
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 458, 2017 Ç.D. B. Karp, E. G. PrilepkinaAN INVERSE FACTORIAL SERIES FOR A GENERALGAMMA RATIO AND RELATED PROPERTIES OFTHE N�RLUND{BERNOULLI POLYNOMIALSAbstrat. We �nd an inverse fatorial series expansion for the ra-tio of produts of gamma funtions whose arguments are linear fun-tions of the variable. We give a reurrene relation for the oeÆientsin terms of the N�rlund{Bernoulli polynomials and determine quitepreisely the half-plane of onvergene. Our results omplement nat-urally a number of previous investigations of the gamma ratios whihbegan in the 1930ies. The expansion obtained in this paper plays aruial role in the study of the behavior of the delta-neutral Fox's Hfuntion in the neighborhood of it's �nite singular point. We furtherapply a partiular ase of the inverse fatorial series expansion to de-rive a possibly new identity for the N�rlund{Bernoulli polynomials.Bibliography: 49 titles.
§1. IntrodutionFor a given omplex sequene b0; b1; b2; : : : the inverse fatorial series isde�ned by 
(z) = ∞

∑n=0 bnn!(z)n+1 = ∞
∑n=0 bnB(z; n+ 1); (1)where (z)n+1 = z(z + 1) · · · (z + n) and B(x; y) is Euler's beta funtion.Certain variations in the denominator are possible: for instane, one anonsider (z + a)n+1 or z(z + w) · · · (z + wn) or �(z + a + n)=�(z + b) inplae of (z)n+1 for some (usually real) numbers a; b and w > 0. This typeof series had been used already by Stirling around 1730, but their rigoroustheory was developed around the turn of 20th entury by Landau [21℄,N�rlund [28, 29℄ and Nielsen [27℄. See also [22, Chap. X℄ for detailed a-ount of this theory or [33, Se. 4.7℄ and [45, Se. 46℄ for a more oniseKey words and phrases: gamma funtion, inverse fatorial series, N�rlund{Bernoullipolynomial, non-entral Stirling numbers.This researh was supported by the Russian Siene Foundation under projet 14-11-00022. 135



136 D. B. KARP, E. G. PRILEPKINAintrodution. If the series in (1) onverges for some value of z, then its do-main of onvergene has the form {z : Re z > �}\{0;−1; : : :} for some real� alled the absissa of onvergene. As the sequene {(z)−1n+1}∞n=0 is anasymptoti sequene for |z| → ∞ in {z : | arg(z)| < �− "}, the series (1) isan asymptoti series as |z| → ∞ regardless of its onvergene. The idea toonvert the Poinar�e asymptoti series ∑ akz−k into a onvergent inversefatorial series goes bak at least to 1912 paper of G. N. Watson [44℄. Ithas been revived more reently in [10℄ and [46℄ and ombined with Borel{Laplae summation in the former referene. Inverse fatorial series play animportant role in solution of di�erene equations [9, 29℄.In this note we exploit similar ideas (resummation of Poinar�e typeseries into onvergent inverse fatorial series) to derive the inverse fatorialseries expansion of the funtionW (z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) (2)with expliit formulas for the oeÆients and preise determination of theonvergene domain. Here Ak, Bj are positive, while ak, bj are omplexnumbers, � = p

∏k=1AAkk q
∏j=1B−Bjj . This expansion was instrumental in thestudy of the behavior of Fox's H funtion Hp;0q;p (t) (de�ned below) in theneighborhood of the singular point t = � undertaken by us in [18℄. Hene,this note also �lls a gap in the proof of [18, Theorem 1℄. The problem ofexpanding the funtion W (z) and its partiular ases in inverse fatorialseries has been onsidered previously by a number of authors. Probably,the �rst appearane of suh expansion is in Ford's book [13℄, where the in-verse fatorial series for W (z) with p = q = 2, A1 = A2 = B1 = B2 = 1=2and a1 + a2 = b1 + b2 was found and proved to be asymptoti. No ex-pliit formulas for the oeÆients were given. This was improved by VanEngen in [42℄, where the author found the oeÆients in Ford's expan-sion and removed the restrition a1 + a2 = b1 + b2. The general ratioW (z) was �rst onsidered by Wright in the sequel [47,48℄. He proved thatthere exists a series in reiproal gamma funtions asymptoti to the fun-tion W (z) under very general assumptions. Wright only gave a formulafor the �rst oeÆient, but mentioned that further oeÆients ould alsobe omputed. Similar result was later proved by Hughes in [15℄ under



AN INVERSE FACTORIAL SERIES 137the natural additional restrition p
∑k=1Ak = q

∑j=1Bj and using the standardinverse fatorial series (1). In his milestone work [30℄ N�rlund deduedan inverse fatorial series expansion of the funtion (2) when p = q andAk = Bk = 1, k = 1; : : : ; p, and proved its onvergene in the interse-tion of the half planes Re(z + ak) > 0, k = 1; : : : ; p. He also gave twodi�erent methods to ompute the oeÆients in this expansion. In a se-ries of papers [35{37℄ Riney studied the funtion (2) for p 6 q + 1 andAj = Bk = 1, j = 1; : : : ; p, k = 1; : : : ; q. He gave an asymptoti series forthis funtion in terms of gamma ratios, of whih standard fatorial seriesis a partiular ase, and presented several methods to ompute the oeÆ-ients. Riney's investigations were omplemented by van der Corput [41℄,who onsidered the opposite ase q 6 p+ 1, and Wright [49℄, who sug-gested further methods for alulating the oeÆients. Braaksma [3℄ againonsidered the general ase of (2) and proved that there exists a series inreiproal gamma funtions asymptoti to W (z). He also gave an expliitformula for the prinipal term. This result of Braaksma (whih is just atehnial tool in his deep investigation of Mellin{Barnes integrals) is, infat, a modi�ation of the earlier work by Wright [47,48℄ mentioned above.A survey of some of the above work is given in Se. 2.2 of the book [33℄by Paris and Kaminski, where one an also �nd expliit proofs and sev-eral examples. Independently, Gupta and Tang [14℄ presented a series ingamma ratios for W (z) when p
∑k=1Ak = q

∑j=1Bj and gave ertain reursionsfor omputing the oeÆients. They also laim onvergene but gave noreal proof of this laim. Further details about their work an be found inthe introdution to our paper [18℄.In the present paper we ombine some ideas from [14℄ with Borel-Laplae summation to give a rigorous proof of onvergene and formulas forthe oeÆients for the inverse fatorial series expansion ofW (z) under theassumption p
∑k=1Ak = q

∑j=1Bj . This is done in Se. 3 of this paper. Further-more, in Se. 4 we apply the inverse fatorial series for a simplest partiularase of (1) to derive a presumably new identity for the N�rlund{Bernoullipolynomials. The main results presented in Ses. 3 and 4 are preeded bythe preliminaries expounded in Se. 2.



138 D. B. KARP, E. G. PRILEPKINA
§2. PreliminariesA funtion f(z) of a omplex variable z is said to possess a Poinar�etype asymptoti expansion in an unbounded domain D iff(z) = n−1

∑k=0 �kzk +Rn(z) (3)and Rn(z) = O(z−n) as D ∋ z → ∞. If this holds for all natural n it isustomary to write f(z) ∼ ∞
∑k=0 �kzk as z → ∞ in D:The asymptoti expansion of f(z) is said to be Gevrey-1 (or Gevrey oforder 1), if there exist the numbersM; � > 0 suh that for all z ∈ D and allpositive integers n the error term Rn(z) in (3) satis�es [23, De�nition 5.21℄,[8, De�nition 4.130℄
|Rn(z)| 6

M�nn!
|z|n : (4)It is onvenient to introdue the following lass of funtions.De�nition. We will say that f belongs to the lass G if f possesses aGevrey-1 expansion in some right half-plane Re z > � = �(f).Let us list some properties of the lass G required in the sequel. Theproofs are either straightforward from the above de�nition or are givenreferene to.Property 1 (linearity). If f ∈ G and g ∈ G, then f+g ∈ G and af(z) ∈ Gfor arbitrary omplex a 6= 0.Property 2 (shifting and dilating invariane). If f ∈ G, thenf(Az + a) ∈ G for A > 0 and arbitrary omplex a.Property 3 (invariane under taking exponential) If f(z) ∈ G, thenexp{f(z)} ∈ G (see [43, pp. 288, 293℄ for a proof).Property 4. If f ∈ G and �0 = 0 in (3), then zf(z) ∈ G.Property 5. If f ∈ G, then f(z)=z ∈ G:Property 6. If '(z) is holomorphi in the neighborhood of z = 0, thenf(z) = '(a=z) ∈ G for arbitrary omplex a 6= 0.To demonstrate the last property apply Cauhy estimates to the TayloroeÆients ak of '(z) to get |ak| 6 M=rk, where r is stritly less than



AN INVERSE FACTORIAL SERIES 139the radius of onvergene of the Taylor series of '(z) at z = 0 and M =max
|w|6r |'(w)|. This leads to the following estimate of the Taylor remainder
|Qn(z)| = ∣

∣

∣

∣

∣

∞
∑k=n akzk∣∣∣∣∣ 6

M |z|nrn ∞
∑j=0 |z=r|j = M |z|nrn(1− |z=r|) 6

M |z|nrn(1− �)for |z| 6 �r and arbitrary � ∈ (0; 1). Hene,'(a=z) = n−1
∑k=0 ak(a=z)k +Qn(a=z)and

|Qn(a=z)| 6
M |a=r|n

|z|n(1− �) for |z| >
|a|�r ;so that (4) is trivially satis�ed.We will need the next well-known lemma relating the oeÆients of anasymptoti series of a funtion with those of its exponential. Essentially,the result ontained in this lemma appeared in [24, Appendix℄. Later,an independent derivation was given in [16, Lemma 1℄. It has also beendisussed reently in [34℄, where further referenes are given. Surprisingly,referenes [24℄ and [16℄ do not appear in [34℄.Lemma 1. Suppose g(z) ∼ ∞

∑k=1 ukz−k as z → ∞. Thenexp{g(z)} ∼
∞
∑r=0 vrz−r;where the oeÆients are found fromv0 = 1; vr = 1r r
∑k=1 kukvr−k:Alternatively,vr = ∑k1+2k2+···+rkr=rki>0 uk11 uk22 · · ·ukrrk1!k2! · · · kr! = r

∑n=1 1n! ∑k1+k2+···+kn=rki>1 n
∏i=1 uki :



140 D. B. KARP, E. G. PRILEPKINARemark. Nair [24, Se. 8℄ found a determinantal expression for vr whihin our notation takes the formvr = det(
r)r! ; 
r = [!i;j ℄ri;j=1;!i;j = 





ui−j+1(i− j + 1)(i− 1)!=(j − 1)!; i > j;
−1; i = j − 1;0; i < j − 1:Various forms of the next lassial theorem an be found in [8, The-orem 4.136℄, [10, Thereom 2.2℄, [12, paragraph 6℄, [23, Se. 5.7.3℄, [26℄and [39℄.Theorem 1 (Watson{Nevanlinna{Sokal). Suppose f(z) is holomorphi inCr = {z : Re(1=z) > r−1} and an be written asf(z) = n−1

∑k=0 �kzk +Rn(z) (5)with the error term satisfying |Rn(z)| 6 M�nn!|z|n, where M is indepen-dent of n and z ∈ Cr. Then its Borel transformB(t) = ∞
∑k=0 �ktkk!onverges for |t| < 1=� and an be extended analytially to the domainS� = {t : dist(t;R+) < 1=�} to a funtion satisfying

|B(t)| < K exp(|t|=r) (6)for some positive K. Furthermore, f an be reovered by the (onvergent)integral f(z) = 1z ∞
∫0 e−t=zB(t) dt: (7)Conversely, if B(t) is holomorphi in S� ′ (� ′ < �) and satis�es (6), thenthe funtion f(z) de�ned by the integral (7) is holomorphi in Cr and hasGevrey-1 a symptoti approximation (5) with uniform error bound in Cr,where �k = B(k)(t) |t=0.The next theorem an be found in [28, Theorem VIII℄, [29, p. 267℄ and[45, Theorem 46.2℄.



AN INVERSE FACTORIAL SERIES 141Theorem 2 (N�rlund). Suppose 
(z) satis�es the following onditions :1) 
(z) = a=z+v(z)=[z(z+1)℄, where v(z) is holomorphi and boundedin some right half-plane Re z > �.2) 
(z) = ∞
∫0 e−tzB(t) dt, where B(t) is holomorphi in the domain S� =

{t : dist(t;R+) < �} for some � > 0 and satis�es in S� the onditionlimt→∞
e−ktB(t) = 0 for some positive k.Then 
(z) an be expanded in the inverse fatorial series
(z) = ∞

∑s=0 bsz(z + 1) · · · (z + s)onvergent in some right half-plane Re z > � exluding the points z =0;−1;−2; : : :.To determine the absissa of onvergene � we need the following no-tion due to Hadamard [28, pp.333-334℄: a funtion f(z) = a0 + a1z + · · ·holomorphi in the unit disk |z| < 1 has the order κ on the irle |z| = 1if
κ = lim supn→∞

log |nan|log(n) :The next theorem [28, Theorem III℄ relates the order of the so-alledgenerating funtion ' of an inverse fatorial series 
 to its absissa ofonvergene.Theorem 3 (N�rlund). Suppose the next representation holds for suÆ-iently large values of Re z:
(z) = ∞
∑s=0 bs(z)s+1 = ∫ 10 tz−1'(t) dt; (8)and assume that the order of t−1'(t) on the irle |1− t| = 1 is equal to κ.If κ > 1, then the absissa of onvergene � of the inverse fatorial seriesin (8) is equal to κ − 1, otherwise � 6 κ − 1.Further, N�rlund showed in [28, (7), p. 339℄ that a funtion f(t) holo-morphi in |1− t| 6 1 exept for a singularity at t = 0 and representablein the formf(t) = m

∑i=1 tai( i;0(t) +  i;1(t) log(t) + · · ·+  i;r(t) logr(t)) (9)



142 D. B. KARP, E. G. PRILEPKINAin the neighborhood of t = 0 with Re(a1) 6 Re(a2) 6 · · · 6 Re(am) has theorder � = −Re(a1). It is assumed that  i;j(t), i = 1; : : : ;m, j = 0; : : : ; r,are holomorphi around t = 0 and suh that for eah i = 1; : : : ;m at leastone of the numbers { i;0(0); : : : ;  i;r(0)} is di�erent from zero. Integernonnegative ai suh that r = 0 (no logarithmi terms) must be exludedfrom the determination of order.Our main tool is the following theorem.Theorem 4. Let f(z) be holomorphi in some right half-plane Re z > �and suppose that log(zf(z)) ∈ G. Then for any omplex � the funtionf(z) an be expanded in the inverse fatorial seriesf(z) = ∞
∑s=0 ds(z + �)s+1onvergent in some right half-plane Re z > �.Proof. By properties 3, 2, and 5, respetively, �f(�) ∈ G, (�−�)f(�−�) ∈

G and f(�) ∈ G. Then �f(� − �) = (� − �)f(� − �) + �f(� − �) ∈ G byproperties 2 and 1. Therefore,�f(� − �) = n−1
∑k=0 �k�k +Rn(�) (10)with the remainder Rn(�) bounded aording to (4). Now put f1(�) =f(� − �) and rewrite (10) asf1(1=w)w = n−1

∑k=0 �kwk +Rn(1=w)with the error bound of the form
|Rn(1=w)| 6 M�nn!|w|n:Aording to Theorem 1f1(1=w)w = 1w ∞

∫0 e−t=wB(t) dtor f1(�) = ∞
∫0 e−t�B(t) dt



AN INVERSE FACTORIAL SERIES 143and B(t) satis�es ondition 2 of theorem 2. As (� − �)f1(�) ∈ G, we haveby de�nition of G:(� − �)f1(�) = 0 + 1� + T2(�); |T2(�)| 6
A
|�|2 :This implies that f1(�) = 0� + v(�)�(� + 1) ;where v(�) = 0� + 1 + (0� + 1)(1 + �)� − � + �(� + 1)T2(�)� − � :The above estimate for T2(�) immediately leads to onlusion that v(�) isbounded outside of some neighborhood of � = �. Thus, the �rst onditionof Theorem 2 is also satis�ed andf1(�) = ∞

∑s=0 ds(�)s+1 :Substituting bak z = � + � yieldsf(z) = f1(z + �) = ∞
∑s=0 ds(z + �)s+1 :The laim regarding onvergene follows by Theorem 2. �We will write Bj(x) for the j-th Bernoulli polynomial [32, 24.2.3℄, de-�ned by the generating funtiontextet − 1 = ∞

∑n=0Bn(x) tnn! ; |t| < 2�:Further, Bj = Bj(0) are Bernoulli numbers [32, 24.2.1℄.Lemma 2. The funtion Pa(z) = log �(z + a) − (z + a − 1=2) log z + zbelongs to the lass G andPa(z) ∼ 12 log(2�) + ∞
∑j=2 (−1)jBj(a)j(j − 1)zj−1 (11)as |z| → ∞ in the domain | arg z| < � − Æ, 0 < Æ < �.



144 D. B. KARP, E. G. PRILEPKINAProof. Formula (11) is Hermite's asymptoti expansion for log �(z + a)[25, (1.8)℄. We only need to proof its Gevrey-1 harater. Aording to [33,(2.1.1) and (2.1.5)℄ and [12, (10), (14)℄, the Binet funtionP0(z)− 12 log(2�) = log �(z)− (z − 1=2) log z + z − 12 log(2�)satis�es the relationP0(z)− 12 log(2�) = n−1
∑r=1 B2r2r(2r − 1)z2r−1 +R2n−1(z);in the domain | arg z| < � and for z = |z|ei� with |�| < � the next inequalityholds:

|R2n−1(z)| 6
|B2n| | se2n(�=2)|2n(2n− 1)|z|2n−1 :In view of the asymptoti equality [11, Corollary 1℄, [12, (16)℄

|B2n| = 2(2n)!(2�)2n (1 + o(1)); n→ ∞;we onlude that P0(z) ∈ G. It is straightforward to hek thatPa(z) = P0(z + a)− a+ z log(1 + az) +(a− 12) log(1 + az) :Note that P0(z+a) ∈ G, log(1+ az ) ∈ G, z log(1+ az ) ∈ G aording to theProperties 2, 6 and 4, respetively. It is left to apply Property 1 to onludethat Pa(z) ∈ G. Uniqueness of the asymptoti expansion ompletes theproof. �The next lemma ontains a orreted version of a formula ontainedin [14℄ whih, in a di�erent form, was already presented in [2℄ (see also [1,8.5.1℄).Lemma 3. Let Ai; Bj > 0 satisfy p
∑i=1Ai = q

∑j=1Bj and ai, bj, i = 1; : : : ; p,j = 1; : : : ; q, be arbitrary omplex numbers. Then for eah 0 < Æ < � thenext asymptoti relation holds in the domain | arg z| < � − Æ,z���z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) ∼

∞
∑r=0 Crzr ;



AN INVERSE FACTORIAL SERIES 145where � = (2�)(p−q)=2 p
∏k=1Aak−1=2k q

∏j=1B1=2−bjj ; (12)� = p
∏k=1AAkk q

∏j=1B−Bjj ; � = �(a;b) = q
∑j=1 bj − p

∑k=1 ak + p− q2 : (13)The oeÆients Cr = Cr(A;B; a;b) are found from the reurreneC0 = 1; Cr = 1r r
∑m=1Qm(A;B; a;b)Cr−m (14)or by other expressions ontained in Lemma 1. HereQm(A;B; a;b) = (−1)m+1m+ 1 [ p
∑k=1 Bm+1(ak)Amk −

q
∑j=1 Bm+1(bj)Bmj ]; (15)and Bm( · ) denotes the m-th Bernoulli polynomial. Furthermore,log( z���z p

∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) )

∈ G:Proof. From Hermite's asymptoti formula (11) we obtain by straightfor-ward alulations:log �(Az + a) = (Az + a− 1=2) logAz −Az + 12 log(2�)+ m
∑j=2 (−1)jBj(a)j(j − 1)(Az)j−1 +Rm(z)= Az log z+ (A logA−A)z+ (a− 1=2) log z+ (a− 1=2) logA+ 12 log(2�)+ m

∑j=2 (−1)jBj(a)j(j − 1)Aj−1zj−1 +Rm(z);where Rm(z) = O(z−m) in the setor | arg(z)| < � − Æ for any Æ > 0. ForA > 0 Lemma 2 implies that log �(Az+a)−(Az+a−1=2) logAz+Az ∈ G.



146 D. B. KARP, E. G. PRILEPKINAThen employing the ondition ∑Ak = ∑Bj we obtainlog{

p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) }

∼ z log �− � log z + log � + ∞
∑t=1 Qt(A;B; a;b)tzt ;where Qt(A;B; a;b) is given in (15). Aording to Property 1log{ z���z p

∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) }

∈ G:Formula (14) and other methods to ompute Cr follow from Lemma 1. �

§3. Main resultsTo formulate our mains theorem we will need the non-entral Stirlingnumbers of the �rst kind [7, 8.5℄ de�ned bys�(n; r) = n
∑k=r(−1)k+r(nk)(�)n−ks(k; r)= n
∑k=0(−1)k+r(nk)(�)n−ks(k; r); (16)where s(n; j) denotes the ordinary Stirling number of the �rst kind gener-ated by x(x − 1) · · · (x− n+ 1) = n

∑j=0 s(n; j)xj :Their \horizontal" exponential generating funtion is given by [46, (A.2)℄:n
∑l=0 xls�(n; l) = n

∑l=0 xl n
∑k=0(−1)k+l(nk)(�)n−ks(k; l)= n

∑k=0(−1)k(nk)(�)n−k k
∑l=0 s(k; l)(−x)l= n

∑k=0(nk)(�)n−k(x)k = (� + x)n;



AN INVERSE FACTORIAL SERIES 147where the expansion (x)k = (−1)k k
∑l=0 s(k; l)(−x)l has been applied. Some-times it is more onvenient to use the "vertial" generating funtion

∞
∑n=0 s�(n; l)n! xn = ∞

∑n=l s�(n; l)n! xn = ∞
∑n=l xn n

∑k=l(−1)k+l (�)n−ks(k; l)k!(n− k)!= (−1)l ∞
∑k=l(−1)ks(k; l)xkk! ∞

∑n=k (�)n−k(n− k)!xn−k= (−1)l ∞
∑k=l s(k; l) (−x)kk! ∞

∑m=0 (�)mm! xm= 1l! 1(1− x)� (log 11− x)l :The non-entral Stirling numbers were studied by Carlitz in [5,6℄ usingthe symbol R1(n; l; �) = s�(n; l) and some years later also by Koutras [20℄.Broder [4℄ onsidered them for integer � from the ombinatorial viewpoint.Various formulas for these numbers are given in [7, 8.5℄. Among otherthings, Carlitz found the double generating funtion [5, (5.4)℄
∞
∑l;n=0 s�(n; l)ylxnn! = (1− x)−�−y :Using a formula from [22, Se. 6.43, p. 134℄ this generating funtion leadsto the onnetion formula [6, (7.6)℄s�(n; l) = (

−l− 1n− l )

B
(n+1)n−l (1− �) = (−1)n−l(l + 1)n−l(n− l)! B

(n+1)n−l (1− �);where Bk (x) is the k-th N�rlund{Bernoulli polynomial (also known asthe generalized Bernoulli polynomials) de�ned by the generating funti-on [31, (1)℄ text(et − 1) = ∞
∑k=0B()k (x) tkk! : (17)The main result of this note is the following theorem.Theorem 5. Let Ak; Bj > 0 satisfy p

∑k=1Ak = q
∑j=1Bj and �, ak, bj , k =1; : : : ; p, j = 1; : : : ; q, be omplex numbers suh that � = 1, where � is



148 D. B. KARP, E. G. PRILEPKINAde�ned in (13). Suppose further that � and � are given by (12) and (13),respetively. Then the inverse fatorial series expansionW (z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) = ∞

∑n=0 �(z + �)n+1 n
∑r=0Crs�(n; r) (18)onverges for Re z > � exept at the points z = −�− l, l ∈ N0. Here � de-notes the real part of the rightmost pole of W (z) (obviously,� = −min{Re(ak=Ak) : k = 1; : : : ; p} if no anelations of the numeratorand denominator poles take plae). Moreover, if Re(� + �) > 0, then� is equal to the absissa of onvergene of the series (18). Here Cr =Cr(A;B; a;b) is de�ned in (14), (15) and s�(n; r) is the non-entral Stir-ling number of the �rst kind.Remark. The onvergene domain in the above theorem an be desribedas follows: if the absissa of the rightmost pole of W (z) is greater than theabsissa of the rightmost pole of the series on the right hand side, then theonvergene absissa is equal preisely to the absissa of the rightmost poleof W (z); if the absissa of the rightmost pole of W (z) does not exeed theabsissa of the rightmost pole of the series on the right hand side, then theonvergene absissa does not exeed the absissa of the rightmost poleof W (z); if the rightmost poles on both sides are simple and oinide (i.e.� = ak∗=Ak∗ , where k∗ = argmin{Re(ak=Ak) : k = 1; : : : ; p}), then thesepoles should be ignored when alulating the onvergene absissa.Proof. As � = 1 aording to Lemma 3 log(zW (z)) ∈ G. Then, by The-orem 4 we onlude that W (z) an be expanded in a series of inversefatorials [(z + �)n+1℄−1. As this series is also asymptoti for W (z) asz → ∞, its oeÆients an be obtained by rearranging the Poinar�e as-ymptoti expansion of W (z). Aording to Lemma 3 the latter is givenby W (z) ∼ � ∞

∑r=0 Cr(A;B; a;b)zr+1 ;where the oeÆients Cr(A;B; a;b) are de�ned in (14), (15). Following[44℄ and [46, (4.1)℄ this asymptoti series an be re-expanded using the



AN INVERSE FACTORIAL SERIES 149asymptoti sequene {1=(z)n+1}∞n=0 by applying [27, §30(6)℄1zr+1 = ∞
∑k=0 (−1)ks(r + k; r)(z)r+k+1 ;where s(n; j) is the Stirling number of the �rst kind. Substituting andhanging the order of summations we getW (z) ∼ � ∞

∑n=0 (−1)n(z)n+1 n
∑r=0(−1)rs(n; r)Cr(A;B; a;b):Next, instead of inverse fatorials 1=(z)m we an utilize the asymptotiallyequivalent sequene {1=(z+�)m}m>0 by employing the onnetion formula(see [28, (10)℄ or [29, (138.15)℄)U(z) = ∞

∑k=0 uk+1k!(z)k+1 = ∞
∑k=0 vk+1k!(z + �)k+1 ; (19)with the oeÆients related byvk+1 = k

∑j=0 (� + j − 1j )uk+1−j = k
∑j=0 (�)jj! uk+1−j : (20)The inverse formula reads [38, 2.1(1)℄uk+1 = k

∑j=0(−1)j(�j)vk+1−j :



150 D. B. KARP, E. G. PRILEPKINACombining these fats with (16), we arrive at (Cj = Cj(A;B; a;b))W (z)� = ∞
∑n=0 (−1)n(z)n+1 n

∑j=0(−1)js(n; j)Cj= ∞
∑n=0 n!(z + �)n+1 n

∑j=0 (�)j(−1)n−j(n− j)!j! n−j
∑r=0(−1)rs(n− j; r)Cr= ∞

∑n=0 1(z + �)n+1 n
∑r=0(−1)rCr n−r

∑j=0(−1)n−j(nj)(�)js(n− j; r)= ∞
∑n=0 1(z + �)n+1 n

∑r=0(−1)rCr n
∑k=r(−1)k(nk)(�)n−ks(k; r)= ∞

∑n=0 1(z + �)n+1 n
∑r=0Crs�(n; r)whih is preisely (18).To ompute the onvergene absissa denote x = z+� and onsider thefuntion 
(x) = �−�W (z) = �−x p

∏k=1�(Akx+ ak −Ak�)q
∏j=1�(Bjx+ bj −Bj�) :Denote a′ = a − �A, b′ = b − �B. Then, learly, �(a′;b′) = �(a;b) = 1(by the hypotheses of the theorem; �(a;b) is de�ned in 13). Aordingto [17, Theorem 6℄
(x) = 1

∫0 tx−1Hp;0q;p (�t ∣∣∣
∣

(B;b′)(A; a′) ) dt;where Hp;0q;p (�t) is a partiular ase of Fox's H-funtion de�ned byHp;0q;p (�t ∣∣∣
∣

(B;b′)(A; a′) ) = 12�i +i∞
∫−i∞ p

∏k=1�(Aks+ ak −Ak�)q
∏j=1�(Bjs+ bj −Bj�) (�t)−sds



AN INVERSE FACTORIAL SERIES 151(further details about the de�nition of Fox's H funtion an be foundin [19, Chapter 1℄; see also [17, 18℄). By [19, Theorem 1.5℄ the followingrepresentation is trueHp;0q;p (�t ∣∣∣
∣

(B;b′)(A; a′) ) = p
∑k=1 ∞

∑l=0 Nkl−1
∑i=0 Hkli(�t)(ak−Ak�+l)=Ak logi(�t);where the two outer summations run over all poles of the funtion 
(x) andNkl denotes the order of the pole at the point akl = (−ak +Ak� − l)=Ak.The expliit form of the onstants Hkli is immaterial here. We emphasize,however, that if the pole of the numerator at x = akl anels out witha pole of the denominator, then we put Nkl = 0 and the orrespondingterm is omitted from the above summation. Comparing this representationwith (9) we onlude by N�rlund's argument [28, p.339℄ explained below (9)that the order κ of Hp;0q;p (�t)=t on the irle |1− t| = 1 is given by

κ = −mink {Re(ak=Ak − � − 1)} = maxk {Re(−ak=Ak)}+Re(�) + 1;where the minimum is taken over the indies k ∈ {1; : : : ; p}, suh that
(x) has a pole at xk = −ak=Ak+� and −xk is not a nonnegative integer.Then by Theorem 3 the absissa of onvergene �
 of 
 satis�es�
 6 κ − 1 = maxk {Re(−ak=Ak)}+Re(�)if κ − 1 6 0 or −mink {Re(ak=Ak)} 6 −Re(�):The last ondition an be interpreted as follows: the absissa of the right-most pole of W (z) does not exeed the absissa of the rightmost pole ofthe series on the right hand side of (18). So that by the reverse hange ofvariable z = x − � the onvergene absissa � of the original series (18)satis�es � 6 maxk {Re(−ak=Ak)}.If, on the ontrary, κ − 1 > 0 or −mink {Re(ak=Ak)} > −Re(�), then�
 = κ − 1 = maxk {Re(−ak=Ak)} + Re(�) implying that the onver-gene absissa � of the original series (18) is � = maxk {Re(−ak=Ak)}(the absissa of the rightmost pole of W (z)). Note, that for the right-most pole xk∗ = −ak∗=Ak∗ + � the situation −xk∗ ∈ N0 ontradits
−mink {Re(ak=Ak)} > −Re(�), so that under this ondition we nees-sarily have the equality � = maxk {Re(−ak=Ak)}. �It is easy to modify the above theorem to get rid of the restrition � = 1.



152 D. B. KARP, E. G. PRILEPKINACorollary 1. Let Ak; Bj > 0 satisfy p
∑k=1Ak = q

∑j=1Bj and let �, ak; bj,k = 1; : : : ; p, j = 1; : : : ; q, be arbitrary omplex numbers. Suppose furtherthat �, � and � are de�ned in (12) and (13), respetively. ThenW (z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) = ∞

∑n=0 hn�(z + � + 1)�(z + � + �+ n+ 1) ; (21)where the series onverges in the half-plane Re z > � with � equal to thereal part of the rightmost pole of the funtion W (z)�(z+�+�)=�(z+�+1).The oeÆients are omputed byhn = � n
∑r=0Cr(A′;B′; a′;b′)s�+�(n; r)= ��(n+ �) ∑r+k=n (−1)kCr(A;B; a;b)k!�(r + �) B

(n+�)k (−�);where A′ = (A; 1), B′ = (B; 1), a′ = (a; � + �), b′ = (b; � + 1) andCr(A′;B′; a′;b′) are de�ned in (14). Moreover, if Re(�+ �+�) > 0, then� is equal to the onvergene absissa of the series (21).Proof. If � 6= 1 we an take � = � + � in Theorem 5 to getW1(z) = �−z p
∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) �(z + � + �)�(z + � + 1) = ∞

∑n=0 hn(z + � + �)n+1 ;where hn = � n
∑r=0Cr(A′;B′; a′;b′)s�+�(n; r);and the numbers Cr(A′;B′; a′;b′) are de�ned in (14). Indeed, �(a′;b′) = 1by onstrution, so that Theorem 5 is appliable for W1(z). Multiplyingboth sides of (18) by �(z+�+1)=�(z+�+�) we arrive at (21) together withthe �rst formula for hn and all laims regarding onvergene. It remainsto verify the seond expression for hn. To this end employ the expan-
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∑k=0 (−1)kB(�+k)k (−�)(�)k�(z + � + 1)k!�(z + � + � + k + 1) ;where the series is known to onverge for Re z > 0. Applying Lemma 3and making the neessary rearrangements we get�−z p

∏k=1�(Akz + ak)q
∏j=1�(Bjz + bj) ∼ � ∞

∑r=0 Crzr+�= � ∞
∑r=0Cr ∞

∑k=0 (−1)kB(r+�+k)k (−�)(r + �)k�(z + � + 1)k!�(z + � + r + �+ k + 1)= � ∞
∑n=0 �(z + � + 1)�(n+ �)�(z + � + �+ n+ 1) ∑r+k=n (−1)kCrk!�(r + �)B(n+�)k (−�);where this time Cr = Cr(A;B; a;b). As the inverse fatorial series of agiven funtion is unique whether it is onvergent or asymptoti we onludethat hn = ��(n+ �) ∑r+k=n (−1)kCr(A;B; a;b)k!�(r + �) B

(n+�)k (−�): �To onlude this setion we remark that the expansions presented in thisnote an probably be generalized to the ase when � = q
∑j=1Bj− p

∑k=1Ak 6= 0.For � > 0 this expansion will be in terms of reiproals of the gammafuntions �(�z + �), while for � < 0 the expansion will be in terms of�(−�z + �) (not reiproals!). To derive suh expansions one may applythe tehnique developed by Riney in [36℄, where the general � > 0 aseis dedued from the expansion similar to (21) for � = 0. Riney's results,however, are only asymptoti and pertain to the "unweighted" ase Ak =Bj = 1.
§4. An identity for the N�rlund{Bernoulli polynomialsIn this setion we present an identity for the N�rlund{Bernoulli de�nedby the generating funtion (17). Although its novelty is dubious, we ould



154 D. B. KARP, E. G. PRILEPKINAnot loate it in the existing literature. The identity is obtained by ompar-ing di�erent expansion for the simplest partiular ase of the funtion (2)and is given in the next proposition.Theorem 6. The N�rlund{Bernoulli polynomials satisfy(t− x+ 1)mm! B(t−x+m+1)m (1− x)= m
∑j=0 B(t−x+1)j (t) (x − t)jj! m−j

∑k=0 (−1)k(mk)s(m− k; j)(t)kand1m! m
∑j=0 s(m; j)B(t+x)j (t) (1− t− x)jj! = m

∑j=0 ( tm− j)B
(t+x+j)j (x) (t + x)j(j!)2 ;where s(m; j) is the Stirling number of the �rst kind.Proof. We will use an asymptoti expansion in inverse powers of z forthe ratio �(z + t)=�(z + x) found by Triomi and Erd�elyi in [40℄. Thisexpansion is given on page 141 of [40℄, but we will rewrite it in a slightlydi�erent form using the de�nition of the oeÆients [40, (19)℄ and theidentity �(1− a)=�(1− a− n) = (−1)n(a)n:�(z + t)�(z + x)zt−x+1 ∼

∞
∑n=0 (−1)nB(t−x+1)n (t)(x− t)nn!zn+1 as z → ∞; (22)where −x;−t; x− t =∈ N and z is in C ut along the ray onneting −� and

−�−∞. Following [46℄, we an substitute the expansion [27, (6) on p. 78℄1zn+1 = ∞
∑j=0 (−1)js(n+ j; n)(z)n+j+1in (22) to get�(z + t)�(z + x)zt−x+1

∼

∞
∑n=0 (−1)nB(t−x+1)n (t)(x − t)nn! ∞

∑j=0 (−1)js(n+ j; n)(z)n+j+1= ∞
∑m=0 (−1)m(z)m+1 m

∑n=0 s(m;n)B(t−x+1)n (t)(x − t)nn! : (23)



AN INVERSE FACTORIAL SERIES 155On the other hand N�rlund derived the expansion [31, (43)℄�(z + t)�(z + x)zt−x+1 = ∞
∑m=0 (−1)mB

(t−x+m+1)m (1− x)(t − x+ 1)mm!(z + t)m+1 (24)onvergent in some right half-plane. Equating the oeÆients in (23)and (24) we get an identity of the form (19) withvm+1 = (−1)mB
(t−x+m+1)m (1− x)(t− x+ 1)m(m!)2 ;um+1 = (−1)mm! m

∑n=0 s(m;n)B(t−x+1)n (t)(x − t)nn! :After some rearrangement (20) takes the form(t− x+ 1)mm! B(t−x+m+1)m (1− x)= m
∑k=0(−1)k(mk)(t)k m−k

∑j=0 s(m− k; j)B(t−x+1)j (t) (x − t)jj!= m
∑j=0 B(t−x+1)j (t) (x− t)jj! m−j

∑k=0 (−1)k(mk)s(m− k; j)(t)k : (25)Applying the inversion formula below (20) and hanging 1 − x 7→ x we�nally obtain1m! m
∑j=0 s(m; j)B(t+x)j (t) (1− t− x)jj! = m

∑j=0 ( tm− j)B
(t+x+j)j (x) (t + x)j(j!)2 :

�Aknowledgments. We thank Gerg}o Nemes for ontributing a lemma tothe original version of this paper and useful disussions.Referenes1. T. W. Anderson, An introdution to multivariate statistial analysis, New York:Wiley, Seond edition, 1984.2. G. E. P. Box, A General Distribution Theory for a Class of Likelihood Criteria. |Biometrika 36 (1949), 317{346.3. B. L. J. Braaksma, Asymptoti Expansions and Analyti Continuation for a Classof Barnes Integrals. | Composito Math. 15, No. 3(1962{64), 239{341.



156 D. B. KARP, E. G. PRILEPKINA4. A. Z. Broder, The r-Stirling Numbers. | Disrete Mathematis 49 (1984), 241{259.5. L. Carlitz,Weighted Stirling numbers of the �rst and seond kind { I, The FibonaiQuarterly 18 (1980), 147{162.6. L. Carlitz, Weighted Stirling numbers of the �rst and seond kind { II, The Fi-bonai Quarterly 18 (1980), 242{257.7. C. A. Charalambides, Enumerative Combinatoris, Chapman and Hall/CRC, 2002.8. O. Costin, Asymptotis and Borel summability. | Chapman and Hall/CRC Mono-graphs and Surveys in Pure and Applied Mathematis 141 2009.9. A. B. Olde Daalhuis, Inverse fatorial-feries solutions of di�erene equations. |Proeedings of the Edinburgh Mathematial Soiety 47 (2004), 421{448.10. E. Delabaere and J.-M. Rasoamanana, Sommation e�etive d'une de Borel pars�eries de fatorielles. | 57, No. 2 (2007), 421{456.11. K. Dilher, Asymptoti behaviour of Bernoulli, Euler, and generalized Bernoullipolynomials. | J. Approximation Theory 49 (1987), 321{330.12. D. W. H. Gillam, V. P. Gurarii, On funtions uniquely determined by their as-ymptoti expansion. | Funtional Analysis and Its Appliations 40, No. 4 (2006),273{284.13. W. B. Ford, The asymptoti developments of funtions de�ned by Malaurin series.| University of Mihigan Studies, Sienti� Series, 11 1936.14. A. K. Gupta, J. Tang, On a general distribution for a lass of likelihood ratioriteria. | Austraul. J. Statist. 30, No. 3 (1988), 359{366.15. H. K. Hughes, The asymptoti developments of a lass of entire funtions. | Bull.Amer. Math. So. 51 (1945), 456{461.16. V. M. Kalinin, Speial Funtions and The Limit Properties of Probability Distribu-tions I. In: Investigations in Classial Problems of Probability Theory and Mathe-matial Statistis. Part I (edited by V.M. Kalinin and O.V. Shalaevskii), Seminarsin Mathematis, V. A. Steklov Mathematial Institute, Leningrad, 13, New York:Consultants Bureau, 1971.17. D. Karp, E. Prilepkina, Completely monotoni gamma ratio and in�nitely divisibleH-funtion of Fox. | Computational Methods and Funtion Theory, 16 (2016),135{153.18. D. Karp, E. Prilepkina, Some new fats onerning the delta neutral ase of Fox'sH-funtion. | Computational Methods and Funtion Theory, 17, No. 2(2017),343{367.19. A. A. Kilbas, M. Saigo, H-transforms and appliations. | Analytial Methods andSpeial Funtions, Vol. 9, Chapman & Hall/CRC, 2004.20. M. Koutras, Non-entral stirling numbers and some appliations. | Disrete Math-ematis 42 (1982), 73{89.21. E. Landau, �Uber die Grundlagen der Theorie der Fakult�atenreihen. | Sitzsber.Akad. M�unhen, 36 (1906), 151{218.22. L. M. Milne-Thompson, The Calulus of Finite Di�erenes. | Mamillan and o.Ltd., 1933.23. C. Mitshi, D. Sauzin, Divergent series, monodromy and resurgene I, Leture Notesin Mathematis 2153, Springer, 2016.
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