MHD
EQUATIONS

ABSTRACT. In this paper we consider a special class of weak axi-
symmetric solutions to the MHD equations for which the velocity
field has only poloidal component and the magnetic field is toroidal.
We prove local regularity for such solutions. The global strong solv-
ability of the initial-boundary value problem for the corresponding
system in a cylindrical domain with non-slip boundary conditions
for the velocity on the cylindrical surface is established as well.

§1. INTRODUCTION AND MAIN RESULTS

Let © C R? be a cylindrical domain with the axis of symmetry z3. In
this paper we study regularity of some special class of weak axi-symmetric
solutions to the equations of magnetohydrodynamics (MHD) in Qr :=
Q x (0,T). The MHD system describes the dynamics of a conductive in-
compressible viscous fluid:

|u[?
Oiu + rotu xquu-l-V(p-l- T) = rotH x H

dive = 0 in Qr.
O:H — AH = rot(u x H)
divH =0
(L.1)
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128 T. SHILKIN

Here u : Q7 — R3 is the velocity field, p : Qr — R is pressure and
H : Q7 — R? is the magnetic field, and for any a, b € R? we denote by
a x b its vector product in R3.

Let (z1,x2,23) be Cartesian and (r, p, z) be cylindrical coordinates of
the point z € R3, i.e. 1 = rcosyp, 3 = rsinyp, r3 = z. Denote the basis
vectors of orthonormal cylindrical coordinate system by e, e,, e.. For
every vector field u : Q@ — R?, u = u,e, + uye, + u.e, we denote by uf
and u” its poloidal and toroidal components respectively:

u=u" + uT, uf = Upe, + u e,, ul = Up€p-
We say the scalar function is axi-symmetric if (been represented in cylin-
drical coordinates) it does not depend on . The vector field « is awi-
symmetric if functions w,, u,, v, are axi-symmetric. We say the vector
field u is poloidal if its toroidal component is identically zero and toroidal
if it has no poloidal component.

In this paper we are interested in those axi-symmetric solutions to the
system (1.1) which possess some additional symmetry. To analyze the pos-
sible symmetries of solutions to the MHD equations we project the equa-
tions onto the subspaces of toroidal and poloidal vector fields. Note that
in the space of axi-symmetric vector fields the toroidal and poloidal sub-
spaces are invariant under the Laplacian. Hence from (1.1) we obtain that
toroidal and poloidal components of the velocity and magnetic fields in the
axi-symmetric case satisfy the following equations:

O’ — AuT +rotu’ x uP = rot HT x H? (1.2)
ou” — AuP +rotu” x uT +rotu” x uf +Vp
=rot HZ x HY +rot HT x HT
HHT — AHT = rot(u? x HY) +rot(u? x HT)
OHP — AHF = rot(u” x HP) (1.3)
divuf = 0, divHP =0
As the equation (1.3) is linear with respect to H, we can expect that for
the apropriate initial boundary-value problem the poloidal part of mag-
netic field is zero if it vanishes at the initial moment of time. On the other
hand, from (1.2) we see that the toroidal component of the velocity is gov-

erned by the external force rot HT x H¥ and hence v” is identically zero
if H? is absent and v’ vanishes at the initial moment of time. So, we can
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expect that for the MHD system the following symmetry of solutions is
preserved under the evolution:

ul(-,0) =0, HP(,00=0 = u'(,t)=0, HP(,t)=0, V>0

In this paper we study the class of weak axi-symmetric solutions to the
MHD equations for which the velocity field has only poloidal component
and the magnetic field is toroidal:

u(z,t) =u (z,t), H(z,t)=H (z,t), Yt>0, zec. (1.4)
In this case we have
u(z,t) = ur(r, 2z, t)e, +us(r, z,t)e., H(z,t)=H,(r,z,t)e,  (1.5)

and the system (1.1) in cylindrical coordinates reduces to the equations for
evolution of the poloidal part of the velocity field coupled by the equation
which is linear with respect to the scalar function H,

u H? H2
B+ (gt + wstns) — (Ao — 2 ) + (p+2) =2
H? ,
st + (s p + Uzt fAmuer( +_W) ~0
t ( , 2) . P = - (1.6)

u
Up,p +uz,z + 7T =0
H

OuHy + (upHp, +usH, ) — (AMHw - r—j) -

urHy,
r

Here by A, . we denote the Laplacian of an axi-symmetric scalar function
with respect to cylindrical coordinates:

¥,
Ar,zw = 1/1,7'1‘ + w,zz + Tr

Our main interest to the system (1.6) is due to its formal similarity to
the system describing the axi-symmetric solutions to the Navier-Stokes
equations with swirl. The latter consists of the equations for evolution of
the poloidal part of the velocity field coupled by the equation which is
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linear with respect to the angular component of the velocity field u,:

2
u u
Oy + (UpUpp + Ustlyz) — (Amur _ T_;") tp, = T@
Oru + (UTUZ,T + uzuZ,Z) - Ar,zuz +p.=0
Uy (1.7)
Up,pr +’U/Z72 + 7 =0
u Upl
Oty + (Upti,r + UsUp,») — (Am% _ T_g) __ rr ®

As we see, after the replacement H, < u, the both systems are almost
identical with the only difference in the signs of the right-hand sides in
(1.6) and (1.7). Although the system (1.7) is widely studied, its global
strong solvability remains open for now. To the contrast, for the system
(1.6) we are able to prove the global existence of smooth solutions. Roughly
speaking the reason for it is following: it is well-known that for the system
(1.7) the quantity ru, is governed by the equation

2
Oc(ruy) + ur(ruy) » + us(ruy) . — Ay (ruy) + ;(ruw),r =0

This relation provides some extra control for the quantity ru,. The dif-
ferent sign in the equations (1.6) results in the fact that in the case of
(1.6) the corresponding quantity that “moves with the flow” is not rH,,
but 7~ H,:

() (1) () () 2 -0

) ) )

This relation provides some extra control for the quantity T_IH@ which
implies that in the case (1.6) the function H,, is much more regular near the
axis of the symmetry than the function u,, in the case of (1.7). Essentially
this is the reason why the global strong solvability for the system (1.6)
turns out to be much easier than the analogous result for the system (1.7).

The global smooth solvability of the Cauchy problem for the system
(1.6) was proved in [9]. The method of [9] was based on the ideas described
above and it allowed the author to obtain the result even in the case where
the magnetic diffusion is ignored.

In this paper we are interested in the study of the initial boundary
value problem for the MHD system. Hence we need to supply our system
with some boundary conditions. One of the common technical tools in the
study of axi-symmetric solutions to the equations of hydrodynamics is the
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transfer of the equations for the velocity field to the vorticity form. That
is why many authors consider slip boundary conditions for the velocity,
see, for example, [12,20, 21]. Indeed, conditions of such type allow one to
introduce the flux function for the velocity field or to use vorticity itself
as a test function for the equations and hence to deal with the initial-
boundary value problem roughly speaking in the same way as it was done
for the Cauchy problem.

In this paper we consider non-slip boundary conditions for the velocity
field. In this case the direct transfer to the vorticity equations fails as
vorticity “looses” information about boundary data. So, we use instead the
method based on the local regularity theory developed in [15], see also [5].
As in the case of non-slip boundary conditions the boundary regularity of
axi-symmetric solutions without swirl near points of intersection of the axis
of symmetry with the boundary of the domain is an open issue even for
the Navier-Stokes equations (see, for example, [3]), to avoid this difficulty
we impose conditions of periodicity in z3-direction. We assume that =
S x (=L, L), where S = { (z1,22) € R? : 27 + 23 < a® } and we impose
the following boundary conditions for the velocity field for all ¢ € (0,7T):

ulpsx(—r,r) = 0, Ul {za=—L} = W|sx{as=1} (1.8)

For the magnetic field we also consider conditions of periodicity in z3
direction and on the cylindrical surface of 2 we can take, for example,
conditions of ideal conductor:

Hylosx(~r,0) =0, (rvot H)rlosx(—r,0) =0, Hlsx{zs=—1} = H|sx{zs=1}-

(1.9)
Here we denote by v the external normal to 902 and H, := H -v, H, :=
H —vH,. Note that for a toroidal vector field H = H,e, these conditions
reduce to

H
(H@’r + _w) ‘
OS5 x(

a = 07 an|S><{x3:—L} = an|5><{z3:L}-

~L,0)
Finally, we supply the system (1.1) by the initial conditions
uli=o = uo, ult=o0 = Ho, (1.10)

where ug and Hj are the divergence-free vector fields satisfying (1.8), (1.9)
in the appropriate sense. Namely, for ug, Hy € W3 (Q) we assume condi-
tions uglapsx(~r,0) = 0, (Ho-V)|ssx(~L,r) = 0 on the cylindrical surface of
Q and periodicity conditions on the top and the bottom of Q hold in the
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sense of traces while the condition on the tangential part of rot Hy on the
cylindrical surface is omitted.

Our first main result is concerned with the existence of global strong
solutions to the initial boundary value problem (1.1), (1.8)—(1.10) (see the
definition of strong solutions in Section 2):

Theorem 1.1. Let ug, Hy € W(Q) be azi-symmetric divergence-free ini-
tial data satisfying the structure conditions (1.4) and the boundary condi-
tions (1.8), (1.9) (in the sense described above). Then for any T > 0 there
is a strong solution u, H, p to the initial boundary value problem (1.1),
(1.8)<(1.10) in Q1 such that for any moment of time (1.4) is satisfied.
Moreover, this solution is unique in the class of all weak Leray—Hopf type
solutions to the problem (see the definition of the Leray-Hopjf-type solutions
in Section 2).

As we mentioned above, in the case of non-slip boundary conditions
for the velocity we can not pass directly to the vorticity equations for u
and use the method developed in [9] to get the result. So, we employ a
different, approach based on partial regularity of suitable weak solutions to
the MHD system with further local analysis of the regularity of suitable
weak solutions satisfying (1.4) near the axis of symmetry.

The theory of partial regularity for the MHD equations was developed
in [2] in the internal case, in [18] near the plane part of the boundary
(under boundary conditions (1.8), (1.9)) and in [19] in the case of a curved
boundary (under the same boundary conditions). This theory guarantees
that for a suitable weak solution to the system (1.1) both w and H are
Holder continuous (up to the boundary) everywhere except for a closed
set ¥ C Q x (0,7] (called a singular set) whose one-dimensional parabolic
Hausdorff measure is zero:

PLHZ) =0.
For an axi-symmetric suitable weak solutions this implies that singularity
can occur only on the axis of symmetry.

The idea of the local analysis of regularity of axi-symmetric solutions
near the axis of symmetry we employ is borrowed from [15], see also [3].
This idea includes the reduction of our problem to the problem of the
first-time-singularity, i.e. to the problem in the canonical domain in which
solution is smooth up to the last moment of time. Then we transfer our
equation for the magnetic field H, to the auxiliary equation for % and
following to [15] interpret the obtained relation as the heat equation with
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a drift term in 5-dimensional space. This allows us to apply the maximum
principle and obtain the estimate of the maximum of % Then we go
back to the equations for the velocity, transfer them to the scalar equation
for the angular component of vorticity w, and applying the same idea
obtain the estimate of the maximum of “’7"’ With these two estimates the
regularity of u and u at the initial moment of time easily follows from the
e-regularity theory for the MHD equations, see, for example, [4].

So, our second main result concerning the local regularity of axi-sym-
metric suitable weak solutions (to be defined in Section 2) to the MHD
equations under the symmetry conditions (1.4) can be formulated as fol-
lows:

Theorem 1.2. Denote Cr := {z € R® : 27 + 23 < R?, |z3] < R},
Qr = Cr x (—R2,0). Let u, H and p be a suitable weak solution to the
MHD system in Q1. Assume additionally functions u, H and p are axially
symmetric, the vector field u is poloidal and the vector field H is toroidal,
i.e. (1.5) holds. Then u, H € C*%(Q,) with any p € (0,1) and any
a € (0,2). Here we denote by C*%(Q,) the set of functions which are
Holder continuous on Qp with the exponent o with respect to the parabolic
metric.

Finally we would like to remark that as our approach is based on the
partial regularity theory for the MHD equations with our method we can
not ignore the magnetic diffusivity (i.e. the Laplacian term) in the magnetic
equation in (1.1) and hence to prove a complete analogue of the result
obtained in [9] for the Cauchy problem.

Our paper is organized as follows: in Section 2 we present the definitions
of strong, Leray-Hopf-type and suitabe weak solutions to the MHD system
and recall some known properties of them. In Section 3 we consider the
model local problem for the MHD system “until the first singularity”. In
Section 4 we present the proofs of our main results (Theorems 1.1 and
1.2).

We use the following notation. For any a, b € R™ we denote by a - b
its scalar product in R™. For any ¢ € [1,4+00) we denote by L,(2) and
Wk(€) the usual Lebesgue and Sobolev spaces. The space Ly (€2; dy) is the
Lebesgue space with respect to Borel measure p on 2. We do not distin-
guish between spaces of scalar functions and vector fields in the notation.
The space of measurable functions whose values are essentially bounded
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in © is denoted by Lo (2). We denote by C>(Q) the set of all infinitely
smooth functions on 2 and by D’(Q2) the set of distributions on .
In contrast to traditional setting, we replace the usual balls with cylin-
ders (which is quite convenient in the case of axial symmetry) and denote
Cr(z*) :={x eR3: (z1 —2})? + (1 — 27)®> < R?, |z3 — 23| < R },
Cr = Cr(0)
Qr(z*) =Cr(z*) x (t* — R2,t*), z* = (z*,t*), Qgr = Qr(0,0)
We define some “parabolic” functional spaces as follows:
W,(Qr) = Ly(0,T; Wy () = {u € Ly(Qr) : Vu € Ly(Qr)},
Wf’l(QT) ={ue W;’O(QT) : VPu, du € Ly(Qr)},
Lg,oo(Q1) = Loo(0, T Ly(2)).

§2. PRELIMINARIES

We start with the definition of strong solutions:

Definition 2.1. We call functions u, H, p a strong solution to the MHD
system if

u, He W3 (Qr), p€ La(Qr),
and u, H, p satisfy (1.1) a.e. in Qr.

Similar to the Navier-Stokes equations, it turns out that a strong solu-
tion to the MHD equations, if exists, is unique in the class of weak solutions
which are analogues to the Leray-Hopf solutions in the Navier-Stokes the-
ory. To be precise we need to define Leray-Hopf-type solutions to the MHD
equations. Below we denote by .J, () the closure in Ly(Q2) of the set of all
infinitely smooth divergence-free vector fields in Q which vanish near the
cylindrical surface of  and satisfy periodicity condition (with the period
2L) in x3-direction.

Definition 2.2. Assume ug, Ho € J,(Q). We say the divergence-free
vector fields u and H are a weak Leray—Hopf-type solution to the initial-
boundary value problem (1.1), (1.8)—(1.10), if

u, H e L2,OO(QT) N WQ’O(QT)a

u and H are weakly continuous in time as functions with values in Lo (),
satisfy the boundary conditions (1.8), (1.9), satisfy the initial conditions
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(1.10) in sense of strong convergence in Lo(Q2), satisfy the equations (1.1)
in the sense of distributions and also satisfy the global energy inequality
t

4O 0+ IOy +2 [ (V) 0+ I 0t HOIE )
0

< luollZ, () + 1 Holl o)

Note that while Dirichlet-type and periodical boundary conditions in
Definition 2.2 are understood in the sense of traces, the Neuman-type
boundary conditions can be taken into account by the proper choice of the
class of test functions in the integral identities for v and H, see precise
definition, for example, in [7] or [18]. So, we have the following theorem:

Theorem 2.1. Assume
ug, Hy € W3(Q) are divergence-free and satisfy (1.8),(1.9). (2.1)

Ifu, H and p is a strong solution to the problem (1.1), (1.8)—(1.10) in Q7
and w, H is a Leray-Hopf-type solution in Qr whjch corresponds to the
same initial data ug and Hyo then u=u and H = H a.e. in Q.

Though the global existence of strong solution for the MHD system is an
open problem, for sufficiently smooth initial data we can always guarantee
local existence of strong solutions:

Theorem 2.2. Assume (2.1) holds. Then there exists To > 0 depending
on |[uollwzq) and [[Hollwy(q) such that there exists a strong solution u,
H and p to the problem (1.1), (1.8)—(1.10) in Q x (0,Tp).

Strong solutions to the MHD equations are locally smooth. Namely, we
need the following fact:

Theorem 2.3. Assume u, H and p are a strong solution to (1.1) in Q.
Then for any k € N the inclusions V*~'u, VF=1H € C>? (A% (0,T]) hold
with any o € (0,1).

Theorems 2.1-2.3 are analogues to the known facts in the Navier-Stokes
theory. Their proofs can be found, for example, in [7], or can be obtained by
straightforward modifications of the corresponding results for the Navier-
Stokes equations.

Now we turn to the investigation of the specific class of strong solutions
to the MHD system. Namely, we consider axially symmetrical solutions to
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the initial-boundary value problem and show that for the axial symmetry is
preserved during the evolution as long as the solution remains a strong one.
Moreover, for axially symmetric strong solutions we also have preservation
of the poloidal-toroidal structure of the MHD flow if the initial data possess
the corresponding structure.

Theorem 2.4. Let ug, Hy € W3 (Q) be divergence-free vector fields sat-
isfying the boundary conditions (1.8), (1.9). Assume that for some T > 0
there exists a strong solution u, H, p to the problem (1.1), (1.8)—(1.10) in
Q1. Then

1) if the vector fields uo and Hy are azially symmetric then for any
t € (0,T) the functions u(-,t), H(-,t) and p(-,t) are also awially
symmetric;

2) moreover, if ug and Hy satisfy additionally the structure assump-
tions (1.4) then for any t € (0,T) the functions u(-,t) and H(-,t)
also satisfy (1.4).

The first part of Theorem 2.4 is a trivial consequence of the uniqueness
theorem for the initial-boundary value problem, see Theorem 2.1. The
second part follows from the linearity of the equations (1.2) and (1.3).

Now we turn to the discussion of so-called suitable weak solutions to
the MHD system. We define them as follows:

Definition 2.3. We say the functions u, H, p are a suitable weak solution
to the system (1.1) if u, H € Lyoo(Q7) N W, °(Qr) are divergence free,
pE L%(QT), u, H, p satisfy equations (1.1) in the sense of distributions
and the local energy inequality holds: for any ¢ € C$*(R® x (0,T)) such

0
that C‘as x(—L,L) =0, Clsx{es=-1} = Clsx{as=r) we have
T
sup / |u|2+|H|2) da:+2//§(|Vu|2+|r0tH|2) dxdt
t€(0,T)
0 Q
T
/ (I +1HP) O4C + AQ) dadi+ / / (1P + 20)u - V¢ o
Q

T
+2//H®H V2Cdzdt+2//u><H(VC><H) dxdt

0
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For the initial-boundary value problem the existence of suitable weak
solutions to the MHD system in Q)7 corresponding to the initial data wug,
Hy € J,(9) can be proved for arbitrary T' > 0 by standard regularization
method, see, for example, [18]. Namely, we have the following theorem:

Theorem 2.5. Assume ug, Ho € J, () and T > 0 is arbitrary. Then
there exist w, H and p such that functions u and H are a Leray-Hopf-
type solution to the initial-boundary value problem (1.1), (1.8)—(1.10) in
QT and simultaneously u, H, p are a suitable weak solution to the system
(1.1) in Q.

The important property of suitable weak solutions is so-called partial
regularity. To describe it we define a singular point zo = (zo,to) € Q X
(0,T] of a suitable weak solution w, H and p of the system (1.1) in Qr
as a point such that the function |u| 4+ |H| is unbounded in any parabolic
neighborhood of zy (i.e. in any set Qr(z0) N Qr with arbitrary R > 0).
Then we define a singular set ¥ C Q x (0, T] of the suitable weak solution
u, H, p as a set of all its singular points. All other points of the set
(2% (0,T])\ X are called regular points of the suitable weak solution. Note
that thanks to the assumption on pressure p € L 2 (Qr) every regular point
zp of a suitable weak solution u, H, p has some parabolic neighborhood
Qr(z0) N Q7 such that u, H € C*% (Qg(z0) N Qr) with any a € (0, ).

The main result on partial regularity of suitable weak solutions to the
MHD system is the following theorem:

Theorem 2.6. Assume u, H, p is a suitable weak solution to the system
(1.1) in Q7 and denote by ¥ C Q x (0,T] the singular set of this solution.
Then

PHE) = 0,
where P is the one-dimensional parabolic Hausdorff measure on R? x R.

Internal partial regularity for the Navier-Stokes equations (which is a
particular case of (1.1) if H = 0) was established in the celebrated pa-
per [1]. Boundary partial regularity for the Navier-Stokes equations with
non-slip boundary conditions was established in [13,14] in the case of
flat boundary and in [16] in the case of curved boundary, see also [17].
The internal partial regularity for the MHD equations was proved in [2].
Boundary partial regularity for the MHD equations with boundary condi-
tions (1.8), (1.9) was proved in [18] in the case of flat boundary and in [19]
in the case of curved boundary. So, our Theorem 2.6 is a combination of
results of [2,18] and [19].
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Note that the condition of axial symmetry of solutions impose significant
restrictions on the structure of the singular set of a suitable weak solution
to the MHD system. Namely, a suitable weak solution can not have singular
points away from the axis of symmetry (because if a point which does not
belong to the axis of symmetry is singular then due to axial symmetry it
immediately generates a singular curve, but a singular curve is forbidden
by Theorem 2.6). So, the following theorem holds:

Theorem 2.7. Assume ug, Ho € J,(Q) and let u, H, p be a suitable weak
solution to the problem (1.1), (1.8)~(1.10) in Q7. Denote by ¥ C Q2 x (0,7
the singular set of this solution. Then

Sc{ (z,t)ex(0,T]: z1 =z, =0}.

§3. MODEL PROBLEM

In this section we investigate the model problem “until the first sin-
gularity”. This means that we assume that a local solution can develop
singularity only at the final moment of time. Remind we denote Cp =
{zeR:2}+23 <R? |z3)] <R}, Qr = Cr x (—R%,0) and C = (4,
Q = Q;. The following theorem is the main result of this section:

Theorem 3.1. Assume u, H, p are an azially symmetric suitable weak
solution to (1.1) in Q such that u is poloidal and H is toroidal in Q,
i.e. (1.5) holds. Assume that for some a € (0, %) the inclusions u, H €
C*% (Cx[—1,t]) hold for any t' € (—1,0) and besides u, Hc C*%(Q\Qr)
for some R € (0,1). Then u, H € C*3(Q).

We split the proof of Theorem 3.1 into few steps. First we obtain some
additional regularity of w, := u,. — u;, and H, on the internal subsets

of Q.

Theorem 3.2. Assume all conditions of Theorem 3.1 hold. Denote w :=

rotu, w = wye,. Then wT", % € WOIC;OIOC(Q). Moreover, for any Ry, Rs,
such that R < Ry < Ry < 1, the functions WT“" and % are continuous on

the set Qr, \ Qr, and locally continuous in Q.

Proof of Theorem 3.2. Theorem 3.2 is the direct consequence of the
usual regularity theory for parabolic and the Navier-Stokes equations. In-
deed, as u and H are Holder continuous on the sets Cx[—1,#],V# € (—1,0)
and on Q\ Qr by Theorem 2.3 we obtain that for any k& € N the derivatives
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Vku, VEH are also locally Holder continuous in Q and Hélder continuous
on the set Qp, \ Qg, for any R < R; < Ry < 1.
Denote h := %, Y= WT“" Then in cylindrical coordinates we have

VZH = Hyre,Qe, Qe+ Hy (e, 0e,Qe, +e,RQe, @e;)
+H,..e,Qe.Qe.++h,(e, e, Ve, —e, Qe Ve,
—e,®e,Qe.)—h.le,Qe,De.+h.e Qe De,)

Hence we have pointwise double-sided estimate

\V*H|> <H ,, +H,.+H. . +h>+h,

Q,rr @,rz ©,zz

Similarly we have
2 12 _ 2 2 2 2 2
|v wl - wcpmr + wcpmz + w%zz + ¢,r + ¢,z

So, from V2H, V2w € Lo 10c(Q) we obtain Vh, Vi) € Lo 10c(Q).-

Next, as the functions w, (0, 2,t) = 0 and H,(0, 2,t) = 0 we can define
Y(r,z,t) and h(r, z,t) for r = 0 by the values w, (0, 2,t) and H,, (0, z,t)
respectively. It is easy to see that the obtained functions are continuous
on Op, \ Or, and locally continuous in Q. Theorem 3.2 is proved. O

Next get the estimate of the magnetic field:

Theorem 3.3. Assume u, H € Ly o.(Q)NW,*(Q) are azially symmetric
divergence-free vector fields such that u is poloidal and H is toroidal in
Q, i.e. (1.5) holds. Let u and H satisfy the equations (in the sense of
distributions)
OH —AH = rot(ux H) in Q

Assume additionally that u is Hélder continuous in C x [—1,t'] for any
t' < 0 and besides % € Loo(0'QR) for some R < 1. Then % € Loo(QR)
and the following estimate holds:

esssup ‘ =" ‘ esssup
0'Qr

T*” ‘ (3.1)

Proof of Theorem 3.3. It turns out that % satisfies to the equation
which can be reduced to the heat equation with a drift term in the 5-
dimensional space. This idea is borrowed from [15], see also [3].
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Denote D := K x (—1,0) where K := { (r,z) e R : r € (0,1), |z| < 1 }.
Then H, satisfies the identity

H
/ ( — Hy0m+ Hyenp + Hy2n 2 + T—ﬁn +urHe

D
H
+qu%zn—M ) rdrdzdt =0
for any test function n € C§°(D). Define the function h by
h(?" 2 t) .— ng(’l",Z,t)
) 2,t) 1= =

Then h satisfies the integral identity

h,
/ <7h6tn+h,rn,r+h7zn7272 Sl +urh n+uzh on ) rdrdzdt =0 (3.2)
r
D

for any n € C§°(D). In Cartesian coordinates this means that h(z,t) =
Hep('%t)
Ed

is a weak solution to the equation

.’L'/

|22
where 2’ = (21,22,0)T and T := {(z,t) € Q@ : 2’ = 0}. Moreover,
replacing in (3.2) the test function n by 7?5 we obtain that h and u also
satisfy the integral identity

Oih — Ah+u-Vh —2 Vh =0 in D(Q\D),

/ ( —hom+heny +h.n.+urh,n+ uzh7zn) rPdrdzdt = 0,

D

YV ne Cy(D). (3.3)
Denote
Cs:={y eR°: yi+uys+u5+vi <1, |ys| <1}, Q5:=C5x(—1,0) (3.4)

TZ\/y%+y§+y§+yZ, z=ys, (3.5)
ba(y, 1) = ur(r, 2, 1) yf a=1,2,3,4,  bs(y,t) =us(r,2,t). (3.6)
Denote also
w(y,t) = h(r, z,t).

Then by Theorem 3.2 we have w € W% (Q3), and u € C*% (€ x [-1,t])

oco,loc

implies b € Loo(Cs x (—1,%)) for any ¢’ € (—1,0).
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Making the change of variables in (3.3) and adding to the obtained
identity the spherical part of the Laplacian in (y1,v2,ys,y4) € R* (which
is zero due to the cylindrical symmetry of w) we arrive at the identity

/ (—wdin+Vw - Vn+b-Vu n) dydi =0, Ve C5(Q5\T5), (37)
[0F3
where T's := { (y,t) € Q5 : ¢’ =0 } and v’ = (y1,¥2,¥3,y4,0)T. As the set
5 is removable in the 5-dimensional space we conclude that (3.7) remains
true for any n € C§°(Qs). Hence w € W217’1?)C(Q5) is a weak solution to the
equation
ow—Aw+b-Vw = 0 in Os.

Now we can apply the following version of the maximum principle (see, for
example, [11], Corollary 3.5 and remarks at the end of Section 3).

Theorem 3.4. Denote C, := {y € R" : |¢| < 1, |yn| < 1}, n > 3,
Q,, = Cx(—1,0) and assume that w € W5 °(Q,), b € Ly1(Qy), Ly2=1
s > n, satisfy the integral identity

2

/ (—wam+Vw-Vn+b-an> dydt =0, Y 15eCE(0n).
Qn
Assume also

wlarg, = @, where @ € Loo(0' Q)

(the boundary condition is understood in the sense of traces and the ini-
tial condition makes sense as under above assumptions on b we have in-
clusions Oyw € La(—1,0; Wy '(Cp)) and w € C([—1,0); L2(Cy))). Then
w € Loo(Qy) and w satisfies the estimate:

esssup jw| < esssup |p|.
n 0'Qn
Denote Cj :={y € R%: [y/| <R, |ys| < R } and Q} :=Cj x (—R?,0).
Now we can apply Theorem 3.4 to our function w in the parabolic cylinder
Chp x (—R?,t') with some ' € (—1,0). By assumption w € Lo (8'Q%) and
we obtain
H, H,
_w‘ < esssup —w‘.
r 0'Qr

esssup |w| < esssup |w| = esssup
Cpx(=1,t) o Qf, CrX(—R2,t))

As the right-hand side in this inequalities is independent on ¢’ we conclude
that % is bounded in Qg and (3.1) holds. Theorem 3.3 is proved. O
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Now we turn to the estimates for the vorticity of the velocity field.

Theorem 3.5. Assume u, H € Ly o(Q)NW,°(Q) are azially symmetric
divergence-free vector fields such that u is poloidal and H is toroidal in
Q, i.e. (1.5) holds. Denote w = rotu = wye,, where Wy = Up — Us .
Assume u, w and H satisfy the equation (in the sense of distributions)

Opw — Aw +rot(w x u) = rot(rot H x H) in Q. (3.8)

Assume additionally that u is Hélder continuous in C x [—1,#'] for any
t' € (=1,0) and besides =2 € Lo(8'Qr) and e ¢ Loo(Qr) for some

r
R < 1. Then 22 € Loo(Qr) and the following estimate holds:
H. 2
esssup ‘w—@‘ < esssup ‘_w‘ (3.9)
Qr r 0'Qr r

Wo
—| + ¢ esssup
r Qr

where ¢ is some absolute constant.

Proof of Theorem 3.5. We explore the ideas from [11]. Define the func-
tion

t

1/}(T,Z,t) = w@(r,z, )
r

and represent v in Cartesian coordinates. Then from Theorem 3.2 we
obtain 1) € W;OIOC(Q) and by assumption ¢ € L (0'Qr). Moreover, the
function ¢ is smooth away from the set T := { (z,t) : |2'| = 0 } and
satisfies the identity

/

atwamu.Vz/]:Q';’"W.wpfF ae in O, (3.10)
where ' := (z1,22,0)7 and F is the representation in Cartesian coordi-
nates of the function

H2
F = (_w) .
r2 z

)

Take arbitrary € € (0, R), t' € (—R?,0) and denote

C.:={xz€Cr: e<|z'| <R}, Q.:=C.x(—R%t), ko:=sup |[¢|
0'Qr

Taking k > ko we see that the function (¢ — k)4 vanishes on the parabolic
boundary of Qr. Here we denote (¢ — k)4 := max{y — k,0}.
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Multiplying (3.10) by (¢ — k)4, integrating the result over C. we obtain

T S N

:/(% )i~ )l dr + /Fa—g;g(¢‘k)+ da

CE CE
Using the divergence-free condition divu = 0 and the fact that the diver-
gence of the vector field |;T is sign-definite in D’'(Q) (see [11, Appendix]),
namely,

wl

divW = 276r < 0 in D'(Q),

integrating by parts we obtain

Ce |z’ |=¢

Discarding the non-positive term in the right-hand side and passing to the
limit as e — 0 we arrive at

SN~ R e + IV~ Belen) < / F o= )

Applying the Holder inequality and integrating over t € (—R2,t') we obtain
sup (¥ — k)+||2L2(CR) + V(Y - k)+||%2(CR><(—R27t’))

te(—R2,t")
<cC / \FI? da
ARNQR
where Ay, := { (x,t) € Cp x (—R*,t') | ¢(z,t) > k }. From Theorem 3.3
we know that F' € Lo (Qr) and hence

_ 2 _ 2
te(ilggw [ = B)+ 110 cny T IV =B+l x (- r20)

<C ||F||2LOC(QR) |[Akl, VYV k= ko.
From [8, Theorem 6.1] we obtain

esssup (¢ — ko) <C |[Fllpoon), V1 €(—R%0).
Crx(—R2,t)
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Replacing ¢ by —t and repeating the same arguments we obtain
[l Licrx(—r22)) <Ko+ C |Fllio(op), Yt €(=R?0).

As the right-hand side of the last inequality is independent on ¢’ € (—R2,0)
we arrive at the desired result. Theorem 3.5 is proved. O

Estimates (3.3) and (3.9) imply that for any z* € Cg belonging to the
axis of symmetry (i.e. such that 7 = 25 = 0) at the final moment of time
t = 0 the following identities hold:

1 1
lim sup — / |H|* dedt =0, limsup — / |lw|? dedt = 0. (3.11)
p p—0 P
Qp (z%) Qp (2*)
Here we denote 2* := (2*,0), Q,(z*) = C,(z*) x (—p*,0). Now Theorem
3.1 is a direct consequence of the following e-regularity condition for the
MHD system which can be found, for example, in [4], see Theorem 1.2 (b)
(we present even a weaker version of the result in [4] which is sufficient for
our purpose):

Theorem 3.6. Assume u, H € Ly o.(Q) N W,°(Q) and p € L3 (Q) are
a suitable weak solution to the system (1.1) in Q and denote w = rotu.
Assume that for some point z* € Cx (—1,0] the identities (3.11) hold. Then
there ezists a parabolic neighborhood Q,_ (z*) of the point z* such that u
and H are Hilder continuous in Q,, (z*) with any exponent o € (0, 2).

p—

Theorem 3.1 is proved. O

§4. PROOF OF THEOREMS 1.2 AND 1.1

We start this section with the proof of Theorem 1.2.

Proof of Theorem 1.2. We assume that u, H and p is a suitable weak
solution satisfying all assumptions of Theorem 1.2. By contradiction, we
assume that the singular set ¥ C C x (—1, 0] of this solution is non-empty.
Then we reduce our problem to the model problem “until the first singu-
larity” investigated in the previous section and obtain a contradiction.
First we establish existence of a “cylindrical layer” in which our solution
is smooth. Indeed, from Theorem 2.6 the existence of the radius R € (0, 1)
follows such that @ Qr N Y = & (otherwise we obtain P1(X) > 0 which
contradicts to the partial regularity established in Theorem 2.6). As the set



ON THE LOCAL SMOOTHNESS OF SOME CLASS 145

¥ is relatively closed in € x (0, 7] the existence of 0 < Ry < Ry < 1 follows
such that © N (Qg, \ Qr,) = @. Moreover, without loss of generality we
can assume that ¥ N Qr, # 2.

Now we define the first singular moment of time ty of our solution in
the cylinder Qp,. For any t € (—R?,0] we denote

Et:{a:GCRl: (x,t)EE}

and define

to = inf{ te (—R2,0]: S #£0 }
The set ¥4, is non-empty (it follows from closedness of the set ¥). So, we
can take zg € Cg, such that (2,%0) € ¥ (and hence the function |u| + |H|

is unbounded in any parabolic neighborhood of (zg,#p)). Then there exist
r1 and ro, 0 < rqy < ra, such that

Cro (o) € Cp, and (C_r2 (20) \ Cpy (zo)) N, = .

So, the functions u and H are Hélder continuous in Cy., (o) x [to—72, '] with
any t' € (to —r2,tp), as well as they are Holder continuous in Q,,(zq,to) \
9, (0, 1), where we denote Q,(zo,t0) = C,(w0) X (to — p?,to).

Now for any (z,t) € Q we define functions

u(z, t) := rou(zo + rox, to + 13),
H(z,t) == royH(zo + raz, to + 13t),
Pz, t) == rip(zo + rox, to + r3t).
Then the functions u, H and p satisfy all conditions of Theorem 3.1 (if

we take R := I1). By Theorem 3.1 we obtain that @ and H are Holder

continuous in @ and hence the original functions u and H are Holder
continuous in the cylinder Q,., (g, o). This contradicts to the assumption
that the point (xg,to) is singular. The obtained contradiction implies that
Y, = &. Theorem 1.2 is proved. Il

Now we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. From the local well-posedness of the MHD sys-
tem (see [7]) we know that for any divergence-free initial data up and Hy
satisfying (1.8), (1.9) there exists To = To(uo, Ho), To > 0, such that the
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system (1.1), (1.8), (1.9), (1.10) has the unique strong solution u, H and
pin Q x (0,Tp). Denote

T, ::sup{ T>T:
there exists a strong solution to(1.1), (1.8)-(1.10) in2 x (O,T)}.

Note that if the initial data ug and Hy are axially symmetric and satisfy
(1.4) then from Theorem 2.4 we obtain that for any 7" < T the strong
solution u, H, p in  x (0,T) corresponding to ug and Hj is also axially
symmetric and satisfies (1.4).

Our goal is to show that T, = 4+o00. By contradiction, assume T, < +oc.
Let @, H, p be any suitable weak solution to the problem (1.1), (1.8)—(1.10)
in Q x (0,T.). Then for any T € (0,T,) the functions @, H coincide with
the strong solution u, H. Hence the functions , H,pare axially symmetric
and satisfy (1.4). Denote by ¥ the singular set of the suitable weak solution
u, ];NI, pin Q x [0,T,]. Then evidently & C Q x {t = T..}. Moreover, ¥ lays
on the axis of symmetry {z € R?® : 2/ = 0}. Assume 2q := (z9,T%) € X.
By definition of a singular point |u| + |H| must be unbounded in any
parabolic neighborhood of zy. On the other hand, if we take R > 0 such
that Qr(zo) C Q x (0,T%) then all conditions of Theorem 1.2 are satisfied
for a suitable weak solution @, H, pin the cylinder Qg (o). Thus |u|+|H]| is
bounded in some parabolic neighborhood of zy. The obtained contradiction
implies that ¥ = @ and the strong solution u, H, p can be extended onto
Q x (0,7« + ¢) for some € > 0, but this contradicts to the definition of T..
Thus T = 4+00. Theorem 1.1 is proved. (I
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