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GAUSSIAN APPROXIMATION NUMBERS AND
METRIC ENTROPY

ABSTRACT. The aim of this paper is to survey properties of Gauss-
ian approximation numbers. We state the basic relations between
these numbers and and other s-numbers as e.g. entropy, approxima-
tion or Kolmogorov numbers. Furthermore, we fill a gap and prove
new two-sided estimates in the case of operators with values in a
K-convex Banach space. In a final section we apply the relations
between Gaussian and other s-numbers to the d-dimensional inte-
gration operator defined on L2[0,1]¢.

Dedicated to the memory of Vladimir Nikolaevich Sudakov

§1. INTRODUCTION

Basic results of R. M. Dudley in 1967 and of V. N. Sudakov in 1969 re-
late regularity properties of a Gaussian random process with compactness
properties of its reproducing kernel Hilbert space (RKHS). These results
show that certain metric entropy conditions for the RKHS are either suffi-
cient (Dudley) or necessary (Sudakov) for the boundedness of a Gaussian
random process.

To get more refined results one has to analyze the degree of compactness
of the RKHS more thoroughly. A basic tool for those investigations is the
behavior of certain s-numbers of operators related to Gaussian processes.
Among these numbers the Gaussian approximation numbers turn out to
be very useful. For example, they have been used to study approximation
and small deviation properties of fractional Brownian motions or Riemann-
Liouville processes, or to verify general properties of Gaussian processes
(cf. [16,18,23] or [11]).

The aim of the present paper is to survey the properties of Gaussian
approximation numbers. In particular, we state the basic relations between

Key words and phrases: Gaussian approximation numbers, Kolmogorov numbers,
entropy numbers.
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these numbers and other s-numbers as e.g. entropy, approximation or Kol-
mogorov numbers. Hereby, we fill a gap and prove new two-sided estimates
in the case of so-called K-convex Banach spaces.

Throughout the paper, all spaces are assumed to be real, where H
always denotes a separable Hilbert space and E a Banach space.

For sequences of non-negative real numbers we write a, =< b,, if there
is a constant C' > 0 such that a,, < C - b, for all n € N, while a,, = b,
means a,, =< b, < a,.

A decreasing (resp. increasing) sequence (a,,) is said to satisfy the dou-
bling condition, if a,, ~ as,. Clearly, in this case we have a,, = a,, for all
m € N.

§2. THE DUDLEY—SUDAKOV THEOREM FOR OPERATORS

In order to formulate the above mentioned theorems of Dudley and
Sudakov in a functional analytical language, we need the following defini-
tions.

Let E and F be Banach spaces and let T : E — F be a (bounded linear)
operator. Its (dyadic) entropy numbers e, (T") are then defined by

2n—1

en(T):=inf¢e>0:T(Bg)C U B(yj;e) for some y1,...,ysn-1 €F

j=1

Here the set By denotes the closed unit ball in E while B(y;¢) is the (open)
e-ball in F' with center y € F. For properties of the entropy numbers we
refer to [12,22] and [5].

Suppose we are given an operator T’ from a separable Hilbert space H
into a Banach space E. Then its I-norm is defined by

1/2

I(T) = sup / ITHI? dymy (k)| Y,
0

HoCH

where the supremum is taken over all finite dimensional subspaces Hy C H
and g, denotes the (unique) standard Gaussian measure on Hy. This
norm was introduced in the context of cylinder measures and operator
ideals in [19] under the name 7 -norm.

Another way to look at I(T) is as follows. Let (£;)72; be an ii.d. se-
quence of N(0,1)-distributed random variables. Then [(T) < oo if and
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only if for one (or, equivalently, each) orthonormal basis (ONB) (ex)?2,
in H

sup H kaTekH <00  a.s..

n=1 f—1

In particular, if the series

o0
Z & Teyp, converges a.s. in B
k=1

for some ONB (e)72;, then I(T') < co and, moreover,

. o\ 1/2
> &Tex
k=1

which is independent of the special choice of the ONB (ex)r>1 in H.

Now we can state the above mentioned functional-analytic version of
the Dudley-Sudakov Theorem (cf. [7] and [25]). This reformulation was
given in [13].

(T)= |E

)

Theorem 2.1. There are universal constants c,C > 0 such that for all
operators T : H — E from a Hilbert space H into a Banach space E the
inequalities

o0
¢ supn'/2e,(T*) < U(T) < C anlmen(T*) (2.1)
n=1 n=1

hold, where T* : E* — H denotes the dual operator of T.

Remarks:

(1) In view of the basic result in [1] about the duality of entropy
numbers, inequalities (2.1) are also valid for T, i.e., one has

¢ sup n1/2en(T) <)< C Z n*1/2en(T) (2.2)
nzl n=1
with suitable constants ¢, C' > 0.
A direct proof of the first inequality in (2.2), without using the
duality of entropy numbers, was given in [9].
(2) A slightly stronger version of Theorem 2.1 is as follows: If

Z n~%e,(T*) < oo,
n=1
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then

(o)
Z &rTer  exists as. in B, (2.3)
k=1

and, moreover, [(T') may be estimated as stated in (2.1). Recall
that I(T) < oo does in general not imply the a.s. convergence of
the random series in E.

(3) The estimates in (2.1) are optimal and cannot be improved, as can
be seen, e.g., from the examples given in [13]. In order to get sharp
two-sided estimates, more refined tools like majorizing measures
are needed (cf. [26]).

§3. GAUSSIAN APPROXIMATION NUMBERS
The Dudley—Sudakov Theorem asserts the following: If the operator

(oo}
T : H — E is sufficiently compact, then  &.Tej converges almost surely
k=1

in E for one or, equivalently, for all orthonormal bases (ex)r>1 in H. Con-

versely, if this series converges almost surely, then necessarily the operator

satisfies e, (T') < en~'/2.

In this context, the following natural question arises: Which additional

o0

properties does the series > £Tey, possess, if the entropy numbers e, (T")
k=1

tend to zero much faster than of order n='/2? An answer in the language

of the corresponding Gaussian process was given in [17] and [18]: The

behavior of e,(T) as n — oo is directly connected to small deviation

properties of the Gaussian process, that is, with the behavior of

—log (IP’{H ifkTekH < 8}) — 00
k=1
as e — 0.

Another possibility is to ask for the speed of convergence of the series

o0

&pTer. TIs this related to the behavior of e,(T) as n — oo ? In other
k=1
words, does a faster convergence of e, (T') — 0 imply a faster convergence

n
of > &Tepasn — o007
k=1
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To make this more precise, we have to introduce so-called Gaussian
approximation numbers, which, to the best of our knowledge, appeared
for the first time in [20] (see also [23]).

Let T : H — E be an operator for which the series in (2.3) converges
a.s. in E. Then its Gaussian approximation numbers (sometimes also called
[-numbers) are defined by

(o)
> &Tey
k=n

It is well-known and easy to see (cf. [22] or [23]) that these numbers may
also be defined via

(i) In(T) =inf {{(T — S) : S operator from H to E, rank(S) < n}
or
(ii) 1,(T) =inf {{(T — TP) : P orthogonal projection in H,rank(P) < n}

or

(iii) 1n(T) =inf {Z(T\HOL) . Hy C H, dim(Hy) < n}

o\ 1/2

[o(T):=inf ¢ | E : (er)72, ONB in H

§4. RELATIONS TO OTHER APPROXIMATION QUANTITIES

The aim of this section is to relate the numbers [,,(T") with entropy
and approximation numbers of 7" or T, the dual of T', respectively. Given
an operator T" between two Banach spaces E and F, its approximation
numbers a,,(T") and its Kolmogorov numbers d,,(T') are defined as usual:

an(T) inf {||T" — S|| : S operator from E to F,rank(S) < n},
dn(T) inf {||QRT| : N C F, dim(N) <n}.

Here the operator Q4 appearing in the definition of d,,(T) is the canonical
quotient map from F' onto F/N.

Note that all numbers a,, d,,, e,, and l,, are additive in the sense of [5],
p.21. While the first three numbers are also multiplicative (cf. [5], same
place), the Gaussian approximation numbers satisfy the following modified
multiplicativity property. Let T : H — FE and S : H — H. Then for all
n,méeN

ln+m—1 (T o S) < ln(T) s Am (S) and
ln+m71 (T o S) <



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 199

Moreover, let us mention that a,(T) = d,(T) whenever T has values in a
Hilbert space (cf. [22]). Since a,(T') = a,(T*) for compact operators, we
also have

an(T)=d,(T*) for T:H — E compact.

To become acquainted with these numbers, we first consider a special
case. If T is a compact operator from a Hilbert space H into itself (or into
another Hilbert space), its singular numbers are defined by 5,(T) = /A, ,
where A\ > A2 > ... > 0 are the eigenvalues of the (compact and non-
negative self-adjoint) operator T*T : H — H, counted according to their
multiplicities.

Assume the singular numbers of T' are known, say s,(T) = 0,. Then
for the usual and for the Gaussian approximation numbers of 7" the exact
formulae (cf. [22] or [5], 4.4.12 and 1.5.11)

I 1/2
an(T) =0,  and MT):(Za,z) (4.1)
k=n

are valid, while for its entropy numbers a nice two-sided estimate holds,
which is due to [10],

1/k 1/k

k k
sup 27 "V/F H g < e (T) < 6-sup 27V/F H o . (4.2)

keN iy keN iy

Our aim is to prove sharp two-sided estimates between entropy numbers
and Gaussian approximation numbers, not only for a single operator T :
H — FE but for whole classes of operators. To this end, we have to impose
certain regularity conditions on the sequences (1,,(T")) or (en(T")). We will
show that, under fairly general conditions on the sequence (o,,), one has

IL(T)~ o, <= e (T)~n""%,. (4.3)

We will also need an additional assumption on the Banach space F, namely
that it is K-convex. For this notion we refer to [23]. Note that L, -spaces
are K-convex provided that 1 < p < oco.

Next we list the relevant regularity conditions in our context. It is easy
to verify that a decreasing sequence (o,,) of positive real numbers satisfies
the doubling condition o, ~ o2, if and only if

n%o,

inf

>0 for some a>0. (4.4)
n=k kaak



200 T. KUHN, W. LINDE

In other words, the sequence (n®oy,) is almost increasing. Obviously, (4.4)
implies o, = n~%, and therefore (0,,) cannot decay faster than polynomi-
ally, which excludes exponential decay.

A similar condition is

nB

On

sup
n>k kBog

< oo for some 8 >0, (4.5)
i.e. (nPo,) is almost decreasing. In particular, (4.5) implies o, < n=5,
and therefore (o,,) cannot decay slower than polynomially, which excludes
logarithmic decay.

These regularity conditions are not new, in fact they have been widely
used in the literature. For instance, the doubling condition plays an im-
portant role in the monograph [5], and the conditions (4.4) and (4.5) have
been used in the paper [14] to investigate entropy numbers of general di-
agonal operators D : £, — {,. A common feature of the three conditions
is that they are easy to check in concrete cases.

Note that (4.4) and (4.5) are indeed very mild regularity conditions and
hold for large classes of sequences. Typical examples are o, ~ n~%(1 +
logn)? with a > 0 and 3 € R, but also, more generally, o,, ~ n~ %y, with
©n slowly varying. Even more, given any 0 < a # < oo, one can con-
struct (o,,) satisfying (4.4) and (4.5) such that there are subsequences (ny,)
and (my) with o, & m;* and oy, = n,;ﬁ as k — oo. This construction
can be done similarly as the examples of weights with different indices in
subsection 4.4 of [15].

Now we state some concrete examples which illustrate how different the
relations between [,,(T') and e, (T) can be. Moreover, these examples will
provide a motivation why conditions (4.4) and (4.5) are very useful and
quite natural in our context.

Examples.

(1) Let D : ¢5 — {5 be a diagonal operator, defined by D(z,) =
(n~%z,,). Then (D) < oo if and only if @ > 1/2. In this case, (4.1)
and (4.2) give

«

I,(D)~n'?~® and e,(D)~n"%,

i.e. the desired relation (4.3) between Gaussian approximation
numbers and entropy numbers is fulfilled with o, = nl/2-,
Clearly (o,) satisfies both regularity conditions (4.4) and (4.5).
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This remains true, if we replace n~% in the definition of D by
n~%(1 +logn)® with a > 1/2 and 3 € R.

(2) If D : by — £y is defined by D(z,) = (n='/?(1 4+ logn)~/?~z,),
with @ > 0, then (4.1) and (4.2) imply

I.(D) ~ (1+logn)~® and e, (D) ~ n~'/?(1 + logn)~ />~

This shows that the desired relation (4.3) is not true if o, = (1 +
logn)~%. Obviously, since (o,,) decays too slowly, it fails (4.5) for
any 4 > 0.

(3) Now let D : £y — {5 be defined by D(z,) = (27"z,)- Then, again
by (4.1) and (4.2), we have

In(D)~27" and e,(D)~2"V".

Hence the desired relation (4.3) does not hold if ¢, = 27". Clearly,
(0,) does not satisfy the doubling condition, neither the regularity
condition (4.4) for any a > 0.

(4) Finally we consider the Volterra integration operator V' : Ly[0,1]

— C'[0,1], defined by V f(z) = [ f(t)dt. It is well known (see also
0
Sec. 5) that

L(V)~n"Y2(1 +logn)'/? and e (V)~n~t.

Clearly o,, = n~'/?(1+logn)'/? satisfies both regularity conditions
(4.4) and (4.5) for appropriate o > 0 resp. § > 0, but neverthe-
less (4.3) does not hold. Note that the target space C[0,1] of the
operator V is not K-convex.

These examples show that the relation (4.3) between Gaussian approxi-
mation numbers and entropy numbers 1,,(T) ~ 0, <= e,(T) ~n~"/?%0,
can only hold in general if

e the sequence (0,,) is regular in the sense of (4.4) and (4.5), and

e the operator 7' : H — FE has values in a K-convex Banach space F.

Before proceeding further we need some more preparations. First let us
state the following improved version of Carl’s inequality (cf. [4], Thm. 1.3).

Proposition 4.1. Let (by)72, be an increasing sequence of real numbers
such that

bor < K - by for all k€N
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and some k > 1. Then there is a constant ¢ > 0 only depending on k such
that for all operators T between any Banach spaces and for all n € N

Lc- .
1211?2( brep(T) <c 1I<n]?é<n by, di(T)

Let us point out that the same result holds for Gelfand numbers ¢ (T")
instead of Kolmogorov numbers (cf. [5], Sec. 3.1), and using ¢ (T*) <
d(T) (cf. [5], Prop. 2.5.5) we obtain

max by e, (T*) < ¢+ max by di(T) .
1<k<n 1<k

Later on we have to relate quite often the entropy numbers of an opera-
tor with those of its dual. A deep result about duality of entropy numbers
for operators between arbitrary Banach spaces was proved in [1]. Note that
here we only investigate operators 7" which are either defined on a Hilbert
space or map into a Hilbert space. In this situation Tomczak-Jaegermann
proved much earlier (cf. [28], Thm. 1), that for all & > 0 and all n € N the
estimates

1
3 max k%en(T™) < max. k%en(T™) < 32- max. k%en(T)  (4.6)
hold. This would have been sufficient for our purposes.

The next result is due to Pajor and Tomczak-Jaegermann (cf. [21] or
[23], Thm. 5.8). It estimates the Kolmogorov numbers of an operator T :
H — E satistying I[(T') < co. In view of Proposition 4.1, under some mild
regularity conditions, it improves the left-hand estimate in Theorem 2.1.

Proposition 4.2. There is a universal constant ¢ > 0 such that for all
operators T from a Hilbert space H into a Banach space E

sup n'/2d,(T) < ¢-I(T). (4.7)
neN

As a direct consequence of Proposition 4.2 we obtain the following lower
estimate for Gaussian approximation numbers.

Proposition 4.3. If T is an operator from a Hilbert space H into a Ba-
nach space E, then for alln € N

n*? dyy_1(T) < ¢ 1n(T)

with some universal constant ¢ > 0.
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Proof. Let S be an operator from H into E of rank less than n such that
(T —-S)<2-1,(T). (4.8)
Then (4.7) yields

sup kY2 d (T — S) <c-I(T - S). (4.9)
k>1
Since S is of rank less than n, we have d,(S) = 0, and estimates (4.8)
and (4.9) imply

n? dyp_1 (T) < ' dp (T — S) +n'/?d,(S)

<
<c-l(T—-S5)<2e-1,(T)

as asserted. O

Remark. An essential argument in the previous proof was that d,, (S) = 0.
Note that for every operator S # 0 one has e,(S) > 0 for all n € N,
while 1,(S) = 0 if rank(S) < n. Hence, a similar direct estimate between
ean—1(T) and 1,,(T') cannot hold.

As a consequence of Propositions 4.1 and 4.3 we obtain the following,.

Corollary 4.4. Let (b))%, be an increasing sequence of positive real num-

bers satisfying the doubling condition by =~ by,. Then there is a constant

¢ > 0 such that for all operators T from a Hilbert space into an arbitrary
Banach space and for all n € N it follows that
1/2 N\ < a

max. b k*/° max{ey(T),ex(T™)} < c max. b 1 (T) . (4.10)

Our next objective is to estimate 1,,(T") from above suitably. Here the

following deep result due to G. Pisier turns out to be very useful (cf. [23],
Theorem 9.1).

Proposition 4.5. There exist universal constants c1,co > 0 such that for
all operators T from H into E and all n € N the estimate

n(T) <er Y ex(T)k2(1 + logk) (4.11)
k>con

holds. Moreover, if E is K-convex (e.g. E = L,, 1 <p < o), i.e. E does
not contain 17 ’s uniformly (cf. [23], Thm. 2.4), then (4.11) is valid without
the log-term on the right hand side.
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Remark. Note that Proposition 4.5 was originally stated with so-called
volume numbers v, (T*) on the right hand side of (4.11). The above weaker
form follows by v, (T*) < 2- e, (T%).

Proposition 4.6. Let (0,)52, be a decreasing sequence satisfying

n%o,

Oop & Op and sup < oo for some a>0.

n>k k%o

Then one has for operators T from a Hilbert space H into any Banach
space E

In(T) =0, = en(T) = n"Y%0, = 1,(T) <0, (1+logn). (4.12)
If E is K-convez, then one even has the equivalence
L(T) <0, <= e,(T)=<n"%,.

Proof. Let I (T) < 0. By our assumption o2, ~ 0, it is possible to apply
Corollary 4.4 with b, = 1/0}, and this immediately gives e, (T) < k~/?0y,.
Let now ex(T) < k~'/?0,. By (4.6) this implies

ek(T*) <L c3 k71/20'k .

Moreover, due to the second assumption on (¢;,), we have
Com\ @
o < ¢4 (27) Olcon) for k> con.
Inserting this in formula (4.11) from Proposition 4.5 we obtain

W(T) < a > k7 '7Pex(T*)(1+logk)

k>can
< crezceq (can)” Opeyn Z E1(1 + log k)
k>can
N Ole,n) (1 +1logn) = 0, (14 1ogn).
If F is K-convex, then this estimate holds without the log-term, and the
proof is finished. O

Conjecture. It is very likely that, under the assumptions on (o,) in
Proposition 4.6, we even have the following stronger version of the second
implication in (4.12). At least this is suggested by all known examples.

en(T) 2020, = Ih(T) 2 0a(1 +logn)'/?
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Remark. However, if we only assume the doubling condition o2, =~ oy,
then the order of the gap between [,,(T") and e, (T') can be strictly larger
than (n log n)1/2, even for operators in Hilbert spaces. For example, if we
slightly modify example 2 from above and define D : {5 — ¢ by

D(z,) = (n~1/*(1 +logn) ~/2(log(2 + logn)) /> ~*a,,)
for some a > 0, then
Io(D) = (loglog n)~ while en (D) ~ n~'/2(log n) /2 (log log n) "1/~ .
Hence in this case the gap between [,,(D) and e, (D) is of order
(n logn loglogn)*/?.

Let us state an important special case of Proposition 4.6.

Proposition 4.7. Suppose a > 0 and B € R. Then for general Banach

spaces E and operators T from H into E we have

141 B

(1+logn)”
nC!

(1+logn)?

(1+logn)?+t
na+1/2 .

[e3

(4.13)

In(T) = en(T) = In(T) =

Note that it is not clear at all whether or not relations similar to (4.12)
and (4.13) are valid for lower estimates. But for equivalences we have the
following result.

Theorem 4.8. Let T be an operator from a Hilbert space H into a K-
convez Banach space E (e.g. E =L, for 1 < p < o0). If (0,)5%, satisfies
the assumptions of Proposition 4.6, then the following are equivalent:

(1)  1L(T)=o,

2)  en(T)=n"'?0,

(3) e (T*) = n~?%g,.

Proof. As mentioned above, the equivalence of (2) and (3) follows either
by the results in [1] or in [28]. So it remains to verify (1) <= (3).
Let us first assume (1). From Proposition 4.6 we derive then

en(T*) < n~%q,
Next we prove that (1) implies

en(T™) = n2q, .
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By assumption and Proposition 4.5 we have

o on <In(T)<er- Y k72 ep(T). (4.14)
k>can

Recall that E is assumed to be K-convex. For some (large integer) p > cs,
to be specified later, we split the sum on the right hand side of (4.14) as

D Y (4.15)

con<k<pn k>pn

and estimate the two parts separately. For the first sum we have

Z k71/2 ek(T*) < e[CQ’I’L](T*) Z k71/2

can<k<pn can<k<pn (4.16)
< 2(pn)" o, (T7).
Now we pass to the second sum in (4.15). We have already shown that (1)
implies
en(T*) < ez - k™20, (4.17)
for some ¢3 > 0. Moreover, by the second assumption on (o) there is an

a > 0 such that

or < ¢4 (%)a op forall k=>=n, (4.18)

and some constant ¢4 > 0. Inserting (4.17) and (4.18) into the second sum
in (4.15) we obtain

Z k_l/Qek(T*) < e Z E'or < cgean®op, Z ke
k>pn k>pn k>pn
1
g c3c4na0n.7:%.
a(pn)®  ap®
Combining this with (4.14), (4.15) and (4.16) we get
co-0n < C1- Z k_l/Qek(T*) +cp- Z k_1/2ek(T*)

con<k<pn k>pn

C1 C3C
< e (2om)" e (T7) + =

On-

"
ap®

Now we choose p > ¢; so large that
C1C3C4 < ‘o )
ap® 2
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Note that the constants ¢y, ..., c4 are independent on p. This gives

* Co —1/2
TV > ——+ - s
e[cgn]( ) 21 (2p)1/2 n o

and by o3, ~ 0, we conclude that e,(T*) = n~'20,. Thus we have
shown (1) = (3).
Let us verify now (3) = (1). The upper estimate for [,,(T) follows di-
rectly from (3) via Proposition 4.6.
For the lower estimate we use Corollary 4.4, formula (4.10), with
k
b, = —.
Ok
This is possible, since (by) is increasing and satisfies the doubling condition
br, =~ boj,. Hence there are constants ci,cs,c3 > 0 such that

en(T) = e k™' ?or , 1(T) < coop forall keN (4.19)
and

max by k' ?er(T*) < c¢3 max bplp(T) forallm,neN. (4.20)
1<ks<mn 1<k<mn
Here m € N is an auxiliary parameter that will be specified later. The
simple idea, based on a clever argument in [3] which has also been used
in [24] and [6], is to show that the maximum on the right hand side of (4.20)
cannot be attained for k < n, provided that m is large enough. The proper
choice is m > ¢z c3/cy. Indeed, then (4.19) implies
1/2 *) > <

1<r22}r(nn bk /“er(T*) = ¢y mn and c3 121152% bl (T) < c3c2 mn < cymn.
Hence the maximum on the right hand side of (4.20) is attained for some
k > n and we get

comn < cg max bl (T) < esbmnln(T) =cs5 -
n<k<mn Omn

1,(T).

This shows the desired lower bound for the Gaussian approximation num-
bers

L(T) = omn = 0op

and completes the proof of the Proposition. O

An important special case of Theorem 4.8 reads as follows:
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Proposition 4.9. If @ > 0 and B € R, then we have for operators T from
H into a K -convexr Banach space E

In(T) ~n~%(1+1logn)? if and only if e,(T) ~n*"'/2(1 +logn)®

Finally let us state a result in [16] which relates the Gaussian approxi-
mation numbers [, (T') with the ”ordinary” approximation numbers a,, (7).

Proposition 4.10. Let T be an operator from H into E and let m,n be
any natural numbers. Then it holds

log(m 4+ 1) - apim(T) < ¢ 1,(T)
with some universal ¢ > 0. In particular, for alln > 1
In(

log(n + 1) - a2, (T) < T).

§5. AN EXAMPLE

Given d > 1, the d-dimensional integration operator Vy is defined by

t1 tq
(Vdf)(t): f(a:l,...,a:d)da:d~'~da:1, t:(tl,...,td).
[]

It is known and easy to see that V; is a bounded operator from L»[0, 1]?
into the Banach space C[0, 1] of continuous functions on [0, 1]%.
The following has been proved in [16].

Proposition 5.1. The Gaussian approzimation numbers of Vy satisfy
L(Va) =21 +1logn)®™" if Vgt La[0,1] — Ly[0,1]7, 1 < p < o0,
and
Li(Va) ~n~ 2 (1 +1logn)® 2 if Vi Lo[0,1]* — C[o, 1]%.
From Propositions 4.7 and 4.9 together with
en(Va 1 L2[0,1]* — L[0,1]7) < en (Va1 L2[0,1]* — C[0,1]%)

we derive the following result, which by different methods had been proved
in [8].

Proposition 5.2. The entropy numbers of Vy satisfy
en(Va) mnt(L+1logn)™" if Vi:Ls[0,1]% — L,[0,1]%, 1 < p < 0,
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and
n~ (14 logn)d_1 <en(Vy) =n 11+ logn)d_l/2

5.1
if Vy:Ls[0,1]¢ — C[0,1]. 5-1)
Remark. For d = 1, the behavior of en(Vd . Ly[0,1]7 — (o, I]d) is
well-known, and for d = 2 it is due to M. Talagrand in [27]. It holds

en(V1) mn~' and  en(Va) = n (1 +logn)®/?.

If d > 2, then the exact behavior of e,(Vy) is an open problem. There is a
partial result in [2] asserting the following.

Proposition 5.3. If d > 2, there is an n > 0 such that
n~ (1 +logn) 1 <e, (Vi Lo[0,1]4 — C[0,1]9) .
In particular, if d > 2, then the lower estimate in (5.1) is not sharp.

Finally, for the sake of completeness, let us also mention the behavior
of a,(Vy). Here we have (see [16])

an(Vy : L2[0,1]% — L[0,1]%) ~ n~ (1 4 logn)?~!

and
an(Va : L[0,1]4 — C[0,1]%) ~ n~/?(1 + logn)®~ .
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