
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.T. K�uhn, W. LindeGAUSSIAN APPROXIMATION NUMBERS ANDMETRIC ENTROPYAbstra
t. The aim of this paper is to survey properties of Gauss-ian approximation numbers. We state the basi
 relations betweenthese numbers and and other s-numbers as e.g. entropy, approxima-tion or Kolmogorov numbers. Furthermore, we �ll a gap and provenew two-sided estimates in the 
ase of operators with values in aK-
onvex Bana
h spa
e. In a �nal se
tion we apply the relationsbetween Gaussian and other s-numbers to the d-dimensional inte-gration operator de�ned on L2[0; 1℄d.Dedi
ated to the memory of Vladimir Nikolaevi
h Sudakov
§1. Introdu
tionBasi
 results of R. M. Dudley in 1967 and of V. N. Sudakov in 1969 re-late regularity properties of a Gaussian random pro
ess with 
ompa
tnessproperties of its reprodu
ing kernel Hilbert spa
e (RKHS). These resultsshow that 
ertain metri
 entropy 
onditions for the RKHS are either suÆ-
ient (Dudley) or ne
essary (Sudakov) for the boundedness of a Gaussianrandom pro
ess.To get more re�ned results one has to analyze the degree of 
ompa
tnessof the RKHS more thoroughly. A basi
 tool for those investigations is thebehavior of 
ertain s-numbers of operators related to Gaussian pro
esses.Among these numbers the Gaussian approximation numbers turn out tobe very useful. For example, they have been used to study approximationand small deviation properties of fra
tional Brownian motions or Riemann-Liouville pro
esses, or to verify general properties of Gaussian pro
esses(
f. [16, 18, 23℄ or [11℄).The aim of the present paper is to survey the properties of Gaussianapproximation numbers. In parti
ular, we state the basi
 relations betweenKey words and phrases: Gaussian approximation numbers, Kolmogorov numbers,entropy numbers. 194



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 195these numbers and other s-numbers as e.g. entropy, approximation or Kol-mogorov numbers. Hereby, we �ll a gap and prove new two-sided estimatesin the 
ase of so-
alled K-
onvex Bana
h spa
es.Throughout the paper, all spa
es are assumed to be real, where Halways denotes a separable Hilbert spa
e and E a Bana
h spa
e.For sequen
es of non-negative real numbers we write an � bn, if thereis a 
onstant C > 0 su
h that an 6 C · bn for all n ∈ N , while an ≈ bnmeans an � bn � an.A de
reasing (resp. in
reasing) sequen
e (an) is said to satisfy the dou-bling 
ondition, if an ≈ a2n. Clearly, in this 
ase we have an ≈ amn for allm ∈ N.
§2. The Dudley{Sudakov Theorem for OperatorsIn order to formulate the above mentioned theorems of Dudley andSudakov in a fun
tional analyti
al language, we need the following de�ni-tions.Let E and F be Bana
h spa
es and let T : E → F be a (bounded linear)operator. Its (dyadi
) entropy numbers en(T ) are then de�ned byen(T ) := inf



" > 0 : T (BE)⊆2n−1
⋃j=1 B(yj ; ") for some y1; : : : ; y2n−1 ∈F



:Here the set BE denotes the 
losed unit ball in E while B(y; ") is the (open)"-ball in F with 
enter y ∈ F . For properties of the entropy numbers werefer to [12, 22℄ and [5℄.Suppose we are given an operator T from a separable Hilbert spa
e Hinto a Bana
h spa
e E. Then its l-norm is de�ned byl(T ) := supH0⊆H∫H0 ‖Th‖2 d
H0(h)1=2








;where the supremum is taken over all �nite dimensional subspa
esH0 ⊆ Hand 
H0 denotes the (unique) standard Gaussian measure on H0. Thisnorm was introdu
ed in the 
ontext of 
ylinder measures and operatorideals in [19℄ under the name �
-norm.Another way to look at l(T ) is as follows. Let (�k)∞k=1 be an i.i.d. se-quen
e of N (0; 1)-distributed random variables. Then l(T ) < ∞ if and



196 T. K�UHN, W. LINDEonly if for one (or, equivalently, ea
h) orthonormal basis (ONB) (ek)∞k=1in H supn>1∥∥∥ n
∑k=1 �kTek∥∥∥ < ∞ a.s. :In parti
ular, if the series

∞
∑k=1 �kTek 
onverges a.s. in Efor some ONB (ek)∞k=1, then l(T ) < ∞ and, moreover,l(T ) = E

∥

∥

∥

∥

∥

∞
∑k=1 �kTek∥∥∥∥∥21=2 ;whi
h is independent of the spe
ial 
hoi
e of the ONB (ek)k>1 in H .Now we 
an state the above mentioned fun
tional-analyti
 version ofthe Dudley{Sudakov Theorem (
f. [7℄ and [25℄). This reformulation wasgiven in [13℄.Theorem 2.1. There are universal 
onstants 
; C > 0 su
h that for alloperators T : H → E from a Hilbert spa
e H into a Bana
h spa
e E theinequalities 
 supn>1n1=2en(T ∗) 6 l(T ) 6 C ∞

∑n=1n−1=2en(T ∗) (2.1)hold, where T ∗ : E∗ → H denotes the dual operator of T .Remarks:(1) In view of the basi
 result in [1℄ about the duality of entropynumbers, inequalities (2.1) are also valid for T , i.e., one has
 supn>1n1=2en(T ) 6 l(T ) 6 C ∞
∑n=1n−1=2en(T ) (2.2)with suitable 
onstants 
, C > 0.A dire
t proof of the �rst inequality in (2.2), without using theduality of entropy numbers, was given in [9℄.(2) A slightly stronger version of Theorem 2.1 is as follows: If

∞
∑n=1n−1=2en(T ∗) <∞;



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 197then
∞
∑k=1 �kTek exists a.s. in E ; (2.3)and, moreover, l(T ) may be estimated as stated in (2.1). Re
allthat l(T ) < ∞ does in general not imply the a.s. 
onvergen
e ofthe random series in E.(3) The estimates in (2.1) are optimal and 
annot be improved, as 
anbe seen, e.g., from the examples given in [13℄. In order to get sharptwo-sided estimates, more re�ned tools like majorizing measuresare needed (
f. [26℄).

§3. Gaussian Approximation NumbersThe Dudley{Sudakov Theorem asserts the following: If the operatorT : H → E is suÆ
iently 
ompa
t, then ∞
∑k=1 �kTek 
onverges almost surelyin E for one or, equivalently, for all orthonormal bases (ek)k>1 in H . Con-versely, if this series 
onverges almost surely, then ne
essarily the operatorsatis�es en(T ) 6 
 n−1=2.In this 
ontext, the following natural question arises: Whi
h additionalproperties does the series ∞

∑k=1 �kTek possess, if the entropy numbers en(T )tend to zero mu
h faster than of order n−1=2? An answer in the languageof the 
orresponding Gaussian pro
ess was given in [17℄ and [18℄: Thebehavior of en(T ) as n → ∞ is dire
tly 
onne
ted to small deviationproperties of the Gaussian pro
ess, that is, with the behavior of
− log(P

{

∥

∥

∥

∞
∑k=1 �kTek∥∥∥ < "})→ ∞as "→ 0.Another possibility is to ask for the speed of 
onvergen
e of the series

∞
∑k=1 �kTek. Is this related to the behavior of en(T ) as n → ∞ ? In otherwords, does a faster 
onvergen
e of en(T ) → 0 imply a faster 
onvergen
eof n
∑k=1 �kTek as n → ∞ ?



198 T. K�UHN, W. LINDETo make this more pre
ise, we have to introdu
e so-
alled Gaussianapproximation numbers, whi
h, to the best of our knowledge, appearedfor the �rst time in [20℄ (see also [23℄).Let T : H → E be an operator for whi
h the series in (2.3) 
onvergesa.s. in E. Then its Gaussian approximation numbers (sometimes also 
alledl-numbers) are de�ned byln(T ) := inf






E

∥

∥

∥

∥

∥

∞
∑k=n �kTek∥∥∥∥∥21=2 : (ek)∞k=1 ONB in H





:It is well-known and easy to see (
f. [22℄ or [23℄) that these numbers mayalso be de�ned via(i) ln(T ) = inf {l(T − S) : S operator from H to E; rank(S) < n}or(ii) ln(T ) = inf {l(T − TP ) : P orthogonal proje
tion inH; rank(P ) < n}or(iii) ln(T ) = inf {l(T ∣∣H⊥0 ) : H0 ⊆ H; dim(H0) < n} :
§4. Relations to Other Approximation QuantitiesThe aim of this se
tion is to relate the numbers ln(T ) with entropyand approximation numbers of T or T ∗, the dual of T , respe
tively. Givenan operator T between two Bana
h spa
es E and F , its approximationnumbers an(T ) and its Kolmogorov numbers dn(T ) are de�ned as usual:an(T ) := inf {‖T − S‖ : S operator from E to F ; rank(S) < n} ;dn(T ) := inf {∥∥QFNT∥∥ : N ⊆ F; dim(N) < n} :Here the operator QFN appearing in the de�nition of dn(T ) is the 
anoni
alquotient map from F onto F=N .Note that all numbers an, dn, en and ln are additive in the sense of [5℄,p.21. While the �rst three numbers are also multipli
ative (
f. [5℄, samepla
e), the Gaussian approximation numbers satisfy the following modi�edmultipli
ativity property. Let T : H → E and S : H → H . Then for alln;m ∈ N ln+m−1(T ◦ S) 6 ln(T ) · am(S) andln+m−1(T ◦ S) 6 an(T ) · lm(S) :



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 199Moreover, let us mention that an(T ) = dn(T ) whenever T has values in aHilbert spa
e (
f. [22℄). Sin
e an(T ) = an(T ∗) for 
ompa
t operators, wealso have an(T ) = dn(T ∗) for T : H → E 
ompa
t.To be
ome a
quainted with these numbers, we �rst 
onsider a spe
ial
ase. If T is a 
ompa
t operator from a Hilbert spa
e H into itself (or intoanother Hilbert spa
e), its singular numbers are de�ned by sn(T ) = √�n ,where �1 > �2 > : : : > 0 are the eigenvalues of the (
ompa
t and non-negative self-adjoint) operator T ∗T : H → H , 
ounted a

ording to theirmultipli
ities.Assume the singular numbers of T are known, say sn(T ) = �n. Thenfor the usual and for the Gaussian approximation numbers of T the exa
tformulae (
f. [22℄ or [5℄, 4.4.12 and 1.5.11)an(T ) = �n and ln(T ) = ( ∞
∑k=n�2k)1=2 (4.1)are valid, while for its entropy numbers a ni
e two-sided estimate holds,whi
h is due to [10℄,supk∈N

2−n=k k
∏j=1�j1=k

6 en+1(T ) 6 6 · supk∈N

2−n=k k
∏j=1 �j1=k : (4.2)Our aim is to prove sharp two-sided estimates between entropy numbersand Gaussian approximation numbers, not only for a single operator T :H → E but for whole 
lasses of operators. To this end, we have to impose
ertain regularity 
onditions on the sequen
es (ln(T )) or (en(T )). We willshow that, under fairly general 
onditions on the sequen
e (�n), one hasln(T ) ≈ �n ⇐⇒ en(T ) ≈ n−1=2�n : (4.3)We will also need an additional assumption on the Bana
h spa
e E, namelythat it is K-
onvex. For this notion we refer to [23℄. Note that Lp -spa
esare K-
onvex provided that 1 < p < ∞.Next we list the relevant regularity 
onditions in our 
ontext. It is easyto verify that a de
reasing sequen
e (�n) of positive real numbers satis�esthe doubling 
ondition �n ≈ �2n if and only ifinfn>k n��nk��k > 0 for some � > 0 : (4.4)



200 T. K�UHN, W. LINDEIn other words, the sequen
e (n��n) is almost in
reasing. Obviously, (4.4)implies �n � n−�, and therefore (�n) 
annot de
ay faster than polynomi-ally, whi
h ex
ludes exponential de
ay.A similar 
ondition issupn>k n��nk��k < ∞ for some � > 0 ; (4.5)i.e. (n��n) is almost de
reasing. In parti
ular, (4.5) implies �n � n−� ,and therefore (�n) 
annot de
ay slower than polynomially, whi
h ex
ludeslogarithmi
 de
ay.These regularity 
onditions are not new, in fa
t they have been widelyused in the literature. For instan
e, the doubling 
ondition plays an im-portant role in the monograph [5℄, and the 
onditions (4.4) and (4.5) havebeen used in the paper [14℄ to investigate entropy numbers of general di-agonal operators D : `p → `q. A 
ommon feature of the three 
onditionsis that they are easy to 
he
k in 
on
rete 
ases.Note that (4.4) and (4.5) are indeed very mild regularity 
onditions andhold for large 
lasses of sequen
es. Typi
al examples are �n ≈ n−�(1 +logn)� with � > 0 and � ∈ R, but also, more generally, �n ≈ n−�'n with'n slowly varying. Even more, given any 0 < � 6= � < ∞, one 
an 
on-stru
t (�n) satisfying (4.4) and (4.5) su
h that there are subsequen
es (nk)and (mk) with �mk ≈ m−�k and �nk ≈ n−�k as k → ∞. This 
onstru
tion
an be done similarly as the examples of weights with di�erent indi
es insubse
tion 4.4 of [15℄.Now we state some 
on
rete examples whi
h illustrate how di�erent therelations between ln(T ) and en(T ) 
an be. Moreover, these examples willprovide a motivation why 
onditions (4.4) and (4.5) are very useful andquite natural in our 
ontext.Examples.(1) Let D : `2 → `2 be a diagonal operator, de�ned by D(xn) =(n−�xn). Then l(D) <∞ if and only if � > 1=2. In this 
ase, (4.1)and (4.2) giveln(D) ≈ n1=2−� and en(D) ≈ n−� ;i.e. the desired relation (4.3) between Gaussian approximationnumbers and entropy numbers is ful�lled with �n := n1=2−�.Clearly (�n) satis�es both regularity 
onditions (4.4) and (4.5).



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 201This remains true, if we repla
e n−� in the de�nition of D byn−�(1 + logn)� with � > 1=2 and � ∈ R.(2) If D : `2 → `2 is de�ned by D(xn) = (n−1=2(1 + logn)−1=2−�xn),with � > 0, then (4.1) and (4.2) implyln(D) ≈ (1 + logn)−� and en(D) ≈ n−1=2(1 + logn)−1=2−� :This shows that the desired relation (4.3) is not true if �n = (1 +logn)−�. Obviously, sin
e (�n) de
ays too slowly, it fails (4.5) forany � > 0.(3) Now let D : `2 → `2 be de�ned by D(xn) = (2−nxn). Then, againby (4.1) and (4.2), we haveln(D) ≈ 2−n and en(D) ≈ 2−√n :Hen
e the desired relation (4.3) does not hold if �n = 2−n. Clearly,(�n) does not satisfy the doubling 
ondition, neither the regularity
ondition (4.4) for any � > 0.(4) Finally we 
onsider the Volterra integration operator V : L2[0; 1℄
→ C[0; 1℄, de�ned by V f(x) = x

∫0 f(t) dt. It is well known (see alsoSe
. 5) thatln(V ) ≈ n−1=2(1 + logn)1=2 and en(V ) ≈ n−1 :Clearly �n = n−1=2(1+logn)1=2 satis�es both regularity 
onditions(4.4) and (4.5) for appropriate � > 0 resp. � > 0, but neverthe-less (4.3) does not hold. Note that the target spa
e C[0; 1℄ of theoperator V is not K-
onvex.These examples show that the relation (4.3) between Gaussian approxi-mation numbers and entropy numbers ln(T ) ≈ �n ⇐⇒ en(T ) ≈ n−1=2�n
an only hold in general if
• the sequen
e (�n) is regular in the sense of (4.4) and (4.5), and
• the operator T : H → E has values in a K-
onvex Bana
h spa
e E.Before pro
eeding further we need some more preparations. First let usstate the following improved version of Carl's inequality (
f. [4℄, Thm. 1.3).Proposition 4.1. Let (bk)∞k=1 be an in
reasing sequen
e of real numberssu
h that b2k 6 � · bk for all k ∈ N



202 T. K�UHN, W. LINDEand some � > 1. Then there is a 
onstant 
 > 0 only depending on � su
hthat for all operators T between any Bana
h spa
es and for all n ∈ Nmax16k6n bk ek(T ) 6 
 · max16k6n bk dk(T ) :Let us point out that the same result holds for Gelfand numbers 
k(T )instead of Kolmogorov numbers (
f. [5℄, Se
. 3.1), and using 
k(T ∗) 6dk(T ) (
f. [5℄, Prop. 2.5.5) we obtainmax16k6n bk ek(T ∗) 6 
 · max16k6n bk dk(T ) :Later on we have to relate quite often the entropy numbers of an opera-tor with those of its dual. A deep result about duality of entropy numbersfor operators between arbitrary Bana
h spa
es was proved in [1℄. Note thathere we only investigate operators T whi
h are either de�ned on a Hilbertspa
e or map into a Hilbert spa
e. In this situation Tom
zak-Jaegermannproved mu
h earlier (
f. [28℄, Thm. 1), that for all � > 0 and all n ∈ N theestimates132 · max16k6n k�en(T ∗) 6 max16k6n k�en(T ∗) 6 32 · max16k6n k�en(T ) (4.6)hold. This would have been suÆ
ient for our purposes.The next result is due to Pajor and Tom
zak-Jaegermann (
f. [21℄ or[23℄, Thm. 5.8). It estimates the Kolmogorov numbers of an operator T :H → E satisfying l(T ) < ∞. In view of Proposition 4.1, under some mildregularity 
onditions, it improves the left-hand estimate in Theorem 2.1.Proposition 4.2. There is a universal 
onstant 
 > 0 su
h that for alloperators T from a Hilbert spa
e H into a Bana
h spa
e Esupn∈N

n1=2 dn(T ) 6 
 · l(T ) : (4.7)As a dire
t 
onsequen
e of Proposition 4.2 we obtain the following lowerestimate for Gaussian approximation numbers.Proposition 4.3. If T is an operator from a Hilbert spa
e H into a Ba-na
h spa
e E, then for all n ∈ Nn1=2 d2n−1(T ) 6 
 · ln(T )with some universal 
onstant 
 > 0.



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 203Proof. Let S be an operator from H into E of rank less than n su
h thatl(T − S) 6 2 · ln(T ) : (4.8)Then (4.7) yields supk>1 k1=2 dk(T − S) 6 
 · l(T − S) : (4.9)Sin
e S is of rank less than n, we have dn(S) = 0, and estimates (4.8)and (4.9) implyn1=2 d2n−1(T ) 6 n1=2 dn(T − S) + n1=2 dn(S)
6 
 · l(T − S) 6 2
 · ln(T )as asserted. �Remark. An essential argument in the previous proof was that dn(S) = 0.Note that for every operator S 6= 0 one has en(S) > 0 for all n ∈ N,while ln(S) = 0 if rank(S) < n. Hen
e, a similar dire
t estimate betweene2n−1(T ) and ln(T ) 
annot hold.As a 
onsequen
e of Propositions 4.1 and 4.3 we obtain the following.Corollary 4.4. Let (bk)∞k=1 be an in
reasing sequen
e of positive real num-bers satisfying the doubling 
ondition bk ≈ b2k. Then there is a 
onstant
 > 0 su
h that for all operators T from a Hilbert spa
e into an arbitraryBana
h spa
e and for all n ∈ N it follows thatmax16k6n bk k1=2 max{ek(T ); ek(T ∗)} 6 
 · max16k6n bk lk(T ) : (4.10)Our next obje
tive is to estimate ln(T ) from above suitably. Here thefollowing deep result due to G. Pisier turns out to be very useful (
f. [23℄,Theorem 9.1).Proposition 4.5. There exist universal 
onstants 
1; 
2 > 0 su
h that forall operators T from H into E and all n ∈ N the estimateln(T ) 6 
1 ∑k>
2n ek(T ∗)k−1=2(1 + log k) (4.11)holds. Moreover, if E is K-
onvex (e.g. E = Lp, 1 < p < ∞), i.e. E doesnot 
ontain ln1 's uniformly (
f. [23℄, Thm. 2.4), then (4.11) is valid withoutthe log-term on the right hand side.



204 T. K�UHN, W. LINDERemark. Note that Proposition 4.5 was originally stated with so-
alledvolume numbers vn(T ∗) on the right hand side of (4.11). The above weakerform follows by vn(T ∗) 6 2 · en(T ∗).Proposition 4.6. Let (�n)∞n=1 be a de
reasing sequen
e satisfying�2n ≈ �n and supn>k n��nk��k < ∞ for some � > 0 :Then one has for operators T from a Hilbert spa
e H into any Bana
hspa
e Eln(T ) � �n =⇒ en(T ) � n−1=2�n =⇒ ln(T ) � �n (1 + logn): (4.12)If E is K-
onvex, then one even has the equivalen
eln(T ) � �n ⇐⇒ en(T ) � n−1=2�n :Proof. Let lk(T ) � �k. By our assumption �2n ≈ �n it is possible to applyCorollary 4.4 with bk = 1=�k, and this immediately gives ek(T ) � k−1=2�k.Let now ek(T ) � k−1=2�k. By (4.6) this impliesek(T ∗) 6 
3 k−1=2�k :Moreover, due to the se
ond assumption on (�n), we have�k 6 
4 (
2nk )� �[
2n℄ for k > 
2n :Inserting this in formula (4.11) from Proposition 4.5 we obtainln(T ) 6 
1 ∑k>
2n k−1=2ek(T ∗)(1 + log k)
6 
1 
3 
4 (
2n)� �[
2n℄ ∑k>
2n k−1−�(1 + log k)
≈ �[
2n℄ (1 + logn) ≈ �n (1 + logn) :If E is K-
onvex, then this estimate holds without the log-term, and theproof is �nished. �Conje
ture. It is very likely that, under the assumptions on (�n) inProposition 4.6, we even have the following stronger version of the se
ondimpli
ation in (4.12). At least this is suggested by all known examples.en(T ) � n−1=2�n =⇒ ln(T ) � �n(1 + logn)1=2



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 205Remark. However, if we only assume the doubling 
ondition �2n ≈ �n,then the order of the gap between ln(T ) and en(T ) 
an be stri
tly largerthan (n logn)1=2, even for operators in Hilbert spa
es. For example, if weslightly modify example 2 from above and de�ne D : `2 → `2 byD(xn) = (n−1=2(1 + logn)−1=2(log(2 + logn))−1=2−�xn)for some � > 0, thenln(D) ≈ (log logn)−� while en(D) ≈ n−1=2(logn)−1=2(log logn)−1=2−� :Hen
e in this 
ase the gap between ln(D) and en(D) is of order(n logn log logn)1=2:Let us state an important spe
ial 
ase of Proposition 4.6.Proposition 4.7. Suppose � > 0 and � ∈ R. Then for general Bana
hspa
es E and operators T from H into E we haveln(T ) � (1 + logn)�n� ⇒ en(T ) � (1 + logn)�n�+1=2 ⇒ ln(T ) � (1 + logn)�+1n� :(4.13)Note that it is not 
lear at all whether or not relations similar to (4.12)and (4.13) are valid for lower estimates. But for equivalen
es we have thefollowing result.Theorem 4.8. Let T be an operator from a Hilbert spa
e H into a K-
onvex Bana
h spa
e E (e.g. E = Lp for 1 < p < ∞). If (�n)∞n=1 satis�esthe assumptions of Proposition 4:6, then the following are equivalent:(1) ln(T ) ≈ �n(2) en(T ) ≈ n−1=2�n(3) en(T ∗) ≈ n−1=2�n.Proof. As mentioned above, the equivalen
e of (2) and (3) follows eitherby the results in [1℄ or in [28℄. So it remains to verify (1) ⇐⇒ (3).Let us �rst assume (1). From Proposition 4.6 we derive thenen(T ∗) � n−1=2�n :Next we prove that (1) impliesen(T ∗) � n−1=2�n :



206 T. K�UHN, W. LINDEBy assumption and Proposition 4.5 we have
0 · �n 6 ln(T ) 6 
1 · ∑k>
2 n k−1=2 ek(T ∗) : (4.14)Re
all that E is assumed to be K-
onvex. For some (large integer) � > 
2,to be spe
i�ed later, we split the sum on the right hand side of (4.14) as
∑
2n6k6�n : : :+ ∑k>�n : : : (4.15)and estimate the two parts separately. For the �rst sum we have

∑
2n6k6�n k−1=2 ek(T ∗) 6 e[
2n℄(T ∗) ∑
2n6k6�n k−1=2
6 2 (�n)1=2e[
2n℄(T ∗) : (4.16)Now we pass to the se
ond sum in (4.15). We have already shown that (1)implies ek(T ∗) 6 
3 · k−1=2�k (4.17)for some 
3 > 0. Moreover, by the se
ond assumption on (�n) there is an� > 0 su
h that �k 6 
4 (nk )� �n for all k > n ; (4.18)and some 
onstant 
4 > 0. Inserting (4.17) and (4.18) into the se
ond sumin (4.15) we obtain

∑k>�n k−1=2ek(T ∗) 6 
3 ∑k>�n k−1�k 6 
3 
4 n� �n ∑k>�n k−1−�
6 
3 
4 n� �n · 1� (�n)� = 
3 
4� �� · �n:Combining this with (4.14), (4.15) and (4.16) we get
0 · �n 6 
1 · ∑
2n6k6�n k−1=2ek(T ∗) + 
1 · ∑k>�n k−1=2ek(T ∗)

6 
1 · (2�n)1=2 · e[
2n℄(T ∗) + 
1 
3 
4��� · �n :Now we 
hoose � > 
2 so large that
1 
3 
4��� 6

02 :
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onstants 
0; :::; 
4 are independent on �. This givese[
2n℄(T ∗) >

02
1(2�)1=2 · n−1=2�n ;and by �2n ≈ �n we 
on
lude that en(T ∗) � n−1=2�n. Thus we haveshown (1) ⇒ (3).Let us verify now (3) ⇒ (1). The upper estimate for ln(T ) follows di-re
tly from (3) via Proposition 4.6.For the lower estimate we use Corollary 4.4, formula (4.10), withbk = k�k :This is possible, sin
e (bk) is in
reasing and satis�es the doubling 
onditionbk ≈ b2k. Hen
e there are 
onstants 
1; 
2; 
3 > 0 su
h thatek(T ∗) > 
1 k−1=2�k ; lk(T ) 6 
2�k for all k ∈ N (4.19)and max16k6mn bk k1=2ek(T ∗) 6 
3 max16k6mn bklk(T ) for all m;n ∈ N : (4.20)Here m ∈ N is an auxiliary parameter that will be spe
i�ed later. Thesimple idea, based on a 
lever argument in [3℄ whi
h has also been usedin [24℄ and [6℄, is to show that the maximum on the right hand side of (4.20)
annot be attained for k 6 n, provided that m is large enough. The proper
hoi
e is m > 
2 
3=
1. Indeed, then (4.19) impliesmax16k6mn bk k1=2ek(T ∗) > 
1mn and 
3 max16k6n bk lk(T ) 6 
3 
2 mn < 
1mn :Hen
e the maximum on the right hand side of (4.20) is attained for somek > n and we get
1mn 6 
3 maxn6k6mn bk lk(T ) 6 
3 bmn ln(T ) = 
3 · mn�mn · ln(T ) :This shows the desired lower bound for the Gaussian approximation num-bers ln(T ) � �mn ≈ �nand 
ompletes the proof of the Proposition. �An important spe
ial 
ase of Theorem 4.8 reads as follows:



208 T. K�UHN, W. LINDEProposition 4.9. If � > 0 and � ∈ R, then we have for operators T fromH into a K-
onvex Bana
h spa
e Eln(T ) ≈ n−�(1 + logn)� if and only if en(T ) ≈ n−�−1=2(1 + logn)� :Finally let us state a result in [16℄ whi
h relates the Gaussian approxi-mation numbers ln(T ) with the "ordinary" approximation numbers an(T ).Proposition 4.10. Let T be an operator from H into E and let m;n beany natural numbers. Then it holds
√log(m+ 1) · an+m(T ) 6 
 · ln(T )with some universal 
 > 0. In parti
ular, for all n > 1
√log(n+ 1) · a2n(T ) 6 
 · ln(T ):

§5. An ExampleGiven d > 1, the d-dimensional integration operator Vd is de�ned by(Vdf)(t) = t1
∫0 · · ·

td
∫0 f(x1; : : : ; xd) dxd · · ·dx1 ; t = (t1; : : : ; td) :It is known and easy to see that Vd is a bounded operator from L2[0; 1℄dinto the Bana
h spa
e C[0; 1℄d of 
ontinuous fun
tions on [0; 1℄d.The following has been proved in [16℄.Proposition 5.1. The Gaussian approximation numbers of Vd satisfyln(Vd) ≈ n−1=2(1 + logn)d−1 if Vd : L2[0; 1℄d → Lp[0; 1℄d ; 1 < p < ∞ ;and ln(Vd) ≈ n−1=2(1 + logn)d−1=2 if Vd : L2[0; 1℄d → C[0; 1℄d :From Propositions 4.7 and 4.9 together withen(Vd : L2[0; 1℄d → L2[0; 1℄d) 6 en(Vd : L2[0; 1℄d → C[0; 1℄d)we derive the following result, whi
h by di�erent methods had been provedin [8℄.Proposition 5.2. The entropy numbers of Vd satisfyen(Vd) ≈ n−1(1 + logn)d−1 if Vd : L2[0; 1℄d → Lp[0; 1℄d ; 1 < p <∞ ;



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 209and n−1(1 + logn)d−1 � en(Vd) � n−1(1 + logn)d−1=2if Vd : L2[0; 1℄d → C[0; 1℄d : (5.1)Remark. For d = 1, the behavior of en(Vd : L2[0; 1℄d → C[0; 1℄d) iswell-known, and for d = 2 it is due to M. Talagrand in [27℄. It holdsen(V1) ≈ n−1 and en(V2) ≈ n−1(1 + logn)3=2 :If d > 2, then the exa
t behavior of en(Vd) is an open problem. There is apartial result in [2℄ asserting the following.Proposition 5.3. If d > 2, there is an � > 0 su
h thatn−1(1 + logn)d−1+� � en(Vd : L2[0; 1℄d → C[0; 1℄d) :In parti
ular, if d > 2, then the lower estimate in (5.1) is not sharp.Finally, for the sake of 
ompleteness, let us also mention the behaviorof an(Vd). Here we have (see [16℄)an(Vd : L2[0; 1℄d → L2[0; 1℄d) ≈ n−1(1 + logn)d−1and an(Vd : L2[0; 1℄d → C[0; 1℄d) ≈ n−1=2(1 + logn)d−1 :Referen
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