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t. After setting geometri
 notions, we revisit an exponen-tial fun
tional that has arisen in several 
ontexts, with spe
ial at-tention to a set of geometri
 parameters and asso
iated inequalities.
§1. Introdu
tionIt is an honor and a pleasure to 
ontribute to this volume. V.N. Su-dakov's work has had a great in
uen
e on my own interests. In that spirit,what follows is a note on an exponential fun
tional that bears on the stru
-ture of bounded Gaussian pro
esses. The 
ontent is largely expository andbegins with a review of relevant notions from 
lassi
al 
onvex geometryand their extension to in�nite dimensions. We then re
all the exponentialfun
tional, in
luding a basi
 inequality, and a set of geometri
 parameters.The latter are re-examined for an alternate representation and then relatedinequalities are dis
ussed.
§2. Ba
kgroundIn what follows, aspe
ts of geometri
 
onvexity not otherwise referen
ed
an be found in the ex
ellent monograph [19℄. As stated there, the key fea-ture of Brunn{Minkowski theory is the intera
tion of volume evaluationand ve
tor addition of 
onvex bodies (non-empty, 
ompa
t, 
onvex sub-sets): for 
onvex bodies K1;K2; : : : ;Kn in IRd and positive 
oeÆ
ients�1; �2; : : : ; �n,Key words and phrases: Alexandrov{Fen
hel inequality, Brunn{Minkowski theory,deviation bound, Gaussian pro
ess, intrinsi
 volume, isonormal Gaussian pro
ess, Itô{Nisio, log
on
avity, Minkowski fun
tional, mixed volume, os
illation, quermassintegral,Steiner formula, supremum, ultra-log
on
avity, Wills fun
tional.101



102 R. A. VITALEvold (�1K1 + �2K2 + · · ·+ �nKn)= n∑i1;i2;··· ;id=1�i1�i2 · · ·�idV (Ki1 ;Ki2 ; : : : ;Kid); (1)where, without loss of generality, the \mixed volumes" V (· · · ) are takento be symmetri
 in their arguments. For the spe
ial 
ase of a parallel bodyK + �Bd (Bd, the unit ball in IRd), (1) is the 
lassi
al Steiner formulavold(K + �Bd) = d∑j=0 �i(dj)Wj(K); (2)where Wj(K) = V (K;K; · · · ;K︸ ︷︷ ︸k−j ; Bd; Bd; · · · ; Bd︸ ︷︷ ︸j ); 0 6 j 6 dare the quermassintegrals or Minkowski fun
tionals (one should note thatthe latter term also refers to a di�erent obje
t in the literature). Un-fortunately, they have the in
onvenient property of depending on d, thedimension of the spe
i�
 ambient spa
e. A modi�ed 
olle
tion is free ofthis property: the intrinsi
 volumes [2, 16℄ are given byVj(K) = (dj)�j Wd−j(K); 0 6 j 6 d: (3)Here �j is the volume of Bj , and one 
an extend (3) by taking Vj(K) = 0for d < j (by 
ontrast, in�nite{dimensional K will have Vj(K) > 0 for allj). We note V0(K) = 1 and three other spe
i�
 
ases: Vd(K) = vold(K),Vd−1(K) = (1=2)Sd−1(K) (i.e., 1/2 the surfa
e area of K), and V1(K),whi
h is a mean{width type fun
tional normalized so that if K is a linesegment, then V1(K) is its length.The 
orresponding version of the Steiner formula readsvold(K + �Bd) = d∑i=0 �j�jVd−j(K): (4)



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 103The Alexandrov{Fen
hel inequality asserts that for 
onvex bodies K1,K2; : : : ;Kd in IRdV 2(K1;K2;K3; : : : ;Kd)
> V (K1;K1;K3; : : : ;Kd) V (K2;K2;K3; : : : ;Kd): (5)Spe
ifying to intrinsi
 volumes and making an appropriate adjustmentof 
onstants, (5) 
an be shown to imply log
on
avity of the sequen
e

{j!Vj(K)}∞j=0 :(j!Vj(K))2 > (j − 1)!Vj−1(K) · (j + 1)!Vj+1(K) j = 1; 2; : : : (6)and a dire
t 
onsequen
eVj(K) 6
V j1 (K)j! j = 1; 2; : : : (7)[2, 17℄.

§3. Extension of Intrinsi
 Volumes toInfinite{Dimensional BodiesIt was the 
elebrated insight of Sudakov ([21{23℄; Theorem 1 below) that
onne
ted the geometri
 stru
ture just des
ribed and Gaussian pro
esses.This was subsequently elaborated by Chevet and Tsirelson. We give a briefreview.For a 
onvex body K in Hilbert spa
e ( ⇐⇒ `2), 
onsider a Gaussianpro
ess {Xt; t ∈ K}1 that is isonormal:t 7−→ Xt ∼ N(0; �2t );where �2t = VarXt = ‖t‖2 and Cov (Xt; Xt̂) = 〈t; t̂〉 (s
alar produ
t).An important question is whether there is a version that is a.s. bounded,formulated by Dudley [3℄ as to whether K is a GB{set.On the geometri
 side, and making use of the monotoni
ity of V1(·), setV1(K) = sup{V1(K̂) : K̂ ⊆ K; K̂ �nite-dimensional} : (8)Then Sudakov establishedTheorem 1. K is a GB{set if and only if V1(K) is �nite.1Here, and below, t ∈ K means by 
onvention that t ranges over a (resp., any)
ountable dense subset of K.



104 R. A. VITALEIn what follows, we assume that all relevant K are GB.Chevet [2℄ similarly extended by monotoni
ity the other intrinsi
 vol-umes Vj ; j = 2; 3; : : :, established (7), and thereby 
on
luded thatV1(K) <∞ =⇒ Vj(K) <∞; j = 2; 3; : : : :Sudakov showed spe
i�
ally thatV1(K) = √2� E supt∈KXt : (9)In an important step, Tsirelson [25℄ pla
ed (9) within a family of repre-sentations for all of the intrinsi
 volumes. A

ommodating te
hni
al issuessomewhat di�erently, a sket
h is as follows: for given j, 
onsiderXj∗t = (X(1)t ; X(2)t ; : : : ; X(j)t ) ;where the 
omponents are independent 
opies of Xt, together with theve
tor pro
ess Xj∗K = {Xj∗t ; t ∈ K}:The 
losed 
onvex hull Yj;K = 
onv(Xj∗K )is a 
andidate for a random 
onvex body in IRj , and, a

ordingly, itsmeasurability must be established. To do this, we make use of its supportfun
tion hYj;K : Sj−1 → IR1; given byhYj;K (u) = sup {< y; u > | y ∈ Yj;K}= sup{< x; u > |x ∈ Xj∗K }= sup{ j∑i=1X(i)t ui | t ∈ K} ;whi
h is evidently a random variable for ea
h u. Now measurability of Yj;K
oin
ides with measurability of the quantity ÆH (Yj;K ; L) for every 
onvexbody L in IRj , where ÆH is the Hausdor� metri
. This is 
on�rmed byre
alling thatÆH (Yj;K ; L)= sup{
|hYj;K (u)− hL(u)| |u ∈ a 
ountable, dense subset of Sj−1} :



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 105With the foregoing in pla
e, Tsirelson's representation [25, Theorem 6℄ isVj(K) = (2�)j=2j!�j E volj (Yj;K) j = 1; 2; : : : : (10)For what follows, and in view of the standard isonormal map t 7→ Xt =
〈t; Z〉 = ∞∑1 tiZi, where {Zi}∞1 is a sequen
e of standard normal randomvariables, we introdu
e the suggestive notationZ[ j;∞℄K = Yj;K ; (11)where Z[ j;∞℄ is a j ×∞ matrix of independent standard normal randomvariables. Finally we mention that an alternate proof of the representationwas given by the author [31℄ based on a theorem of Hadwiger 
hara
terizingintrinsi
 volumes ( [6℄; see also [10℄).

§4. The Wills Fun
tionalIn various forms, the fun
tional of the title has arisen independentlyin (i) geometry [7, 8, 32℄ (from where we take its name), (ii) maximumlikelihood estimation of lo
ation [24{26℄, and (iii) �nan
ial mathemati
s[1℄; see also [27{29℄. For a 
onvex body K in IRd, the Wills fun
tional isgiven by W (K) = d∑j=0 Vj((1=√2�)K) = d∑j=0(1=(2�)j=2)Vj(K) (12)[32℄.2 A di�erent expression for W (K) also obtains:
∫IRd e−� dist2(x;(1=√2�)K)dx: (13)where dist(x; (1=√2�)K) = inft∈(1=√2�)K ‖x−t‖: Following [7℄, the equiv-alen
e of the two expressions was shown in [27℄, and we repeat that herefor the reader's 
onvenien
e. ConsiderW (K) = Evold ((1=√2�)K +�Bd) ; (14)2We note that the s
aling ofK by 1=√2� does not appear in the original formulationof Wills as followed in the geometry literature and also in [27℄. The present normalizationwas adopted by the author in [29℄ as somewhat better �tted to Gaussian 
ontexts; seealso [25℄.



106 R. A. VITALEwhere � is a random variable with density f(�) = 1(� > 0)2� � e−��2x:Expanding the volume expression, taking expe
tations, and making noteof E�j = 1�j ; j = 0; 1; 2; : : : yields (12). For the se
ond representation,again start with (14), but now setvold((1=√2�)K +�Bd) = ∫IRd 1 [dist(x; (1=√2�)K)
6 �] dx:Taking expe
tations and invoking Fubini gives (13).Now we make a 
hange of variables z = √2� x in (13) to get equivalently

( 12�)d=2 ∫IRd e−(1=2) dist2(z;K)dz = ( 12�)d=2
∫IRd esupt∈K [〈t;z〉−(1=2)‖t‖2℄e−(1=2)‖z‖2dz:For an isonormal Gaussian pro
ess {Xt; t ∈ K} given by Xt = 〈t; Z〉, Zd{dimensional standard normal, we have thus shown thatW (K) = E esupt∈K [Xt−(1=2)�2t ℄: (15)Extension of the domain of W to in�nite{dimensional K is naturallydone via �nite{dimensional approximation as in (8). Representation (15),and also (12) in the formW (K) = ∞∑j=0(1=(2�)j=2)Vj(K); (16)are maintained. Tsirelson [25℄ gave a proof of this using spe
i�
ally poly-topal approximants and a result of Chevet [2℄. He further showed, by in-serting the domination (7) into (16), the inequalityW (K) 6 e(1=√2�)V1(K); (17)equivalently, E esupt∈K{Xt−(1=2)�2t} 6 eE supt∈K Xt : (18)( [25℄; see also [17,27,28℄ and Remark 1 below). The latter guarantee that(15) and (16) are in fa
t �nite for any GB K and are interesting in theirown right as well. In se
tion 6, we dis
uss variants.



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 107The asymptoti
 form of W (rK), r → ∞, was studied in [29℄. The 
on-text there (see also [11℄) was a geometri
 treatment of the Itô{Nisio phe-nomenon [9℄ whi
h showed that, in a weak sense, a lo
al neighborhood ofa dis
ontinuity of {Xt; t ∈ K} generi
ally resembles a ball of small radiusand high dimension. Relevant here is the following: for t ∈ K, let B(t; ")be the t-
entered ball of radius " and setÆ(t) = lim"→0 [ sups∈K∩B(t;")Xs − infs∈K∩B(t;")Xs] :Ea
h of these limits is an almost sure 
onstant. Considering them as num-bers, set �(K) = supt∈K Æ(t) (departing from 
onvention, we regard thisas over all t ∈ K). ThenW (rK) = e(�(K)=2)r+o(r): (19)An important tool in [29℄ was a 
lass of geometri
 parameters {mj(K)}∞1su
h thatE supt∈KXt = m1(K) > · · · > mj−1(K) > mj(K) > · · · → �(K)=2: (20)In what follows we examine their stru
ture further and dis
uss relatedinequalities.
§5. Quasi{widthsFollowing [29, 30℄, we setmj(K) = jVj(K)√2�Vj−1(K) j = 1; 2; : : : (21)For ea
h j, mj(rK) is homogeneous of degree 1 in r and a

ordingly we
all it the quasi{width of order j. One hasm1(K) = (1=√2�)V1(K) = E supt∈KXt; (22)and that, as a 
onsequen
e of (6), the quasi{widths form a de
reasingsequen
e. For a further understanding, we derive an alternate expressionto (21). In the numerator, re
all thatVj(K) = (2�)j=2j!�j E volj (Z[ j;∞℄K) : (23)



108 R. A. VITALESimilarly, in the denominator there isVj−1(K) = (2�)(j−1)=2(j − 1) !�j−1 Evolj−1(Z[ j−1;∞℄K); (24)whi
h we re{express by noting that in distributionZ[ (j−1);∞℄ = �j−1Z[ j;∞℄;where the independent matrix �j−1 
onsists of the �rst j − 1 rows of arandom j × j orthogonal matrix. ThenEvolj−1(Z[ j−1;∞℄K) = Evolj−1(�j−1Z[ j;∞℄K)= E{E [volj−1(�j−1Z[ j;∞℄K) | Z[ j;∞℄K]
}: (25)Now with Kubota's integral re
ursion [2, 19, 25℄ in the spe
ial 
ase ofCau
hy's surfa
e area formula, one has for j{dimensional K0Evolj−1(�j−1K0) = 2�j−1j �j Vj−1(K0) = �j−1j�j Sj−1(K0)Applying this to the inner expe
tation in the �nal expression in (25), wehave E [volj−1(�j−1Z[ j;∞℄K) | Z[ j;∞℄K] = �j−1j �j Sj−1(Z[ j;∞℄K):It follows thatEvolj−1(Z[ j−1;∞℄K) = �j−1j �j ESj−1(Z[ j;∞℄K):Inserting this into (24) givesVj−1(K) = (2�)(j−1)=2j!�j E [Sj−1(Z[ j;∞℄K)] : (26)Substituting this and (23) into (21), we �nally getmj(K) = j · Evolj(Z[ j;∞℄K)ESj−1(Z[ j;∞℄K) ; (27)whi
h was our goal. It expresses mj(K) in terms of mean behavior of thesingle j{dimensional random 
onvex body Z[ j;∞℄K.
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§6. A Class of InequalitiesWe turn now to a generalization of (17). Spe
i�
ally, following [30℄,we show that a 
lass of bounds in terms of quasi{widths 
omes aboutby varying the domination (7): re
all from (6) that aj = j!Vj(K); j =0; 1; 2; : : : is a log-
on
ave sequen
e:log aj 6 log ai + (log ai+1 − log ai)(j − i);for all i; j = 0; 1; 2; : : :. Equivalently, for any �xed i ∈ {0; 1; 2; : : :}, this 
anbe read asVj(K) 6

i!Vi(K)j! ( (i+ 1)Vi+1(K)Vi(K) )j−i j = 0; 1; 2; : : : : (28)It is of interest to re{express this. From (21), one has(i+ 1)Vi+1(K)Vi(K) = (2�)1=2mi+1(K) (29)and taking the produ
t of (21) for j = 1; 2; : : : ; i providesi!Vi(K) = (2�)i=2 i∏j=1mj(K): (30)Substituting (29) and (30) into (28) and re{arranging givesVj(K) 6 
i(K) · (2�)j=2mji+1(K)j! ; (31)where 
i(K) = ∏ij=1mj(K)mii+1(K) = i∏j=1 mj(K)mi+1(K) (32)(taking 
0(K) = 1). Finally, substituting the domination (31) into (16)yields W (K) 6 
i(K)emi+1(K); i = 0; 1; 2; : : : (33)thus generalizing (17) (i.e., i = 0) to the other quasi{widths (we note thereis a minor typo in the 
orresponding expression in [30℄).



110 R. A. VITALEA 
lass of deviation bounds 
an also be dedu
ed. First note that, from(33) with r > 0,W (rK) 6 
i(K)emi+1(K)r; i = 0; 1; 2; : : : ; (34)using the fa
t that 
i(rK) is homogeneous of degree 0 in r. Then follow-ing [27℄, one 
an re{express (34) asE esupt∈K{rXt−r2(1=2)�2t} 6 
i(K)emi+1(K)r: (35)Setting �2 = supt∈K �2t and re-arranging then providesE er[supt∈K Xt−mi+1(K)℄ 6 
i(K)e(1=2)�2r2 : (36)Applying Markov's inequality gives for a > 0P(supt∈KXt −mi+1(K) > a) 6 
i(K)e(1=2)�2r2−arand minimizing the bound at r = a=�2 �nally yieldsP(supt∈KXt −mi+1(K) > a) 6 
i(K)e−a2=(2�2): i = 0; 1; 2; : : : (37)The 
ase i = 0, well{known in the probability literature in the formP(supt∈KXt − E supt∈KXt > a) 6 e−a2=(2�2)(e.g., [12, 14℄), was similarly shown in [27℄.In a di�erent vein, one 
an think of looking for bounds sharper thanthose in (33). One option is to express (31) for both i > 1 and i−1. Then,for a given j, 
hoose the domination that is tighter. This amounts to usingthe �rst domination for j > i and the se
ond for j 6 i− 1 (the two beingthe same at j = i). That is,Vj(K) 6






i−1(K) · (2�)j=2mji (K))j! j = 0; 1; 2; : : : ; i− 1
i(K) · (2�)j=2mji+1(K))j! j = i; i+ 1; i+ 2; : : : ;and 
onsequentlyW (K) 6 
i−1(K) i−1∑j=0 mji (K)j! + 
i(K) ∞∑j=i mji+1(K)j! :



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 111Finally, e
hoing a 
omment in [30℄, we note that the natural way inwhi
h quasi{widths emerge in the derivation of (33), as well as their ap-pearan
e in (20), suggests that they bear further examination as fun
tion-als of interest for both K and the pro
ess {Xt; t ∈ K}. In this regard,we mention as well the fun
tionals 
i(K); i = 1; 2; : : :, whi
h, as noted,are homogeneous of degree 0 in r and thus 
an be regarded as \shape"parameters for K.
§7. Final Remarks(1) A signi�
ant generalization of (18), in
luding a left{tail probabilitybound, was shown by Borell [1℄.(2) Following the above dis
ussion, it is not possible to let i → ∞ in(37), make use of (20), and produ
e the analogous statement withmi(K) repla
ed by �=2; this be
ause of no established 
ontrol overthe 
i(K). However, a result of this type was shown in [29℄ usingother means, in whi
h the expli
it intermediate estimates (35), (37)are bypassed (note there that the statement of Theorem 4 has atypographi
al error (\=" should be \6") and, in any 
ase, does notalways re
e
t the exa
t asymptoti
s as 
laimed (e.g., [13,14℄); thereader is also 
autioned that in [29℄ the de�nition of \os
illation"
arries a fa
tor of 1=2 
ompared to the 
onventional de�nition).(3) For additional geometri
 understanding of m2(K) (via V2(K)),see [2℄ and [4℄.(4) In view of the key role that (6) played in the dis
ussion above,we note that it appeared in [18℄ as ultra{log
on
avity of order ∞of the sequen
e {Vj(K)}∞1 . In that study (relating to negativedependen
e of random variables), the 
losure of the 
lass of su
hsequen
es under 
onvolution was 
onje
tured. This was veri�ed in[15℄ with a later, geometri
ally{based, proof in [5℄ using a theoremof Shephard [20℄ involving mixed volumes and a spe
ial 
ase of (1).
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