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A SHARP RATE OF CONVERGENCE FOR THE
EMPIRICAL SPECTRAL MEASURE OF A RANDOM
UNITARY MATRIX

ABSTRACT. We consider the convergence of the empirical spectral
measures of random N X N unitary matrices. We give upper and
lower bounds showing that the Kolmogorov distance between the
spectral measure and the uniform measure on the unit circle is of the
order log N/N, both in expectation and almost surely. This implies
in particular that the convergence happens more slowly for Kol-
mogorov distance than for the Lj-Kantorovich distance. The proof
relies on the determinantal structure of the eigenvalue process.

Let U € U(N) be a random matrix, distributed according to Haar
measure. Denote the eigenvalues of U by e, ..., e~ and let un denote
the empirical spectral measure of U; that is,

1 N
UN = N Z(seisj -
j=1

It is easy to see by symmetry that that Euxy = v for every N, where v is
the uniform probability measure on the unit circle in the complex plane.

The convergence of the empirical spectral measure of a random matrix
to a limiting distribution, as the size of the matrix tends to infinity, has
been studied extensively for a variety of random matrix ensembles, most
notably for Wigner matrices. In particular, the empirical spectral mea-
sure converges to the semicircle law in the Komogorov distance at rate
(log N)¢/N (see [8]).

In the context of random unitary matrices, the convergence of uy to
the uniform measure on the circle (weakly, in probability) was first proved
in [6]. In [9] a large deviations principle was proved which in particular
shows that convergence occurs with probability 1. In earlier work (see [12]),
we have quantified this convergence, with respect to the L;-Kantorovich
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distance W7 . Specifically, there are absolute constants C; and C5 such that

Ci1+/log(N
EW:y (un,v) < ng()a (1)
and, with probability 1,
Cy+/log(N
Wl(MN:V) < 2Tg() (2)

for all sufficiently large N.
In this note, we consider instead the Kolmogorov distance

1 0
N, — =

dg(un,v) = sup N 57|

0<h<2r

where A\ is the number of eigenvalues e of U with 0 < 6; < 6. That
is, we are interested in upper and lower bounds for the supremum of the
stochastic process

1 0

Xg:=|=Np — —
’ ‘NNG o

indexed by 6 € [0, 2).
Theorem 1. There are universal constants cy,ce,c3 > 0 such that

log(N log(N
Ogjsf ) < Edi(un,v) < @E

N
for all N, and with probability 1,

C1

log(NN)
N

dx (un,v) < c3
for all sufficiently large N.

After the first version of this paper was written, we were informed by
Paul Bourgade of the results of [1], which in particular show convergence
in probability of dx (11n, 7). Combining the results of [1] with our methods,
we prove the following improvement of the first part of Theorem 1.
Theorem 2. For every p > 0,

L, 1
—— d Lt
log N K, v) = T

as N — oo.
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One interesting consequence of the theorems together with the bounds
(1) and (2) proven in [12] is that in this setting, the expected rate of
convergence of puy to v in the L;-Kantorovich distance is strictly faster
than the expected rate of convergence in the Kolmogorov distance. This
is in contrast to the setting of more classical limit theorems, for which the
rates are often of the same order; e.g., for i.i.d. samples, the rate is N—1/2
in both metrics.

While it is desirable to have results comparable to (1) and (2) for the
more familiar and widely used Kolmogorov metric, the interest stems in
large part from the connection between Kolmogorov bounds and maximal
eigenvalue spacing; a large gap between successive eigenvalues corresponds
to a large arc to which the spectral measure assigns no mass. There is
great interest in the asymptotics of the maximal eigenvalue spacing for
random unitary matrices, in part because of the connection to the Riemann
zeta function; the distribution of the maximal eigenvalue spacings for N x
N random unitary matrices are conjectured to predict the statistics of
spacings between successive zeroes of the zeta function at height 7" along
the critical line, when N ~ log (2= ). A significant recent contribution on
the maximal eigenvalue spacing was made in [2], where it was shown that
if 7(N) is the maximum eigenvalue gap of a uniform U € U (N), then

N

N g By
321og(N)

S cy/log(N)

for all p > 0. This implies in particular that Edx(un,v) = ——x—;
Theorems 1 and 2 show that the correct rate is in fact %.

A crucial property underpinning the proofs of the theorems is that the
eigenvalue angles 6;,...,0y are a determinantal point process on [0, 27],
with symmetric kernel

i [ N(z—y)
Sin (T)

sin (5*)

KN(Q';,:U) =

(see [15, Chapter 11]). In particular, the following properties of the eigen-
value counting function are consequences of the d.p.p. structure.

Proposition 3.

(1) Let A C[0,27], and let Ny denote the number of eigenvalue angles
of U lying in A. Then there are independent Bernoulli random
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variables &1, ..., &N such that
N
Na 4 Zf]
j=1
(2) The eigenangle process of U is negatively associated: if A,B C
[0,27] are disjoint, then

P[Na>s,Ng>t]<P[Nas>s|P[N=>t].

The first part of Proposition 3 follows from the corresponding property
for a quite general class of determinantal point process, due to Hough—
Krishnapur—Peres—Virag [10, Theorem 7]. The second part is again a con-
sequence of a more general statement about determinantal point processes,
this time due to Ghosh [7, Theorem 1.4].

The representation of the counting function as a sum of independent
Bernoulli random variables is a powerful tool; it opens the doors to count-
less results of classical probability. (For other uses of this idea in the the-
ory of random unitary matrices, see [12,14]; see also [4, 5, 13] for related
approaches in other random matrix ensembles.) We will be particularly
interested in the tail probabilities

[P[N[*[FJ\/1>t],

for t > 0 and I an interval to be specified; note that by rotation invari-
ance, this is equal to P[Ny — ENy > t], where 6 is the length of I. In
the classical setting of a sum of independent random variables, an upper
bound on such tail probabilities is given by Bernstein’s inequality (see
e.g. [16, Lemma 4.3.4]), while a lower bound was proved by Kolmogorov
(see [11, Hilfssatz IV]).

Proposition 4. Let Xq,...,X, be independent random wvariables, with
|X;| < M almost surely, for each j. Let

Sp = ZXj 52 = Var(S,).
j=1

Then
(1) for all x >0,

2
P[Sn, — ES, > xsp] < exp (—min{x_ _}) ,

and
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3 — M 1
(2) if x> 512 and a := L= < 55, then for

£ = max {64\/(_]’7 2 lzg(m2) }7

EQ
P[S, — ES, > xs,] > e~z (1%,

By part 3 of Proposition 3, the conclusions of Proposition 4 apply to the
counting functions Ny with M = 1; for them to give usable estimates, for-
mulae (or at least asymptotics) for the means and variances of the counting
functions are needed. The mean is trivial to compute by symmetry. Rather
precise asymptotics can be determined for the variance, as a further ap-
plication of the determinantal point process structure of the ensemble of
eigenvalues. The estimates in the following lemma were proved in [12,14].

Lemma 5.
(1) For 6 € [0,2x],
N6
EN) = ~.
2w
(2) For 6 € 0,2x],

Var My < log(eN).

2N 1
3?log (3—7r) < Var N < §log(e3/2N0).

wln

(3) If 3% <0<
1

With these ingredients in place, we now turn to upper and lower bounds
on Edg (pin, v).

Proof of Theorem 1. We consider the upper bounds first. If % <4é
< w, then
Ny — 12V_7f S Norprny — (B+1) +1
N
and
No =T > Noge —k—1,
™ N
so that

1 1
dic (pn,v) < — ‘ o — k‘ —.
(1N, v) < S Nz + (3)
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As discussed above, Proposition 4 can be applied to the counting func-
tion ./\/'%. Part 1 of Proposition 4 and part 2 of Lemma 5 imply that

[P[ sup ‘N%—k‘>z] giﬂ’“]\/’%—k‘>x}

1<k<N

Now, since ‘N% - k‘ < N for all k, it follows from the estimate above
that for any z > 0,

[E[ sup ‘N%—ku SaH—N[P{ sup ‘N%_k—k‘>w]

1<k<N 1<k<N

2
< 2N2 — mi _r 7z .
T+ exp ( mm{éllog(eN)’ 5 })

Setting x = 41og(eN), this implies

2
[E[ sup ‘NZ‘n-k:k” < 4log(eN) + —.
1<k<N N e

The claimed upper bound on Edk (un,v) now follows from (3).
Setting © = 6log(eN) in (4) yields

2
e3N2’

[P[ sup ‘NM fk‘ > 610g(eN)} <
1<k<N N

The almost sure rate of convergence now follows from (3) and the Borel-
Cantelli lemma.

For the lower bound, note first that given probability measures p and v
on [0, 2),

dicu,v) < sup  |u((a,b]) — v((a,b])| < 2dic (1, v).

o<ashb2m
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Let Zn be a collection of T' disjoint subintervals of [0,27), each of length
N~1/2: in particular, T < 27v/N. Then by the Bonferroni inequalities,

P ldiiv.) > 1] > P | sup (u(D) = (D) > 21

IeTn
> Y Pl(pn(I) - v(1) > 2a]
Ieln
=5 32 Pllan (D)~ v(D), (ax () — v()) > 24]
I,J€TN
147
> 3 P (D) - u(I)) > 2]
I€Tn
— 5 3 Pl (D) (1) > 22]P[(un () ~ v()) > 2],
I,JeIn
T4

where the last estimate follows from the negative association property of
part 3 of Proposition 3. Since all of the intervals I have the same length,
it follows from the rotation-invariance of both measures that this last ex-
pression is exactly
T(T-1) 1
- pz>
2 2
where P is the common value of P[(un(I) — v(I)) > 2z] for I € In. It
follows that if z and T' can be chosen such that TP € [,3], then

TP - TP(2-TP),

3
Pldk(pn,v) > 2] > 3
and therefore
x. (5)

col w

[dK(NNGV)>

Since each I has length N~'/2, we have that for sufficiently large N,

P="P |un(I)—v(I) > Var(NI)} —p |:NI _ ﬂ S Var(/\/})}

256N 2m 256

> exp (% Var(NI))

> exp (2% log(eBN)) ;



RATE OF CONVERGENCE FOR SPECTRAL MEASURES OF RANDOM 283

the first estimate follows from part 2 of Proposition 4 and the second
follows from part 3 of Lemma 5 with 8 = N~/2. It follows that for all
sufficiently large N, N'/2P > 2, and therefore TP € [%,2] for some
integer 1 <T < N'/2. Then by (5) and Lemma 5,

3 Var(Ny-1/2) log(N)
>c
212N N
for all N large enough. O

Edk (pn,v) =

Proof of Theorem 2. In [1], the authors state that

1 NGO 1
sup (./\/9 — —) - =
T

lOgN o<n<2n 2

in probability. It can similarly be shown [3] that the corresponding infimum
converges in probability to f%, from which it follows that

1
d z
log N K (i, v) = 7r

in probability.
For a fixed € > 0,

1 p
E d - =
log N K (s v) ™
N 1P
p _ =
<e +[E‘lOgNdK(uN7V) T ]]‘|7101ngdK(uN,V)7%|>E
1 N 1
<eP E d V) — — P d V) — — .
c +\/ log N K (s v) ™ \/ [logN K (s v) ﬂ">€:|

The theorem thus follows from the convergence in probability of
% di(un,v), if we can show that the sequence of random variables
% di (1w, v) is bounded in Lo,.

Now, for 2 > 0, it follows from (4) that

2 2 2p+1 x? T
E ‘ . fk‘ < 2% 4 2N?P —mind —%__ ZL),
LQL‘EN Nags ] e exP( m‘“{4log<eN) 2}>
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Choosing x to be a sufficiently large multiple of log N we obtain

for

2p

E < Cp(log N)?P

sup Nm —k
1<ks<N N

some constant Cp, > 0 depending only on p; together with (3) this

implies that

1.

10.

11.

12.

13.

14.

15.

2p
E|——d <. O
LogN K(HN’V)} C
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