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LlogL-INTEGRABILITY OF THE VELOCITY
GRADIENT FOR STOKES SYSTEM WITH DRIFTS IN
Loo(BMO™)

ABSTRACT. For any weak solution of the Stokes system with drifts
in Loo(BMO™1), we prove a reverse Holder inequality and LlogL-
higher integrability of the velocity gradients.

§1. INTRODUCTION

Let us consider the following 3D Stokes system with drift
Ov+b-Vo—Av+Vqg=0,
. (1.1)
dive =0,

where b is a given vector field and v and ¢ are unknown velocity field and
pressure.

Our interest in (1.1) is related to possible regularity improvements in
the Navier-Stokes borderline case b € Lo,(BMO™!), at least in the size of
a possible singular set. Hence we assume throughout this note that

divb = 0. (1.2)

There are different definitions of the space BMO~!, see for example Koch
& Tataru [10]. In our 3D case, it is convenient to use the following one:
there exists a tensor d € BM O such that

b= divd (1.3)

in the sense of distributions, while condition (1.2) implies its skew-sym-
metry. Equivalently, there exists a divergence free field w € BMO such
that b = rotw. Then d;; = €;jxwi, where (€;5¢) is the Levi-Civita tensor.

Key words and phrases: Stokes system with drift, reverse Holder inequality, higher
integrability.
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The relationship between b and d shows that one may recast (1.1) as
a generalised Stokes system with the main part A = Id + D, where D =
(Dijkl) with Dijkl = 6ikdjl € LOO(BMO) A general A€ LOO(BMO) is
naturally too rough even to define a standard weak solution. But here
skew-symmetry comes again to our aid. Namely, we have the following
estimate

/(DVu) : Vo dz < d|d|| Bmol| Vul2]| V)2 (1.4)
R’n
for any u,v € C§°(R?), which can be deduced from the results of Maz’ya
& Verbitsky [12]. A related discussion may be found in Silvestre, Sverak,
Zlatos & coauthor [16]. We give a straightforward proof of (1.4) in the
Appendix I for completeness.

It is important to keep in mind that over the entirety of this note,
while we refer to b € Lo,(BMO™!) satisfying (1.2), we automatically con-
sider (1.3) with the related D.

Among other interesting cases, in which the system (1.1) plays an impor-
tant part, there is the question about potential Type I blowup of solutions
to the Navier-Stokes system, compare the recent paper [14] by Schonbek
& coauthor about a Liouville-type theorem via duality.

For the account of the achievable regularity results for the scalar ver-
sion of the problem (1.1) with the structural restriction (1.2) but with no
pressure, i.e.

O +b-Vu— Au =0, divb =0,

we refer to [16]. The essence of its results reads: among L., (X) spaces for
b, X = BMO™! is the widest one, where local ‘deep’ regularity results
for u are available (e.g. Harnack inequality) and the choice of BM O™ is
close to being sharp. See also Nazarov & Ural’tseva [13] for b in space-time
Morrey spaces on the same scale and Liskevich & Zhang [11] for similar
results under a ‘form boundedness assumption’ on b. One should in addi-
tion mention Friedlander & Vicol [4], where Holder continuity of solutions
to the related Cauchy problem was proved, with b € Lo,(BMO™1!).

In relation to the full system (1.1-1.2), the current best result for the
associated Cauchy problem is Silvestre & Vicol [18]. The authors show for
b € L,(M?), a Lebesgue-Morrey scale of spaces, that there exists a C(C%)
solution. However, for the endpoint of this scale, i.e. for Lo (M%), M~1 D
L?, in order to conclude with the same result, an additional smallness
assumption is needed (which is automatically satisfied for C(L?), but not



LlogL-INTEGRABILITY OF THE VELOCITY GRADIENT 39

for L (L3)). For the local setting, we refer to Zhang [22], where b must
belong to a certain Kato class.

Let us conclude with two remarks. Firstly, as already seen above, for a
scale of spaces, the regularity results in the endpoint case L. (X) are sub-
stantially more difficult and even likely not always to hold. Secondly, the
result of Escauriaza, Sverdk & coauthor [3], where b = v € Lo, (L3) suffices
to obtain regularity, utilises essentially the nonlinear structure. Hence to
study regularity of solutions to (1.1) with (1.2), even with L. (L3), one
needs different ideas.

§2. MAIN RESULTS

We write B(zg,R) for the ball with radius R centred at zo € R>.
Q(z0,R) = B(zo,R) x (to — R%,ty) is the (parabolic) cylinder with its
centre 2o = (7o, o), where to € R. For an open set 2 C R? and an interval
|71, To[, we write Qr,, 1, = QX]T1, To|.

We use standard function spaces: Loo (|11, T2[; L2(2)) = L2,00(Q11,12)5
WQLO(QTl,TQ) = {’U, Vo e LQ(QT17T2)}7 etc.

In what follows we always adopt the following convention

[(z,p) = bl L (t=p2,t:BMO-1(B(2,p))) = Nl Los(t-p2.6:BMOB(2,0)), (2:1)
where d is related with b via (1.3). Naturally, the right-hand side of (2.1)
is merely a seminorm for d, but the right-hand side is a proper norm for
b, see e.g. [10].

Where there is no danger of confusion, we may sometimes suppress
certain indices.

Definition 2.1 (Weak solution). Let us fix a space-time domain Qr, T,.
A pair v = (v;) and q is a weak solution to (1.1) on Qr, 1, if and only if

(1) CAS L2,00(QT1,T2) n W21’0(QT17T2) and g€ L2(QT1,T2);
(ii) v and q satisfy (1.1) in the sense of distributions on Qr, 1.

Remark 2.2. The reqularity classes appearing in Definition 2.1, in par-

ticular Lo for the pressure q, agree with the existence result for the Cauchy
problem for (1.1) with a solenoidal drift b € Loo(BMO™1), see Appendiz 11.

Remark 2.3. Any weak solution to (1.1-1.2) on Qr, 1, satisfies the fol-
lowing local energy identity
t

/g0|v(a:,t)|2da:+2//<,0|VU|2da:dt’
o)

Q 0
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t
= //(|v|2(6t + A)p —2DVv : v ®@ Vo + 2qu - V)dzdt’
0 Q

for any t €T, Ts[ and any non-negative p € C§°(Qy Ty+1)-

The above remark follows from (1.4) and standard duality arguments.
Observe that it renders a notion of a suitable weak solution redundant in
our setting.

Our first result is as follows.

Proposition 2.4. For anyl €]6/5,2[, any weak solution v and q to (1.1-
1.2) on Qr, 1, satisfies

1 2
Q) / [Voldz

Q(z0,p)
<C(z)(r5(zo,2p)+1)(W12p)| / |Vv|ldz>l
Q(z0,2p)
1 2
+C<|Q(2p>| / 'q'dz) (22)
Q(z0,2p)

on any Q(zo,2p) C Q1,,15, with constants C(I) and C.
A simple consequence of Proposition 2.4 is as follows.

Remark 2.5. Let b € Loo(R; BMO~*(R?)) satisfy (1.2). Then any weak
solution to (1.1) on R3 x R wvanishes.

Indeed, let T'oo = [|bl|L_(x;BMO-1(R3)), I = |Vv|® and M denote the
(centred) maximal function with respect to parabolic cylinders (they sat-
isfy the ‘doubling’ assumptions on families of open sets, needed to pro-
vide the usual maximal function theory, compare Stein [21], §I.1). Propo-
sition 2.4 gives

M(h?)(z) < O(s,To) M (h)(2) + OM(g) ().

The strong L, estimates for M imply

/M(h%)dz < C(s,rm)/hfdz+0/|ql2dz
R4 R*

R4
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:C(S,Foo)/|Vv|2dz+C'/|q|2dz <c
R4 R4

This means that both M (h*) and h# are integrable. On the full space it
yields that h* = 0, compare [21], §1.8.14. Therefore v can only be time-
dependant, but then our assumption v € Lj o implies v = 0.

Our main result reads

Theorem 2.6. Let b satisfy (1.2). Then, there exists a number C, such
that any weak solution v and q to (1.1) in Qr, 1, satisfies

Vol?
2] 1 |7
[Vl °g< T P, )*
Q(zo0,7)

<CU+Tsn) [ woPivC [l
Q(z0,57) Q(z0,57)

fOT‘ any Q(zm ST) S QTLTQ-
Here, (f)z.r is the mean value of function f over the parabolic cylinder

Q(z0,7)-

We would like to notice that, in [2], the authors claim even a stronger
result about higher integrability of the velocity gradient.

§3. PROOF OF PROPOSITION 2.4

Over this proof, we will refer at certain times to [15]. Let us thence
initially observe, that however it deals with the case b = v, all the compu-
tations are in fact performed there for (1.1-1.2).

For an zo € R? and r < R, let ©Yzo,r,r () be aradial nonnegative smooth
space cut-off function, such that

Yzo.rR =1 on B(zo,r), Yzo,r,r =0 outside B(zg, R),

. C;
vz zo,T < R
| Pz, ,R| (R—T’)l

Let us introduce the related mean value of a function f

fonn®= [ st e ([ soio,r,R(mdz)_l.

B(IO,R) B(zo,R)



42 J. BURCZAK, G. SEREGIN

We will also need a smooth nonnegative time cut-off function xi, » g (%)
with the following properties

Xto.rr(t) =1 for t <ty — R?, Xto.rR(t) =0 for t > tg— 12,

C o 2C
R2—7r2 ~ (R—7r)%

|0 Xto,r, R ()] <
Together, let us write for brevity

772077‘,R(x7t) = XtOJ‘,R(t) QDZO,T,R(:U)'
Finally, for a function f let us denote the oscillations at z = (z,t) as follows

F) = 1) = faorr®,  [(2) = [(2) = [[leo.R(D),
where [f]z,,r is the mean value of f over the ball B(zo, R).
Keeping in mind Remark 2.3, it is straightforward to conclude that

Lemma 2.1 of [15] (compare also Lemma 2.3 of [16]) holds in our case in
the following form.

Lemma 3.1. Let b € Lo (T, To; BMO~Y()) satisfy (1.2). Consider any
weak solution v and g of (1.1) on Qr, 1. Let Q(z0, R) € Q1, 1,- Then for
any t € (to — R?,tp)

/|v z, 6’0, . (@, t) de + / /|Vv|2nzO »pdzdt’

—R2 Q

/ / ( A + at’)n::g R djl’l)i7ﬁ)\i (ngo,r,R)J qi)\ : anO,T,R) dzxdt’.

—R2 Q
(3.1)
Let us assume that Q(zg,R1) € QTI,T2 with R < R; fixed. Recall
that by definition I'(20, B1) = |dll1__(to—R2.to; BMO(B(0,R:))- 1dentically

as in [15] its Lemma 2.1 implies (2.7) there we obtain from (31) that for
any s € (1,6/5)

1 ~
w5 f Pl )+ / JELRTE
»L0 Q

te ]to*RQ
—R2 Q

c N
<E / G, 0o 2

Q(z0,R)
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T(z0,R1)R> Rt S \3
=06 (= + o) / Vol dz)
Q(z0,R)

t

x( /( / |ﬁ(a:,t)|22_ssda:>255dt)%

to—R2 B(EO,R)

s (3.2)
C . (T'(20, R1) + 1)R'*+
< R r |q||v|X%07T‘,RQO$O,T‘7RdZ+C(S) (R*"')2
Q(z0,R)
1 to 2-s 1
x( / |VU|2dz)2< / ( / |a(a;,t)|2%da;) : dt> .
Q(Zo,R) to—R2 B(mo,R)

We deal with the pressure part also in a similar way as in [15], pp. 332—
333. Again, as in the case of (3.1), the only difference is our use of a cut-off
function between any r < R, as opposed to a cutoff between R and 2R
in [15]. Nevertheless, let us present details for clarity. Since dive = 0, (1.1)
implies that for any ¢ € C§°(Q) and a. a. t €]T1,Ty|

/q(a:,t)Ago(a:) der = /le(a:,t)vi,l(a:,t) @, (x) da.

Q Q

Define g¢ as the solution to the related very weak homogenous boundary
problem in B(zo, R;):

/ 46 (@, ) Ap(z) dr = / a2, tyoi (2, 1) .45 (2) do
B(Io,Rl) B(Io,Rl)

for all o € W2, (B(xo,R1)) satisfying boundary condition ¢(z,t) = 0 as
2—s
x € 0B(z9, R1). The dual estimate implies then for a.a. ¢

( / lgG (2, 1)

B(:EO ,Rl)

3s—2
2s

2s
3s—2 da;)

<C(s)R§'r(zo,Rl)( / |Vv(a:,t)|2da:)% (3.3)

B(zo,R1)
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(compare (2.11) of [15]). The remainder gy = ¢ — g¢ is harmonic on
B(xg, R1). Since R < Ry, we have then

P e B A LGOI
! B(zo,R1)
c
<qg | (@0l + e o)ds
B(zo,R1)

Use of (3.3) above implies

C
||QH(-,t)||Lw(B(zo,R))<m / lq(z,t)| dz
B(Ig,Rl)

(X?Engng( ./ |VU@JN%M)% (3.4)

B(:EO ,Rl)

We intend to use the above formulas to estimate the pressure part of (3.2).
Before that, since ¢ = qg + qgr, we rewrite it as follows

c ~
| 10, e d

Q(z0,R)

t 3s—2 2—s
gRCr/O( /|qG(x,t)33—f2dz) ( /|a(x,t)|f%sdz) = gt
B(

to—R2 B(zo,R) zo,R)
c
Fr H ()| Lo (B(wo,R)) v(z, t)nz,rR(T,
+ llge (- t)|l [v(z,t)n (z,t)|dx | dt
to—R2 B(ZO,R)
—I+1II. (3.5)

We estimate I using (3.3)
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< QOB F(ZO’RI)( / Vo)’

R—r
Q(z0,R1)
to

x( /( / |ﬁ(z,t)|%dw)2xsdt)

to—R? B(zo,R)

=

and I7 using (3.4) and next the Holder inequality

to
C 1
Ir< —— __ ’
R—r / ((R1 — Ry / (. 1) d )
to—R? B(zo,R1)
([ (el do)de
B(IO,R)
to 3
¢ C(s)I' (20, B1) R} 5, \2
+ fr— / TEE ( / [Vo(z,t)] da:)
to—R? B(zo,R1)
< ( / 6, 0] o) dt
B(IO,R)
i C R3
< sup / o(z, t)*nt , gz, t)dr)” ———
te]to—R2,to[ (B( R) | ( )| to, ,R( ) ) R*T (Rl 7R)3
3
C C(S)F(Zo,Rl)Rf §+% 2 %
/ lq| dz + R s (B Ry R37% ( / |Vl dz)
QR (20) Q(z0,R1)

to

><< / ( / |ﬁ(a:,t)|%da:)2:dt)%.

to—R2 B(zo,R)

Finally, applying the above estimates of I and II to (3.5), we control the
pressure term in (3.2) and arrive, after absorbing the sup term into the
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left-hand side, at
1
sup + / 16z, 1) 2dz + / Vo[2dz
tE]tgf'r'Q,tg[ 4 Q( )
Z0,T
R*Y  RY 1 R
< O(s)(T(z0, By) + 1)((R_ R (RI_R)3R§+?)

B(zo,r)

T
1 tg 2—s 1 (3.6)
x( / |Vv|2dz)2< /( / |ﬁ(x,t)|2253dx)sdt>
Q(Zo,R1) tng% B(:t07R1)
C R? 2
dz) .
+(Rfr)2(R17R)6( / a d2)
Q(z0,R1)
Choosing R = 2L we have
sup 4 / B(e, ) 2der + / Vo[2dz
te(to—r3,to) 4
B(zo,r) Q(zo0,7)
2.1 R} 5\
< s -_—
< O(s)(T(20, R1) + 1)R; (Rl_r)4( / Vol dz)
Q(z0,R1)
(3.7)

=

2—s

x to( / |6(a:,t)|2zssda:)sdt)

to*R% B(l‘07R1)

R} 2
+07(R1 7T)8( / |Q|dz> ,
Q(z0,R1)

valid for any Ry > r. The estimate (3.7) counterparts (2.13) of [15].
We will use (3.7) twofold. Before doing so, observe that the Sobolev and

Holder inequalities yield for

6s
=157, 1L

(3.8)

the inequality
2—s
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<C()r T swp (/ |ﬁ(a¢,t)|2da:)§( / |Vv|ldz)T, (3.9)
t€lto=r? tol B(zo,r) Q(zo0,7)

compare estimate of I, on p.335 of of [15] (I is denoted as r there).
Let us return to (3.7). Firstly, using the Poincaré-Sobolev inequality

( / |a(a;,t)|%dx)s <CR,* / \Vo(z, t)2dz,

B(mo,R1) B(m07R1)

we estimate only the evolutionary part of (3.7) to get

1
sup - / [o(x,t)|*dx

te Jto—r2,to[ 4

B(xzo,r)
R4
< C(S)(F(Zo,lﬁ)—l—l)m( / |Vv|2dz)
Q(z0,R1)
R} 2
+ Cm( / |q|dz) . (3.10)
Q(z0,R1)

The above estimate in the sup term of (3.9) yields

t
0 2-s

/( / 6,0 ) e

to—r2  B(zo,r)

gC(s)(F%(zO,Rl)Jrl)RfU’l)(%( / |Vv|2dz)

Q(z0,R1)

+c%( / |q|dz))< / |Vv|ldz)%. (3.11)

Q(z0,R1) Q(z0,R1)

N
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Secondly, let us rewrite (3.7) for any r > p in place of Ry > r, dropping
this time the evolutionary term

4 1
2 2T 2 2
< 7
/ |[Vo|*dz < C(s)(T(z0,7) + 1)r (rfp)‘*( / [Vl dz)
Q(ZU7P) Q(ZOJ')
to . . (3.12)
y /( / [6(e,0)] 7 de “at) vo ( /| dz)’
v(z, x o q|dz
to—r2 B(Ig,r) Q(ZOJ')
and use for its right-hand side (3.11). Together with choosing r = %
we arrive at
2 1 2
|[Vou|*dz < 3 |Vv|*dz
Q(z0,p) Q(z0,R1)
+C(s)(T% (20, R )+1)R4(3*%>R7%0( / |Vv|ldz>%
0,111 1 Ry — p)2° (3.13)
Q(z0,R1)
R3 2
C—21— d
" (1 —,0)8( / d Z) ’
Q(z0,R1)

valid for any R; > p such that Q(zo, R1) € Q1 ,15-
In order to deal with the first term on the right-hand side of (3.13), let
us use the following lemma.

Lemma 3.2. For 0 < tg < t1, let h : [to,t1] — R be a nonnegative
bounded function. Suppose that there exists § € [0,1) such that for any
to <t < s <ty the following inequality is valid:

A;(s)
(s —t)oi’

h(t) < 0h(s) + >

i=1

in which a; > 0, A; : [to,t1] — R is a bounded increasing function,

i = 1,...N. Then, there exists a constant Cs such that for any ty <
t<s<th
N
Ai(s)
h(t) < C -
(t) < 62 (s —t)ei
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The proof is the same as in the classical case of constant A;’s, see p. 161
of Giaquinta [5].
Invoking Lemma 3.2 with

ho) = [ 9ol

Qp(20)
A(p) = €T z0,p) + DD ([ vefas)t, =20,
Qp(20)
)= [ lalaz), a =8,
Qo (20)

we dispose of the first term on the right-hand side of (3.13). Consequently,
choosing R; = 2p we have

]‘ 2
Q0] / Vol dz

Q(z0,p)
< O(s)(T%(20,2p) + 1)p* 205 (# / IVvlle)%
1Q(2p)]

Q(z0,2p)
1 2
+ | —— / qldz) ,
(g | )

Q(z0,2p)

which in tandem with (3.8) and s € (1,6/5) implies (2.2). Proposition 2.4
is proven.

§4. PROOF OF THEOREM 2.6

For simplicity of the Calderén-Zygmund argument below, let us use in
what follows both the usual (parabolic) cylinders Q(zo, R) = B(zo, R)X]
to — R?,to[ and the related (parabolic) cubes C'(zp, R) = {max;—1 » 3 |z* —
rh| < R}yx]to — R?, to].

Let us introduce

Definition 4.1 (Local maximal function). Let G C R? be a fized open set
and f € L1(G). The local mazimal function Mg is given by

(Mg f)(z) = sup {(|f|)c : cubes C such that z € C C G},
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where (g)., denotes the mean value of g in w.
The following is true

Lemma 4.2. Let Cy be a parabolic cube. Then

2’9/(Mcof)dz</|f|log (e+ /] )dz<29/(Mcof)dz.
Co

(Do
Co Co

This result is classical in the case of the centred maximal function M
on R?, under an additional restriction that f is compactly supported, see
Theorem 1 of Stein [19]. Lifting the compact support assumption by using
the local maximal function Mg seems virtually untapped in applications
for PDEs, despite being apparently useful (in our case, trying to produce
compactly supported functions, one may try to e.g. double-localise the
estimates, which results in a scaling mismatch on the whole space). A range
of results closely related to Lemma 4.2 can be found in works by Iwaniec
with coauthors, e.g. [1,6-8]. Since these papers are inspired however more
by geometry-related considerations, the needed by us result seems not to
be explicitly stated there. Let us therefore present the proof of Lemma
4.2, emphasising that it was essentially provided to us by Piotr Hajlasz.
To this end we need the following Calderén-Zygmund decomposition on
cubes

Lemma 4.3. Let Cy be a parabolic cube and f € Li(Cyp). Fix any t >
(IfDcy- Then there exists a sequence of pairwise disjoint parabolic cubes
{C%}, C* C Cy, i €N, such that

|fl <t almost everywhere on Cp '\ U ok (4.1a)
ieN
t < (|f])es < 2%t (4.1b)

The only difference from the classical proof as in Stein [20] §1.3.2 is a
bigger constant of (4.1b), related to the parabolicity of cubes.

Proof of Lemma 4.2. Let us define E; = {z € Cy : (M¢,f)(2) > t}. In

the setting of Lemma 4.3, the left inequality of (4.1b) implies |J C? C Ej.
ieN

Hence

u(E) = o =2ty g [ifla =2y [ sl

ieN ieN Uci
i€EN
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with the latter inequality given by the right inequality of (4.1b). Since

Lemma 4.3 implies also that |J C* D {z € Cy : |f| > t} up to a zero-
iEN

measure set (considering (4.1a) and complements), we have in tandem with

the above inequality that

wEy =2t [ (42)

{z€Co: |f|>t}
valid for any ¢ > (|f|)c, =: A. It holds

oo oo

28/Mcofdz = 28/M(Et)dt > Au(Ey) +/u(Et)dt
Co 0
> 1
> [ e [ ([ i)
At
{z€C0: |f|>A} {z€C0:|f|>t}

see (4.2) for the last inequality. We estimate the last integral above with
help of the Tonelli theorem and find that

28/M00fdz> / | dz + / |f|log|T{|dz
Co {z€Co: |fI>A} {z€Co: |f|>A}
>27! / |f|log (e+ %) dz.
{z€Co: |fI>A}

Since also

29/M00fdz>29 / |f|dz
Co {z€Co: |fI<A}
> / |f|log(e +1)dz > / |f|log(e+ |Ai|) dz,
{z€Co: | fISA} {z€Co: | FISA}

we have the right (less standard) inequality of the thesis. The remaining
left inequality follows in fact from the original [19]. Indeed, also for the local
maximal function, one has the usual weak-type estimate (i.e. a practical

reverse to (4.2))
1
ue) <24 | 7
{z€Co: |f|>4%}
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by the Vitali covering of E;. Along the previous lines utilising (4.2), with
inequalities reversed, we prove now the remaining left inequality of Lemma
4.2 (in fact, not needed for our further purposes). O

Let us return to the proof of Theorem 2.6. We fix a parabolic cube
Ci1 = C(z1,R1) such that C] = C(z1,3R1) € Qmn,,1,- Proposition 2.4,
rewritten for cubes, yields for T'y = I'(z9, 2R1)

; v2z [ 5 ; UZZ%
e | s (”(Fl“)(mﬁpn / 'v'd)

C(zo0,p) C(20,2v2p)

1 2
+ c <7 / q| dz)
IC(2v2p)|
C’(zo,2\/§p)

for all C'(zg,p) C Ci.
Since all the domains of integration of the right-hand remain within in

C(z1,2 V2Ry), we can introduce there into integrals a smooth function v
such that 1 = 1 on C(z1,2v2R;) and 9 = 0 outside C}. Hence

1 / 5 5 ( 1 / I )’
— Volfdz < c(l)(T'? + 1) | ————— Vol dz
cn ) Vs OmE U555, vl

C(zo0,p) C(20,2V2p)
1 2
+c(7 / |q|z/1dz>
C@vap)]
C(20,2V2p)

for all C'(zo, p) C C}.
Recalling Definiton 4.1 we have then
Me, (IVv]*)(2)
<eOEF+OME L on (Vo 9)(=) + M2, g (al)(2)
< ()T + )My (IVo]'9) (2) + eMia(lalv) (2)

and consequently

/Mgl(|Vv|2)dz < ()T +1) /M§4(|vu|l¢) dz + c/MH§4(|q|¢) d.
Cq R4 R4
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Observe that Mpgs is the usual non-centred maximal function with respect
to parabolic cubes. Since it enjoys the strong L,-property, compare [21]
§1.3.1, the above inequality implies

/Mcl(|Vv|2)dz < e(1)(T? + 1)/|vu|21ﬁ dz+c/|q|21/12 dz
C1 R4 R4

<e()(TF +1) / |Vo|? dz + c/ lq|* dz < oo,

¢ 1
hence Lemma 4.2 yields
/|Vv|log (e-l— (||VVT”)|)dz < 2%(1)(T% + 1)/|VU|2dz+290/|q|2dz.
C
Cq c! o’

1 1

Returning to parabolic cylinders gives Theorem 2.6.

§5. APPENDIX I
Here, we are going to prove (1.4). Indeed, we have
(DVu) : Vv = u;1djjvi j = wi,1€j150;, jWs-

Since w is an BM O function, it suffices to show that for any s = 1,2, 3,
the function

T i (T)€jisvi,j ()
belongs to the Hardy space and to find the corresponding estimates, com-

pare e.g. §VIL.3 of [20] about duality between Hardy and BM O spaces. To
this end, let us fix a standard mollifier &, and consider the function

Hi(x) = sup [(®g * (ui€jisvi ;) ()]
0>0
Taking into account properties of the Levi-Civita tensor, we have
Hy(z) = sup [(®g * (Wijisvi).0) ()],
o>

where & = u — [u]g(s,0)- After integration by parts and applying the esti-
mate |V®,| < co™?, we find

c 1

Hy(zx) <sup - —— / u||Voul|dy

WS B ) M
B(z,0)
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St #14) (sl | o)’

B(z,0) B(z,0)

Now, we can use Poincaré-Sobolev inequality and pass to the standard
centred (Hardy-Littlewood) maximal functions, denoted by M, thus ob-
taining

B(z,0) B(z,0)
< eME(|\Vul) (@) ME (Vo) ?) ().

Integration over R?, together with L,-estimates for maximal functions
gives us

s <o [ 2t vuti@an)*( [ 3 (weltyer)
R3 R?

< df[Vaulla[[Vol2,

for any s = 1,2,3. Therefore, by definition, for any s = 1,2,3, H be-
longs to the Hardy space. Now, estimate (1.4) follows from duality between
Hardy and BM O spaces.

§6. APPENDIX II

Here we state an existence theorem for the Cauchy problem for system
(1.1), compare Remark 2.2. To this end we need to introduce certain energy
spaces. First, we let

033(9) ={v e Cy°(Q) : dive =0}
and then

Tp(©) = [Coo ()] 2@,

o
J;(Q) is the closure of the set C§%(Q) with respect to the semi-norm

1

W10 = (/|Vv|pda:>;.
Q

If Q = R3, we shall drop  in the notation of the spaces. We denote R xR,
briefly by Q4.
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Theorem 6.1. Given a divergence free drift b € Loo(BMO)™! and initial

[e]
velocity ug € Jo, there exists a unique pair v and q satisfying the following
properties:

(i) 0 € Loo(0,00; J2) N La(0,00; J8), g € La(Q4);

(ii) v and q satisfy the problem (1.1) in the sense of distributions;
(iii) the function

t— /U(a:,t) ~w(z)dr
e

is continuous at any t > 0 for each w € Ly(R?);
(iv) |lv(-,t) —uo(-)||2 — 0 as t — O;
(v) forallt >0

t
1 1

5/|v(z,t)|2dw+//|Vv|2dzdt' < §/|u0|2dz;
R3

0 R3 R3

(vi) for allt >0

t
/<p|v(z,t)|2da:+2//¢|Vv|2dzdt'

R3 0 R3
t
= //(|v|2(3t +A)p —2DVv : v® Vo + 2qu - Vo)dzdt’
0 R3
for any non-negative p € CF°(Q4).

The proof of the theorem relies essentially on the estimate (1.4). Observe
that it is also applicable to the pressure equation

—Aq = div (DVv)
hence gives the estimate for the pressure

lall2.ey < clldlzoBro)VVll2.q,-

Further details are standard.
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