
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.E. S. Mekes, M. W. MekesA SHARP RATE OF CONVERGENCE FOR THEEMPIRICAL SPECTRAL MEASURE OF A RANDOMUNITARY MATRIXAbstrat. We onsider the onvergene of the empirial spetralmeasures of random N × N unitary matries. We give upper andlower bounds showing that the Kolmogorov distane between thespetral measure and the uniform measure on the unit irle is of theorder logN=N , both in expetation and almost surely. This impliesin partiular that the onvergene happens more slowly for Kol-mogorov distane than for the L1-Kantorovih distane. The proofrelies on the determinantal struture of the eigenvalue proess.Let U ∈ U (N) be a random matrix, distributed aording to Haarmeasure. Denote the eigenvalues of U by ei�1 ; : : : ; ei�N , and let �N denotethe empirial spetral measure of U ; that is,�N := 1N N
∑j=1 Æei�j :It is easy to see by symmetry that that E�N = � for every N , where � isthe uniform probability measure on the unit irle in the omplex plane.The onvergene of the empirial spetral measure of a random matrixto a limiting distribution, as the size of the matrix tends to in�nity, hasbeen studied extensively for a variety of random matrix ensembles, mostnotably for Wigner matries. In partiular, the empirial spetral mea-sure onverges to the semiirle law in the Komogorov distane at rate(logN)=N (see [8℄).In the ontext of random unitary matries, the onvergene of �N tothe uniform measure on the irle (weakly, in probability) was �rst provedin [6℄. In [9℄ a large deviations priniple was proved whih in partiularshows that onvergene ours with probability 1. In earlier work (see [12℄),we have quanti�ed this onvergene, with respet to the L1-KantorovihKey words and phrases: random matries; empirial spetral measures; determinan-tal point proesses. 276



RATE OF CONVERGENCE FOR SPECTRAL MEASURES OF RANDOM277distaneW1. Spei�ally, there are absolute onstants C1 and C2 suh thatEW1(�N ; �) 6
C1√log(N)N ; (1)and, with probability 1,W1(�N ; �) 6
C2√log(N)N (2)for all suÆiently large N .In this note, we onsider instead the Kolmogorov distanedK(�N ; �) = sup06�<2� ∣∣∣∣ 1NN� − �2� ∣∣∣∣ ;where N� is the number of eigenvalues ei�j of U with 0 6 �j 6 �. Thatis, we are interested in upper and lower bounds for the supremum of thestohasti proess X� := ∣∣∣

∣

1NN� − �2� ∣∣∣∣indexed by � ∈ [0; 2�).Theorem 1. There are universal onstants 1; 2; 3 > 0 suh that1 log(N)N 6 EdK(�N ; �) 6 2 log(N)Nfor all N , and with probability 1,dK(�N ; �) 6 3 log(N)Nfor all suÆiently large N .After the �rst version of this paper was written, we were informed byPaul Bourgade of the results of [1℄, whih in partiular show onvergenein probability of dK(�N ; �). Combining the results of [1℄ with our methods,we prove the following improvement of the �rst part of Theorem 1.Theorem 2. For every p > 0,NlogN dK(�N ; �) Lp−−→ 1�as N → ∞.



278 E. S. MECKES, M. W. MECKESOne interesting onsequene of the theorems together with the bounds(1) and (2) proven in [12℄ is that in this setting, the expeted rate ofonvergene of �N to � in the L1-Kantorovih distane is stritly fasterthan the expeted rate of onvergene in the Kolmogorov distane. Thisis in ontrast to the setting of more lassial limit theorems, for whih therates are often of the same order; e.g., for i.i.d. samples, the rate is N−1=2in both metris.While it is desirable to have results omparable to (1) and (2) for themore familiar and widely used Kolmogorov metri, the interest stems inlarge part from the onnetion between Kolmogorov bounds and maximaleigenvalue spaing; a large gap between suessive eigenvalues orrespondsto a large ar to whih the spetral measure assigns no mass. There isgreat interest in the asymptotis of the maximal eigenvalue spaing forrandom unitary matries, in part beause of the onnetion to the Riemannzeta funtion; the distribution of the maximal eigenvalue spaings for N ×N random unitary matries are onjetured to predit the statistis ofspaings between suessive zeroes of the zeta funtion at height T alongthe ritial line, when N ≈ log ( T2� ). A signi�ant reent ontribution onthe maximal eigenvalue spaing was made in [2℄, where it was shown thatif T (N) is the maximum eigenvalue gap of a uniform U ∈ U (N), thenN
√32 log(N) T (N) Lp−−→ 1for all p > 0. This implies in partiular that EdK(�N ; �) >

√log(N)N ;Theorems 1 and 2 show that the orret rate is in fat log(N)N .A ruial property underpinning the proofs of the theorems is that theeigenvalue angles �1; : : : ; �N are a determinantal point proess on [0; 2�℄,with symmetri kernel KN (x; y) = sin(N(x−y)2 )sin (x−y2 )(see [15, Chapter 11℄). In partiular, the following properties of the eigen-value ounting funtion are onsequenes of the d.p.p. struture.Proposition 3.(1) Let A ⊆ [0; 2�℄, and let NA denote the number of eigenvalue anglesof U lying in A. Then there are independent Bernoulli random



RATE OF CONVERGENCE FOR SPECTRAL MEASURES OF RANDOM279variables �1; : : : ; �N suh that
NA d= N

∑j=1 �j :(2) The eigenangle proess of U is negatively assoiated: if A;B ⊆[0; 2�℄ are disjoint, thenP [NA > s;NB > t℄ 6 P [NA > s℄P [NB > t℄ :The �rst part of Proposition 3 follows from the orresponding propertyfor a quite general lass of determinantal point proess, due to Hough{Krishnapur{Peres{Vir�ag [10, Theorem 7℄. The seond part is again a on-sequene of a more general statement about determinantal point proesses,this time due to Ghosh [7, Theorem 1.4℄.The representation of the ounting funtion as a sum of independentBernoulli random variables is a powerful tool; it opens the doors to ount-less results of lassial probability. (For other uses of this idea in the the-ory of random unitary matries, see [12, 14℄; see also [4, 5, 13℄ for relatedapproahes in other random matrix ensembles.) We will be partiularlyinterested in the tail probabilitiesP [NI − ENI > t℄ ;for t > 0 and I an interval to be spei�ed; note that by rotation invari-ane, this is equal to P [N� − EN� > t℄, where � is the length of I . Inthe lassial setting of a sum of independent random variables, an upperbound on suh tail probabilities is given by Bernstein's inequality (seee.g. [16, Lemma 4.3.4℄), while a lower bound was proved by Kolmogorov(see [11, Hilfssatz IV℄).Proposition 4. Let X1; : : : ; Xn be independent random variables, with
|Xj | 6 M almost surely, for eah j. LetSn := n

∑j=1Xj s2n = Var(Sn):Then(1) for all x > 0;P [Sn − ESn > xsn℄ 6 exp(−min{x24 ; xsn2M}) ;and



280 E. S. MECKES, M. W. MECKES(2) if x > 512 and a := xMsn 6 1256 , then for" = max{64√a; 32√log(x2)x },P [Sn − ESn > xsn℄ > e− x22 (1+"):By part 3 of Proposition 3, the onlusions of Proposition 4 apply to theounting funtions NI with M = 1; for them to give usable estimates, for-mulae (or at least asymptotis) for the means and varianes of the ountingfuntions are needed. The mean is trivial to ompute by symmetry. Ratherpreise asymptotis an be determined for the variane, as a further ap-pliation of the determinantal point proess struture of the ensemble ofeigenvalues. The estimates in the following lemma were proved in [12,14℄.Lemma 5.(1) For � ∈ [0; 2�℄, EN� = N�2� :(2) For � ∈ [0; 2�℄, VarN� 6 log(eN):(3) If 3�2N 6 � 6 �2 ,13�2 log(2N�3� ) 6 VarN� 6
12 log(e3=2N�):With these ingredients in plae, we now turn to upper and lower boundson EdK(�n; �).Proof of Theorem 1. We onsider the upper bounds �rst. If 2�kN 6 �< 2�(k+1)N , then

N� − N�2� 6 N 2�(k+1)N − (k + 1) + 1and
N� − N�2� > N 2�kN − k − 1;so that dK(�N ; �) 6

1N sup16k6N ∣∣∣N 2�kN − k∣∣
∣
+ 1N : (3)



RATE OF CONVERGENCE FOR SPECTRAL MEASURES OF RANDOM281As disussed above, Proposition 4 an be applied to the ounting fun-tion N 2�kN . Part 1 of Proposition 4 and part 2 of Lemma 5 imply thatP [ sup16k6N ∣∣∣N 2�kN − k∣∣
∣
> x] 6

N
∑k=1P [∣∣∣N 2�kN − k∣∣

∣
> x]

6 2 N
∑k=1 exp(−min{ x24Var(N 2�kN ) ; x2})

6 2N exp(−min{ x24 log(eN) ; x2}) : (4)
Now, sine ∣∣

∣
N 2�kN − k∣∣

∣
6 N for all k, it follows from the estimate abovethat for any x > 0,E [ sup16k6N ∣∣∣N 2�kN − k∣∣
∣

]

6 x+NP [ sup16k6N ∣∣∣N 2�kN − k∣∣
∣
> x]

6 x+ 2N2 exp(−min{ x24 log(eN) ; x2}) :Setting x = 4 log(eN), this impliesE [ sup16k6N ∣∣∣N 2�kN − k∣∣
∣

]

6 4 log(eN) + 2e2 :The laimed upper bound on EdK(�N ; �) now follows from (3).Setting x = 6 log(eN) in (4) yieldsP [ sup16k6N ∣∣∣N 2�kN − k∣∣
∣
> 6 log(eN)] 6

2e3N2 :The almost sure rate of onvergene now follows from (3) and the Borel{Cantelli lemma.For the lower bound, note �rst that given probability measures � and �on [0; 2�),dK(�; �) 6 sup06a6b<2� ∣∣�((a; b℄)− �((a; b℄)∣∣ 6 2dK(�; �):



282 E. S. MECKES, M. W. MECKESLet IN be a olletion of T disjoint subintervals of [0; 2�), eah of lengthN−1=2; in partiular, T 6 2�√N . Then by the Bonferroni inequalities,P [dK(�N ; �) > x℄ > P [ supI∈IN(�N (I)− �(I)) > 2x]
>
∑I∈IN P[(�N (I)− �(I)) > 2x]

− 12 ∑I;J∈INI 6=J P[(�N (I)− �(I)); (�N (J)− �(J)) > 2x]
>
∑I∈IN P[(�N (I)− �(I)) > 2x]

− 12 ∑I;J∈INI 6=J P[(�N (I)− �(I)) > 2x]P[(�N (J)− �(J)) > 2x];where the last estimate follows from the negative assoiation property ofpart 3 of Proposition 3. Sine all of the intervals I have the same length,it follows from the rotation-invariane of both measures that this last ex-pression is exatlyTP − T (T − 1)2 P 2 >
12TP (2− TP );where P is the ommon value of P[(�N (I) − �(I)) > 2x] for I ∈ IN . Itfollows that if x and T an be hosen suh that TP ∈

[12 ; 32], thenP [dK(�N ; �) > x℄ >
38 ;and therefore EdK(�N ; �) >

38x: (5)Sine eah I has length N−1=2, we have that for suÆiently large N ,P = P [�N (I)− �(I) > Var(NI )256N ] = P [NI − |I |2� > Var(NI)256 ]

> exp(− 5217 Var(NI))
> exp(− 5219 log(e3N)) ;



RATE OF CONVERGENCE FOR SPECTRAL MEASURES OF RANDOM283the �rst estimate follows from part 2 of Proposition 4 and the seondfollows from part 3 of Lemma 5 with � = N−1=2. It follows that for allsuÆiently large N , N1=2P > 2, and therefore TP ∈
[ 12 ; 32] for someinteger 1 6 T 6 N1=2. Then by (5) and Lemma 5,EdK(�N ; �) >

3Var(NN−1=2)212N >  log(N)Nfor all N large enough. �Proof of Theorem 2. In [1℄, the authors state that1logN sup06�<2�(N� − N�2� )→ 1�in probability. It an similarly be shown [3℄ that the orresponding in�mumonverges in probability to − 1� , from whih it follows thatNlogN dK(�N ; �) → 1�in probability.For a �xed " > 0,E ∣∣∣
∣

NlogN dK(�N ; �)− 1� ∣∣∣∣p
6 "p + E ∣∣∣

∣

NlogN dK(�N ; �)− 1� ∣∣∣∣p 1| NlogN dK(�N ;�)− 1� |>"
6 "p +√E ∣∣∣

∣

NlogN dK(�N ; �)− 1� ∣∣∣∣2p√P [∣∣∣
∣

NlogN dK(�N ; �)− 1� ∣∣∣∣ > "]:The theorem thus follows from the onvergene in probability ofNlogN dK(�N ; �), if we an show that the sequene of random variablesNlogN dK(�N ; �) is bounded in L2p.Now, for x > 0, it follows from (4) thatE [ sup16k6N ∣∣∣N 2�kN − k∣∣
∣

]2p
6 x2p + 2N2p+1 exp(−min{ x24 log(eN) ; x2}) :



284 E. S. MECKES, M. W. MECKESChoosing x to be a suÆiently large multiple of logN we obtainE ∣∣∣
∣

sup16k6N N 2�kN − k∣∣∣
∣

2p
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