
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.N. Gozlan, M. Madiman, C. Roberto, P. M. SamsonDEVIATION INEQUALITIES FOR CONVEXFUNCTIONS MOTIVATED BY THE TALAGRANDCONJECTUREAbstrat. Motivated by Talagrand's onjeture on regularizationproperties of the natural semigroup on the Boolean hyperube, andin partiular its ontinuous analogue involving regularization prop-erties of the Ornstein-Uhlenbek semigroup ating on integrablefuntions, we explore deviation inequalities for log-semionvex fun-tions under Gaussian measure.
§1. IntrodutionIn the late eighties, Talagrand onjetured that the \onvolution by a bi-ased oin", on the hyperube {−1; 1}n, satis�es some re�ned hyperontra-tivity property. We refer to Problems 1 and 2 in [17℄ for preise statements.A ontinuous version of Talagrand's onjeture for the Ornstein-Uhlenbekoperator has reently attrated some attention [1,6,11℄; in partiular, it wasresolved by [6,11℄ by �rst proving a deviation inequality for log-semionvexfuntions above their means under Gaussian measure. In this paper, wedisuss a simpler approah to proving this deviation inequality for thespeial ase of log-onvex funtions (whih is already of interest).Let us start by presenting the ontinuous version of Talagrand's onje-ture and the history of its resolution. Denote by n the standard Gaussian(probability) measure in dimension n, with densityx 7→ (2�)−n=2 exp {

−|x|22 }(where |x| denotes the standard Eulidean norm of x ∈ R
n) and, for p > 1,by L

p(n) the set of measurable funtions f : R
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DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 169is integrable with respet to n. Then, given g ∈ L
1(n), the Ornstein{Ulhenbek semigroup is de�ned asPtg(x) := ∫ g (e−tx+ √1 − e−2ty) dn(y) x ∈ R

n; t > 0: (1.1)It is well known that the family (Pt)t>0 enjoys the so-alled hyperon-trativity property [9, 13, 14℄ whih asserts that, for any p > 1, any t > 0and q 6 1 + (p − 1)e2t, Ptg is more regular than g in the sense that, ifg ∈ L
p(n) then Ptg ∈ L

q(n) and moreover
‖Ptg‖q 6 ‖g‖p:However this property is empty when one only assumes that g ∈ L

1(n).A natural question is therefore to ask if the semigroup has anyway someregularization e�et also in this ase. Given g : R
n → R non-negative with

∫ g dn = 1, by Markov's inequality and the fat that ∫ Psg dn = 1 wehave n({Psg > t}) 6
1t ∀t > 0:The ontinuous version of Talagrand's onjeture (adapted from [17, Prob-lems 1 and 2℄) states that as soon as s > 0,limt→∞

supg>0;
∫ g dn=1 tn({Psg > t}) = 0:The most reent paper dealing with this onjeture is due to Lehe [11℄ whoproved that, for any s > 0 there exists a onstant �s ∈ (0;∞) (dependingonly on s and not on the dimension n) suh that for any non-negativefuntion g : R

n → R
+ with ∫ g dn = 1,n({Psg > t}) 6

�st√log t ∀t > 1 (1.2)and this bound is optimal in the sense that the fator √log t annot beimproved. In the �rst paper dealing with this question [1℄, Ball, Barthe,Bednorz, Oleszkiewiz and Wol� already obtained a similar bound butwith a onstant �s depending heavily on the dimension n plus some extralog log t fator in the numerator. Later Eldan and Lee [6℄ proved thatthe above bound holds with a onstant �s independent on n but againwith the extra log log t fator in the numerator. Finally the onjeturewas fully proved by Lehe removing the log log t fator [11℄ and giving anexpliit bound on �s, namely that �s := �max(1; 12s ) for some numerialonstant �.



170 N. GOZLAN, M. MADIMAN, C. ROBERTO, P. M. SAMSONIn both Eldan{Lee and Lehe's papers, the two key ingredients are thefollowing:(1) for any s > 0, the Ornstein-Uhlenbek semigroup satis�es, for allnon-negative funtions g ∈ L
1(n),Hess (logPsg) > − 12s Id;where Hess denotes the Hessian matrix and Id the identity matrixof R

n. This is a somehow standard property easy to prove thanksto the kernel representation (1.1);(2) for any positive funtion g with Hess (log g) > −�Id, for some� > 0, and ∫ g dn = 1, it holdsn({g > t}) 6
C�t√log t ∀t > 1;with C� = �max(1; �).It will be more onvenient to deal with g = ef in the sequel so we moveto this setting now. The last inequality an be reformulated as follows: forany f : R

n → R with ∫ ef dn = 1 and Hess (f) > −�Id, it holdsn ({f > t}) 6 C� e−t
√t ∀t > 0: (1.3)We now desribe the two main ontributions of this note (whih wereindependently obtained by Ramon van Handel). First, as a warm up, wegive in Setion 2 a short proof of (1.3) in dimension 1. The main argu-ment of this proof is that due to the semionvexity of f , the ondition(2�)−1=2 ∫ ef− 12 |x|2 d = 1 implies a pointwise omparison between f andthe funtion |x|2=2, whih then an be turned into a tail omparison.Then, in dimension n, we give in Setion 3 a sharp version of the upperbound (1.3) for onvex funtions. Our main result states:Theorem 1.4. Suppose that f : R
n → R is a onvex funtion suh that

∫ ef dn = 1, then n(f > t) 6 �(√2t); ∀t > 0; (1.5)where �(t) = 1√2� +∞
∫t e−u2=2 du, t ∈ R:



DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 171Let us make a few omments on this result. First, using the followinglassial bound (whih is asymptotially optimal)�(s) = 1√2� ∞
∫s e−x2=2 dx 6

1√2� ∞
∫s xs e−x2=2 dx = e−s2=2

√2�s ; ∀s > 0; (1.6)one immediately reovers (1.3) with the onstant C ′0 = 1=(2√�): Fur-thermore, the bound (1.9) is sharp. Indeed, for a given value of t > 0,Inequality (1.9) beomes an equality for the funtionft(x) = √2tx1 − t; x = (x1; : : : ; xn) ∈ R
n:Finally, sine the Ornstein-Uhlenbek semigroup preserves log-onvexity(this follows from the fat that any positive ombination of log-onvexfuntions remains log-onvex, see e.g [12℄ p. 649), Theorem 1.4 immediatelyimplies the following orollary.Corollary 1.7. Let g be a log-onvex funtion suh that ∫ g dn = 1, thenfor any s > 0, n(Psg > t) 6 �(√2 log(t)); ∀t > 1:In the speial ase when g is log-onvex, Corollary 1.7 is a sharp im-provement of Lehe's result (1.2). Note that for log-onvex g, the on-stant �s an be taken independent of s unlike in (1.2), but this alreadyfollowed from Lehe's inequality (1.3) ombined with the preservation oflog-onvexity by the Ornstein-Uhlenbek semigroup.Another onsequene of Theorem 1.4 is that a deviation inequality forstrutured funtions also follows for other measures that an be obtainedby \nie" pushforwards of Gaussian measure. Indeed, observe that for anyoordinate-wise non-dereasing, onvex funtion f on R

n, and any onvexfuntions g1; : : : ; gn : R
N → R, the omposition f(g1(x); : : : ; gn(x)) isonvex on R

N . Hene we immediately have the following orollary.Corollary 1.8. For a standard Gaussian random vetor Z in R
N , let theprobability measure � on R

n be the joint distribution of (g1(Z); : : : ; gn(Z)).Suppose that f : R
n → R is a oordinate-wise non-dereasing, onvexfuntion suh that ∫

Rn ef d� = 1. Then�(f > t) 6 �(√2t); ∀t > 0; (1.9)



172 N. GOZLAN, M. MADIMAN, C. ROBERTO, P. M. SAMSONFor example, onsider the exponential distribution, whose density ise−x on R+ = (0;∞) and whih an be realized as Z21+Z222 with Z1; Z2 i.i.d.standard Gaussian. Clearly a produt of exponential distributions on theline is an instane overed by Corollary 1.8, sine we an take N = 2nand gi(x) = x2i+x2i+12 . More generally, Corollary 1.8 applies to a produtof �2 distributions with arbitrary degrees of freedom, and also to someases with orrelation (onsider for example N = 3; g1(x) = x21+x222 andg2(x) = x22+x232 ).The proof of Theorem 1.4 is given in Setion 3. It relies on the Ehrhardinequality, whih we reall now: aording to [5, Theorem 3.2℄, if A;B ⊂ R
nare two onvex sets, then�−1(n(�A + (1 − �)B))

> ��−1(n(A)) + (1 − �)�−1(n(B)); ∀� ∈ [0; 1℄; (1.10)where �A + (1 − �)B := {�a + (1 − �)b : a ∈ A; b ∈ B} denotes theusual Minkowski sum and �−1 is the inverse of the umulative distributionfuntion � of 1: �(t) = 1√2� t
∫

−∞

e−u2=2 du; t ∈ R: (1.11)After Ehrhard's pioneer work, Inequality (1.10) was shown to be true ifonly one set is assumed to be onvex by Lata la [10℄ and �nally to arbitrarymeasurable sets by Borell [4℄. See also [2,18℄ and the referenes therein forreent developments on this inequality. Inequality (1.10) (for arbitrary setsA;B) is a very strong statement in the hierarhy of Gaussian geometri andfuntional inequalities. For instane, it gives bak the elebrated Gauss-ian isoperimetri result of Sudakov{Tsirelson [16℄ and Borell [3℄. Anotherelegant onsequene of (1.10) due to Kwapie�n is that if f is a onvex fun-tion on R
n whih is integrable with respet to n, then the median of f isalways less than or equal to the mean of f under n. The key ingredientin Kwapie�n's proof is the observation that the funtion�(t) = �−1(n(f 6 t)); t ∈ Ris onave over R; this observation (already made in Ehrhard's originalpaper) also plays a key role in our proof of Theorem 1.4.



DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 173After the ompletion of this work, we learned that Paouris and Valet-tas [15℄ developed in a reent paper similar ideas to derive from (1.10)deviation inequalities for onvex funtions under their mean.In Setion 4, we give a seond proof of Theorem 1.4, and also disuss(following an observation of R. van Handel) the diÆulty of its extensionto the log-semionvex ase.Aknowledgement. The results of this note were independently obtainedby Ramon van Handel a few months before us, as we learnt after a versionof this note was irulated. Although he hose not to publish them, theseobservations should be onsidered as due to him. We are also grateful tohim for numerous omments on earlier drafts of this note.
§2. The Continuous Talagrand Conjeture in dimension 1In the next lemma we take advantage of the semionvexity propertyHess (f) > −�Id to derive information on f . More preisely we may om-pare f to x 7→ |x|2=2. The result holds in any dimension, and we give twoproofs for ompleteness.Lemma 2.1. Let f : R

n → R and � > 0 be suh that ∫ ef dn = 1, f issmooth and Hess (f) > −�Id. Then,f(x) 6
n2 ln(1 + �) + 12 |x|2; ∀x ∈ R

n:First proof of Lemma 2.1. Let h(x) = f(x)+ �2 |x|2. By assumption onf , the funtion h is onvex on R
n and heneh(x) = supt∈Rn {〈x; t〉 − h∗(t)} ; ∀x ∈ R

n;where h∗(t) := supx∈Rn {〈t; x〉 − h(x)} ; t ∈ R
nis the Legendre transform of h. Now, we have for all t ∈ R

n1 = ∫ ef dn = ∫ exp {h(x) − �2 |x|2} dn(x)
> (2�)−n=2e−h∗(t) ∫ exp {

〈x; t〉 − 1 + �2 |x|2} dx= (1 + �)−n=2 exp {

−h∗(t) + 12(1 + �) |t|2} :



174 N. GOZLAN, M. MADIMAN, C. ROBERTO, P. M. SAMSONTherefore, for all t ∈ R
n it holdsh∗(t) > −n2 ln(1 + �) + 12(1 + �) |t|2:In turnh(x) = supt {〈x; t〉 − h∗(t)} 6

n2 ln(1 + �) + supt {

〈x; t〉 − 12(1 + �) |t|2}= 12 (n ln(1 + �) + (1 + �)|x|2)whih leads to the desired onlusion. �Seond proof of Lemma 2.1. De�ne ~h(x) = h(x) + �2 |x|2, x ∈ R
n andlet n;� be the gaussian measure N (0; 11+� I), then it holds1 = ∫ eh(x) dn(x) = (1 + �)−n=2 ∫ e~h(x) dn;�(x):For all a ∈ R

n, the hange of variable formula then gives1 = (1 + �)−n=2e− (1+�)2 |a|2 ∫ e~h(y+a)−(1+�)y·a dn;�(dy):The funtion y 7→ ~h(y+a)− (1 +�)y ·a is onvex and the funtion x 7→ exis onvex and inreasing so the funtion y 7→ exp (~h(y + a) − (1 + �)y · a)is also onvex. So applying Jensen inequality yields to1 > (1 + �)−n=2e− (1+�)2 |a|2
× exp (~h(a+ ∫ y dn;�(y)) − (1 + �) ∫ y · a dn;�(y))= e− (1+�)2 |a|2+~h(a)and so h(a) 6 |a|2=2 + n2 log(1 + �): �Remark 2.2. The � = 0 ase of Lemma 2.1 (i.e., for onvex funtions f ,whih is the essential ase) is ontained in Grazyk et al. [7, Lemma 3.7℄(uriously it does not appear in the published version [8℄ of the paper), andin fat was proved in the more general setting of subharmoni funtions.The seond proof given above is theirs and works for the more general set-ting. Also note that neither proof requires smoothness of f , whih howeveris suÆient for our purposes.



DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 175In priniple, one would hope to already get some deviation bound fromthe above lemma. More preisely, given f as in Lemma 2.1, we haven ({f > t}) 6 n ({

|x|2 > 2t− n ln(1 + �)}) ;thanks to Lemma 2.1, and we are left with a tail estimate for a �2 dis-tribution with n degrees of freedom. In dimension n = 1, the tail of the�2 distribution behaves like e−t=√t. Therefore, the above simple argu-ment already gives bak the estimate (1.3) and thus provides a quik proofof the ontinuous Talagrand's onjeture for n = 1, moreover with leandependene on �, as detailed below.Theorem 2.3. If f : R → R is smooth and � > 0 are suh that ∫ ef d1= 1 and f ′′ > −� pointwise, then1 ({f > t}) 6
1 + �√2 e−t

√t ∀t > 1:Proof. Assume �rst that t > (1+�) ln(1+�)=(2�). Using Inequality (1.6),we get from Lemma 2.11 ({f > t}) 6 1 ({

|x| >
√2t− ln(1 + �)})

6 2(2�)−1=2 exp {

−t+ 12 ln(1 + �)}
√2t− ln(1 + �)= √1 + �� e−t

√t 1
√1 − (ln(1 + �)=(2t))

6

√1 + �� e−t
√t 1

√1 − (�=(1 + �)) = 1 + �√� e−t
√t :Now assume that t 6 (1+�) ln(1+�)=(2�). Thanks to Markov's inequality,we have 1 ({f > t}) 6 e−t

6
√(1 + �) ln(1 + �)=(2�)e−t

√t
6

√1 + �√2 e−t
√t 6

1 + �√2 e−t
√twhere, in the third inequality, we used that ln(1 + �) 6 �. The resultfollows. �Unfortunately this naive approah of using the pointwise bound fromLemma 2.1 is spei� to dimension 1, sine in higher dimension the tail



176 N. GOZLAN, M. MADIMAN, C. ROBERTO, P. M. SAMSONof the �2 distribution does not have the orret behavior. It should benotied that Ball et al. [1℄ also have a quik diret proof of the Talagrandonjeture for n = 1 that also uses a similar tail omparison with the �2distribution, and also notied that suh a tail is not of the orret orderfor n > 2.
§3. The Deviation Inequality for Log-Convex FuntionsThroughout this setion f : R

n → R is a onvex funtion satisfying
∫ ef dn = 1 where n is the standard Gaussian measure on R

n. Givens ∈ R, let As := {f 6 s}and '(s) := �−1 (n(As)) ;where �−1 is the inverse of the Gaussian umulative distribution funtion� de�ned by (1.11).The key ingredient in the proof of Theorem 1.4 is the onavity of thefuntion ' that, as we shall see in the proof of the next lemma, is a diretonsequene of Ehrhard's inequality (1.10).Lemma 3.1. Let f and ' be de�ned as above. Then ' is onave, non-dereasing, lims→∞ '(s) = +∞ and lims→−∞ '(s) = −∞.The onavity of ' was �rst observed by Ehrhard in [5℄. Below we reallthe proof for the reader's onveniene.Proof. That ' is non-dereasing and satis�es lims→∞ '(s) = +∞ andlims→−∞ '(s) = −∞ is a diret and obvious onsequene of the de�nition.Now we prove that ' is onave, using Ehrhard's inequality. Given � ∈ [0; 1℄and s1; s2 ∈ R, we have, by onvexity of f ,A�s1+(1−�)s2 ⊃ �As1 + (1 − �)As2 :Hene, by monotoniity of �−1, it holds'(�s1 + (1 − �)s2) > �−1 (n(�As1 + (1 − �)As2 )) :Then, Ehrhard's inequality (1.10) implies that�−1 (n(�As1 + (1 − �)As2 )) > ��−1 (n(As1 )) + (1 − �)�−1 (n(As2 ))= �'(s1) + (1 − �)'(s2)from whih the onavity of ' follows. �



DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 177Proof of Theorem 1.4. Let f and ' be de�ned as above. Then, it isenough to show that '(u) >
√2u; ∀u > 0:Sine −' : R → R ∪ {+∞} is onvex by Lemma 3.1 and lower-semionti-nuous, the Fenhel{Moreau Theorem applies and guarantees that

−'(u) = supt∈R

{ut−  (t)} ; ∀u ∈ R;where  (t) = (−')∗(t) := supu∈R

{ut+ '(u)}is the Fenhel{Legendre transform of −'. Also we observe that, sinelimu→∞ '(u) = +∞, neessarily  (t) = +∞ for all t > 0 so that'(u) = − supt60 {ut−  (t)} = inft60 {−ut+  (t)} :Now observe that1 = ∫ ef dn = ∞
∫

−∞

eun(f > u) du= ∞
∫

−∞

eu(1 − �('(u)) du = ∞
∫

−∞

eu�('(u)) duwhere we reall that � = 1−�. Using integration by parts and the fat �is dereasing, we have for all t 6 01 = ∞
∫

−∞

eu�('(u)) du >

∞
∫

−∞

eu�(−ut+  (t)) du = (−t)e (t)t +∞
∫

−∞

e−vt �(v) dv= e (t)t 1√2� +∞
∫

−∞

e−vt e−v2=2 dv = exp { (t)t + 12t2} :Therefore, for all t 6 0 it holds (t) > − 12t :In turn, '(u) = inft60 {−ut+  (t)} > inft60{

−ut− 12t} = √2u



178 N. GOZLAN, M. MADIMAN, C. ROBERTO, P. M. SAMSONas expeted. �

§4. Revisiting the deviation inequality, with a disussionof the semi-onvex aseSuppose that f : R
n → R is a funtion suh that ∫ ef dn = 1: De�ne �fthe distribution of f under n, that it to say�f (A) := n({x ∈ R

n : f(x) ∈ A}); ∀ Borel A ⊂ R:Consider the monotone rearrangement transport map Tf sending 1 onto�f . It is de�ned by Tf (u) = F−1f ◦ �(u); ∀u ∈ R;where Ff (t) = �f ((−∞; t℄), t ∈ R, denotes the umulative distributionfuntion of �f andF−1f (s) = inf{t : Ff (t) > s}; s ∈ (0; 1)its generalized inverse.The following proposition will yield to a slightly di�erent proof of The-orem 1.4.Proposition 4.1. With the notation above, if Tf is �-semionvex, forsome � > 0 i.eTf ((1 − t)x+ ty) 6 (1 − t)Tf (x) + tTf (y) + �2 t(1 − t)|x − y|2;
∀x; y ∈ R; ∀t ∈ [0; 1℄;then n({f > u}) 6 � (

√2u− log(1 + �)) ; ∀u >
12 log(1 + �):Proof. The �-semionvexity ondition is equivalent to the onvexity ofthe funtion x 7→ Tf (x) + �x22 . Now observe that1 = ∫ ef dn = ∫ ey d�f (y) = ∫ eTf (x) d1(x):Applying Lemma 2.1 to the funtion Tf in dimension 1, one onludes thatTf (x) 6

12x2 + 12 log(1 + �); ∀x ∈ R:



DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 179This is equivalent to�(x) 6 Ff (12x2 + 12 log(1 + �))and thus Ff (u) > � (

√2u− log(1 + �)) ; ∀u >
12 log(1 + �)or in other words,n({f > u}) 6 � (

√2u− log(1 + �)) ; ∀u >
12 log(1 + �): �Seond proof of Theorem 1.4. Suppose that f : R
n → R is onvexand suh that ∫ ef dn = 1. Then aording to Lemma 3.1, the funtion�−1 ◦ Ff = T−1f is onave. Being also non-dereasing, its inverse Tf isonvex. Applying Proposition 4.1 with � = 0 ompletes the proof. �In view of Proposition 4.1, a natural onjeture would be the following:Conjeture. There exists a funtion � : [0;∞) → [0;∞) suh that iff : R

n → R is a smooth funtion suh that Hess f > −�Id, � > 0, thenthe map Tf is �(�)-semionvex on R.If this onjeture was true, then one would reover ompletely Eldan{Lee{Lehe result (1.3). Besides the onvex ase, let us observe that theonjeture is obviously true in dimension 1 for non-dereasing funtions f .Indeed, f is learly a transport map between 1 and �f . Being non-dereasing, f is neessarily the monotone rearrangement map, that is tosay : f = Tf . Sine f is �-semionvex, then so is Tf :Unfortunately, this probably too naive onjeture turns out to be falsein general. As explained to us by R. van Handel, the presene of loalminimizers for f breaks down the semi-onvexity of Tf : Let us illustratethis in dimension 1. Consider a funtion f : R → R of lass C1 suh thatf ′(x) vanishes only at a �nite number of points and suh that there is somepoint xo ∈ R and � > 0 suh that f ′(xo) = 0, f ′(x) < 0 on [xo − �; xo[and f ′(xo) > 0 on ℄xo; xo + �℄: Denoting by to = f(xo), we assume thatinfR f < to, that is to say, f only presents a loal minimizer at xo: Let usfurther assume that there are some �o; �o > 0 and some positive integerN suh that, for all to − �o 6 t < to,Card{x ∈ R : f(x) = t} 6 Nand |f ′(x)| > �o for all x suh that to − �o 6 f(x) < to.



180 N. GOZLAN, M. MADIMAN, C. ROBERTO, P. M. SAMSONClaim. There is no � > 0 for whih the map T := Tf is �-semionvex.It is not diÆult to exhibit semionvex funtions f enjying the assump-tions above, whih dislaim the onjeture.Proof of the Claim. First let us remark that if T was �-semionvex forsome � > 0, then the map x 7→ T (x)+ �2x2 would be onvex, and so wouldadmit �nite left and right derivatives everywhere. Moreover for a onvexfuntion the left derivative at some point is always less than or equal tothe right derivative at this same point. So the �-semionvexity of T wouldin partiular imply thatT ′
−(x) 6 T ′+(x); ∀x ∈ R:We are going to show that T ′

−(uo) > T ′+(uo) for some uo ∈ R whih willprove the laim. Sine, denoting F := Ff ,T ′
±(u) = '(u)F ′

± ◦ T (u) ;at every point u ∈ R where the derivative exists, one onludes that it isenough to show that F ′
−(to) < F ′+(to)to have the desired inequality at uo = T−1(to). Note that |T−1(to)| < ∞beause �f ((to;+∞)) = 1((T−1(to);+∞)) > 0and �f ((∞; to)) = 1((−∞; T−1(to))) > 0;as easily follows from our assumptions.Aording to the one-dimensional general hange of variable formula,the probability measure �f admits the following densityh(t) = ∑x∈{f=t} '(x)

|f ′(x)| ; t ∈ R;where '(x) = 1√2� e−x2=2, x ∈ R: De�ne "o = max[xo−�;xo+�℄ f − to > 0 ;then, for h < "o, it holdsF (to + h) − F (to) = to+h
∫to h(t) dt > h mM(h) ;



DEVIATION INEQUALITIES FOR CONVEX FUNCTIONS 181where m = inf[xo−�;xo+�℄'and M(h) = sup {|f ′(x)| : x ∈ [xo − �; xo + �℄; f(x) ∈ [to; to + h℄} :It is easily seen that M(h) → 0 as h to 0+, whih implies that F ′+(to) =+∞: Now let us onsider the left derivative. Let us note that one anassume without loss of generality that the left derivative exists at to, sineotherwise the funtion T would learly not be semionvex. For any h > 0,it holds F (to) − F (to − h) = to
∫to−h h(t) dt 6 h N√2��oand so F ′
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