
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.T. K�uhn, W. LindeGAUSSIAN APPROXIMATION NUMBERS ANDMETRIC ENTROPYAbstrat. The aim of this paper is to survey properties of Gauss-ian approximation numbers. We state the basi relations betweenthese numbers and and other s-numbers as e.g. entropy, approxima-tion or Kolmogorov numbers. Furthermore, we �ll a gap and provenew two-sided estimates in the ase of operators with values in aK-onvex Banah spae. In a �nal setion we apply the relationsbetween Gaussian and other s-numbers to the d-dimensional inte-gration operator de�ned on L2[0; 1℄d.Dediated to the memory of Vladimir Nikolaevih Sudakov
§1. IntrodutionBasi results of R. M. Dudley in 1967 and of V. N. Sudakov in 1969 re-late regularity properties of a Gaussian random proess with ompatnessproperties of its reproduing kernel Hilbert spae (RKHS). These resultsshow that ertain metri entropy onditions for the RKHS are either suÆ-ient (Dudley) or neessary (Sudakov) for the boundedness of a Gaussianrandom proess.To get more re�ned results one has to analyze the degree of ompatnessof the RKHS more thoroughly. A basi tool for those investigations is thebehavior of ertain s-numbers of operators related to Gaussian proesses.Among these numbers the Gaussian approximation numbers turn out tobe very useful. For example, they have been used to study approximationand small deviation properties of frational Brownian motions or Riemann-Liouville proesses, or to verify general properties of Gaussian proesses(f. [16, 18, 23℄ or [11℄).The aim of the present paper is to survey the properties of Gaussianapproximation numbers. In partiular, we state the basi relations betweenKey words and phrases: Gaussian approximation numbers, Kolmogorov numbers,entropy numbers. 194



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 195these numbers and other s-numbers as e.g. entropy, approximation or Kol-mogorov numbers. Hereby, we �ll a gap and prove new two-sided estimatesin the ase of so-alled K-onvex Banah spaes.Throughout the paper, all spaes are assumed to be real, where Halways denotes a separable Hilbert spae and E a Banah spae.For sequenes of non-negative real numbers we write an � bn, if thereis a onstant C > 0 suh that an 6 C · bn for all n ∈ N , while an ≈ bnmeans an � bn � an.A dereasing (resp. inreasing) sequene (an) is said to satisfy the dou-bling ondition, if an ≈ a2n. Clearly, in this ase we have an ≈ amn for allm ∈ N.
§2. The Dudley{Sudakov Theorem for OperatorsIn order to formulate the above mentioned theorems of Dudley andSudakov in a funtional analytial language, we need the following de�ni-tions.Let E and F be Banah spaes and let T : E → F be a (bounded linear)operator. Its (dyadi) entropy numbers en(T ) are then de�ned byen(T ) := inf



" > 0 : T (BE)⊆2n−1
⋃j=1 B(yj ; ") for some y1; : : : ; y2n−1 ∈F



:Here the set BE denotes the losed unit ball in E while B(y; ") is the (open)"-ball in F with enter y ∈ F . For properties of the entropy numbers werefer to [12, 22℄ and [5℄.Suppose we are given an operator T from a separable Hilbert spae Hinto a Banah spae E. Then its l-norm is de�ned byl(T ) := supH0⊆H∫H0 ‖Th‖2 dH0(h)1=2








;where the supremum is taken over all �nite dimensional subspaesH0 ⊆ Hand H0 denotes the (unique) standard Gaussian measure on H0. Thisnorm was introdued in the ontext of ylinder measures and operatorideals in [19℄ under the name �-norm.Another way to look at l(T ) is as follows. Let (�k)∞k=1 be an i.i.d. se-quene of N (0; 1)-distributed random variables. Then l(T ) < ∞ if and



196 T. K�UHN, W. LINDEonly if for one (or, equivalently, eah) orthonormal basis (ONB) (ek)∞k=1in H supn>1∥∥∥ n
∑k=1 �kTek∥∥∥ < ∞ a.s. :In partiular, if the series

∞
∑k=1 �kTek onverges a.s. in Efor some ONB (ek)∞k=1, then l(T ) < ∞ and, moreover,l(T ) = E

∥

∥

∥

∥

∥

∞
∑k=1 �kTek∥∥∥∥∥21=2 ;whih is independent of the speial hoie of the ONB (ek)k>1 in H .Now we an state the above mentioned funtional-analyti version ofthe Dudley{Sudakov Theorem (f. [7℄ and [25℄). This reformulation wasgiven in [13℄.Theorem 2.1. There are universal onstants ; C > 0 suh that for alloperators T : H → E from a Hilbert spae H into a Banah spae E theinequalities  supn>1n1=2en(T ∗) 6 l(T ) 6 C ∞

∑n=1n−1=2en(T ∗) (2.1)hold, where T ∗ : E∗ → H denotes the dual operator of T .Remarks:(1) In view of the basi result in [1℄ about the duality of entropynumbers, inequalities (2.1) are also valid for T , i.e., one has supn>1n1=2en(T ) 6 l(T ) 6 C ∞
∑n=1n−1=2en(T ) (2.2)with suitable onstants , C > 0.A diret proof of the �rst inequality in (2.2), without using theduality of entropy numbers, was given in [9℄.(2) A slightly stronger version of Theorem 2.1 is as follows: If

∞
∑n=1n−1=2en(T ∗) <∞;



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 197then
∞
∑k=1 �kTek exists a.s. in E ; (2.3)and, moreover, l(T ) may be estimated as stated in (2.1). Reallthat l(T ) < ∞ does in general not imply the a.s. onvergene ofthe random series in E.(3) The estimates in (2.1) are optimal and annot be improved, as anbe seen, e.g., from the examples given in [13℄. In order to get sharptwo-sided estimates, more re�ned tools like majorizing measuresare needed (f. [26℄).

§3. Gaussian Approximation NumbersThe Dudley{Sudakov Theorem asserts the following: If the operatorT : H → E is suÆiently ompat, then ∞
∑k=1 �kTek onverges almost surelyin E for one or, equivalently, for all orthonormal bases (ek)k>1 in H . Con-versely, if this series onverges almost surely, then neessarily the operatorsatis�es en(T ) 6  n−1=2.In this ontext, the following natural question arises: Whih additionalproperties does the series ∞

∑k=1 �kTek possess, if the entropy numbers en(T )tend to zero muh faster than of order n−1=2? An answer in the languageof the orresponding Gaussian proess was given in [17℄ and [18℄: Thebehavior of en(T ) as n → ∞ is diretly onneted to small deviationproperties of the Gaussian proess, that is, with the behavior of
− log(P

{

∥

∥

∥

∞
∑k=1 �kTek∥∥∥ < "})→ ∞as "→ 0.Another possibility is to ask for the speed of onvergene of the series

∞
∑k=1 �kTek. Is this related to the behavior of en(T ) as n → ∞ ? In otherwords, does a faster onvergene of en(T ) → 0 imply a faster onvergeneof n
∑k=1 �kTek as n → ∞ ?



198 T. K�UHN, W. LINDETo make this more preise, we have to introdue so-alled Gaussianapproximation numbers, whih, to the best of our knowledge, appearedfor the �rst time in [20℄ (see also [23℄).Let T : H → E be an operator for whih the series in (2.3) onvergesa.s. in E. Then its Gaussian approximation numbers (sometimes also alledl-numbers) are de�ned byln(T ) := inf






E

∥

∥

∥

∥

∥

∞
∑k=n �kTek∥∥∥∥∥21=2 : (ek)∞k=1 ONB in H





:It is well-known and easy to see (f. [22℄ or [23℄) that these numbers mayalso be de�ned via(i) ln(T ) = inf {l(T − S) : S operator from H to E; rank(S) < n}or(ii) ln(T ) = inf {l(T − TP ) : P orthogonal projetion inH; rank(P ) < n}or(iii) ln(T ) = inf {l(T ∣∣H⊥0 ) : H0 ⊆ H; dim(H0) < n} :
§4. Relations to Other Approximation QuantitiesThe aim of this setion is to relate the numbers ln(T ) with entropyand approximation numbers of T or T ∗, the dual of T , respetively. Givenan operator T between two Banah spaes E and F , its approximationnumbers an(T ) and its Kolmogorov numbers dn(T ) are de�ned as usual:an(T ) := inf {‖T − S‖ : S operator from E to F ; rank(S) < n} ;dn(T ) := inf {∥∥QFNT∥∥ : N ⊆ F; dim(N) < n} :Here the operator QFN appearing in the de�nition of dn(T ) is the anonialquotient map from F onto F=N .Note that all numbers an, dn, en and ln are additive in the sense of [5℄,p.21. While the �rst three numbers are also multipliative (f. [5℄, sameplae), the Gaussian approximation numbers satisfy the following modi�edmultipliativity property. Let T : H → E and S : H → H . Then for alln;m ∈ N ln+m−1(T ◦ S) 6 ln(T ) · am(S) andln+m−1(T ◦ S) 6 an(T ) · lm(S) :



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 199Moreover, let us mention that an(T ) = dn(T ) whenever T has values in aHilbert spae (f. [22℄). Sine an(T ) = an(T ∗) for ompat operators, wealso have an(T ) = dn(T ∗) for T : H → E ompat.To beome aquainted with these numbers, we �rst onsider a speialase. If T is a ompat operator from a Hilbert spae H into itself (or intoanother Hilbert spae), its singular numbers are de�ned by sn(T ) = √�n ,where �1 > �2 > : : : > 0 are the eigenvalues of the (ompat and non-negative self-adjoint) operator T ∗T : H → H , ounted aording to theirmultipliities.Assume the singular numbers of T are known, say sn(T ) = �n. Thenfor the usual and for the Gaussian approximation numbers of T the exatformulae (f. [22℄ or [5℄, 4.4.12 and 1.5.11)an(T ) = �n and ln(T ) = ( ∞
∑k=n�2k)1=2 (4.1)are valid, while for its entropy numbers a nie two-sided estimate holds,whih is due to [10℄,supk∈N

2−n=k k
∏j=1�j1=k

6 en+1(T ) 6 6 · supk∈N

2−n=k k
∏j=1 �j1=k : (4.2)Our aim is to prove sharp two-sided estimates between entropy numbersand Gaussian approximation numbers, not only for a single operator T :H → E but for whole lasses of operators. To this end, we have to imposeertain regularity onditions on the sequenes (ln(T )) or (en(T )). We willshow that, under fairly general onditions on the sequene (�n), one hasln(T ) ≈ �n ⇐⇒ en(T ) ≈ n−1=2�n : (4.3)We will also need an additional assumption on the Banah spae E, namelythat it is K-onvex. For this notion we refer to [23℄. Note that Lp -spaesare K-onvex provided that 1 < p < ∞.Next we list the relevant regularity onditions in our ontext. It is easyto verify that a dereasing sequene (�n) of positive real numbers satis�esthe doubling ondition �n ≈ �2n if and only ifinfn>k n��nk��k > 0 for some � > 0 : (4.4)



200 T. K�UHN, W. LINDEIn other words, the sequene (n��n) is almost inreasing. Obviously, (4.4)implies �n � n−�, and therefore (�n) annot deay faster than polynomi-ally, whih exludes exponential deay.A similar ondition issupn>k n��nk��k < ∞ for some � > 0 ; (4.5)i.e. (n��n) is almost dereasing. In partiular, (4.5) implies �n � n−� ,and therefore (�n) annot deay slower than polynomially, whih exludeslogarithmi deay.These regularity onditions are not new, in fat they have been widelyused in the literature. For instane, the doubling ondition plays an im-portant role in the monograph [5℄, and the onditions (4.4) and (4.5) havebeen used in the paper [14℄ to investigate entropy numbers of general di-agonal operators D : `p → `q. A ommon feature of the three onditionsis that they are easy to hek in onrete ases.Note that (4.4) and (4.5) are indeed very mild regularity onditions andhold for large lasses of sequenes. Typial examples are �n ≈ n−�(1 +logn)� with � > 0 and � ∈ R, but also, more generally, �n ≈ n−�'n with'n slowly varying. Even more, given any 0 < � 6= � < ∞, one an on-strut (�n) satisfying (4.4) and (4.5) suh that there are subsequenes (nk)and (mk) with �mk ≈ m−�k and �nk ≈ n−�k as k → ∞. This onstrutionan be done similarly as the examples of weights with di�erent indies insubsetion 4.4 of [15℄.Now we state some onrete examples whih illustrate how di�erent therelations between ln(T ) and en(T ) an be. Moreover, these examples willprovide a motivation why onditions (4.4) and (4.5) are very useful andquite natural in our ontext.Examples.(1) Let D : `2 → `2 be a diagonal operator, de�ned by D(xn) =(n−�xn). Then l(D) <∞ if and only if � > 1=2. In this ase, (4.1)and (4.2) giveln(D) ≈ n1=2−� and en(D) ≈ n−� ;i.e. the desired relation (4.3) between Gaussian approximationnumbers and entropy numbers is ful�lled with �n := n1=2−�.Clearly (�n) satis�es both regularity onditions (4.4) and (4.5).



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 201This remains true, if we replae n−� in the de�nition of D byn−�(1 + logn)� with � > 1=2 and � ∈ R.(2) If D : `2 → `2 is de�ned by D(xn) = (n−1=2(1 + logn)−1=2−�xn),with � > 0, then (4.1) and (4.2) implyln(D) ≈ (1 + logn)−� and en(D) ≈ n−1=2(1 + logn)−1=2−� :This shows that the desired relation (4.3) is not true if �n = (1 +logn)−�. Obviously, sine (�n) deays too slowly, it fails (4.5) forany � > 0.(3) Now let D : `2 → `2 be de�ned by D(xn) = (2−nxn). Then, againby (4.1) and (4.2), we haveln(D) ≈ 2−n and en(D) ≈ 2−√n :Hene the desired relation (4.3) does not hold if �n = 2−n. Clearly,(�n) does not satisfy the doubling ondition, neither the regularityondition (4.4) for any � > 0.(4) Finally we onsider the Volterra integration operator V : L2[0; 1℄
→ C[0; 1℄, de�ned by V f(x) = x

∫0 f(t) dt. It is well known (see alsoSe. 5) thatln(V ) ≈ n−1=2(1 + logn)1=2 and en(V ) ≈ n−1 :Clearly �n = n−1=2(1+logn)1=2 satis�es both regularity onditions(4.4) and (4.5) for appropriate � > 0 resp. � > 0, but neverthe-less (4.3) does not hold. Note that the target spae C[0; 1℄ of theoperator V is not K-onvex.These examples show that the relation (4.3) between Gaussian approxi-mation numbers and entropy numbers ln(T ) ≈ �n ⇐⇒ en(T ) ≈ n−1=2�nan only hold in general if
• the sequene (�n) is regular in the sense of (4.4) and (4.5), and
• the operator T : H → E has values in a K-onvex Banah spae E.Before proeeding further we need some more preparations. First let usstate the following improved version of Carl's inequality (f. [4℄, Thm. 1.3).Proposition 4.1. Let (bk)∞k=1 be an inreasing sequene of real numberssuh that b2k 6 � · bk for all k ∈ N



202 T. K�UHN, W. LINDEand some � > 1. Then there is a onstant  > 0 only depending on � suhthat for all operators T between any Banah spaes and for all n ∈ Nmax16k6n bk ek(T ) 6  · max16k6n bk dk(T ) :Let us point out that the same result holds for Gelfand numbers k(T )instead of Kolmogorov numbers (f. [5℄, Se. 3.1), and using k(T ∗) 6dk(T ) (f. [5℄, Prop. 2.5.5) we obtainmax16k6n bk ek(T ∗) 6  · max16k6n bk dk(T ) :Later on we have to relate quite often the entropy numbers of an opera-tor with those of its dual. A deep result about duality of entropy numbersfor operators between arbitrary Banah spaes was proved in [1℄. Note thathere we only investigate operators T whih are either de�ned on a Hilbertspae or map into a Hilbert spae. In this situation Tomzak-Jaegermannproved muh earlier (f. [28℄, Thm. 1), that for all � > 0 and all n ∈ N theestimates132 · max16k6n k�en(T ∗) 6 max16k6n k�en(T ∗) 6 32 · max16k6n k�en(T ) (4.6)hold. This would have been suÆient for our purposes.The next result is due to Pajor and Tomzak-Jaegermann (f. [21℄ or[23℄, Thm. 5.8). It estimates the Kolmogorov numbers of an operator T :H → E satisfying l(T ) < ∞. In view of Proposition 4.1, under some mildregularity onditions, it improves the left-hand estimate in Theorem 2.1.Proposition 4.2. There is a universal onstant  > 0 suh that for alloperators T from a Hilbert spae H into a Banah spae Esupn∈N

n1=2 dn(T ) 6  · l(T ) : (4.7)As a diret onsequene of Proposition 4.2 we obtain the following lowerestimate for Gaussian approximation numbers.Proposition 4.3. If T is an operator from a Hilbert spae H into a Ba-nah spae E, then for all n ∈ Nn1=2 d2n−1(T ) 6  · ln(T )with some universal onstant  > 0.



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 203Proof. Let S be an operator from H into E of rank less than n suh thatl(T − S) 6 2 · ln(T ) : (4.8)Then (4.7) yields supk>1 k1=2 dk(T − S) 6  · l(T − S) : (4.9)Sine S is of rank less than n, we have dn(S) = 0, and estimates (4.8)and (4.9) implyn1=2 d2n−1(T ) 6 n1=2 dn(T − S) + n1=2 dn(S)
6  · l(T − S) 6 2 · ln(T )as asserted. �Remark. An essential argument in the previous proof was that dn(S) = 0.Note that for every operator S 6= 0 one has en(S) > 0 for all n ∈ N,while ln(S) = 0 if rank(S) < n. Hene, a similar diret estimate betweene2n−1(T ) and ln(T ) annot hold.As a onsequene of Propositions 4.1 and 4.3 we obtain the following.Corollary 4.4. Let (bk)∞k=1 be an inreasing sequene of positive real num-bers satisfying the doubling ondition bk ≈ b2k. Then there is a onstant > 0 suh that for all operators T from a Hilbert spae into an arbitraryBanah spae and for all n ∈ N it follows thatmax16k6n bk k1=2 max{ek(T ); ek(T ∗)} 6  · max16k6n bk lk(T ) : (4.10)Our next objetive is to estimate ln(T ) from above suitably. Here thefollowing deep result due to G. Pisier turns out to be very useful (f. [23℄,Theorem 9.1).Proposition 4.5. There exist universal onstants 1; 2 > 0 suh that forall operators T from H into E and all n ∈ N the estimateln(T ) 6 1 ∑k>2n ek(T ∗)k−1=2(1 + log k) (4.11)holds. Moreover, if E is K-onvex (e.g. E = Lp, 1 < p < ∞), i.e. E doesnot ontain ln1 's uniformly (f. [23℄, Thm. 2.4), then (4.11) is valid withoutthe log-term on the right hand side.



204 T. K�UHN, W. LINDERemark. Note that Proposition 4.5 was originally stated with so-alledvolume numbers vn(T ∗) on the right hand side of (4.11). The above weakerform follows by vn(T ∗) 6 2 · en(T ∗).Proposition 4.6. Let (�n)∞n=1 be a dereasing sequene satisfying�2n ≈ �n and supn>k n��nk��k < ∞ for some � > 0 :Then one has for operators T from a Hilbert spae H into any Banahspae Eln(T ) � �n =⇒ en(T ) � n−1=2�n =⇒ ln(T ) � �n (1 + logn): (4.12)If E is K-onvex, then one even has the equivaleneln(T ) � �n ⇐⇒ en(T ) � n−1=2�n :Proof. Let lk(T ) � �k. By our assumption �2n ≈ �n it is possible to applyCorollary 4.4 with bk = 1=�k, and this immediately gives ek(T ) � k−1=2�k.Let now ek(T ) � k−1=2�k. By (4.6) this impliesek(T ∗) 6 3 k−1=2�k :Moreover, due to the seond assumption on (�n), we have�k 6 4 (2nk )� �[2n℄ for k > 2n :Inserting this in formula (4.11) from Proposition 4.5 we obtainln(T ) 6 1 ∑k>2n k−1=2ek(T ∗)(1 + log k)
6 1 3 4 (2n)� �[2n℄ ∑k>2n k−1−�(1 + log k)
≈ �[2n℄ (1 + logn) ≈ �n (1 + logn) :If E is K-onvex, then this estimate holds without the log-term, and theproof is �nished. �Conjeture. It is very likely that, under the assumptions on (�n) inProposition 4.6, we even have the following stronger version of the seondimpliation in (4.12). At least this is suggested by all known examples.en(T ) � n−1=2�n =⇒ ln(T ) � �n(1 + logn)1=2



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 205Remark. However, if we only assume the doubling ondition �2n ≈ �n,then the order of the gap between ln(T ) and en(T ) an be stritly largerthan (n logn)1=2, even for operators in Hilbert spaes. For example, if weslightly modify example 2 from above and de�ne D : `2 → `2 byD(xn) = (n−1=2(1 + logn)−1=2(log(2 + logn))−1=2−�xn)for some � > 0, thenln(D) ≈ (log logn)−� while en(D) ≈ n−1=2(logn)−1=2(log logn)−1=2−� :Hene in this ase the gap between ln(D) and en(D) is of order(n logn log logn)1=2:Let us state an important speial ase of Proposition 4.6.Proposition 4.7. Suppose � > 0 and � ∈ R. Then for general Banahspaes E and operators T from H into E we haveln(T ) � (1 + logn)�n� ⇒ en(T ) � (1 + logn)�n�+1=2 ⇒ ln(T ) � (1 + logn)�+1n� :(4.13)Note that it is not lear at all whether or not relations similar to (4.12)and (4.13) are valid for lower estimates. But for equivalenes we have thefollowing result.Theorem 4.8. Let T be an operator from a Hilbert spae H into a K-onvex Banah spae E (e.g. E = Lp for 1 < p < ∞). If (�n)∞n=1 satis�esthe assumptions of Proposition 4:6, then the following are equivalent:(1) ln(T ) ≈ �n(2) en(T ) ≈ n−1=2�n(3) en(T ∗) ≈ n−1=2�n.Proof. As mentioned above, the equivalene of (2) and (3) follows eitherby the results in [1℄ or in [28℄. So it remains to verify (1) ⇐⇒ (3).Let us �rst assume (1). From Proposition 4.6 we derive thenen(T ∗) � n−1=2�n :Next we prove that (1) impliesen(T ∗) � n−1=2�n :



206 T. K�UHN, W. LINDEBy assumption and Proposition 4.5 we have0 · �n 6 ln(T ) 6 1 · ∑k>2 n k−1=2 ek(T ∗) : (4.14)Reall that E is assumed to be K-onvex. For some (large integer) � > 2,to be spei�ed later, we split the sum on the right hand side of (4.14) as
∑2n6k6�n : : :+ ∑k>�n : : : (4.15)and estimate the two parts separately. For the �rst sum we have

∑2n6k6�n k−1=2 ek(T ∗) 6 e[2n℄(T ∗) ∑2n6k6�n k−1=2
6 2 (�n)1=2e[2n℄(T ∗) : (4.16)Now we pass to the seond sum in (4.15). We have already shown that (1)implies ek(T ∗) 6 3 · k−1=2�k (4.17)for some 3 > 0. Moreover, by the seond assumption on (�n) there is an� > 0 suh that �k 6 4 (nk )� �n for all k > n ; (4.18)and some onstant 4 > 0. Inserting (4.17) and (4.18) into the seond sumin (4.15) we obtain

∑k>�n k−1=2ek(T ∗) 6 3 ∑k>�n k−1�k 6 3 4 n� �n ∑k>�n k−1−�
6 3 4 n� �n · 1� (�n)� = 3 4� �� · �n:Combining this with (4.14), (4.15) and (4.16) we get0 · �n 6 1 · ∑2n6k6�n k−1=2ek(T ∗) + 1 · ∑k>�n k−1=2ek(T ∗)

6 1 · (2�n)1=2 · e[2n℄(T ∗) + 1 3 4��� · �n :Now we hoose � > 2 so large that1 3 4��� 6
02 :



GAUSSIAN APPROXIMATION NUMBERS AND METRIC ENTROPY 207Note that the onstants 0; :::; 4 are independent on �. This givese[2n℄(T ∗) >
021(2�)1=2 · n−1=2�n ;and by �2n ≈ �n we onlude that en(T ∗) � n−1=2�n. Thus we haveshown (1) ⇒ (3).Let us verify now (3) ⇒ (1). The upper estimate for ln(T ) follows di-retly from (3) via Proposition 4.6.For the lower estimate we use Corollary 4.4, formula (4.10), withbk = k�k :This is possible, sine (bk) is inreasing and satis�es the doubling onditionbk ≈ b2k. Hene there are onstants 1; 2; 3 > 0 suh thatek(T ∗) > 1 k−1=2�k ; lk(T ) 6 2�k for all k ∈ N (4.19)and max16k6mn bk k1=2ek(T ∗) 6 3 max16k6mn bklk(T ) for all m;n ∈ N : (4.20)Here m ∈ N is an auxiliary parameter that will be spei�ed later. Thesimple idea, based on a lever argument in [3℄ whih has also been usedin [24℄ and [6℄, is to show that the maximum on the right hand side of (4.20)annot be attained for k 6 n, provided that m is large enough. The properhoie is m > 2 3=1. Indeed, then (4.19) impliesmax16k6mn bk k1=2ek(T ∗) > 1mn and 3 max16k6n bk lk(T ) 6 3 2 mn < 1mn :Hene the maximum on the right hand side of (4.20) is attained for somek > n and we get1mn 6 3 maxn6k6mn bk lk(T ) 6 3 bmn ln(T ) = 3 · mn�mn · ln(T ) :This shows the desired lower bound for the Gaussian approximation num-bers ln(T ) � �mn ≈ �nand ompletes the proof of the Proposition. �An important speial ase of Theorem 4.8 reads as follows:



208 T. K�UHN, W. LINDEProposition 4.9. If � > 0 and � ∈ R, then we have for operators T fromH into a K-onvex Banah spae Eln(T ) ≈ n−�(1 + logn)� if and only if en(T ) ≈ n−�−1=2(1 + logn)� :Finally let us state a result in [16℄ whih relates the Gaussian approxi-mation numbers ln(T ) with the "ordinary" approximation numbers an(T ).Proposition 4.10. Let T be an operator from H into E and let m;n beany natural numbers. Then it holds
√log(m+ 1) · an+m(T ) 6  · ln(T )with some universal  > 0. In partiular, for all n > 1
√log(n+ 1) · a2n(T ) 6  · ln(T ):

§5. An ExampleGiven d > 1, the d-dimensional integration operator Vd is de�ned by(Vdf)(t) = t1
∫0 · · ·

td
∫0 f(x1; : : : ; xd) dxd · · ·dx1 ; t = (t1; : : : ; td) :It is known and easy to see that Vd is a bounded operator from L2[0; 1℄dinto the Banah spae C[0; 1℄d of ontinuous funtions on [0; 1℄d.The following has been proved in [16℄.Proposition 5.1. The Gaussian approximation numbers of Vd satisfyln(Vd) ≈ n−1=2(1 + logn)d−1 if Vd : L2[0; 1℄d → Lp[0; 1℄d ; 1 < p < ∞ ;and ln(Vd) ≈ n−1=2(1 + logn)d−1=2 if Vd : L2[0; 1℄d → C[0; 1℄d :From Propositions 4.7 and 4.9 together withen(Vd : L2[0; 1℄d → L2[0; 1℄d) 6 en(Vd : L2[0; 1℄d → C[0; 1℄d)we derive the following result, whih by di�erent methods had been provedin [8℄.Proposition 5.2. The entropy numbers of Vd satisfyen(Vd) ≈ n−1(1 + logn)d−1 if Vd : L2[0; 1℄d → Lp[0; 1℄d ; 1 < p <∞ ;
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