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t. We �nd an inverse fa
torial series expansion for the ra-tio of produ
ts of gamma fun
tions whose arguments are linear fun
-tions of the variable. We give a re
urren
e relation for the 
oeÆ
ientsin terms of the N�rlund{Bernoulli polynomials and determine quitepre
isely the half-plane of 
onvergen
e. Our results 
omplement nat-urally a number of previous investigations of the gamma ratios whi
hbegan in the 1930ies. The expansion obtained in this paper plays a
ru
ial role in the study of the behavior of the delta-neutral Fox's Hfun
tion in the neighborhood of it's �nite singular point. We furtherapply a parti
ular 
ase of the inverse fa
torial series expansion to de-rive a possibly new identity for the N�rlund{Bernoulli polynomials.Bibliography: 49 titles.
§1. Introdu
tionFor a given 
omplex sequen
e b0; b1; b2; : : : the inverse fa
torial series isde�ned by 
(z) = ∞

∑n=0 bnn!(z)n+1 = ∞
∑n=0 bnB(z; n+ 1); (1)where (z)n+1 = z(z + 1) · · · (z + n) and B(x; y) is Euler's beta fun
tion.Certain variations in the denominator are possible: for instan
e, one 
an
onsider (z + a)n+1 or z(z + w) · · · (z + wn) or �(z + a + n)=�(z + b) inpla
e of (z)n+1 for some (usually real) numbers a; b and w > 0. This typeof series had been used already by Stirling around 1730, but their rigoroustheory was developed around the turn of 20th 
entury by Landau [21℄,N�rlund [28, 29℄ and Nielsen [27℄. See also [22, Chap. X℄ for detailed a
-
ount of this theory or [33, Se
. 4.7℄ and [45, Se
. 46℄ for a more 
on
iseKey words and phrases: gamma fun
tion, inverse fa
torial series, N�rlund{Bernoullipolynomial, non-
entral Stirling numbers.This resear
h was supported by the Russian S
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136 D. B. KARP, E. G. PRILEPKINAintrodu
tion. If the series in (1) 
onverges for some value of z, then its do-main of 
onvergen
e has the form {z : Re z > �}\{0;−1; : : :} for some real� 
alled the abs
issa of 
onvergen
e. As the sequen
e {(z)−1n+1}∞n=0 is anasymptoti
 sequen
e for |z| → ∞ in {z : | arg(z)| < �− "}, the series (1) isan asymptoti
 series as |z| → ∞ regardless of its 
onvergen
e. The idea to
onvert the Poin
ar�e asymptoti
 series ∑ akz−k into a 
onvergent inversefa
torial series goes ba
k at least to 1912 paper of G. N. Watson [44℄. Ithas been revived more re
ently in [10℄ and [46℄ and 
ombined with Borel{Lapla
e summation in the former referen
e. Inverse fa
torial series play animportant role in solution of di�eren
e equations [9, 29℄.In this note we exploit similar ideas (resummation of Poin
ar�e typeseries into 
onvergent inverse fa
torial series) to derive the inverse fa
torialseries expansion of the fun
tionW (z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) (2)with expli
it formulas for the 
oeÆ
ients and pre
ise determination of the
onvergen
e domain. Here Ak, Bj are positive, while ak, bj are 
omplexnumbers, � = p

∏k=1AAkk q
∏j=1B−Bjj . This expansion was instrumental in thestudy of the behavior of Fox's H fun
tion Hp;0q;p (t) (de�ned below) in theneighborhood of the singular point t = � undertaken by us in [18℄. Hen
e,this note also �lls a gap in the proof of [18, Theorem 1℄. The problem ofexpanding the fun
tion W (z) and its parti
ular 
ases in inverse fa
torialseries has been 
onsidered previously by a number of authors. Probably,the �rst appearan
e of su
h expansion is in Ford's book [13℄, where the in-verse fa
torial series for W (z) with p = q = 2, A1 = A2 = B1 = B2 = 1=2and a1 + a2 = b1 + b2 was found and proved to be asymptoti
. No ex-pli
it formulas for the 
oeÆ
ients were given. This was improved by VanEngen in [42℄, where the author found the 
oeÆ
ients in Ford's expan-sion and removed the restri
tion a1 + a2 = b1 + b2. The general ratioW (z) was �rst 
onsidered by Wright in the sequel [47,48℄. He proved thatthere exists a series in re
ipro
al gamma fun
tions asymptoti
 to the fun
-tion W (z) under very general assumptions. Wright only gave a formulafor the �rst 
oeÆ
ient, but mentioned that further 
oeÆ
ients 
ould alsobe 
omputed. Similar result was later proved by Hughes in [15℄ under



AN INVERSE FACTORIAL SERIES 137the natural additional restri
tion p
∑k=1Ak = q

∑j=1Bj and using the standardinverse fa
torial series (1). In his milestone work [30℄ N�rlund dedu
edan inverse fa
torial series expansion of the fun
tion (2) when p = q andAk = Bk = 1, k = 1; : : : ; p, and proved its 
onvergen
e in the interse
-tion of the half planes Re(z + ak) > 0, k = 1; : : : ; p. He also gave twodi�erent methods to 
ompute the 
oeÆ
ients in this expansion. In a se-ries of papers [35{37℄ Riney studied the fun
tion (2) for p 6 q + 1 andAj = Bk = 1, j = 1; : : : ; p, k = 1; : : : ; q. He gave an asymptoti
 series forthis fun
tion in terms of gamma ratios, of whi
h standard fa
torial seriesis a parti
ular 
ase, and presented several methods to 
ompute the 
oeÆ-
ients. Riney's investigations were 
omplemented by van der Corput [41℄,who 
onsidered the opposite 
ase q 6 p+ 1, and Wright [49℄, who sug-gested further methods for 
al
ulating the 
oeÆ
ients. Braaksma [3℄ again
onsidered the general 
ase of (2) and proved that there exists a series inre
ipro
al gamma fun
tions asymptoti
 to W (z). He also gave an expli
itformula for the prin
ipal term. This result of Braaksma (whi
h is just ate
hni
al tool in his deep investigation of Mellin{Barnes integrals) is, infa
t, a modi�
ation of the earlier work by Wright [47,48℄ mentioned above.A survey of some of the above work is given in Se
. 2.2 of the book [33℄by Paris and Kaminski, where one 
an also �nd expli
it proofs and sev-eral examples. Independently, Gupta and Tang [14℄ presented a series ingamma ratios for W (z) when p
∑k=1Ak = q

∑j=1Bj and gave 
ertain re
ursionsfor 
omputing the 
oeÆ
ients. They also 
laim 
onvergen
e but gave noreal proof of this 
laim. Further details about their work 
an be found inthe introdu
tion to our paper [18℄.In the present paper we 
ombine some ideas from [14℄ with Borel-Lapla
e summation to give a rigorous proof of 
onvergen
e and formulas forthe 
oeÆ
ients for the inverse fa
torial series expansion ofW (z) under theassumption p
∑k=1Ak = q

∑j=1Bj . This is done in Se
. 3 of this paper. Further-more, in Se
. 4 we apply the inverse fa
torial series for a simplest parti
ular
ase of (1) to derive a presumably new identity for the N�rlund{Bernoullipolynomials. The main results presented in Se
s. 3 and 4 are pre
eded bythe preliminaries expounded in Se
. 2.
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§2. PreliminariesA fun
tion f(z) of a 
omplex variable z is said to possess a Poin
ar�etype asymptoti
 expansion in an unbounded domain D iff(z) = n−1

∑k=0 �kzk +Rn(z) (3)and Rn(z) = O(z−n) as D ∋ z → ∞. If this holds for all natural n it is
ustomary to write f(z) ∼ ∞
∑k=0 �kzk as z → ∞ in D:The asymptoti
 expansion of f(z) is said to be Gevrey-1 (or Gevrey oforder 1), if there exist the numbersM; � > 0 su
h that for all z ∈ D and allpositive integers n the error term Rn(z) in (3) satis�es [23, De�nition 5.21℄,[8, De�nition 4.130℄
|Rn(z)| 6

M�nn!
|z|n : (4)It is 
onvenient to introdu
e the following 
lass of fun
tions.De�nition. We will say that f belongs to the 
lass G if f possesses aGevrey-1 expansion in some right half-plane Re z > � = �(f).Let us list some properties of the 
lass G required in the sequel. Theproofs are either straightforward from the above de�nition or are givenreferen
e to.Property 1 (linearity). If f ∈ G and g ∈ G, then f+g ∈ G and af(z) ∈ Gfor arbitrary 
omplex a 6= 0.Property 2 (shifting and dilating invarian
e). If f ∈ G, thenf(Az + a) ∈ G for A > 0 and arbitrary 
omplex a.Property 3 (invarian
e under taking exponential) If f(z) ∈ G, thenexp{f(z)} ∈ G (see [43, pp. 288, 293℄ for a proof).Property 4. If f ∈ G and �0 = 0 in (3), then zf(z) ∈ G.Property 5. If f ∈ G, then f(z)=z ∈ G:Property 6. If '(z) is holomorphi
 in the neighborhood of z = 0, thenf(z) = '(a=z) ∈ G for arbitrary 
omplex a 6= 0.To demonstrate the last property apply Cau
hy estimates to the Taylor
oeÆ
ients ak of '(z) to get |ak| 6 M=rk, where r is stri
tly less than
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onvergen
e of the Taylor series of '(z) at z = 0 and M =max
|w|6r |'(w)|. This leads to the following estimate of the Taylor remainder
|Qn(z)| = ∣

∣

∣

∣

∣

∞
∑k=n akzk∣∣∣∣∣ 6

M |z|nrn ∞
∑j=0 |z=r|j = M |z|nrn(1− |z=r|) 6

M |z|nrn(1− �)for |z| 6 �r and arbitrary � ∈ (0; 1). Hen
e,'(a=z) = n−1
∑k=0 ak(a=z)k +Qn(a=z)and

|Qn(a=z)| 6
M |a=r|n

|z|n(1− �) for |z| >
|a|�r ;so that (4) is trivially satis�ed.We will need the next well-known lemma relating the 
oeÆ
ients of anasymptoti
 series of a fun
tion with those of its exponential. Essentially,the result 
ontained in this lemma appeared in [24, Appendix℄. Later,an independent derivation was given in [16, Lemma 1℄. It has also beendis
ussed re
ently in [34℄, where further referen
es are given. Surprisingly,referen
es [24℄ and [16℄ do not appear in [34℄.Lemma 1. Suppose g(z) ∼ ∞

∑k=1 ukz−k as z → ∞. Thenexp{g(z)} ∼
∞
∑r=0 vrz−r;where the 
oeÆ
ients are found fromv0 = 1; vr = 1r r
∑k=1 kukvr−k:Alternatively,vr = ∑k1+2k2+···+rkr=rki>0 uk11 uk22 · · ·ukrrk1!k2! · · · kr! = r

∑n=1 1n! ∑k1+k2+···+kn=rki>1 n
∏i=1 uki :



140 D. B. KARP, E. G. PRILEPKINARemark. Nair [24, Se
. 8℄ found a determinantal expression for vr whi
hin our notation takes the formvr = det(
r)r! ; 
r = [!i;j ℄ri;j=1;!i;j = 





ui−j+1(i− j + 1)(i− 1)!=(j − 1)!; i > j;
−1; i = j − 1;0; i < j − 1:Various forms of the next 
lassi
al theorem 
an be found in [8, The-orem 4.136℄, [10, Thereom 2.2℄, [12, paragraph 6℄, [23, Se
. 5.7.3℄, [26℄and [39℄.Theorem 1 (Watson{Nevanlinna{Sokal). Suppose f(z) is holomorphi
 inCr = {z : Re(1=z) > r−1} and 
an be written asf(z) = n−1

∑k=0 �kzk +Rn(z) (5)with the error term satisfying |Rn(z)| 6 M�nn!|z|n, where M is indepen-dent of n and z ∈ Cr. Then its Borel transformB(t) = ∞
∑k=0 �ktkk!
onverges for |t| < 1=� and 
an be extended analyti
ally to the domainS� = {t : dist(t;R+) < 1=�} to a fun
tion satisfying

|B(t)| < K exp(|t|=r) (6)for some positive K. Furthermore, f 
an be re
overed by the (
onvergent)integral f(z) = 1z ∞
∫0 e−t=zB(t) dt: (7)Conversely, if B(t) is holomorphi
 in S� ′ (� ′ < �) and satis�es (6), thenthe fun
tion f(z) de�ned by the integral (7) is holomorphi
 in Cr and hasGevrey-1 a symptoti
 approximation (5) with uniform error bound in Cr,where �k = B(k)(t) |t=0.The next theorem 
an be found in [28, Theorem VIII℄, [29, p. 267℄ and[45, Theorem 46.2℄.



AN INVERSE FACTORIAL SERIES 141Theorem 2 (N�rlund). Suppose 
(z) satis�es the following 
onditions :1) 
(z) = a=z+v(z)=[z(z+1)℄, where v(z) is holomorphi
 and boundedin some right half-plane Re z > �.2) 
(z) = ∞
∫0 e−tzB(t) dt, where B(t) is holomorphi
 in the domain S� =

{t : dist(t;R+) < �} for some � > 0 and satis�es in S� the 
onditionlimt→∞
e−ktB(t) = 0 for some positive k.Then 
(z) 
an be expanded in the inverse fa
torial series
(z) = ∞

∑s=0 bsz(z + 1) · · · (z + s)
onvergent in some right half-plane Re z > � ex
luding the points z =0;−1;−2; : : :.To determine the abs
issa of 
onvergen
e � we need the following no-tion due to Hadamard [28, pp.333-334℄: a fun
tion f(z) = a0 + a1z + · · ·holomorphi
 in the unit disk |z| < 1 has the order κ on the 
ir
le |z| = 1if
κ = lim supn→∞

log |nan|log(n) :The next theorem [28, Theorem III℄ relates the order of the so-
alledgenerating fun
tion ' of an inverse fa
torial series 
 to its abs
issa of
onvergen
e.Theorem 3 (N�rlund). Suppose the next representation holds for suÆ-
iently large values of Re z:
(z) = ∞
∑s=0 bs(z)s+1 = ∫ 10 tz−1'(t) dt; (8)and assume that the order of t−1'(t) on the 
ir
le |1− t| = 1 is equal to κ.If κ > 1, then the abs
issa of 
onvergen
e � of the inverse fa
torial seriesin (8) is equal to κ − 1, otherwise � 6 κ − 1.Further, N�rlund showed in [28, (7), p. 339℄ that a fun
tion f(t) holo-morphi
 in |1− t| 6 1 ex
ept for a singularity at t = 0 and representablein the formf(t) = m

∑i=1 tai( i;0(t) +  i;1(t) log(t) + · · ·+  i;r(t) logr(t)) (9)



142 D. B. KARP, E. G. PRILEPKINAin the neighborhood of t = 0 with Re(a1) 6 Re(a2) 6 · · · 6 Re(am) has theorder � = −Re(a1). It is assumed that  i;j(t), i = 1; : : : ;m, j = 0; : : : ; r,are holomorphi
 around t = 0 and su
h that for ea
h i = 1; : : : ;m at leastone of the numbers { i;0(0); : : : ;  i;r(0)} is di�erent from zero. Integernonnegative ai su
h that r = 0 (no logarithmi
 terms) must be ex
ludedfrom the determination of order.Our main tool is the following theorem.Theorem 4. Let f(z) be holomorphi
 in some right half-plane Re z > �and suppose that log(zf(z)) ∈ G. Then for any 
omplex � the fun
tionf(z) 
an be expanded in the inverse fa
torial seriesf(z) = ∞
∑s=0 ds(z + �)s+1
onvergent in some right half-plane Re z > �.Proof. By properties 3, 2, and 5, respe
tively, �f(�) ∈ G, (�−�)f(�−�) ∈

G and f(�) ∈ G. Then �f(� − �) = (� − �)f(� − �) + �f(� − �) ∈ G byproperties 2 and 1. Therefore,�f(� − �) = n−1
∑k=0 �k�k +Rn(�) (10)with the remainder Rn(�) bounded a

ording to (4). Now put f1(�) =f(� − �) and rewrite (10) asf1(1=w)w = n−1

∑k=0 �kwk +Rn(1=w)with the error bound of the form
|Rn(1=w)| 6 M�nn!|w|n:A

ording to Theorem 1f1(1=w)w = 1w ∞

∫0 e−t=wB(t) dtor f1(�) = ∞
∫0 e−t�B(t) dt



AN INVERSE FACTORIAL SERIES 143and B(t) satis�es 
ondition 2 of theorem 2. As (� − �)f1(�) ∈ G, we haveby de�nition of G:(� − �)f1(�) = 
0 + 
1� + T2(�); |T2(�)| 6
A
|�|2 :This implies that f1(�) = 
0� + v(�)�(� + 1) ;where v(�) = 
0� + 
1 + (
0� + 
1)(1 + �)� − � + �(� + 1)T2(�)� − � :The above estimate for T2(�) immediately leads to 
on
lusion that v(�) isbounded outside of some neighborhood of � = �. Thus, the �rst 
onditionof Theorem 2 is also satis�ed andf1(�) = ∞

∑s=0 ds(�)s+1 :Substituting ba
k z = � + � yieldsf(z) = f1(z + �) = ∞
∑s=0 ds(z + �)s+1 :The 
laim regarding 
onvergen
e follows by Theorem 2. �We will write Bj(x) for the j-th Bernoulli polynomial [32, 24.2.3℄, de-�ned by the generating fun
tiontextet − 1 = ∞

∑n=0Bn(x) tnn! ; |t| < 2�:Further, Bj = Bj(0) are Bernoulli numbers [32, 24.2.1℄.Lemma 2. The fun
tion Pa(z) = log �(z + a) − (z + a − 1=2) log z + zbelongs to the 
lass G andPa(z) ∼ 12 log(2�) + ∞
∑j=2 (−1)jBj(a)j(j − 1)zj−1 (11)as |z| → ∞ in the domain | arg z| < � − Æ, 0 < Æ < �.



144 D. B. KARP, E. G. PRILEPKINAProof. Formula (11) is Hermite's asymptoti
 expansion for log �(z + a)[25, (1.8)℄. We only need to proof its Gevrey-1 
hara
ter. A

ording to [33,(2.1.1) and (2.1.5)℄ and [12, (10), (14)℄, the Binet fun
tionP0(z)− 12 log(2�) = log �(z)− (z − 1=2) log z + z − 12 log(2�)satis�es the relationP0(z)− 12 log(2�) = n−1
∑r=1 B2r2r(2r − 1)z2r−1 +R2n−1(z);in the domain | arg z| < � and for z = |z|ei� with |�| < � the next inequalityholds:

|R2n−1(z)| 6
|B2n| | se
2n(�=2)|2n(2n− 1)|z|2n−1 :In view of the asymptoti
 equality [11, Corollary 1℄, [12, (16)℄

|B2n| = 2(2n)!(2�)2n (1 + o(1)); n→ ∞;we 
on
lude that P0(z) ∈ G. It is straightforward to 
he
k thatPa(z) = P0(z + a)− a+ z log(1 + az) +(a− 12) log(1 + az) :Note that P0(z+a) ∈ G, log(1+ az ) ∈ G, z log(1+ az ) ∈ G a

ording to theProperties 2, 6 and 4, respe
tively. It is left to apply Property 1 to 
on
ludethat Pa(z) ∈ G. Uniqueness of the asymptoti
 expansion 
ompletes theproof. �The next lemma 
ontains a 
orre
ted version of a formula 
ontainedin [14℄ whi
h, in a di�erent form, was already presented in [2℄ (see also [1,8.5.1℄).Lemma 3. Let Ai; Bj > 0 satisfy p
∑i=1Ai = q

∑j=1Bj and ai, bj, i = 1; : : : ; p,j = 1; : : : ; q, be arbitrary 
omplex numbers. Then for ea
h 0 < Æ < � thenext asymptoti
 relation holds in the domain | arg z| < � − Æ,z���z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) ∼

∞
∑r=0 Crzr ;



AN INVERSE FACTORIAL SERIES 145where � = (2�)(p−q)=2 p
∏k=1Aak−1=2k q

∏j=1B1=2−bjj ; (12)� = p
∏k=1AAkk q

∏j=1B−Bjj ; � = �(a;b) = q
∑j=1 bj − p

∑k=1 ak + p− q2 : (13)The 
oeÆ
ients Cr = Cr(A;B; a;b) are found from the re
urren
eC0 = 1; Cr = 1r r
∑m=1Qm(A;B; a;b)Cr−m (14)or by other expressions 
ontained in Lemma 1. HereQm(A;B; a;b) = (−1)m+1m+ 1 [ p
∑k=1 Bm+1(ak)Amk −

q
∑j=1 Bm+1(bj)Bmj ]; (15)and Bm( · ) denotes the m-th Bernoulli polynomial. Furthermore,log( z���z p

∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) )

∈ G:Proof. From Hermite's asymptoti
 formula (11) we obtain by straightfor-ward 
al
ulations:log �(Az + a) = (Az + a− 1=2) logAz −Az + 12 log(2�)+ m
∑j=2 (−1)jBj(a)j(j − 1)(Az)j−1 +Rm(z)= Az log z+ (A logA−A)z+ (a− 1=2) log z+ (a− 1=2) logA+ 12 log(2�)+ m

∑j=2 (−1)jBj(a)j(j − 1)Aj−1zj−1 +Rm(z);where Rm(z) = O(z−m) in the se
tor | arg(z)| < � − Æ for any Æ > 0. ForA > 0 Lemma 2 implies that log �(Az+a)−(Az+a−1=2) logAz+Az ∈ G.



146 D. B. KARP, E. G. PRILEPKINAThen employing the 
ondition ∑Ak = ∑Bj we obtainlog{

p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) }

∼ z log �− � log z + log � + ∞
∑t=1 Qt(A;B; a;b)tzt ;where Qt(A;B; a;b) is given in (15). A

ording to Property 1log{ z���z p

∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) }

∈ G:Formula (14) and other methods to 
ompute Cr follow from Lemma 1. �

§3. Main resultsTo formulate our mains theorem we will need the non-
entral Stirlingnumbers of the �rst kind [7, 8.5℄ de�ned bys�(n; r) = n
∑k=r(−1)k+r(nk)(�)n−ks(k; r)= n
∑k=0(−1)k+r(nk)(�)n−ks(k; r); (16)where s(n; j) denotes the ordinary Stirling number of the �rst kind gener-ated by x(x − 1) · · · (x− n+ 1) = n

∑j=0 s(n; j)xj :Their \horizontal" exponential generating fun
tion is given by [46, (A.2)℄:n
∑l=0 xls�(n; l) = n

∑l=0 xl n
∑k=0(−1)k+l(nk)(�)n−ks(k; l)= n

∑k=0(−1)k(nk)(�)n−k k
∑l=0 s(k; l)(−x)l= n

∑k=0(nk)(�)n−k(x)k = (� + x)n;



AN INVERSE FACTORIAL SERIES 147where the expansion (x)k = (−1)k k
∑l=0 s(k; l)(−x)l has been applied. Some-times it is more 
onvenient to use the "verti
al" generating fun
tion

∞
∑n=0 s�(n; l)n! xn = ∞

∑n=l s�(n; l)n! xn = ∞
∑n=l xn n

∑k=l(−1)k+l (�)n−ks(k; l)k!(n− k)!= (−1)l ∞
∑k=l(−1)ks(k; l)xkk! ∞

∑n=k (�)n−k(n− k)!xn−k= (−1)l ∞
∑k=l s(k; l) (−x)kk! ∞

∑m=0 (�)mm! xm= 1l! 1(1− x)� (log 11− x)l :The non-
entral Stirling numbers were studied by Carlitz in [5,6℄ usingthe symbol R1(n; l; �) = s�(n; l) and some years later also by Koutras [20℄.Broder [4℄ 
onsidered them for integer � from the 
ombinatorial viewpoint.Various formulas for these numbers are given in [7, 8.5℄. Among otherthings, Carlitz found the double generating fun
tion [5, (5.4)℄
∞
∑l;n=0 s�(n; l)ylxnn! = (1− x)−�−y :Using a formula from [22, Se
. 6.43, p. 134℄ this generating fun
tion leadsto the 
onne
tion formula [6, (7.6)℄s�(n; l) = (

−l− 1n− l )

B
(n+1)n−l (1− �) = (−1)n−l(l + 1)n−l(n− l)! B

(n+1)n−l (1− �);where B
k (x) is the k-th N�rlund{Bernoulli polynomial (also known asthe generalized Bernoulli polynomials) de�ned by the generating fun
ti-on [31, (1)℄ t
ext(et − 1)
 = ∞
∑k=0B(
)k (x) tkk! : (17)The main result of this note is the following theorem.Theorem 5. Let Ak; Bj > 0 satisfy p

∑k=1Ak = q
∑j=1Bj and �, ak, bj , k =1; : : : ; p, j = 1; : : : ; q, be 
omplex numbers su
h that � = 1, where � is



148 D. B. KARP, E. G. PRILEPKINAde�ned in (13). Suppose further that � and � are given by (12) and (13),respe
tively. Then the inverse fa
torial series expansionW (z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) = ∞

∑n=0 �(z + �)n+1 n
∑r=0Crs�(n; r) (18)
onverges for Re z > � ex
ept at the points z = −�− l, l ∈ N0. Here � de-notes the real part of the rightmost pole of W (z) (obviously,� = −min{Re(ak=Ak) : k = 1; : : : ; p} if no 
an
elations of the numeratorand denominator poles take pla
e). Moreover, if Re(� + �) > 0, then� is equal to the abs
issa of 
onvergen
e of the series (18). Here Cr =Cr(A;B; a;b) is de�ned in (14), (15) and s�(n; r) is the non-
entral Stir-ling number of the �rst kind.Remark. The 
onvergen
e domain in the above theorem 
an be des
ribedas follows: if the abs
issa of the rightmost pole of W (z) is greater than theabs
issa of the rightmost pole of the series on the right hand side, then the
onvergen
e abs
issa is equal pre
isely to the abs
issa of the rightmost poleof W (z); if the abs
issa of the rightmost pole of W (z) does not ex
eed theabs
issa of the rightmost pole of the series on the right hand side, then the
onvergen
e abs
issa does not ex
eed the abs
issa of the rightmost poleof W (z); if the rightmost poles on both sides are simple and 
oin
ide (i.e.� = ak∗=Ak∗ , where k∗ = argmin{Re(ak=Ak) : k = 1; : : : ; p}), then thesepoles should be ignored when 
al
ulating the 
onvergen
e abs
issa.Proof. As � = 1 a

ording to Lemma 3 log(zW (z)) ∈ G. Then, by The-orem 4 we 
on
lude that W (z) 
an be expanded in a series of inversefa
torials [(z + �)n+1℄−1. As this series is also asymptoti
 for W (z) asz → ∞, its 
oeÆ
ients 
an be obtained by rearranging the Poin
ar�e as-ymptoti
 expansion of W (z). A

ording to Lemma 3 the latter is givenby W (z) ∼ � ∞

∑r=0 Cr(A;B; a;b)zr+1 ;where the 
oeÆ
ients Cr(A;B; a;b) are de�ned in (14), (15). Following[44℄ and [46, (4.1)℄ this asymptoti
 series 
an be re-expanded using the
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 sequen
e {1=(z)n+1}∞n=0 by applying [27, §30(6)℄1zr+1 = ∞
∑k=0 (−1)ks(r + k; r)(z)r+k+1 ;where s(n; j) is the Stirling number of the �rst kind. Substituting and
hanging the order of summations we getW (z) ∼ � ∞

∑n=0 (−1)n(z)n+1 n
∑r=0(−1)rs(n; r)Cr(A;B; a;b):Next, instead of inverse fa
torials 1=(z)m we 
an utilize the asymptoti
allyequivalent sequen
e {1=(z+�)m}m>0 by employing the 
onne
tion formula(see [28, (10)℄ or [29, (138.15)℄)U(z) = ∞

∑k=0 uk+1k!(z)k+1 = ∞
∑k=0 vk+1k!(z + �)k+1 ; (19)with the 
oeÆ
ients related byvk+1 = k

∑j=0 (� + j − 1j )uk+1−j = k
∑j=0 (�)jj! uk+1−j : (20)The inverse formula reads [38, 2.1(1)℄uk+1 = k

∑j=0(−1)j(�j)vk+1−j :
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ts with (16), we arrive at (Cj = Cj(A;B; a;b))W (z)� = ∞
∑n=0 (−1)n(z)n+1 n

∑j=0(−1)js(n; j)Cj= ∞
∑n=0 n!(z + �)n+1 n

∑j=0 (�)j(−1)n−j(n− j)!j! n−j
∑r=0(−1)rs(n− j; r)Cr= ∞

∑n=0 1(z + �)n+1 n
∑r=0(−1)rCr n−r

∑j=0(−1)n−j(nj)(�)js(n− j; r)= ∞
∑n=0 1(z + �)n+1 n

∑r=0(−1)rCr n
∑k=r(−1)k(nk)(�)n−ks(k; r)= ∞

∑n=0 1(z + �)n+1 n
∑r=0Crs�(n; r)whi
h is pre
isely (18).To 
ompute the 
onvergen
e abs
issa denote x = z+� and 
onsider thefun
tion 
(x) = �−�W (z) = �−x p

∏k=1�(Akx+ ak −Ak�)q
∏j=1�(Bjx+ bj −Bj�) :Denote a′ = a − �A, b′ = b − �B. Then, 
learly, �(a′;b′) = �(a;b) = 1(by the hypotheses of the theorem; �(a;b) is de�ned in 13). A

ordingto [17, Theorem 6℄
(x) = 1

∫0 tx−1Hp;0q;p (�t ∣∣∣
∣

(B;b′)(A; a′) ) dt;where Hp;0q;p (�t) is a parti
ular 
ase of Fox's H-fun
tion de�ned byHp;0q;p (�t ∣∣∣
∣

(B;b′)(A; a′) ) = 12�i 
+i∞
∫
−i∞ p

∏k=1�(Aks+ ak −Ak�)q
∏j=1�(Bjs+ bj −Bj�) (�t)−sds
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tion 
an be foundin [19, Chapter 1℄; see also [17, 18℄). By [19, Theorem 1.5℄ the followingrepresentation is trueHp;0q;p (�t ∣∣∣
∣

(B;b′)(A; a′) ) = p
∑k=1 ∞

∑l=0 Nkl−1
∑i=0 Hkli(�t)(ak−Ak�+l)=Ak logi(�t);where the two outer summations run over all poles of the fun
tion 
(x) andNkl denotes the order of the pole at the point akl = (−ak +Ak� − l)=Ak.The expli
it form of the 
onstants Hkli is immaterial here. We emphasize,however, that if the pole of the numerator at x = akl 
an
els out witha pole of the denominator, then we put Nkl = 0 and the 
orrespondingterm is omitted from the above summation. Comparing this representationwith (9) we 
on
lude by N�rlund's argument [28, p.339℄ explained below (9)that the order κ of Hp;0q;p (�t)=t on the 
ir
le |1− t| = 1 is given by

κ = −mink {Re(ak=Ak − � − 1)} = maxk {Re(−ak=Ak)}+Re(�) + 1;where the minimum is taken over the indi
es k ∈ {1; : : : ; p}, su
h that
(x) has a pole at xk = −ak=Ak+� and −xk is not a nonnegative integer.Then by Theorem 3 the abs
issa of 
onvergen
e �
 of 
 satis�es�
 6 κ − 1 = maxk {Re(−ak=Ak)}+Re(�)if κ − 1 6 0 or −mink {Re(ak=Ak)} 6 −Re(�):The last 
ondition 
an be interpreted as follows: the abs
issa of the right-most pole of W (z) does not ex
eed the abs
issa of the rightmost pole ofthe series on the right hand side of (18). So that by the reverse 
hange ofvariable z = x − � the 
onvergen
e abs
issa � of the original series (18)satis�es � 6 maxk {Re(−ak=Ak)}.If, on the 
ontrary, κ − 1 > 0 or −mink {Re(ak=Ak)} > −Re(�), then�
 = κ − 1 = maxk {Re(−ak=Ak)} + Re(�) implying that the 
onver-gen
e abs
issa � of the original series (18) is � = maxk {Re(−ak=Ak)}(the abs
issa of the rightmost pole of W (z)). Note, that for the right-most pole xk∗ = −ak∗=Ak∗ + � the situation −xk∗ ∈ N0 
ontradi
ts
−mink {Re(ak=Ak)} > −Re(�), so that under this 
ondition we ne
es-sarily have the equality � = maxk {Re(−ak=Ak)}. �It is easy to modify the above theorem to get rid of the restri
tion � = 1.



152 D. B. KARP, E. G. PRILEPKINACorollary 1. Let Ak; Bj > 0 satisfy p
∑k=1Ak = q

∑j=1Bj and let �, ak; bj,k = 1; : : : ; p, j = 1; : : : ; q, be arbitrary 
omplex numbers. Suppose furtherthat �, � and � are de�ned in (12) and (13), respe
tively. ThenW (z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) = ∞

∑n=0 hn�(z + � + 1)�(z + � + �+ n+ 1) ; (21)where the series 
onverges in the half-plane Re z > � with � equal to thereal part of the rightmost pole of the fun
tion W (z)�(z+�+�)=�(z+�+1).The 
oeÆ
ients are 
omputed byhn = � n
∑r=0Cr(A′;B′; a′;b′)s�+�(n; r)= ��(n+ �) ∑r+k=n (−1)kCr(A;B; a;b)k!�(r + �) B

(n+�)k (−�);where A′ = (A; 1), B′ = (B; 1), a′ = (a; � + �), b′ = (b; � + 1) andCr(A′;B′; a′;b′) are de�ned in (14). Moreover, if Re(�+ �+�) > 0, then� is equal to the 
onvergen
e abs
issa of the series (21).Proof. If � 6= 1 we 
an take � = � + � in Theorem 5 to getW1(z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) �(z + � + �)�(z + � + 1) = ∞

∑n=0 hn(z + � + �)n+1 ;where hn = � n
∑r=0Cr(A′;B′; a′;b′)s�+�(n; r);and the numbers Cr(A′;B′; a′;b′) are de�ned in (14). Indeed, �(a′;b′) = 1by 
onstru
tion, so that Theorem 5 is appli
able for W1(z). Multiplyingboth sides of (18) by �(z+�+1)=�(z+�+�) we arrive at (21) together withthe �rst formula for hn and all 
laims regarding 
onvergen
e. It remainsto verify the se
ond expression for hn. To this end employ the expan-
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∑k=0 (−1)kB(�+k)k (−�)(�)k�(z + � + 1)k!�(z + � + � + k + 1) ;where the series is known to 
onverge for Re z > 0. Applying Lemma 3and making the ne
essary rearrangements we get�−z p

∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) ∼ � ∞

∑r=0 Crzr+�= � ∞
∑r=0Cr ∞

∑k=0 (−1)kB(r+�+k)k (−�)(r + �)k�(z + � + 1)k!�(z + � + r + �+ k + 1)= � ∞
∑n=0 �(z + � + 1)�(n+ �)�(z + � + �+ n+ 1) ∑r+k=n (−1)kCrk!�(r + �)B(n+�)k (−�);where this time Cr = Cr(A;B; a;b). As the inverse fa
torial series of agiven fun
tion is unique whether it is 
onvergent or asymptoti
 we 
on
ludethat hn = ��(n+ �) ∑r+k=n (−1)kCr(A;B; a;b)k!�(r + �) B

(n+�)k (−�): �To 
on
lude this se
tion we remark that the expansions presented in thisnote 
an probably be generalized to the 
ase when � = q
∑j=1Bj− p

∑k=1Ak 6= 0.For � > 0 this expansion will be in terms of re
ipro
als of the gammafun
tions �(�z + �), while for � < 0 the expansion will be in terms of�(−�z + �) (not re
ipro
als!). To derive su
h expansions one may applythe te
hnique developed by Riney in [36℄, where the general � > 0 
aseis dedu
ed from the expansion similar to (21) for � = 0. Riney's results,however, are only asymptoti
 and pertain to the "unweighted" 
ase Ak =Bj = 1.
§4. An identity for the N�rlund{Bernoulli polynomialsIn this se
tion we present an identity for the N�rlund{Bernoulli de�nedby the generating fun
tion (17). Although its novelty is dubious, we 
ould
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ate it in the existing literature. The identity is obtained by 
ompar-ing di�erent expansion for the simplest parti
ular 
ase of the fun
tion (2)and is given in the next proposition.Theorem 6. The N�rlund{Bernoulli polynomials satisfy(t− x+ 1)mm! B(t−x+m+1)m (1− x)= m
∑j=0 B(t−x+1)j (t) (x − t)jj! m−j

∑k=0 (−1)k(mk)s(m− k; j)(t)kand1m! m
∑j=0 s(m; j)B(t+x)j (t) (1− t− x)jj! = m

∑j=0 ( tm− j)B
(t+x+j)j (x) (t + x)j(j!)2 ;where s(m; j) is the Stirling number of the �rst kind.Proof. We will use an asymptoti
 expansion in inverse powers of z forthe ratio �(z + t)=�(z + x) found by Tri
omi and Erd�elyi in [40℄. Thisexpansion is given on page 141 of [40℄, but we will rewrite it in a slightlydi�erent form using the de�nition of the 
oeÆ
ients [40, (19)℄ and theidentity �(1− a)=�(1− a− n) = (−1)n(a)n:�(z + t)�(z + x)zt−x+1 ∼

∞
∑n=0 (−1)nB(t−x+1)n (t)(x− t)nn!zn+1 as z → ∞; (22)where −x;−t; x− t =∈ N and z is in C 
ut along the ray 
onne
ting −� and

−�−∞. Following [46℄, we 
an substitute the expansion [27, (6) on p. 78℄1zn+1 = ∞
∑j=0 (−1)js(n+ j; n)(z)n+j+1in (22) to get�(z + t)�(z + x)zt−x+1

∼

∞
∑n=0 (−1)nB(t−x+1)n (t)(x − t)nn! ∞

∑j=0 (−1)js(n+ j; n)(z)n+j+1= ∞
∑m=0 (−1)m(z)m+1 m

∑n=0 s(m;n)B(t−x+1)n (t)(x − t)nn! : (23)



AN INVERSE FACTORIAL SERIES 155On the other hand N�rlund derived the expansion [31, (43)℄�(z + t)�(z + x)zt−x+1 = ∞
∑m=0 (−1)mB

(t−x+m+1)m (1− x)(t − x+ 1)mm!(z + t)m+1 (24)
onvergent in some right half-plane. Equating the 
oeÆ
ients in (23)and (24) we get an identity of the form (19) withvm+1 = (−1)mB
(t−x+m+1)m (1− x)(t− x+ 1)m(m!)2 ;um+1 = (−1)mm! m

∑n=0 s(m;n)B(t−x+1)n (t)(x − t)nn! :After some rearrangement (20) takes the form(t− x+ 1)mm! B(t−x+m+1)m (1− x)= m
∑k=0(−1)k(mk)(t)k m−k

∑j=0 s(m− k; j)B(t−x+1)j (t) (x − t)jj!= m
∑j=0 B(t−x+1)j (t) (x− t)jj! m−j

∑k=0 (−1)k(mk)s(m− k; j)(t)k : (25)Applying the inversion formula below (20) and 
hanging 1 − x 7→ x we�nally obtain1m! m
∑j=0 s(m; j)B(t+x)j (t) (1− t− x)jj! = m

∑j=0 ( tm− j)B
(t+x+j)j (x) (t + x)j(j!)2 :
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