
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.M. LedouxON OPTIMAL MATCHING OF GAUSSIAN SAMPLESAbstrat. Let X1; : : : ; Xn be independent random variables withommon distribution the standard Gaussian measure � on R
2, andlet �n = 1n n

∑i=1 ÆXi be the assoiated empirial measure. We showthat, for some numerial onstant C > 0,1C log nn 6 E
(W22(�n; �)) 6 C (log n)2nwhere W2 is the quadrati Kantorovih metri, and onjeture thatthe left-hand side provides the orret order. The proof is basedon the reent PDE and mass transportation approah developed byL. Ambrosio, F. Stra and D. Trevisan.To the memory of Professor V. N. Sudakov

§1. IntrodutionGiven x1; : : : ; xn and y1; : : : ; yn in R
d, and p > 1, the optimal mathingproblem raises the question of ontrollinginf 1n n

∑i=1 |xi − y�(i)|pwhere the in�mum runs over all permutations � of {1; : : : ; n} (and | · |is the Eulidean distane on R
d). The random mathing problem dealswith samples X1; : : : ; Xn and Y1; : : : ; Yn of independent and identiallydistributed (iid) random variables in R

d, and a �rst order analysis aims atstudying the order of growth in n of the averages
E

( inf 1n n
∑i=1 |Xi − Y�(i)|p): (1)Optimal mathing problems have been investigated from various view-points in both the mathematis and physis literature, and we refer forexample to the monographs [39, 34℄ for some aount on the subjet.Key words and phrases: optimal mathing, Ajtai{Koml�os{Tusn�ady theorem, opti-mal transport, heat kernel, Gaussian sample.226



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 227A typial and most entral instane of the optimal mathing problem isprovided by the example of independent Xi and Yi uniformly distributedon the unit ube [0; 1℄d. Sine the typial distane between n points in[0; 1℄d is of order 1n1=d , the quantities (1) are expeted to be of the order1np=d . However, this is only orret when d > 3. While it is of the order1np=2 in dimension one due to the spei� struture in this ase, a majorand groundbreaking result in this setting is the Ajtai{Koml�os{Tusn�adytheorem [1℄ stating that in dimension d = 2,
E

( inf 1n n
∑i=1 |Xi − Y�(i)|p) ≈

( lognn )p=2 (2)where A ≈ B expresses that C−1A 6 B 6 CA for some C > 0 (inde-pendent of n). This two-dimensional phenomenon is one most interestingfeature of the analysis due to the fat emphasized in [34℄ that \obstalesto mathings at di�erent sales may ombine in dimension 2 but not indimension d > 3".The preeding questions maybe addressed in the losely related trans-portation ost framework between an empirial and a referene measure.The question is then formulated in terms of the Kantorovih distanes.Given p > 1, the Kantorovih distane (f. [36℄ e.g.) between two proba-bility measures � and � on the Borel sets of R
d with a �nite p-th momentis de�ned by Wp(�; �) = inf ( ∫

Rd×Rd |x− y|pd�(x; y))1=p (3)where the in�mum is taken over all ouplings � on R
d×R

d with respetivemarginals � and �. As is lassial,inf 1n n
∑i=1 |xi − y�(i)|p = Wpp( 1n n

∑i=1 Æxi ; 1n n
∑i=1 Æyi): (4)Denote then by X1; : : : ; Xn independent random variables in R

d withommon distribution � and let�n = 1n n
∑i=1 ÆXibe the empirial measure on the sample (X1; : : : ; Xn). It has been a mainquestion of interest in probability and statistis to investigate the rate of



228 M. LEDOUXonvergene of �n to �. In partiular, the order of deay in Kantorovihdistanes has attrated a lot of attention. We disuss here some knownresults on the order of deay in n of the expetations
E
(Wpp(�n; �)); (5)onentrating on upper bounds on these quantities. By the triangle inequal-ity and (4), these bounds immediately transfer to the mathing problembetween two samples. The parameters entering the disussion are atuallyp > 1, the distribution � and the dimension d, and it turns out, as empha-sized above, that the two-dimensional ase is a partiular, most interest-ing, issue. We only highlight a few onlusions, refereeing to some relevantreferenes for more omplete desriptions and results. For the matter ofomparison, it would have been perhaps more appropriate to onsider the1p -th power of (5), but to lighten the notation we leave it like that. Fur-thermore, under mild onentration properties (see [8℄), the behaviours of[E(Wpp(�n; �))℄1=p and E(Wp(�n; �)) are of the same order.The one-dimensional ase is of partiular nature due to expliit repre-sentations of the Kantorovih metris Wp(�; �) in terms of the underlyingdistributions � and �. We refer to the reent monograph [8℄ for an a-ount on this ase. In partiular, it follows from the analysis there that

E(W1(�n; �)) is of the order of 1√n for large families of distributions �. Forinstane,
E
(W1(�n; �)) = O( 1√n)as soon as ∫

R

|x|qd� < ∞ for some q > 2. However, when p > 1 somedi�erenes our already on basi examples emphasizing the size of thesupport of � as inuening the rate. For example, if � is uniform on aompat interval, E(Wpp(�n; �)) is of order 1np=2 for any p > 1 while for the(standard) Gaussian distribution
E
(Wpp(�n; �)) ≈











1np=2 if 1 6 p < 2,log lognn if p = 2,1n(log n)p=2 if p > 2. (6)While the rate is therefore the same as in the uniform ase for 1 6 p < 2,two hanges our as p = 2 and p > 2. This result is ahieved in [8℄from a haraterization of E(Wpp(�n; �)) when � is log-onave in terms



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 229of its isoperimetri pro�le (inluding further models of interest suh as forinstane the exponential distribution).Turning to d > 1, for � the uniform distribution on [0; 1℄d, the Ajtai{Koml�os{Tusn�ady theorem [1℄, together with the orresponding result ford > 3 (f. [39, 34℄), therefore expresses that
E
(Wpp(�n; �)) ≈











1np=2 if d = 1,
( lognn )p=2 if d = 2,1np=d if d > 3. (7)(Atually, the upper bounds for d > 3 seem only formally established for1 6 p < d2 in the literature, but we provide below the suitable argumentfor the missing interval.) This result was established in [1℄ for d = 2 byombinatorial arguments, then reproved and made more preise by P. Shor[29℄ and M. Talagrand (f. [33, 34℄) via generi haining. The point is that,from the Kantorovih representation (12),W1(�n; �) = sup 1n n

∑i=1 ['(Xi)− E
('(Xi))]where the supremum is taken over 1-Lipshitz maps ', and as suh thestudy enters the framework of bounds on stohasti proesses.The orresponding results for distributions with unbounded supportgave rise to a number of ontributions. When p = 1, due to the works[17, 21, 38℄, the preeding extends to large families of distributions. Forexample, when d = 2,

E
(W1(�n; �)) = O(

√ lognn ) (8)as soon as ∫

R2 |x|qd� <∞ for some q > 2.When p > 1, the general investigations of [15, 9, 20℄ mainly basedon dyadi deompositions yield the following typial onlusions. If forexample ∫

Rd |x|qd� <∞ for some q > p1−� where � = min(pd ; 12 ), then
E
(Wpp(�n; �)) = O( 1n�): (9)(Atually, in [20℄, the ase p = d2 involves some extra logarithmi fator.)As disussed in [20℄, at this level of generality, these results are essentiallyoptimal, and provide the orret orders for d > 3 (f. (7)). Furthermore,



230 M. LEDOUXfor irregular laws, the deay an be faster (see [7, 15℄), but we do not ad-dress this issue here. With respet to the Ajtai{Koml�os{Tusn�ady theoremhowever, one strutural aspet of the proof of the general bounds (9) isthat, for d = 1 or 2, they will never yield anything better than a rate ofthe order of 1√n .Some of the preeding bounds have been supplemented by the existeneof the suitably renormalized quantity (5) as n → ∞ (f. [16, 11, 15, 7℄).A major reent ahievement in this regard is due to L. Ambrosio, F. Straand D. Trevisan [4℄ who showed that for � uniform on [0; 1℄2,limn→∞
nlognE

(W22(�n; �)) = 14� : (10)The result atually applies to the (normalized) uniform measure on a two-dimensional ompat Riemannian manifold M , the fator 14� expressingthe ommon small time behaviour of the trae of the Laplae operator inthe form of limt→0 4�t ∫M pt(x; x)d�(x) = 1where pt(x; y), t > 0, x; y ∈M , is the assoiated heat kernel. The methodsof proof are based on a deep analysis ombining PDE and mass transporta-tion tools following an ansatz put forward in the physis literature [12℄. Assuh, the rates in (7) and the limit in (10) do atually reet the behaviourof the assoiated heat kernel depending in partiular on the dimension. Inase of the 2-dimensional sphere, a proof of the optimal mathing rate isprovided in the reent [22℄ via gravitational alloation.The purpose of this work is to investigate E(Wpp(�n; �)) for the standardGaussian law � on R
d for p = d = 2 (with some additional results for1 6 p < 2 and d > 1) with the methods emphasized in [4℄, replaing theheat kernel by the Mehler kernel. The main onlusion is the followingstatement.Theorem 1. Let X1; : : : ; Xn be independent with ommon law the stan-dard normal distribution � on R

2, and set �n = 1n n
∑i=1 ÆXi . For some nu-merial onstant C > 0, and every n > 2,1C lognn 6 E

(W22(�n; �)) 6 C (logn)2n : (11)



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 231For this spei� model, these bounds are muh more preise than thegeneral orders (9) and are lose to the example of the uniform measureon [0; 1℄2. It may be onjetured that the orret order should be given bythe left-hand side of (11). This onjeture is supported by simulations ofF. Stra (ommuniation from L. Ambrosio) whih seem to indiate thatthe orresponding limit in (10) ould be 15 . Besides, the argument whenapplied to d > 3 produes also an extra logarithmi fator whih is notneessary by (9). On the other hand, it will be shown in the last part ofthis work that E(Wpp(�n; �)) ≈ ( lognn )p=2 for any 1 6 p < 2, and it ouldbe argued that in dimension one, there is a hange of rate at p = 2.To establish Theorem 1, we will �rst quantify some of the geometriparameters entering the asymptoti analysis of (10). These parameterswill involve lower bounds on the urvature and upper bounds on the heatkernels. This will be ahieved via a funtional and mass transportationanalysis, following the steps in [4℄ but only extrating the relevant infor-mation towards an upper bound. In this proess, we will verify that thease d > 3 of (7) holds true for any p > 1 as onjetured in [4℄.Turning to the ontent of this work, Setion 2 presents the general trans-portation arguments inspired from [4℄ to bound Kantorovih distanes bysuitable (dual) Sobolev norms. These tools are then applied to the math-ing problem in the setting of weighted Riemannian manifolds in Setion 3,while in the subsequent setion the full range of (7) is detailed. The diretappliation of the general transportation bounds to the Gaussian modelin Setion 5 only yields weak bounds whih have to be tightened in Se-tion 6 via an additional loalization argument, yielding Theorem 1. Thelast Setion 7 addresses the range 1 6 p < 2.
§2. Transportation boundsThis paragraph is devoted to the transportation analysis of developedby L. Ambrosio, F. Stra and D. Trevisan in [4℄, on the basis of the heuristisof [12℄, yielding bounds on Kantorovih metris by dual Sobolev norms. Inorder to over at the same time the framework of [4℄ and instanes within�nite support suh as Gaussian measures, it is useful to onsider thesetting of so-alled weighted Riemannian manifolds.The de�nition (3) of the Kantorovih distane may be formulated forprobability measures on a metri spae, the Eulidean distane | · | be-ing replaed by the distane � on the spae. To desribe the results ofthis work, it will be onvenient to deal with a metri spae arising from a



232 M. LEDOUXsmooth omplete onneted Riemannian manifold (M; g) without bound-ary of dimension d > 1, denoting by � the Riemannian distane and by dxthe Riemannian volume element. To both deal with ompat Riemannianmanifolds, in whih ase the Riemannian volume element will be assumedto be normalized to a probability measure, and families of probability mea-sures on R
d with unbounded support, we will onsider weighted probabilitymeasures d� = e−V dx on (M; g), where V :M → R is some smooth po-tential, and the resulting weighted Riemannian manifold (M; g; �). Themodern geometri analysis of weighted Riemannian manifolds (M; g; �) isdesribed by urvature-dimension onditions CD(K;N), K ∈ R, N > 1,involving a lower bound K on the extended Bakry{�Emery{Rii urvatureand an upper bound N on the dimension (not neessarily topologial)(f. [36, 6℄). Underlying these urvature-dimension onditions is the se-ond order di�erential operator L = �−∇V · ∇, where � is the Laplae{Beltrami operator on (M; g), with invariant and symmetri measure �.A typial and entral example is of ourse simply the standard Gauss-ian measure d�(x) = e−|x|2=2 dx(2�)d=2 on R

d with the assoiated Ornstein-Uhlenbek operator L = �−x·∇ yielding a weighted Riemannian manifoldwith urvature-dimension CD(1;∞). More general frameworks overingthese instanes are the settings of Markov triples (E; �;�) of [6℄ and ofRCD∗(K;N) Riemannian metri measure spaes studied in [2, 3, 18℄ towhih most of the onlusions developed here may be transferred.Of partiular usefulness in this study is the Kantorovih dual desriptionof the metri Wp(�; �) asW1(�; �) = sup(
∫M 'd� −

∫M 'd�) (12)where the supremum runs over all 1-Lipshitz maps ' : M → R, and forp > 1, 1pWpp(�; �) = sup(
∫M Q1'd� − ∫M 'd�) (13)where the supremum is taken over all bounded ontinuous funtions' :M → R and whereQs'(x) = infy∈M ['(y) + �(x; y)ppsp−1 ]; s > 0; x ∈M;



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 233is the in�mum-onvolution Hopf{Lax semigroup. It is lassial (f. e.g. [19℄)that Qs'(x), s > 0, x ∈M , solves the Halmiton{Jaobi equationdds Qs' = −1q |∇Qs'|q : (14)in (0;∞)×M with initial ondition ', where 1p + 1q = 1.One �rst result is a ontrol of the Kantorovih metri Wp(�; �) by theH−1;p-Sobolev norm of the Radon{Nykodim derivative of � with respetto �. In the weighted Riemannian framework, reall the seond order dif-ferential operator L = � − ∇V · ∇ for whih the integration by partsformula
∫M '(−L )d� = ∫M ∇' · ∇ d� (15)holds true for all smooth ';  : M → R. Denote by (Pt)t>0 the Markovsemigroup with in�nitesimal generator L [6℄. Formally the inverse (−L)−1of the non-negative operator −L may be desribed by(−L)−1 = ∞

∫0 Pt dtating on mean zero funtions in the suitable domain, a ore of whih beingthe set C∞ of C∞ ompatly supported funtions on M . Whenever thespetrum �(−L) of −L is disrete, (−L)−1 an be spetrally representedon a suitable funtion f as(−L)−1f = ∑�∈�(−L)\{0} 1� f�u� (16)where (u�)�∈�(−L) is an L2(�) orthonormal basis of eigenvetors andf� = 〈f; u�〉. Suh a piture ours on a ompat manifold for example. On
R
d equipped with the standard Gaussian measure �, the family of Hermitepolynomials provides an orthonormal basis of eigenvetors of L2(�) witheigenvalues �k = k, k ∈ N (ounted with mutipliity).De�ne then, for every p > 1, the dual Sobolev norm H−1;p(�) by

‖g‖H−1;p(�) = (
∫M ∣

∣∇((−L)−1g)∣∣p d�)1=p



234 M. LEDOUXfor funtions g :M → R with ∫M gd� = 0 for whih ∇((−L)−1g) exists andbelongs to Lp(�). In the partiular ase p = 2, the integration by partsformula (15) and the symmetry of (Pt)t>0 yield
∫M ∣

∣∇((−L)−1g)∣∣2d� = ∫M g(−L)−1g d�= ∞
∫0 ∫M gPtg d� dt= 2 ∞

∫0 ∫M (Ptg)2d� dt; (17)
and in partiular a simpler desription of the admissible funtions g.For general p 6= 2, a variant of the dual Sobolev norm is providedby Riesz transforms inequalities. For example on a ompat manifold forthe Riemannian measure d� = dx, for any 1 < p < ∞ and any smoothg :M → R,

∫M |∇g|p d� 6 C(
∫M ∣

∣(−L)1=2g∣∣pd�+ ∫M |g|pd�)):This inequality follows from the more general investigation of Riesz trans-forms on weighted Riemannian manifolds satisfying the urvature ondi-tion CD(K;∞) for some K ∈ R developed by D. Bakry in [5℄. It is aonsequene of his result that the seond term ∫M |g|pd� on the right-handside may be omitted when K = 0, inluding the partiular example of theGaussian model (going bak in this ase to [26℄). It may be mentioned inaddition that this term may also be omitted when g is entered, at leastin the ompat setting. We briey disuss this issue in the relevant asep > 2. Indeed, it is enough to this purpose to ensure that
‖g‖pp = ∫M |g|pd� 6 C ∫M ∣

∣(−L)1=2g∣∣pd� = C∥

∥(−L)1=2g∥∥pp:But, by the Hardy{Littlewood theory for semigroups of N. Varopoulos [35℄,
‖g‖p 6 C(∥

∥(−L)1=2g∥∥r + ‖g‖r)



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 235where 1p = 1r − 1d with 1 < r < d. Hene
‖g‖p 6 C(∥

∥(−L)1=2g∥∥p + ‖g‖r)and after, if neessary, a �nite number of iterations, it may be assumedthat r 6 2. But then, by the spetral gap or Poinar�e inequality (see (19)below) { whih holds true on a ompat manifold {, sine g is entered,
‖g‖r 6 ‖g‖2 6 C ∥

∥(−L)1=2g∥∥2 6 C ∥

∥(−L)1=2g∥∥pso that we indeed reah ‖g‖p 6 C‖(−L)1=2g‖p.As a onsequene of this disussion, on a ompat manifold, for p > 2and any mean zero smooth funtion g :M → R,
‖g‖pH−1;p(dx) = ∫M ∣

∣∇(−L)−1g)∣∣p d� 6 C ∫M ∣

∣(−L)−1=2g∣∣pd�: (18)This result will be used in Setion 4 when extending (7) to any p > 1 andd > 1.The following statement is the main energy estimate on the Kantorovihdistane Wp(�; �) between two probability measures � and � with � abso-lutely ontinuous with respet to � by the dual Sobolev norm H−1;p(�) ofthe Radon-Nikodym density f = d�d� .Theorem 2. For any 1 6 p <∞, and for all d� = fd� with f − 1 in thedomain of the dual Sobolev norm H−1;p(�),Wp(�; �) 6 p ‖f − 1‖H−1;p(�):When p = 2, Theorem 2 is losely related to Poinar�e-type inequalitiesand their onnetion with transportation ost inequalities. Reall that ifd� = fd�, the relative entropy of � with respet to � is given byH(� |�) = ∫M f log f d�:It is a standard result (f. [36, 6℄) that if � satis�es the quadrati trans-portation ost inequality W22(�; �) 6 2CH(� |�)



236 M. LEDOUXfor some onstant C > 0 and every � absolutely ontinuous with respetto �, then � satis�es the Poinar�e inequality
∫M g2d� 6 C ∫M |∇g|2d� (19)for any smooth g : M → R with ∫M gd� = 0. This property may be estab-lished by a Taylor expansion on d�" = (1 + "g)d� as " → 0 together withthe limit (f. [36℄) lim"→0 1"2 W22(�"; �) = ‖g‖2H−1;2(�):In view of this asymptotis, the inequality of Theorem 2 is of the orretorder for p = 2 up to a fator 4.Proof of Theorem 2. Let �rst p > 1. By a standard regularization pro-edure, it may be assumed that f is smooth and that f > 0. Set theng = f − 1 so that g > −1 and ∫M gd� = 0. Let � : [0; 1℄ → [0; 1℄ be inreas-ing, smooth, with �(0) = 0 and �(1) = 1. For every bounded ontinuous' :M → R, by the Hamilton{Jaobi equation (14),

∫M Q1'd� − ∫M 'd�= 1
∫0 dds ∫M (1 + �(s)g)Qs'd� ds= 1
∫0 ∫M [�′(s)g Qs'−

(1 + �(s)g)1q |∇Qs'|q]d� ds= 1
∫0 ∫M [

− �′(s)∇((−L)−1g) · ∇Qs'−
(1 + �(s)g)1q |∇Qs'|q]d� dswhere we used integration by parts (15) in the last step.By Young's inequality a · b 6

|a|pp + |b|qq ,
∫M Q1'd� − ∫M 'd� 6

1p 1
∫0 �′(s)p ∫M |∇((−L)−1g)|p[1 + �(s)g℄p−1 d� ds



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 237and sine g > −1,
∫M Q1'd� − ∫M 'd� 6

1p 1
∫0 �′(s)p[1− �(s)℄p−1 ds ∫M ∣

∣∇((−L)−1g)∣∣p d�:Therefore, by the Kantorovih duality formula (13),Wpp(�; �) 6

1
∫0 �′(s)p[1− �(s)℄p−1 ds ∫M ∣

∣∇((−L)−1g)∣∣p d�:The optimal hoie of � is provided by �(s) = 1 − (1 − s)p for whih1
∫0 �′(s)p[1−�(s)℄p−1 ds = pp. The proof is thereby ompleted by the Kantorovihduality formula (13). The onlusion extends (or by a diret argument) top = 1. Theorem 2 is established. �

§3. Appliation to the mathing problemIn this �rst setion on the mathing problem, we address the issue ofidentifying the geometri features on a bound on Wp(�n; �) by meansof Theorem 2. We thus onsider a probability measure d� = e−V dx onomplete Riemannian manifold (M; g), invariant measure of the seondorder di�erential operator L = � − ∇V · ∇. Let X1; : : : ; Xn be a sampleof independent random variables with distribution � and �n = 1n n
∑i=1 ÆXi .We follow the arguments of the investigation [4℄.The �rst step is a (short time) regularization proedure by the heat ker-nel. Reall the semigroup (Pt)t>0 with generator L, and denote by pt(x; y),t > 0, x; y ∈ M , the (symmetri) heat kernel suh that for any suitable' :M → R, Pt'(x) = ∫M '(y)pt(x; y)d�(y); t > 0; x ∈M:In partiular ∫M pt(x; y)d�(y) = 1 for every x and by the semigroup prop-erty ps+t(x; y) = ∫M ps(x; z) pt(z; y)d�(z)for s; t > 0, x; y ∈M .



238 M. LEDOUXFix t > 0 and set f tn(y) = 1n n
∑i=1 pt(Xi; y)and d�tn = f tnd�. By the standard onvexity of the Kantorovih metrisWpp, p > 1, whih is for example immediately heked on the dual repre-sentation (13) (f. e.g. [36℄),Wpp(�n; �tn) 6

1n n
∑i=1 Wpp(ÆXi ; pt(Xi; · )d�)= 1n n
∑i=1 ∫M �(Xi; y)p pt(Xi; y)d�(y):After taking expetation in the iid Xi's,

E
(Wpp(�n; �tn)) 6

∫M ∫M �(x; y)p pt(x; y)d�(x)d�(y) = Dpt : (20)The quantity Dpt is alled the dispersion fator, and in various instanes(see below), may be shown to be of the order of tp=2 (for small t > 0).The seond step is the mere appliation of the energy estimate of The-orem 2. Namely, with f = f tn, and after integration with respet to therandom variables Xi, i = 1; : : : ; n,
E
(Wpp(�tn; �)) 6 pp E

(

‖f tn − 1‖pH−1;p(�)):Sine
∇(−Ly)−1(f tn − 1)(y) = 1n n

∑i=1 ∇y(−Ly)−1[pt(Xi; y)− 1];it follows that
E
(Wpp(�tn; �)) 6 pp ∫M E

(
∣

∣

∣

∣

1n n
∑i=1 ∇y(−Ly)−1[pt(Xi; y)− 1]∣∣∣

∣

p)d�(y):Together with (20) and the triangle inequality for Wp, we onlude thatfor any t > 0,
E
(Wpp(�n; �))

6Cp(Dpt +∫M E

(∣

∣

∣

∣

1n n
∑i=1 ∇y(−Ly)−1[pt(Xi; y)− 1]∣∣∣

∣

p)d�(y)); (21)



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 239where Cp > 0 only depends on p.Of ourse, the preeding formula requires that the density f tn, that isthe heat kernels pt(Xi; · ), belongs to the dual Sobolev spae H−1;p(�). Aswe have seen, in the partiular ase p = 2,
‖f tn − 1‖2H−1;2(�) = 2 ∞

∫0 ∫M [Ps(f tn − 1)]2d� dsso that by the semigroup property
‖f tn − 1‖2H−1;2(�) = 2 ∞

∫t ∫M [ 1n n
∑i=1 [ps(Xi; y)− 1]]2d�(y)ds:For eah s > 0 and y ∈M , the random variables ps(Xi; y)−1, i = 1; : : : ; n,are independent, entered and identially distributed, so that taking ex-petation in the Xi's,

E
(W22(�tn; �)) 6 4E

(

‖f tn − 1‖2H−1;2(�))= 8 ∞
∫t ∫M E

([ 1n n
∑i=1 [ps(Xi; y)− 1]]2)d�(y)ds= 8n ∞

∫t ∫M E
([ps(X1; y)− 1]2)d�(y) ds= 8n ∞

∫t ∫M ∫M [ps(x; y)− 1]2d�(x)d�(y) ds= 4n ∞
∫2t ∫M [ps(x; x) − 1]d�(x) ds

(22)
where the last step follows from the semigroup property.Together with (20) and the triangle inequality for W2, we thus end upwith the following general statement for p = 2 whih splits the ontrol of
E(W22(�n; �)) in terms of the dispersion fator and the energy funtional.



240 M. LEDOUXProposition 3. In the presribed setting and notation, for every t > 0,
E
(W22(�n; �)) 6 2D2t + 8n ∞

∫2t ∫M [ps(x; x) − 1]d�(x) ds: (23)Note that in presene of a disrete spetrum �(−L) for −L, the traeformula provides the useful representation
∫M [ps(x; x) − 1]d�(x) = ∑�∈�(−L)\{0} e−�sand thus

E
(W22(�n; �)) 6 2D2t + 8n ∑�∈�(−L)\{0} 1� e−2�t:The task is now to disuss how to ontrol the two terms on the right-hand side of (23) and to optimize in t > 0.The ontrol of the energy

∞
∫2t ∫M [ps(x; x)− 1]d�(x) dsmay be ahieved by splitting between the small time behaviour and thelarge time one. In large time, we an make use of a spetral gap or Poinar�einequality hypothesis. Assume thus that � satis�es a Poinar�e inequality(19) with onstant CP > 0. As is lassial [6℄, suh a Poinar�e inequalityensures an exponential deay of onvergene to equilibrium in the sensethat for any ' :M → R with mean zero and any u > 0,

∫M (Pu')2d� 6 e−2u=CP ∫M '2d�: (24)Apply this to '(y) = pv(x; y) − 1, v > 0, y ∈ M , for x ∈ M �xed. Sinethen Pu'(y) = pu+v(x; y)− 1,
∫M [pu+v(x; y)− 1]2d�(y) 6 e−2u=CP (

∫M [pv(x; y)− 1]2d�(y)):



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 241In the appliations, this inequality may be used in two ways. First, by thesemigroup property and the Cauhy{Shwarz inequality,
[p2(u+v)(x; y)− 1]2= (

∫M [pu+v(x; z)− 1][pu+v(z; y)− 1]d�(z))2
6

∫M [pu+v(x; z)− 1]2d�(z) ∫M [pu+v(z; y)− 1]2d�(z)
6 e−4u=CP ∫M [pv(x; z)− 1]2d�(z) ∫M [pv(z; y)− 1]2d�(z): (25)

On the other hand, after integration in d�(x) and making use again of thesemigroup property,
∫M [pu+v(x; x) − 1]d�(x) 6 e−2u=CP ∫M [pv(x; x) − 1]d�(x): (26)Next, we assume a uniform small time bound on the heat kernel in theform of the existene of a onstant Cu > 0 suh thatps(x; y) 6

Cusd=2 ; 0 < s 6 1; x; y ∈M: (27)As will be lear below and in the next setion, this heat kernel behaviouris atually responsible for the various rates in (7) depending on d.We then ombine the large and small time behaviours in the followingway. Together with the spetral gap bound (26) and the uniform heatkernel bound (27), we get that for every 0 < t 6 12 ,
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∞
∫2t ∫M [ps(x; x) − 1]d�(x) ds = 1

∫2t ∫M [ps(x; x)− 1]d�(x) ds+ ∞
∫0 ∫M [ps+1(x; x) − 1]d�(x)ds

6

1
∫2t Cusd=2 ds+ ∞

∫0 Cu e−2s=CP ds
6 Cd( Cut(d=2)−1 + CuCP)

(28)
or Cu log ( 1t ) + CuCP if d = 2, where Cd > 0 only depends on d.After optimization in t > 0 in (23), we may therefore onlude to thefollowing statement.Theorem 4. In the preeding setting, assume that the dispersion fatorD2t is linear in small time, that is D2t 6 CDt for every 0 < t 6 1, that �satis�es a Poinar�e inequality with onstant CP > 0 and that the uniformheat kernel bound (27) holds true for some Cu > 0. Then

E
(W22(�n; �)) 6

{C log nn if d = 2,C 1n2=d if d > 3,where C = C(d; CD ; CP ; Cu).As disussed in [4℄, the hypotheses of the preeding statement are satis-�ed for the normalized Riemannian volume element � on a ompat d-di-mensional Riemannian manifold (M; g), with onstants depending on thegeometry of the manifold via dimension, diameter and Rii urvaturelower bounds. We disuss here a little more preisely the geometri ingre-dients underlying these onditions in the extended ontext of weighted Rie-mannian manifolds (M; g) with weighted probability measure d� = e−V dx.We may refer to the monographs [14, 13, 37, 6℄ for aounts and refereneson these standard properties.



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 243The heat kernel bound (27) lassially follows from a Sobolev-type in-equality
(

∫M |'|qd�)2=q
6 A ∫M '2d�+B ∫M |∇'|2d� (29)for some A;B > 0 and any smooth ' : M → R, where q = 2dd−2 , d > 2.While the Sobolev inequalities devie requires d > 2, suitable substitutesin terms of Nash-type or logarithmi Sobolev inequalities may be devel-oped to inlude d > 1 in the heat kernel bounds (27). All these resultsare presented for example in the monograph [6℄ in the extended settingof Markov triples (E; �;�) whih enompasses the weighted Riemannianmanifold framework.In the weighted Riemannian framework, the Poinar�e inequality (19)holds with CP = 1K > 0 under the urvature ondition CD(K;∞) withK > 0 while the Sobolev inequality (29) holds under the urvature-dimension ondition CD(K; d) for some K > 0 and d > 2. By standardellipti theory [13℄, a spetral gap inequality holds on a ompat Riemann-ian manifold (M; g), and a Sobolev (29) inequality holds with onstantsdepending on dimension, diameter and lower bound on the extended ur-vature CD(K; d) [37, 6℄.The study of the dispersion fator D2t is of somewhat di�erent nature,although also onneted to urvature bounds. In the non-weighted settingof a ompat manifold (M; g) with Riemannian volume element d� = dxand Laplae operator �, the lassial Laplaian omparison priniple [13,37℄ expresses that for all x; y ∈M ,�(�(x; · ))(y) 6 (d− 1)�(�(x; y)) (30)where � = �′� and �(r) = 













r if K = 0,sin(√Kr)√K if K > 0,sinh(√−Kr)√
−K if K < 0,where Ri > K(d − 1) for some K ∈ R. It thus follows that for all �xedx ∈M , �(�2(x; · )) 6 C



244 M. LEDOUXfor some C > 0 only depending on d, K and the diameter ofM . Therefore,ddt D2t = ∫M ∫M �(x; y)2�ypt(x; y)d�(x)d�(y)= ∫M ∫M �y(�(x; y)2)pt(x; y)d�(x)d�(y) 6 C:As a onsequene, D2t 6 Ct, t > 0, for some C > 0 only depending on thedimension d of the manifold, the lower bound K on the Rii urvature,and the diameter of (M; g).When 1 6 p 6 2, Jensen's inequality ensures that Dpt 6 Ctp=2. Forp > 2, we �rst show by indution that for any integer k > 1, D2kt 6 Ctkwhere C = C(k) > 0 depending on the geometry of M may vary from lineto line. To this task, sine |∇�(x; · )| 6 1,ddt D2(k+1)t = ∫M ∫M �y(�(x; y)2(k+1))pt(x; y)d�(x)d�(y)
6 2(k + 1) ∫M ∫M �(x; y)2k+1�y�(x; y)pt(x; y)d�(x)d�(y)+ 2(k + 1)(2k + 1)D2ktand by the Laplaian omparison (30),ddt D2(k+1)t 6 CD2kt :By the indution hypothesis, ddtD2(k+1)t 6 Ctk and thereforeD2(k+1)t 6

t
∫0 Cskds 6 C tk+1:Finally, by H�older's inequality, for any 2k < p < 2k + 2,(Dpt )1=p 6 (D2kt )�=2k(D2k+2t )(1−�)=(2k+2)where � ∈ (0; 1). Hene again (Dpt )1=p 6 Ct1=2, t > 0.We thus onlude that Dpt 6 Ctp=2 (31)



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 245for all p > 1 and t > 0 where C > 0 depends on the ompat manifold(M; g). Extensions may be provided in weighted manifolds, but for sim-pliity we only onsider one suh example, namely the Gaussian measuresetting addressed in the next setions, in whih the expliit semigroup de-sription allows for a simple argument towards the ontrol of the dispersionfator.
§4. The Ajtai{Koml�os{T�usnady upper bounds for allparametersAs a onsequene of the preeding analysis, Theorem 4 overs the asep = 2 of the Ajtai{Koml�os{Tusn�ady upper bounds (7) for the (normal-ized) uniform measure � on a ompat Riemannian manifold (M; g) bythe methodology of [4℄. In this setion, we address the upper bounds inthe missing range p > d2 , d > 3, in (7), that is

E
(Wpp(�n; �)) = 









O( 1np=2 ) if d = 1,O(( log nn )p=2) if d = 2,O( 1np=d ) if d > 3. (32)(In this setting, lower bounds might followed from the strategy developedin [4℄ for p = d = 2 but further details are ertainly neessary in thisregard.) In the ompat Riemannian manifold framework, all the neessarysmoothness, urvature and heat kernel bounds are satis�ed. In addition,the Riesz transform bounds (18) may also be used. The provided treatmentatually inludes all values of p > 1 and d > 1.Assume �rst that d > 3 to simplify some expressions. We start from(21) together therefore with the Riesz transform bound (18), yielding
E
(Wpp(�n; �))

6C(Dpt +∫M E

(∣

∣

∣

∣

1n n
∑i=1(−Ly)−1=2[pt(Xi; y)− 1]∣∣∣

∣

p)d�(y)): (33)Here and below, C > 0 denotes a onstant, depending on p and the un-derlying geometri struture but not of n, and possibly varying from lineto line.For eah y ∈M , the random variables(−Ly)−(1=2)[pt(Xi; y)− 1℄; i = 1; : : : ; n;



246 M. LEDOUXare independent, entered and identially distributed. By Rosenthal's in-equality [28℄,
E

(
∣

∣

∣

∣

1n n
∑i=1(−Ly)−(1=2)[pt(Xi; y)− 1]∣∣∣

∣

p)
6 Cp( 1np−1 E

(

∣

∣(−Ly)−(1=2)[pt(X1; y)− 1]∣∣p)+ 1np=2 E

(

[(−Ly)−(1=2)[pt(X1; y)− 1]]2)p=2) (34)for some onstant Cp > 0 only depending on p > 2. When 1 6 p 6 2, it isenough to keep the seond piee on the right-hand side.By spetral analysis,(−Ly)−(1=2)[pt(X1; y)− 1] = √�2 ∞
∫0 1√s [pt+s(X1; y)− 1]ds:The uniform bound on the heat kernel (27) ensures that for all x; y ∈ Mand 0 < t 6 12 ,

∣

∣

∣

∣

1=2
∫0 1√s [pt+s(x; y)− 1]ds∣∣∣

∣

6
√2 + 1=2

∫0 1√s · C(t+ s)d=2 ds 6
Ct(d−1)=2 :On the other hand,

∣

∣

∣

∣

∞
∫1=2 1√s [pt+s(x; y)− 1]ds∣∣∣

∣

6
√2 ∞

∫1=2 ∣

∣pt+s(x; y)− 1∣∣ ds:By the exponential deay (25), and again (27), uniformly in s > 12 andx; y ∈M ,
∣

∣pt+s(x; y)− 1∣∣ 6 C e−s=C :Summarizing the preeding steps,
∣

∣(−Ly)−(1=2)[pt(X1; y)− 1]∣∣ 6
Ct(d−1)=2
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∫M E

(

∣

∣(−Ly)−(1=2)[pt(X1; y)− 1]∣∣p)d�(y)
6

Ct(d−1)(p−2)=2 ∫M E

(

[(−Ly)−(1=2)[pt(X1; y)− 1]]2)d�(y):Now, by the representation (−L)−1 = ∞
∫0 Psds,

∫M E

(

[(−Ly)−(1=2)[pt(X1; y)− 1]]2)d�(y)= ∫M ∫M pt(x; y)(−Ly)−1pt(x; y)d�(x)d�(y)= ∞
∫0 ∫M ∫M pt(x; y) pt+s(x; y)d�(x)d�(y)ds= ∞
∫2t ∫M [ps(x; x) − 1]d�(x)dswhih is bounded by Ct(d=2)−1 for every 0 < t 6 12 by (28). Therefore, in therange 0 < t 6 12 ,

∫M E

(

∣

∣(−Ly)−(1=2)[pt(X1; y)− 1]∣∣p)d�(y) 6
Ct(d−1)(p−2)=2 · Ct(d=2)−1 :We next investigate the seond term on the right-hand of (34). By sym-metry, for every y,

E

(

[(−Ly)−(1=2)[pt(X1; y)− 1]]2) = E

(

[(−Lx)−(1=2)[pt(X1; y)− 1]]2)= ∞
∫2t [ps(y; y)− 1] ds:An analysis similar to the preeding one for both small and large valuesof s shows that

E

(

[(−Ly)−(1=2)[pt(X1; y)− 1]]2) 6
Ct(d=2)−1



248 M. LEDOUXfor every 0 < t 6 12 and y ∈M .These estimates in Rosenthal's inequality (34) therefore lead to
∫M E

(∣

∣

∣

∣

1n n
∑i=1(−Ly)−1=2[pt(Xi; y)− 1]∣∣∣

∣

p)d�(y)
6 C( 1np−1 · 1t(d−1)(p−2)=2+(d=2)−1 + 1np=2 · 1t(p=2)((d=2)−1))for 0 < t 6 12 . Together with the dispersion rate (31), we thus get that

E
(Wpp(�n; �))6C(tp=2+ 1np−1 · 1t(d−1)(p−2)=2+(d=2)−1+ 1np=2 · 1t(p=2)((d=2)−1))for 0 < t 6 12 . Optimizing in t > 0, namely hoosing t ∼ 1n2=d , thus yields

E
(Wpp(�n; �)) = O( 1np=d):This is the announed laim when d > 3. Obvious modi�ations for d = 1and 2 yield similarly the orresponding onlusions, ompleting the piturein (32).It ould be noted that the dependene in p > 2 in Rosenthal's inequality(34) is of order ( plog p)p [23℄. Following this dependene throughout thevarious omputations shows that, in ase the d = 2 for example,

E
(Wpp(�n; �)) 6 Cp( plog p)p( lognn )p=2:Therefore, by (4), for an independent opy (Y1; : : : ; Yn) of the sample(X1; : : : ; Xn),

E

( inf 1n n
∑i=1 |Xi − Y�(i)|p) 6 Cp( plog p)p( lognn )p=2where we reall that � runs over all permutations of {1; : : : ; n}. Hene

E

( inf max16i6n |Xi − Y�(i)|) 6 n1=pC plog p( lognn )1=2:Optimizing in p > 2 depending on n (p ∼ logn) shows that
E

( inf max16i6n |Xi − Y�(i)|) 6 C (logn)3=2√nwhih gets lose to the Leighton{Shor theorem [25℄ (stating the result with(logn)3=4).



ON OPTIMAL MATCHING OF GAUSSIAN SAMPLES 249Sine we only onsidered, for simpliity, manifolds without boundary,some further details might be neessary in order to over the uniform dis-tribution on the unit ube [0; 1℄d. We only detail the argument for d = 2and p = 2. By the preeding analysis, the result holds true on the two-dimensional torus. Endowing the latter with the (equivalent) indued Eu-lidean metri, the issue is to take are of periodiity. That is, in theKantorovih dual desription (13)12 W22(�n; �) = sup( n
∑i=1 Q1'(Xi)− ∫[0;1℄2 'dx);the supremum is taken over (ontinuous, bounded) oordinate-wise peri-odi funtions ' : [0; 1℄2 → R for the torus ase while it is taken over all' for the ube ase. We use a simple symmetrization trik to operate theomparison.Divide [−1; 1℄2 into the four (disjoint) regionsA1 = {(x1; x2); x1 ∈ [0; 1℄; x2 ∈ [0; 1℄};A2 = {(x1; x2); x1 ∈ [0; 1℄; x2 ∈ [−1; 0)};A3 = {(x1; x2); x1 ∈ [−1; 0); x2 ∈ [−1; 0)};A4 = {(x1; x2); x1 ∈ [−1; 0); x2 ∈ [0; 1℄}:Given ' : [0; 1℄2 → R, de�ne  =  ' on [−1; 1℄2 by (x1; x2) = 

















'(x1; x2) if (x1; x2) ∈ A1,'(x1;−x2) if (x1; x2) ∈ A2,'(−x1;−x2) if (x1; x2) ∈ A3,'(−x1; x2) if (x1; x2) ∈ A4.The point is that  is periodi on [−1; 1℄2 in the sense that  (1; x2) = (−1; x2) and  (x1; 1) =  (x1;−1) for all x1; x2 ∈ [−1; 1℄.A simple exerise shows that for every (x1; x2) ∈ [−1; 1℄2,Q1 (x1; x2)= Q1'(x1; x2)1{(x1;x2)∈A1} +Q1'(x1;−x2)1{(x1;x2)∈A2}+Q1'(−x1;−x2)1{(x1;x2)∈A3} +Q1'(−x1; x2)1{(x1;x2)∈A4}:



250 M. LEDOUXLet Z1; : : : ; Zn be independent with ommon uniform distribution ~� on[−1; 1℄2. Then, by symmetry and exhangeability,
E

( sup ' [ 1n n
∑i=1 Q1 '(Zi)− 14 ∫[−1;1℄2  ' dx])= E

( sup' [ 1n n
∑i=1 Q1'(Xi)− ∫[0;1℄2 'dx]):Therefore, if ~�n = 1n n

∑i=1 ÆZi , thenW2(~�n; ~�) > W2(�n; �):The upper bounds on the torus thus transfer into bounds for the ube,justifying the laim.
§5. The Gaussian aseThe aim of this setion and the next ones is to investigate the optimalmathing problem for Gaussian samples and to prove Theorem 1. There-fore, X1; : : : ; Xn are here independent with ommon standard normal dis-tribution d�(x) = e−|x|2=2 dx(2�)d=2 on R

d. Set as before �n = 1n n
∑i=1 ÆXi . Weinvestigate

E
(Wpp(�n; �))as a funtion of n, d > 1 and 1 6 p <∞.Before starting the study itself, it is worthwhile mentioning that by asimple omparison, the rates in this Gaussian setting are at least the onesof the uniform ase. Denote indeed by � the uniform distribution on [0; 1℄d,let U1; : : : ; Un be independent and distributed as �, and set �n = 1n n

∑i=1 ÆUi .Now � is the image of the standard Gaussian distribution � on R
d by themap �⊗d where �(x) = x

∫

−∞

e−u2=2 du√2� ; x ∈ R;whih satis�es ‖�‖Lip 6 1√2� 6 1. Therefore, if X1; : : : ; Xn are indepen-dent distributed as �, then �(X1); : : : ;�(Xn) are independent distributed
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d → R 1-Lipshitz,1n n

∑i=1 '(�⊗d(Xi)) − ∫

Rd 'd� = 1n n
∑i=1 ' ◦�⊗d(Xi)− ∫

Rd ' ◦ �⊗n d�:Sine ' ◦ �⊗d is 1-Lipshitz, it follows from the Kantorovih duality (12)that
E
(W1(�n; �)) 6 E

(W1(�n; �)): (35)Sine for the uniform distribution E(Wpp(�n; �)) ≈ [E(W1(�n; �))℄p for anyp > 1 (f. (7)), the known lower bounds on � transfer to �.Turning to the upper bounds, the one-dimensional study is desribedby (6), while the general estimates (9) provide the optimal rate
E
(Wpp(�n; �)) ≈ 1np=dwhen 1 < p 6 d2 . We will atually be mostly interested in the two-dimensional setting d = 2 for whih a satisfatory answer only holds forp = 1 by (8). In the spirit of the Ajtai{Koml�os{Tusn�ady theorem, the mainonern will be p = d = 2.The study of E(W22(�n; �)) in this Gaussian setting will follow the trans-portation approah of [4℄ presented in Setions 2 and 3. Denote by pt(x; y),t > 0, x; y ∈ R

d, the Mehler kernel on R
d de�ned by the integral represen-tation

∫

Rd '(y)pt(x; y)d�(y) = ∫

Rd '(e−tx+√1− e−2t y)d�(y) = Pt'(x):The family (Pt)t>0 de�nes the Ornstein-Uhlenbek semigroup with gener-ator L = �−x ·∇. The expliit form of pt(x; y) ensures that for t > 0 andx ∈ R
d, pt(x; x) = 1(1− e−2t)d=2 exp( e−t1 + e−t |x|2):Following thus the steps in Setions 2 and 3 and Proposition 3, thedispersion fator satis�esD2t = ∫

Rd ∫

Rd |x− y|2 pt(x; y)d�(x)d�(y)= ∫

Rd ∫

Rd ∣

∣x− e−tx+√1− e−2t y|2d�(x)d�(y) 6 2dt



252 M. LEDOUXfor any 0 < t 6 1. On the other hand, for any s > 0,
∫

Rd ps(x; x)d�(x) = 1(1− e−s)d :Hene, for 0 < t 6 1, the energy is ontrolled as
∞
∫t ∫

Rd [ps(x; x)− 1]d�(x) 6

∞
∫t d e−s(1− e−s)d ds

6

{C log ( 1t ) if d = 1,C 1td−1 if d > 2,for some C > 0 only depending on d. Together with the dispersion estimateD2t 6 2dt, Proposition 3 yields after optimization
E
(W22(�n; �)) = {O( 1n1=2 ) if d = 1,O( 1n1=4 ) if d > 2. (36)Aording to the known result when d = 1 and to the omparison withthe uniform ase, these bounds are not of the expeted order. It will bethe purpose of the next setion to suitably improve upon this result.

§6. The Gaussian ase revisited: loalizationIn order to improve upon the rude estimates (36), we make use ofa standard loalization argument (f. e.g. [10℄). For R > 0, let d�R =1�(BR) 1BRd� where BR is the Eulidean ball entered at 0 with radiusR. De�ne independent random variables XRi , i = 1; : : : ; n, with ommondistribution �R by XRi = { Xi if |Xi| 6 R;Zi if |Xi| > R;where Z1; : : : ; Zn are independent with distribution �R, independent ofthe Xi's. Setting �Rn = 1n n
∑i=1 ÆXRi ,W22(�n; �Rn ) 6

1n n
∑i=1 |Xi −XRi |2 6

4n n
∑i=1 |Xi|2 1{|Xi|>R}:
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E
(W22(�n; �Rn )) 6 4 ∫

{|x|>R}

|x|2d�:As a bound,
∫

{|x|>R}

|x|2d� = Cd ∞
∫R rd+1e−r2=2 dris of the order of Rd+1e−R2=2 as R → ∞, a natural hoie is R = √lognfor some  > 0 large enough so that

E
(W22(�n; �Rn )) = O( 1n′ ) (37)for some ′ > 1.Rather than �n, we now work with �Rn following the investigation ofSetion 3 with the separate ontrol of the dispersion fator and the energyfuntional. The short time regularization is performed similarly. Fix t > 0and set f(y) = fR;tn (y) = 1n n

∑i=1 pt(XRi ; y)and d�R;tn = fR;tn d�. By onvexity,W22(�Rn ; �R;tn ) 6
1n n

∑i=1 W22(ÆXRi ; pt(XRi ; ·)d�)= 1n n
∑i=1 ∫

Rd |XRi − y|2 pt(XRi ; y)d�(y):After expetation E = d�R in the iid XRi 's,
E
(W22(�Rn ; �R;tn )) 6

∫

Rd ∫

Rd |x− y|2 pt(x; y)d�R(x)d�(y)
6

1m(BR) ∫

Rd ∫

Rd |x− y|2 pt(x; y)d�(x)d�(y)
6

2d(1− e−t)�(BR) :



254 M. LEDOUXIn the appliation R → ∞ so that we may assume that �(BR) > 12 andthus
E
(W22(�Rn ; �R;tn )) 6 4dt: (38)We next evaluate E(W22(�R;tn ; �)) from Theorem 2. Therefore

E
(W22(�R;tn ; �)) 6 4E

(

‖fR;tn − 1‖2H−1;2(�)) = 8 ∞
∫0 ∫

Rd E
((Psg)2)d� ds (39)where g = g(y) = fR;tn (y) − 1 = 1n n

∑i=1[pt(XRi ; y) − 1℄. To integrate withrespet to the XRi 's, it is onvenient to enter g. To this task, writeg(y) = 1n n
∑i=1 [pt(XRi ; y)−E

(pt(XRi ; y))]+E
(pt(XR1 ; y))−1 = ~g(y)+�(y)so that

E
((Psg)2) = E

((Ps~g)2)+ (Ps�)2: (40)Now�(y) = E
(pt(XR1 ; y)) − 1 = ∫

Rd pt(x; y)d�R(x)− 1= 1�(BR) ∫

Rd (1BR(x)− �(BR))pt(x; y)d�(x)= 1�(BR) Pt(1BR − �(BR))(y):On the other hand, for eah y ∈ R
d,

E
(Ps~g(y)2) = E

([ 1n n
∑i=1 [pt+s(XRi ; y)− E

(pt+s(XRi ; y))]]2)= 1n E

(

[pt+s(XR1 ; y)− E
(pt+s(XR1 ; y))]2)= 1n[

∫

Rd pt+s(x; y)2d�R(x) − (
∫

Rd pt+s(x; y)d�R(x))2 ]:
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∫

Rd E
(Ps~g(y)2)d�(y)= 1n[

∫

Rd p2(t+s)(x; x)d�R(x) − 1�(BR)2 ∫

Rd (Pt+s1BR)2d�]= 1n ∫

Rd [p2(t+s)(x; x) − 1]d�R(x) − 1n ∫

Rd (Ps�)2d�:Colleting the preeding steps in (40),
∫

Rd E
((Psg)2)d� = 1n ∫

Rd [p2(t+s)(x; x) − 1]d�R(x) + (1− 1n)

∫

Rd (Ps�)2d�:Sine the Gaussian measure � satis�es a Poinar�e inequality with onstantCP = 1, by (24),
∫

Rd (Ps�)2d� 6 e−2s ∫

Rd �2d� 6 e−2s 1− �(BR)�(BR) :As above, if R = √logn for some large  > 0, then 1− �(BR) = O( 1n′ )for some ′ > 1. Summarizing this step, with R ∼
√logn,

∞
∫0 E

(
∫

Rd (Psg)2 d�) ds = 12n ∞
∫2t ∫

Rd [ps(x; x) − 1]d�R(x) ds+O( 1n′ ):Therefore, together with (37), (38) and (39), we have obtained at this stagethat
E
(W22(�n; �)) 6 C( 1n′ + t+ 12n ∞

∫2t ∫

Rd [ps(x; x) − 1]d�R(x) ds) (41)for R ∼
√logn and some C > 0, ′ > 1 only depending on d.In the following, we evaluate the (non-negative) energy
∫

Rd [ps(x; x)− 1]d�R(x) = 1�(BR) ∫BR ps(x; x)dm(x) − 1



256 M. LEDOUXof (41) as a funtion of s and R. First, with a = e−s ∈ (0; 1),ps(x; x) = 1(1− a2)d=2 exp( a1 + a |x|2)so that
∫BR ps(x; x)d�(x) = 1(1− a2)d=2 �d �(B�R)where � = √ 1−a1+a . Hene

∫

Rd [ps(x; x)− 1]d�R(x) = 1(1− a2)d=2 �d �(B�R)�(BR) − 1:We distinguish between two ases. If �R 6 1, that is e−s = a > R2−1R2+1 ,s 6 log (R2−1R2+1)

∼ 2R2 → 0,1(1− a2)d=2 �d �(B�R)m(BR) − 1 6
Cd �dRd(1− a2)d=2 �d 6

CdRd(1− e−s)d=2 6
CdRdsd=2with a onstant Cd > 0 only depending on d and possibly hanging fromplae to plae. On the other hand, for every s > 0,1(1− a2)d=2 �d �(B�R)�(BR) − 1 = �(B�R)− (1− a)d �(BR)(1− a)d �(BR)and�(B�R)− (1− a)d �(BR) = �(BR)[1− (1− a)d] − [�(BR)− �(B�R)]

6 �(BR)[1− (1− a)d]
6 �(BR)da:Hene 1(1− a2)d=2�d=2 �(B�R)�(BR) − 1 6

2da(1− a)d :We use the latter in the range �R > 1, that is e−s = a 6 R2−1R2+1 < 1.
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∼ 2R2 → 0, but T >> t,
∞
∫2t ∫

Rd [ps(x; x) − 1]d�R(x) ds= T
∫2t ∫

Rd [ps(x; x) − 1]d�R(x) ds+ ∞
∫T ∫

Rd [ps(x; x) − 1]d�R(x) ds
6

T
∫2t CdRdsd=2 ds+ ∞

∫T 2de−s(1− e−s)d ds
6

CdRdt(d=2)−1 + CdR2(d−1)when d > 3, while when d = 2 the upper bound readsC2R2 log(1t ) + C2R2and when d = 1,C1R√T + C1 log( 1T )

6 C ′1(1 + logR2):Colleting these kernel estimates in (41) with R ∼
√logn,

E
(W22(�n; �)) 6 C( 1n′ + t+ 1n( Rdt(d=2)−1 +R2(d−1)))with the adaptations when d = 1; 2. Optimization in t > 0 then yields

E
(W22(�n; �)) = 









O( log lognn ) if d = 1,O( (logn)2n ) if d = 2,O( lognn2=d ) if d > 3. (42)Together with the lower bound (35), we therefore reah Theorem 1for d = 2. We note that the tehnology is re�ned enough to reah theone-dimensional ase (6) but unfortunately produes an extra logn withrespet to (9) when d > 3, and thus probably also when d = 2. As disussedin the introdution, it may indeed be onjetured that the orret orderwhen d = 2 should be lognn .
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§7. The Gaussian ase: bounds for Wp; 1 6 p < 2In this last setion, we provide optimal rates for the optimal mathingof Gaussian samples in the Kantorovih metris Wp, 1 6 p < 2, in anydimension d > 1. As in the preeding setions, X1; : : : ; Xn are independentwith standard normal distribution on R

d and �n = 1n n
∑i=1 ÆXi .Theorem 5. For every 1 6 p < 2,

E
(Wpp(�n; �)) ≈











1np=2 if d = 1,
( lognn )p=2 if d = 2,1np=d if d > 3. (43)Proof. The lower bounds follow from the omparison (35) with the uni-form distribution. Towards the upper bounds, we apply (21) to the Gauss-ian model with the Mehler kernel pt(x; y). First, as for p = 2,Dpt = ∫

Rd ∫

Rd |x− y|p pt(x; y)d�(x)d�(y)= ∫

Rd ∫

Rd ∣

∣x− e−tx+√1− e−2t y|pd�(x)d�(y) 6 C tp=2 (44)for every 0 < t 6 1, where C > 0 only depends on d and p.Next, for eah y �xed, the random vetors ∇y(−Ly)−1[ps(Xi; y) − 1℄,i = 1; : : : ; n, are independent, entered and identially distributed. Hene
E

(∣

∣

∣

∣

1n n
∑i=1 ∇y(−Ly)−1[pt(Xi; y)− 1]∣∣∣

∣

2)= 1n E

(

∣

∣∇y(−Ly)−1[pt(X1; y)− 1]∣∣2)= 1n ∫

Rd ∣

∣∇y(−Ly)−1[pt(x; y)− 1]∣∣2d�(x):Sine (−L)−1 = ∞
∫0 Psds,

∇y(−Ly)−1[pt(x; y)− 1] = ∞
∫0 ∇y pt+s(x; y)ds = ∞

∫t ∇y ps(x; y)ds:
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∫

Rd ∣

∣∇y(−Ly)−1[pt(x; y)− 1]∣∣2d�(x)= ∞
∫t ∞

∫t ∫

Rd ∇y ps(x; y) · ∇y ps′(x; y)d�(x) ds ds′:It is immediate to hek on the expliit expression of ps(x; y) that for eahs > 0 and x; y ∈ R
d,es∇y ps(x; y) = −∇x ps(x; y) + xps(x; y):Therefore, for eah y ∈ R

d,es+s′ ∫

Rd ∇y ps(x; y) · ∇y ps′(x; y)d�(x)= ∫

Rd ∇x ps(x; y) · ∇x ps′(x; y)d�(x) + ∫

Rd |x|2ps(x; y)ps′(x; y)d�(x)
−

∫

Rd x · ∇x ps(x; y)ps′(x; y)d�(x) − ∫

Rd x · ∇x ps′(x; y)ps(x; y)d�(x)= ∫

Rd ∇x ps(x; y) · ∇x ps′(x; y)d�(x) + d ∫

Rd ps(x; y) ps′(x; y)d�(x)by integration by parts. Next, by the semigroup property,es+s′ ∫

Rd ∇y ps(x; y) · ∇yps′(x; y)d�(x)= ∫

Rd ∇xps(x; y) · ∇xps′(x; y)d�(x) +d ps+s′(y; y):
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∫

Rd ∇x ps(x; y) · ∇x ps′(x; y)d�(x) = −
∫

Rd ps(x; y) Lx ps′(x; y)d�(x)= −
∫

Rd ps(x; y)�s′ps′(x; y)d�(x)= −�s′( ∫

Rd ps(x; y)ps′(x; y)d�(x))= − �s′ps+s′ (y; y):Hene we have obtained that
∫

Rd ∣

∣∇y(−Ly)−1[pt(x; y)− 1]∣∣2d�(x)= ∞
∫t ∞

∫t e−(s+s′)[ − �s′ps+s′(y; y) + d ps+s′(y; y)] ds ds′:Finally, after integration by parts in s′,
∫

Rd ∣

∣∇y(−Ly)−1[pt(x; y)− 1]∣∣2d�(x)= ∞
∫t e−(t+s)pt+s(y; y) ds+ ∞

∫t ∞
∫t e−(s+s′)(d− 1)ps+s′(y; y)]dsds′= ∞

∫2t e−s[1+(d− 1)(s− 2t)]ps(y; y)ds:By Jensen's inequality, we thus onlude from the preeding analysisthat
∫

Rd E

(
∣

∣

∣

∣

1n n
∑i=1 ∇y(−Ly)−1[pt(Xi; y)− 1]∣∣∣

∣

p)d�(y)
6

1np=2 ∫

Rd (

∞
∫2t e−s[1+(d− 1)(s− 2t)]ps(y; y) ds)p=2d�(y)
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E
(Wpp(�n; �))
6 C(tp=2 + 1np=2 ∫

Rd (

∞
∫2t e−s[1 + (d− 1)(s− 2t)]ps(y; y)ds)p=2d�(y))where C > 0 only depends on p and d. Now, reall thatps(y; y) = 1(1− a2)d=2 exp( a1 + a |y|2)where a = e−s. Note that a1+a 6 12 . We examine separately small valuesand large values of s (realling that t→ 0). First1

∫2t e−s[1 + (d− 1)(s− 2t)]ps(y; y)ds 6 Cd e|y|2=2 1
∫2t s−d=2ds:On the other hand,

∞
∫1 e−s[1 + (d− 1)(s− 2t)]ps(y; y) ds 6 Cd e|y|2=2:Hene

∞
∫2t e−s[1 + (d− 1)(s− 2t)]ps(y; y) ds 6 Cd(1 + 1t(d=2)−1) e|y|2=2:with the last parenthesis replaed by 1 + log( 1t ) when d = 2.Sine p < 2, after integration in d�(y) in the preeding bound, we �nallyreah that for every 0 < t 6 1,

E
(Wpp(�n;m)) 6 Cp;d(tp=2 + 1np=2 · 1t(d−2)p=4)with the last term replaed by (log( 1t ))p=2 when d = 2. Note that Cp;d → ∞as p → 2. Optimization in t > 0 then yields the various onlusions asd = 1, d = 2 or d > 3, establishing Theorem 5. �Aknowledgements. I warmly thank L. Ambrosio for raising the questionof the optimal mathing for Gaussian samples and for numerous exhangeson the topi of this note.
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