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ON PROJECTORS TO SUBSPACES OF VECTOR
VALUED FUNCTIONS SUBJECT TO CONDITIONS OF
THE DIVERGENCE FREE TYPE

ABSTRACT. We study operators projecting a vector valued function
v € WH2(Q,R?) to subspaces formed by the condition that the
divergence is orthogonal to a certain amount (finite or infinite) of
test functions. The condition that divergence is equal to zero almost
everywhere presents the first (narrowest) limit case while the inte-
gral condition of zero mean divergence generates the other (widest)
case. Estimates of the distance between v and the respective pro-
jection Psv on such a subspace are important for analysis of various
mathematical models related to incompressible media problems (es-
pecially in the context of a posteriori error estimates, see [15-17]).
We establish different forms of such estimates, which contain only
local constants associated with the stability (LBB) inequalities for
subdomains. The approach developed in the paper also yields two
sided bounds of the inf-sup (LBB) constant.

§1. INTRODUCTION

We study operators Psv that project a function v € V := WH2(Q, R?) to
a subspace $ containing solenoidal (divergence free) functions or functions
subject to weaker (integral) conditions of the divergence free type. The
function v additionally satisfies zero boundary conditions on the whole
boundary T" (in this case v € WOLQ(Q, R?)) or on a measurable part Ty C T
(then v € Wy (2,RY)).

It is assumed that € is a bounded and connected domain in R? (d > 2)
with Lipschitz continuous boundary and || - || denotes the L? — norm over
Q. The projection is considered with respect to the norm equivalent to the
norm of V' and is defined by the relation

190 — P)l| = int V(0 —w)]], 1)
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where, in particular, we can set
S =80(Q,RY) = {v e W"?(Q,R%), divo =0, v=00nT}.
Henceforth, the quantity
d(v,9) := ||[V(v — Psv)||

is called the distance between v and the set $.
In our analysis, the following result plays a principal role.

Theorem 1 ( [1,9] ). For any f € L2(Q) := L*(Q) L R there exists a
vector valued function wy € Vo := Wy*(Q,R%) such that

divwy = f and |[Vuwy| < Cellf]], (2)
where Cq is a positive constant depending on 2.

This theorem is very important for the mathematical theory of viscous
incompressible fluids (see, e.g., [8,23]). In fact, it is equivalent to the fol-
lowing statement: for any v € W,"*(Q, R%)

d(v,$0(2, RY)) < Cgql| divv]. (3)

Theorem 1 can be extended to L spaces for 1 < ¢ < 400 (see [2,13,14])
and yields estimates of the distance analogous to (3) (see [19,21]).

The estimate (3) also holds for vector fields vanishing only on Ty (in
this case we assume that measga-1Tg > 0). Let

veWo i (QRY) = {weW"(QRY) [w=00onTo CT}
and additionally satisfy the condition [v-nds = 0. Then (see [17])
r

d(v,S0,r, (2, R?)) < Col divol, (4)

where Sor, (2, R?) denotes the subset of Wy} (2, R¢) containing the di-
vergence free fields.

Estimates (1) and (4) show that the distance to the set of divergence
free fields is easy to estimate from above provided that the constant Cq (or
a suitable upper bound of it) is known. Getting quantitative estimates of
Cq is a practically important and mathematically interesting problem. It
have attracted a serious attention (see [4-7,11,22] and other publications
cited therein). For plane domains, which are star shaped with respect to
a ball, computable and rather efficient majorants of Cq has been recently
obtained in [3]. However, in general, finding guaranteed majorants of Cq
in the dimensions larger than d = 2 is a very difficult problem. To the best
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of the authors knowledge, the only one known result is presented in the
paper [12], which is related to a special class of three dimensional domains.

Theorem 1 is often used in the form of the so-called the inf-sup (or
LBB) condition

[ ¢ divw dz

. Q
inf Sup ——————
ver’(@) wevy |0l [Vl
{18} o=0,6#0 w70

> co > 0. (5)

Here and later on,{|¢[}, = ﬁ [ ¢dz. In fact, (5) can be represented in
Q

the form ||¢]| < Cq|@| (see [10]), where

[ ¢divwdz
L Q

weVp
It is not difficult to show that c, = (Cq)~!, so that getting majorants
of Cq is equivalent to getting minorants of the LBB constant ¢, and vise
versa.

A variational principle that could be useful in numerical evaluation of
Cq has been recently derived in [20]. In computations, it will generate
lower bounds for the constant Cq (or upper bounds for ¢g).

This paper suggests a way to deduce computable majorants of the con-
stant Cq (which are valid for d > 2) and respective estimates for projectors.
The estimates are derived in two steps. First, we consider projectors on
a specially constructed “intermediate space” SSI?FO (which is wider than
$o,r,) and then find estimates of the distance between any v € $  and
80.r, (2, RY). In short, the main idea can be described as follows.

Note that formally $o r, (22, R?) can be defined as a subset of W, & (2, R%)
that contains the functions v satisfying the condition

/¢divvda¢ =0 (7)
Q

for any ¢ € L2(Q)) (or any ¢ in a set dense in L%(f2)). We introduce a
collection of subspaces defined by weaker conditions that require (7) to hold
for a certain amount of test functions ¢; only. Let the set ® = {¢;(z)} ¥,
contain bounded and linearly independent functions such that ||¢;]] = 1.
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Lin® denotes the linear envelope based on these functions, and
Sorr, (LRY) == weW, & (2, RY) |/q§idivwda: =0vVi=1,2,...,N

If Ty =T, then there exists one function (¢ = 1) such that (7) holds for

any w. Therefore, in this case, without a loss of generality we assume that

the function in ®, are orthogonal to ¢o, (in other words {¢;[}, = 0, for

any ¢ = 1,2,..., N). The respective subspace is denoted by SSI?F(Q, R%).
It is clear that

So.ro (% RY) C S¢ry (QRY) € Wy, (,RY). (8)
This fact is important for our analysis because estimates of the projection
S(;I?FO (Qa Rd) - SUIO (Qa Rd)

are deduced relatively easy (see [19,21] and Sect. 4.1 of this paper).
In Section 2, we study the projection

Wo it (R — S (2,R?)

and find d(v,$) for § = $3 1, Lemma 1 presents the respective result,
which yields estimates of d(v, $;> o.r,) that does not contain ”difficult” con-
stants cq or Cq. The main identity (9) contains a matrix A formed by
products of certain functions defined as exact solutions of auxiliary bound-
ary value problems. In general, they can be found only approximately by
suitable numerical procedures. This brings certain difficulties, which could
be avoided if we use known a posteriori error estimation methods and ex-
plicitly estimate the respective errors. However, in Section 3 we suggest a
simpler solution and show that d(v, $) for $ = SO r, can be estimated from
above by a modification of the method based on solutions of finite dimen-
sional problems (which are indeed available). The respective estimate (30)
contains the matrix A, formed by these solutions and an additional term
that can be viewed as an interpolation error.

Section 4 contains the main result. It presents an upper bound of the
quantity ||V (v—Psv)|| for the case $ = $¢ r,, which is derived by combining
the results of Sections 2 and 4.1. In this way, the projection estimate is
derived in accordance with (8) using the intermediate space SSI?FO

Finally in Section 5, we discuss relations between the above derived
estimates (of the distance to sets of vector valued functions satisfying the
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divergence free condition in a weak form) and inf-sup constants. Also, we
show that they yield two sided estimates of the constant Cg,.

§2. DISTANCE TO THE SET S (2, RY)

Our first goal is to find the distance between v € Wol,’lgo(Q,Rd) and
S, (Q,RY).

Lemma 1. For any v € Wol”lgo (Q,R%),

d*(v,857,) = A7'b(divv) - b(divv), (9)
where
A ={ai};_, aij = /VU“) : Vul) da,
Q
b(dive) = {b;},, b :/(bi div v da,

Q

and u'?) minimizes the functional

1
Ji(w) = 5||Vw||2 + /gbi divw dz.
Q

on the set Wol,’lgo(Q,Rd).

Proof. It is not difficult to see that
1
§d2(1), S(fl"o)

N
1
= inf sup ~|IV(v —w)|? +Z/\i/¢i divwdz
weWwlh? (QRI) X er 2 :
€ OvFO( R7) i=1,2,...,N =l
(10)
N
. 1 2 .
= inf sup —|[|Vw]||* + Z /\i/@ div(v — w)) dz
weWOlv’lgo (2.R) i=1A§€.L.R. N 2 i=1 Q
= inf sup L(w, ),

WEWC},,IZ‘O (Q7Rd) Xi ERN

where

N
1
L(w, ) == §||Vw||2 - Z)\i/zbi divwdz + X - b(divo)
i=1 Q
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and A = {\;, A2, ..., A\n}. Evidently,

1
~d*(v,8g1,) > sup inf LA, w). (11)
2 ’ AERN weW, 2 (2,RY)

Consider an auxiliary variational Problem Px. The problem is to find
ux € W()ngo (2, R%) such that the functional L(w,A) attains infimum

N

1

inf Py := inf S IVa|)? fZAi/@ divwdz p + X - b(divv).
weWgE (Rd) | 2 =

Due to well known results of convex analysis, there exists a unique mini-
mizer uy of this problem, which satisfies the integral identity

N
/Vu)\ :Vwdr = Z/\z/¢z divw dz Yw € Woljlgo(ﬂ,Rd)
Q =9

N
and has the form uy = > A\ju(?, where
i=1

/Vu(i) :Vwdr = /qﬁl divw dz Yw € W()17’F20(Q’Rd)_ (12)
Q Q

Therefore, for 7,5 = 1,2,..., N we have equivalent representations of the
coefficients

a;; = /(ﬁl divu® dx, b; = /Vu(i) : Vo dz. (13)
Q Q
Since
N
IVual® = ) aijhid; = AX- A
ij=1
and

N
>N /¢i divuxde = > mj/d)i divu? de = AX - A,
. J J

i=1 i,j=1
we find that
1
inf Px = —3AX- A+ X-b(divo). (14)
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Hence
1
5 d2 (’U, S(;I?Fo )

1 1
> sup {—)\ -b(dive) — —AX- )\} = _A~'b(dive) - b(dive) (15)
AERN 2 2

and maximum is attained for
A= X:= A 'b(dive).
Notice that the inverse matrix A~! exists. This fact follows from linear
independence of the system {¢;}, which yields linear independence of the

tensor functions {Vu(¥} in U := L?(Q, M*?). Indeed, assume that there
exist real numbers p;, i = 1,2,..., N not all equal to zero such that

N .
Z uiVu(’) =0.
i=1

Then (see (12)), for any w € Wy i (Q,R?) we have

N N
Z,ui/Vu(i) :Vwdx = / <Z ,uiq&i) divwdx = 0. (16)
i=1 i=1

Q Q

It is not difficult to see that (16) cannot be true for a system of linearly
independent ¢;. If I' = Iy, then this fact follows from Theorem 1. Indeed,
N

in this case the function ¢ = Y p;¢; has zero mean and we can find
i=1

w, € Wy*(Q,R%) such that divw, = g. Then,

N 2
/(Zﬂi¢i> dz =0, (17)
Q i=1
N

ie., > wi¢; = 0 almost everywhere and we arrive at the contradiction
i=1
with linear independence of the system {¢;}.
If Ty C T, then the same conclusion follows by means of similar but
a bit more complicated arguments. Let g := g — {g[to. There exists
wy € Wy ?(Q,R?) satisfying divw; = §. Let wy € WH2(Q,R?) be such
that divwy = 1 in Q (it is clear that there exist an infinite amount of
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functions satisfying this condition). Consider the following auxiliary Stokes
problem

Aw = Vp in Q,
diviw =0 in Q,
U = wy on Iy,

on=0 onT'\ Ty # @.
A solution to this problem exists and belongs to W2(Q, R?). We set
wy == wg + {g} (wy — @) € Wy, (Q,RY)

and find that divw, = g. Hence, we again arrive at (17) and conclude
that A is the Gram matrix for the system of tensor functions {Vu(?}
containing linearly independent elements. It is positive definite and has an
inverse A L.

Now we establish the inequality inverse to (15). Let a@;; denote entries
of the matrix A~!. Then

N
/@» div(v — ux~) de = /(bi divodr — ZA;/@ divu) dz
Q Q =t 9

N N
z : * _

= bz — /\jaij = bz — E ajkbkaij
j=1 Jik=1

N N N
=bi— > by Y akja; =bi— Y bpbri =0
k=1 j=1 k=1
Hence,

v —ux- € SGr, - (18)

Therefore,

N
1 1 1 . .
§d2(v,$$F0) < §||Vuxf||2 =3 Z /\:/\;/VU(’) - VulD) de
o)

ij=1
1 1 19
= 51&)\* AT = EAA_lb(div v) - A~ 'b(divv) (19)
1

= §A*1b(div v) - b(div v).
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Now (9) follows from (15) and (19). Finally, we conclude that

N N .
Pge (v) =v—ux-=v— Z Zdijbj(v)u(l). (20)

0,T'g
i=1 j=1

§3. ESTIMATES BASED ON SOLUTIONS OF FINITE DIMENSIONAL
PROBLEMS

From the practical point of view, it is preferable to replace u; (exact
solutions of boundary value problems) by solutions of some suitable finite
dimensional problems. Let Vg'n, C Wolfo be a finite dimensional space
(dimVg'n = n) satisfying the condition

Voir, N Sor, (2, RY) # 0. (21)

By I" we denote a bounded operator mapping Vo,r, to Vg, . Particular
forms of this operator can be different (they depend on the interpolation
method used). In this paper, we do not discuss these questions in detail.
The most important property of 1" is that the computation of v, := I"v is
explicit and does not require large expenditures. Then, for any v € Vp r,
the quantity

€n = ||V(v = 1"v)]]

is known. Since

inf [|[Viv—w)|]| < inf |[V(v,—w)| +en, (22)
“’€$51,>r0 wGS(;IfFO

the estimation of d*(v, $¢’r,) is reduced to the estimation of d*(v,,$¢r, ).
In view of (21), there exists 0, € Vg, NS¢, (2, R?). Hence the problem
of projecting vy, to this subset of §3° (2, R%) is well posed. Moreover,

1
§d2 (’Un, S(;I?FO)

N
1

< inf su IV (v — w12 + /\‘/ diviw. de

= wa €V, (2R) izlkégl%N 2” (0n = wa)|| ; zQ bi n

N
1
= inf su —IVw, ||* + )\i/ i div(v, —w,,) dx
wa €Vn (2,RY) )\ieII)R 2” I Zl ¢ div( )
i 1= Q
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1
= inf sup L(wp,A) =: k, < =||V(v, — U, 23
I LR e IV )] (23)
On the other hand,
Kp = Sup inf LA\ wy). (24)

ACRN wnEVO"fFO (©2,R4)
From (24) it follows that for any A

Kn 2

N
1
in —|Vw,||? — /\i/gbidivwnda: + A -b(divw,).
w"GVOT,LFO (Q,Rd) 2 || || l:Zl J ( )

Select some A and consider the auxiliary problem: find ux,, € Vg'r, (€2, R4)
such that the functional L(wn, A) : Vi'p (2, R?) — R attains infimum with
respect to the first variable. The minimizer uy , satisfies

N
/Vu)\m :Vw, dr = Z/\z/¢z divw, dz Yw € VO?FO(Q,Rd),
Q =1 g
where

N
Uxp = Z /\iug)
i=1
and u(? are solutions of the finite dimensional problems

/ vul?) : Vw, dr = / pidivw, dz  Vw, € Vi (QRY).  (25)
Q

Q
Hence
N .
Vuxn = Z /\iVugf)
i=1
and
N
||Vuk,n||2 = Z GZ)\Z)\J = AnA . A,
i,j=1
where

A, ={aj}}, aj /Vugf) - Vuld) da.

ij —
Q

In view of (25), we have
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N

Z)\Z/gbldwu)\hda:_ Z/\/\ /(bldlvuj)dx—A\ A

Q =1
Therefore,
1 1
Kn = sup {)\ -b(dive,) — A, X - )\} = A, 'b(divv,) - b(divv,) (26)
AERN 2 2

and maximum is attained if
A== A b(dive,).

Here we assume that the matrix A,, is invertible. Notice that the func-
tions ugf) are known (they are solutions of finite dimensional problems).
Therefore, we do not need the argumentation used in the previous section
and can verify the invertibility of A, directly.

In view of (25), [ ¢;div ul) da = af; and we find that
o

N

/(bi div(v, — uaz) do = /@» div v, dz —» (A}) /@ div ul) dz
Q Q 1

Jj=

(27)
N
=bi— > (A\p)jal =bi — Z atbral = 0.
j=1 Jyk=1
By (23) and (27), we obtain
= el SR Lwa X< s L, d)
i=1,2, .. N i:1,2 ..... N
1 N
= sup || Vuxx 2+Z)\i/¢idiv(vfu”)da:
X; ER 2 n . n
i=1,2,..., N i=1 Q (28)
1 1 * * 1 —1 : -1 :
= §||V’U,>\* = §AnAn CAL = §AnAn b(divw) - A, " b(div v)
1

= §Aglb(div v) - b(divv).
Now (26) and (28) imply

o = % A 'b(divv,) - b(divv,) (29)
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and (22) yields the desired estimate

d(v,S&.) < (Ay b(dive,) - b(dive,))” + 6. (30)

§4. ESTIMATES OF THE DISTANCE TO g1, (2, R%)

In order to deduce an upper bound of the distance to $o r, (02, R?), we
apply ideas of domain decomposition (see also [18,19,21] and some other
publications). Let

N
i=1

where Q; are connected Lipschitz subdomains for which the respective
constants Cq, in (2) (or some suitable majorants of them) are known.

4.1. Theorem 1 for decomposed domains.

Lemma 2. Let Q satisfy (31) and

N
F=Yfi  fel’Q), A{filq=0, (32)
i=1

where suppf; C Q; C Q for alli=1,2,...,N.
There exists vp € Wy'> (i, R?) such that divoy = f and

N
IVosll < ) Callfille. (33)
i=1

Proof. For any f; satisfying (32), we have vy, € W, (9, R%) such that
div vy, = fl in Qz

and
” vvfi

o; < Cg;,

fil
N
We extend vy, to Q by zero and set vy = > vy,. Then, divey = f and

=1

fil

Q-

N
Q; = E (CQi
i=1

Thus, we obtain (33). O

N
Vo <D IVoy,
i=1
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Corollary 1. Letv € S(;ITFO and ¢;(x) be a collection of bounded functions
such that

N
suppi = C Q. and > g(x) = 1. (34)
i=1
N
Set fi = ¢;dive and f = )" fi =dive. Since v € S(;I?FO, we see that
i=1

/fidz:/qbidivvdwzo i=1,2,...,N.
Q Q

Lemma 2 guarantees existence of vy € Wy > (4, R%) such that

N
divoy=f  and  [Vos| < > Co,ll¢s divol.
i=1
Then vo =v — vy € Sor, and
N
V(v —w0)| <> Ca,ll¢i divolo.

i=1

We conclude that the projection of v € SSI?FO meets the estimate

N
V(0 = Ps, ., o)l < D Ca,lléi divolo. (35)
=1

4.2. Distance to Sor,(?,R?). Now we will use Lemma 2 and deduce an

estimate of the distance between v € W&,’ﬁo and the set of divergence free

fields So,r, (2, R?), which is based on local constants Cg,.

Theorem 2. Letv € Wol”lgo and ¢; satisfy (34). Then,
1/2
d(v, So.r, (2, RY)) < (A\flb(div v) - b(div v))
N .
+35 c, (ll@» divo? — 24" "b(divo) - ©)

i=1

1y (0) g —1 . . 1/2
+ A DDA b(dlvv)-b(dlvv)) . (36)
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where

0 — 1@ (D ._ 2 1 . .
® = {@] }7 {9] }— /¢z divw dlvu(J) d:l’,‘,
Q
D@ = (D}, D .= / 42 divu® divu® de.
Q

Proof. In view of (18), v =v —ux~ € S(;I?FO. We use (35) and find that

[V(v—Psy, )l = inf [[V(v— o)l

Vo ES()_FO

< Vua-[[+  inf  [[V(0 = vo)|
vo €50,

< (A~'b(divv) - b(dive)) '/ (37)
N

+3 Co, i (dive — divus-)|o-
i=1

Consider the last term in the right hand side. We have

N
/ ¢? divodivux-de = /(ﬁf divv Z Aj div uP dz
Q Q j=1

N
= Zx\j/(ﬁ div v divu dz
j=1 Q

N
=Y aphi0)” = A~ b(dive) - O
j,k=1

and

N
/|¢i divux-’de =) A;A;/qﬁ div u® divul dz
Q Q

J,k=1

N
= > DEAA =DOAT X
Jk=1
= A 'DW A b(divv) - b(divv).
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Hence

/¢§(divu — divux-)?dz = ||¢; divo||? — 24~ b(divv) - O
Q (38)

+ AT'DW A" b(div v) - b(div v).
Now (36) follows from (37) and (38). O

Remark 1. Notice that b(divv) = 0 for any v € S(;I?FO. Hence in this case
(36) is reduced to (35).

4.3. Particular case. Consider a particular but important case, where
Q; are disjoint sets:

and ¢;(z) coincides with the charackteristic function

1 if z € Qi;
bil@) = {0 iz, (39)

In this case, instead of (33), we have the estimate

N
IVosll> < D Ca 7, (40)
i=1
where we set
fi= dive in ;,
! 0 in Q\ Q.

Now the space S(;I?FO (Q,R%) contains vector valued functions with zero
mean divergence in the subdomains €2;:

Sitr, (O RY) = {w e WP, (URY) | {divellg, =0 Vi=1,2,..,N}.

For v € $ (2, R%), we have the estimate

N
IV = Ps, o) 1> < D C3, lidivoll3,- (41)
i=1
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Theorem 3. Let v € W017’120 (Q,RY) and ¢; satisfy (39). Then,
d*(v, Sy’7,) < €A~ b(divv) - b(divv)

N
+a' Y C3, (|| divo|3, — 24~ "b(divv) - O
i=1

+ A\le(i)Aﬁlb(div v) - b(div v)), (42)

where a,a’ > 1 are two conjugate numbers (1 - =1) and

/dlvv dlvuJ)da: D /dlvu div u'* d

a;j = /divujda:, b; = /divvda: = || {div vl .

Q; Q;

Proof. The function

N
V=0 —Ux =V — g /\fu(l)
i=1

belongs to the set $;°, (©2,R?). Therefore,
IV(o = Psy )l = inf [|V(0—wo)|
vo€E€Sg,ry

< af|Vux-|? 4+ inf o/[|V(@ —v)|?
’U0€$0,1‘*

< aAflb(div v) - b(div v)

+a Z(C N div(v — ux=)[|g, -

Now (38), (40), and (43) yield (42).

Remark 2. If v € $, then b(divv) = 0 and we can tend « to +oo. We

see that (42) is reduced to (41).

§5. ESTIMATES OF Cgq

First, we notice that an estimate of the distance to the set ngr implies

an analog of Theorem 1 and a certain related inf-sup condition.
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Lemma 3. For any f € L*>(Q) with zero mean, there exists wy € Vo such
that

/qﬁi(divwf —f)de=0 Yo, € ¢ (44)
Q

and
IVwy|[> = A™'b(f) - b(f), (45)
where b; = [ ¢; f d.
Q

Proof. There exists vy € Vp such that divvy = f. In view of Lemma 1,
there exists vy € 85’ such that

[V(vs —vo)||?> = A~ 'b(divvy) - b(divvy) (46)

and

/qﬁi div(vy —v) de = /qbifda: (47)
Q Q

Set wy = vy — vy (notice that divwy # f1). We see that (44) and (45)
follow from (46) and (47). O

Remark 3. Lemma 3 imposes much weaker conditions on wy (in com-
parison with Theorem 1), namely, instead of divy = f it is required that
divwy — f must be orthogonal to any function in the set ®. As a result,
[IVwy|| is explicitly defined by (45) without using the constant c,.

Let [A~'| < v4. Then

N
A7D(f) - b(f) < vab(HI> <va D IsilPIF1? < Nya |l £1?
i=1

and (45) infers the estimate
IVwg|l < Call£], (48)

where Cy = /N~va4.
Assume that f € Lin® and ® is formed by an orthogonal system. Then

F=SNbn 1P =% =Ax b= [ifdo= .
i i Q
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We have

N N
A7) b(f) = D aibib; =Y aghid; < ya |l fII”

ij=1 ij=1
Hence in this case, C'y = /7.

Remark 4. Let ¢ € Lin®. In view of Lemma 3, there exists wg € Vp such
that

/¢i(divw¢—¢) dv=0 i=1,2,..,N (49)
Q

and [|[Vwg||? = A7'b(¢) - b(¢). By (49) we conclude that

/@dwwwmznmﬁ
Q

and obtain an abridged form of the inf-sup condition

[ ¢divw dz [ ¢divwy dz
inf sup e > inf @ _ inf [l ,
scipe wev [IgllIVell ™ estive i1Vl ectie [V
which generates the problem
[kl 2
=:(c5)"- (50)

A
ottine A-Th(¢) - b(0)

It is clear that & defined by (50) is larger than c,. Hence % generates
a minorant of Cq. If ® is the orthonormal system, then c5 = LA

In order to deduce a majorant of Co we recall that Cq is the best
(minimal) constant in (3) (or in (4) in the case of functions vanishing on
a part of the boundary). Let us estimate the right hand side of (43) and
represent it in the form (3).

Let

m :=max|Q;|"/?> and ¢:=maxCq,.
(2 (2
We have
A™'b(divw) - b(divv) < v4 [b(divo)|* < yam?|| divo|%. (51)
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For any i =1,2,..., N,
bME Z%/dwudx Z|a,3||n |1/2||d1vv||9) < p?|| divwl?,

where
N
= lai 19,
j=1
Then
'] < |pl |l divol, (52)

where p € R is the vector with the components p;.
Next, let 3 and 3’ be two conjugate positive numbers. Since

b + Bl divua- g,

=Bl divold, + 8> NA; /divu(j) divu® de,
jvk Qi

[ div(v — ux-)[[§, <

we find that

N
Zn div(v — ux-)

= B||divo||* + 8 Z/\*/\* /leU,J) div u® dz

7.k

|2
Q;

. 53
= Bl divol® + 8" > A5 A; /divum div u® dz (53)

jvk Q

< Blldivol” + 8" DiAjA;
jk

< Bl divol® + B'DIIX* < (8 + 8'D||pl*)l| divv]]?,

where |D| denotes the norm of the matrix D with the entries
Djj, = /divu(j) divu® dz.
Q
Now (43), (51), (52), and (52) imply the estimate

[V(v —Ps, s, 0)|I” < (am®ya + /B + o' B¢ D||pl?) || div o>
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Minimization with respect to a and 3 yields

where

d(v, So,r, (%, R?)) < C|divol], (54)
C=my?+c (1 +1p| |1D|1/2) . (55)

This quantity gives an upper bound of Cgq.
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