3anuCKU HAyTHBIX
cemuaapos [IOMU
Towm 457, 2017 r.

R. Latala

ON Z,-NORMS OF RANDOM VECTORS

ABSTRACT. To any n-dimensional random vector X we may asso-
ciate its Lp-centroid body Z,(X) and the corresponding norm. We
formulate a conjecture concerning the bound on the Z,(X)-norm
of X and show that it holds under some additional symmetry as-
sumptions. We also relate our conjecture with estimates of covering
numbers and Sudakov-type minoration bounds.

§1. INTRODUCTION. FORMULATION OF THE PROBLEM

Let p > 2 and X = (X4,...,X,,) be a random vector in R™ such that
E| X [P < co. We define the following two norms on R™:

1] 4, x) = (BI{E, X)[7)1P
and
1tllz,x) == sup{|(t; s)|: [lsllag, x) <1}
By M, (X) and Z,(X) we will also denote unit balls in these norms, i.e.,
Mp(X) :={t e R": |[t]|p,(x) <1}
and
Zp(X) = {t e R": |t z,x) <1}

The set Z,(X) is called the L,-centroid body of X (or rather of the
distribution of X). It was introduced (under a different normalization) for
uniform distributions on convex bodies in [9]. Investigation of L,-centroid
bodies played a crucial role in the Paouris proof of large deviations bounds
for Euclidean norms of log-concave vectors [10]. Such bodies also appear in
questions related to the optimal concentration of log-concave vectors [7].

Let us introduce a bit of useful notation. We set [t]| := ||t]l2 = /(t,1)
and By = {t € R": |[t| < 1}. By ||Y]l, = (E|[Y|?)!/? we denote the L,-
norm of a random variable Y. Letter C' denotes universal constants (that
may differ at each occurence), we write f ~ g if %f <g<Cf.

Key words and phrases: Lp-centroid body, log-concave distribution, metric entropy,
Sudakov minoration.
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Let us begin with a simple case, when a random vector X is rotationally
invariant. Then X = RU, where U has a uniform distribution on S?~! and
R = |X]| is a nonnegative random variable, independent of U. We have for
any vector £ € R" and p > 2,

V4
t =t ~ =2t
¢ UMlp = [Tl \/n+p| ly

where U; is the first coordinate of U. Therefore

1t m,x) = ULl I RIp[E and |8z, x) = UL, IR, [¢].
So
n+p

1/p
(EIIXII’;,,(X)) =[Ol IR, M EIX ()P = (U], ~ (1)

This motivates the following problem.

Problem 1. Is it true that for (at least a large class of) centered n-
dimensional random vectors X,

1/2 n+p
(EIXIZ,00) © <0yfF forp>2,
or maybe even
1/p n+p
(E||X||§p(x)) SO forpz 2

Notice that the problem is linearly-invariant, since
[AX| z,(ax) = [ X]|z,(x) for any A € GL(n). (2)

For any centered random vector X with nondegenerate covariance ma-
trix, random vector Y = Cov(X) '/2X is isotropic (i.e., centered with
identity covariance matrix). We have Mz (Y) = Z5(Y) = B¥, hence

E||X||222(X) = E||Y||222(Y) = IE|Y|2 =n.

Next remark shows that the answer to our problem is positive in the case
p=n.

Remark 1. For p > n and any n-dimensional random vector X we have

(BJIX[1, 1)/ < 10.
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Proof. Let S be a 1/2-net in the unit ball of M,(X) such that |S| < 5"
(such net exists by the volume-based argument, cf. [1, Corollary 4.1.15]).
Then

1/p
E|X|” e < 9(Esup|(t, X)|P <2(E t, X)|P
EIX 15, )" < 2(Esupl(t, X)) T < 2( | )

< 2|SYP sup(E(t, X)[P)H/P < 2. 57/ 0
tesS

1/p

L,-centroid bodies play an important role in the study of vectors uni-
formly distributed on convex bodies and a more general class of log-concave
vectors. A random vector with a nondenerate covariance matrix is called
log-concave if its density has the form e~", where h: R" — (—o0,00] is
convex. If X is centered and log-concave then

p
||<t,X>||p<>\5||<t,X>||q forp>q =2, (3)

where A =2 (A = 1if X is symmetric and log-concave and A = 3 for arbi-
trary log-concave vectors). One of open problems for log-concave vectors
[7] states that for such vectors, arbitrary norm || || and ¢ > 1,

EIX 7)1 < C(BIX| + sup (1, X)],).
llll.<1
In particular one may expect that for log-concave vectors

EIX %, x)" " < C(EIX 12,00+ sup_ ||t X))
teM,(X)

p
max{p, q} )
p
As a result it is natural to state the following variant of Problem 1.

< C(BIIX | z,x) +

Problem 2. Let X be a centered log-concave n-dimensional random vec-
tor. Is it true that

EIXIL ) <O\ for2<p<n 1<0< T
v p

In Section 2 we show that Problems 1 and 2 have affirmative solutions
in the class of unconditional vectors. In Section 3 we relate our problems
to estimates of covering numbers. We also show that the first estimate
in Problem 1 holds if the random vector X satisfies the Sudakov-type
minoration bound.
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§2. BOUNDS FOR UNCONDITIONAL RANDOM VECTORS

In this section we consider the class of unconditional random vectors
in R", i.e., vectors X having the same distribution as

(e1|X1l, 2] X2, . -, enl Xal),

where (g;) is a sequence of independent symmetric +1 random variables
(Rademacher sequence), independent of X.

Our first result shows that formula (1) may be extended to the un-
conditional case for p even. We use the standard notation — for a mul-

tiindex a@ = (ai,...,a,), © € R” and m = Y a;, 2% = [[, 2" and
(72) =m!/([]; ail).
Proposition 2. We have for any k = 1,2,... and any n-dimensional
unconditional random vector X such that E|X|** < oo,

Jom) (k)2 1/(2k)

1/(2k n+k

k
<E||X||222k(x)) <ewe=| Y (S‘k) [
lall=k \2a

where the summation runs over all multiindices a = (a1, ..., ay) with

n
nonnegative integer coefficients such that |aly = > a; = k.
i=1

Proof. Observe first that
2%k

— Z <2k> t2aEX2a.
2c

llalli=k

El(t, X)I* =E

n
Z 1€ X;
i=1

For any ¢,s € R™ we have
k
k _ oo
[(t, $)|" = g (a)t s%.
lleelli=k

So by the Caushy—Schwarz inequality,

K2 24 1/2

o S
||s||%2k<x>=sup{|<t,s>|k:E|<t,X>|2k<1}<( > 222) Ex2a> -
lleellr=F

To see that cap ~ \/(n + k)/k observe that
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Therefore, since 1 < (%) < 2%, we get

4k(n+21)<£zgﬂ(n+21) O

Corollary 3. Let X be an unconditional n-dimensional random wvector.
Then

n+p

1/2k
(E||X||2Z';(X)) <C for any positive integer k <

N3

Proof. By the monotonicity of Log-norms we may and will assume that
k = |p/2]. Then by Proposition 2,

1/2k 1/2k n+k n+p
(EIXIZEx) < (BEIXIZx)  <OyfF-<of=F O

In the unconditional log-concave case we may bound higher moments
Of ||X||ZP(X)

Theorem 4. Let X be an unconditional log-concave n-dimensional ran-
dom vector. Then for p,q > 2,

ntp n+p q
X1, <0 (22 s el ) <o D).
’ P teMy(X) p D

In order to show this result we will need the following lemma.

Lemma 5. Let 2 < p < n, X be an unconditional random vector in R"
such that E|X P < oo and E|X;| = 1. Then

n
lsllz,(x) < sup  sup E tisi| + C1 sup g t;isi|.  (4)
IC[n], It m,x) | et 1l amg (x) <1, 15255
[T|<p <1 2 <p~ /2

Proof. We have by the unconditionality of X and Jensen’s inequality,

n n
HtHMp(X) = Ztlalle| > thszE|Xz| .
i=1 p =1 P
By the result of Hitczenko [5], for numbers ay, ..., ap,

~

e v Se) €

p i<p i>p

n
g ;€
i=1
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where (a})i<n denotes the nonincreasing rearrangement of (|a;|)i<n. Thus

1/2
VB( S P) < Culllan,en

i>p
and (4) easily follows. O

Proof of Theorem 4. The last bound in the assertion follows by (3). It
is easy to see that (increasing ¢ if necessary) it is enough to consider the
case q = /np.

If ¢ > n then the similar argument as in the proof of Remark 1 shows
that

1/q
(BIXIL, ) <2:5"1 sup (LX), <10 sup |t X)],-
® teEM,(X) teMp(X)

Finally, consider the remaining case /pn < ¢ < n. By (2) we may
assume that E|X;| = 1 for all i. By the log-concavity

q1
[t XDl < Cq—2||<t,X>||q2

for ¢ > ¢2 > 1, in particular o; := || X;|l2 < C.
Let &1,...,&, be ii.d. symmetric exponential random variables with
variance 1. By [6, Theorem 3.1] we have

n
‘ sup thz
Il ap (x) <1, 15 q
[tla<p~/?
n
< C( sup t;oi&il||| +  sup ||<t,X>||q>.
Il ap () <1, 15257 1 ltlag, (x) <1,
[tla<p~/? tl2<p~ /2
We have
sup (£, X)llg < sup  [[{t, X)lg
Il (x) <1, 1l a1, (x) <1
tla<p™ /2
and
n
1
sup E tioi&il|| < —
Il x) <1, 155 ., VP

lltll2<p~*/?
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Thus
n n
up wx| <o(\Fr s 1wl
£l ) <15 1527 q P it o <t
l[tlla<p=*/2

Let for each I C [TL], PrX = (Xi)iEI and St be a 1/2—net in Mp(P]X)
of cardinality at most 5!7l. We have

sup sup

E 1 X;
IC[n], It mpx)
[I|<p <1

icl

< 2|| sup sup
b IC[n], t€ST Z
<

X

t; X;

icl

q> 1/q

<2- 5p/q|{l C[n], || < p}|1/q sup sup
I

q

<2<Z > E

IC[n], t€ST
ITI<p

Z tiX;

icl

Z tiX;

tesr il et g
p/q
<10 <%> sup t: X;
p teMy(X) Il 527 q
<C sup Z 179,118
teEMp(X) icl q
where the last estimate follows from ¢ > /np.
Hence the assertion follows by Lemma 5. O

Corollary 6. Let X be an unconditional log-concave n-dimensional ran-
dom vector and 2 < p < n. Then

1 /n "
oy SEIXIz 00 < (EIXI%T)

c
1 /n 1
P (IXl200 > 3,%) > 3

P (HXHZ,,(X) > Ct\/g) <e WP for t>1.

1//n
/\/_ch % (6)

and
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Proof. The upper bound in (6) easily follows by Theorem 4. In fact we
have for t > 1,

~ )

p

hence the Chebyshev inequality yields the upper tail bound for || X|| z, (x)-
To establish lower bounds we may assume that X is additionally iso-
tropic. Then by the result of Bobkov and Nazarov [3] we have

18, X0l < C(VPIIE2 + plltlloo)-

1 /m_ . 1 /n
E[[X|z,x) = 5\/;EXW2} > 5\/;

where the last inequality follows by Lemma 7 below.
By the Paley—Zygmund inequality we get

1 /n 1
P{ || X > —=./— | 2P| X > -E|X
(15120 > g2 ) 2 B(IX1z,00 > 3EIX 2,00

©Xlz,00)° _
” IEIX T, )

N n
(EIXIY%) <Ct

This easily gives

O

Lemma 7. Let X by a symmetric isotropic n-dimensional log-concave
vector. Then EXFn/ﬂ > %

Proof. Let a; > 0 be such that P(X; > a;) = 3/8. Then by the log-
concavity of X;, P(|X;| > ta;) = 2P(X; > ta;) < (3/4)t for t > 1 and
integration by parts yields || X;||o < Ca;. Thus a; > ¢ for a constant
c1 > 0.

Let S = Z I{\X;l}q}- Then ES =
i=1

i= i=1
other hand ES < § + nIP’(XF‘nm > c1), SO

EX(, /01 2 aP(XT, 0 2 1) 2 a1 /4. O

The next example shows that the tail and moment bounds in Corollary 6
are optimal.

Example. Let X = (X1,...,X},) be an isotropic random vector with i.i.d.
symmetric exponential coordinates (X is of density 2"/2 exp(—v/2||z|1)).
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Then (E|X;[P)'/? < p/2, 50 2e; € M,(X) and

]P(”X”Z,,(X) = ty/n ) P(|X;| > t/np/2) > e tVP/V2
and for ¢ = s\/np, s > 1,

/9 2
(BN, x) > 1Kl > cafp = esy/nfp

§3. GENERAL CASE — APPROACH VIA ENTROPY NUMBERS

In this section we propose a method of deriving estimates for Z,-norms
via entropy estimates for M,-balls and Euclidean distance. We use a stan-
dard notation — for sets T, S C R"™, by N(T,S) we denote the minimal
number of translates of S that are enough to cover T'. If S is the e-ball
with respect to some translation-invariant metric d then N(T,S) is also
denoted as N(T,d,e) and is called the metric entropy of T' with respect
to d.

We are mainly interested in log-concave vectors or random vectors which
satisfy moment estimates

p
||<t,X>||p<>\5||<t,X>||q forp>q=>2. (7)

Let us start with a simple bound.

Proposition 8. Suppose that X is isotropic in R™ and (7) holds. Then
for any p > 2 and € > 0 we have

1/2 ex
(BIXIZ,0x)) < eVt = max {p, log N(My (X),B))
Proof. Let N = N(M,(X),eB7) and choose t1,...,txy € Mp,(X) such
that M,(X) c UN, (ti + €B2). Then
zllz,x) < elz| + sup(ti, z).

1

Let r = max{p,log N}. We have

(Esup|<ti,X)|2)/ (Esup|<tl,X ) (ZEU“X )

i<N

< Nl/rsupll<ti,X>||r

<els sup||(tz,X>||p e/\—. O
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Remark 9. The Paouris inequality [10] states that for isotropic log-
concave vectors and ¢ > 2, (E|X|?)'/¢ < C(v/n + q), so for such vectors
and q¢ > 2,

1/a 2e n
(EIX1%, ) < eV +a) + = max{p, g, log N (M, (X), £B3)).
Unfortunately, the known estimates for entropy numbers of M-balls
are rather weak.

Theorem 10 ([4, Proposition 9.2.8]). Assume that X is isotropic log-
concave and 2 < p < /n. Then
nlog® plogt

t

for 1< mln{\/_ énl;)gp}.

log N (M (), t By)<C

N

Corollary 11. Let X be isotropic log-concave, then
L/p n)\*/* L 37 2/7
(E||X||% (X)) <C <—> logpy/logn for2 <p< rol /M log™2/"n.
P p

Proof. We apply Theorem 10 with ¢ = (n/p)'/*log plog'/? n and Propo-
sition 8 with & = tp~1/2, O

Remark 12. Suppose that X is centered and the following stronger bound
than (7) (satisfied for example for Gaussian vectors) holds

p
1t X)lp < A\/g X)), forp>q>2 ®)
Then for any 2 <p<n

1 /2n 1/2 N 1/n n
Vo < (B2, 00) < (EIXIgm) " < 1o 5

Proof. Without loss of generality we may assume that X is isotropic. We

have
¢, XDllp < AVp/2|[(t, X)l2 = A/ p/2]t],

s0 M,(X) D A7'y/2/pBY and

1/2 1 /2 1/2 1 /2n
(]E||X||2zp(x)) > X\/;(E|X|2) =W
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On the other hand let S be a 1/2-net in M,(X) of cardinality at
most 5”. Then

1/7L 1/n
(BIXI2,06) " <2 (Esupltt, 01 )

tesS

1/n
2| DB <2181 sup {8, X)ln
teS

teS

<10\, /—su t, X 10\ O
\/;p||< My < \/;

Recall that the Sudakov minoration principle [11] states that if G is an
isotropic Gaussian vector in R™ then for any bounded T" C R™ and ¢ > 0,

1
Esup(t,G) > —e4/log N(T,eBY).
teT ¢

So we can say that a random vector X in R™ satisfies the Ls-Sudakov
minoration with a constant C'x if for any bounded 7" C R™ and € > 0,

1
Esup(t, X) > ——e4/log N(T,eBY).
teT Cx

Example. Any unconditional n-dimensional random vector satisfies the
L>-Sudakov minoration with constant C'/log(n + 1)/(min;<, E|X;|).

Indeed, we have by the unconditionality, Jensen’s inequality and the
contraction principle,

Esu t; X; = Esu tiei| X; Esu tig;E| X
3% =By el > B Y B

mln ]E|X |E sup Zt €;-

tETz 1

On the other hand, the classical Sudakov minoration and the contraction
principle yields

1 n
—e4/log N(T,eBY) < Esup t;g; < Emax |g;|E sup tici
C B NV( tETZ i<n ol teT;
n
< Cy/log(n + 1)E supZtisi.
teT =
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However the Lo-Sudakov minoration constant may be quite large in the

isotropic case even for unconditional vectors if we do not assume that I

and Ly norms of X; are comparable. Indeed, let P(X = 4n'/?¢;) = 5

fori=1,...,n, where eq,...,e, is the canonical basis of R™. Then X is
isotropic and unconditional. Let T = {t € R®: ||t||cc <7~'/?}. Then

Esup [{t, X)] < 1.
teT

However, by the volume-based estimate,
vol(T) 1\"
N(T,eBy) 2 ———=~2>2|—= | >
(T,2B5) vol(e BY) (50)
hence

1
supey/log N((T,eBE) > —=+/n.
e>0 C

Thus the Ly-Sudakov constant C'x > 1/n/C in this case.

Next proposition shows that random vectors with uniformly log-convex
density satisfy the Ly-Sudakov minoration.

Proposition 13. Suppose that a symmetric random vector X in R™ has
the density of the form e such that Hess(h) > —ald for some a > 0. Then
X satisfies the Ly-Sudakov minoration with constant Cx < Cv/a.

Proof. We will follow the method of the proof of the (dual) classical
Sudakov inequality (cf. (3.15) and its proof in [8]).
Let T be a bounded symmetric set and

A :=Esup [{t, X)|.
teT
By the duality of entropy numbers [2] we need to show that
log'/? N(e~'B},T°) < Ce~'a'/?A
for € > 0 or equivalently that

N(6BY,6AT°) < exp(Cad?)  for § > 0. (9)
To this end let N = N(6BY,6AT°). If N =1 there is nothing to show,
so assume that N > 2. Then we may choose t1,...,txy € dBY such that

the balls ¢; + 3AT? are disjoint. Let i = ux be the distribution of X. By
the Chebyshev inequality,

w(3AT?) =1 — ]P(sup|<t,X>| > 3A) >
teT

[SUN )
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Observe also that for any symmetric set K and ¢t € R",

1
pu(t+K) = /eh(z*t)da: = /eh(z+t)da: = / 5(6”(“”7’&) + M@+ dy

K K K
> / o(h(z—t)+h(z+))/2 g
K

By Taylor’s expansion we have for some 6 € [0, 1],

h(z —t) + h(z +t)

= h(z) + i((Hessh(w + 6t)t,t) + (Hessh(x — 0t)t, t))

2
Lo
> h(z) — §a|t| .
Thus
4 1) 3 [[eHote - ool
K
and
N N ,
12 p(ti +3AT%) > el /2, (34T°)
i=1 i=1
> &e—azSZ/Q > N1/3e—a62/2
and (9) easily follows. O

Proposition 14. Suppose that X satisfies the Lo-Sudakov minoration with
constant C'x . Then for any p > 2

N(M,,(X),%Bg) <eb.

In particular if X is isotropic we have for 2 < p < n,

1/2 n
<E||X||2ZP(X)) < e(cx\/;r 1).

Proof. Suppose that N = N(M,(X),eCxp~'/2By) > e?. We can choose
ti,... tn € Mp(X), such that ||t; —t;]2 > eCxp~'/2. We have

1
E sup (t;, X) > —eCxp '/? log N > e.
i>N Cx
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However on the other hand,

1/p 1/p
Bsup(t:, X) < (Esup (6, )P) " < (Bl 0P )
i>N i>N S~

< NP max | (t, X)|, < e.
k2

To show the second estimate we proceed in a similar way as in the

proof of Proposition 8. We choose T C M p(X) such that |T| < eP and
My(X) C T + eCxp~'/>BY. We have

SO

Xz, x) < eCxp /2| X |+ sup |(t, X)|
teT
that

1/2 1/2
(BIXIZ,0x0) < eCxp™ PEIXP)2 + (Bsup i, X)F)

Vector X is isotropic, so E|X|? = n and since T C M,(X) and p > 2 we

get
1/2 1/p /p
(Esuple. 0R) " < (Bsuple.x)P) " < (el x)P)
teT teT teT
1
<7 /prgleaTX|||<t,X>llp<6- O
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