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ON AN EXPONENTIAL FUNCTIONAL FOR
GAUSSIAN PROCESSES AND ITS GEOMETRIC
FOUNDATIONS

ABSTRACT. After setting geometric notions, we revisit an exponen-
tial functional that has arisen in several contexts, with special at-
tention to a set of geometric parameters and associated inequalities.

§1. INTRODUCTION

It is an honor and a pleasure to contribute to this volume. V.N. Su-
dakov’s work has had a great influence on my own interests. In that spirit,
what follows is a note on an exponential functional that bears on the struc-
ture of bounded Gaussian processes. The content is largely expository and
begins with a review of relevant notions from classical convex geometry
and their extension to infinite dimensions. We then recall the exponential
functional, including a basic inequality, and a set of geometric parameters.
The latter are re-examined for an alternate representation and then related
inequalities are discussed.

§2. BACKGROUND

In what follows, aspects of geometric convexity not otherwise referenced
can be found in the excellent monograph [19]. As stated there, the key fea-
ture of Brunn—Minkowski theory is the interaction of volume evaluation
and vector addition of convex bodies (non-empty, compact, convex sub-
sets): for convex bodies Ki,Ks,..., K, in IR? and positive coefficients
AL, A2,y Ap,

Key words and phrases: Alexandrov—Fenchel inequality, Brunn—Minkowski theory,
deviation bound, Gaussian process, intrinsic volume, isonormal Gaussian process, [t6—
Nisio, logconcavity, Minkowski functional, mixed volume, oscillation, quermassintegral,
Steiner formula, supremum, ultra-logconcavity, Wills functional.
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volg (M K1 + X Ks + -+ A\ Kp)
n

= Z AilAiQ"'AidV(KhaKiga"'ﬂKid)) (1)

11,82, ,0g=1

where, without loss of generality, the “mixed volumes” V(---) are taken
to be symmetric in their arguments. For the special case of a parallel body
K 4 ABy (By, the unit ball in IR?), (1) is the classical Steiner formula

d
volg(K + ABg) = Y X' (d) W;(K), (2)

Jj=0

where

Wj(K):V(KﬂKa"'7K7Bd7Bd7"'7Bd)7 Og,]gd

k—j J

are the quermassintegrals or Minkowski functionals (one should note that
the latter term also refers to a different object in the literature). Un-
fortunately, they have the inconvenient property of depending on d, the
dimension of the specific ambient space. A modified collection is free of
this property: the intrinsic volumes [2,16] are given by

d
Vi(K) = %de(K), 0<j<d 3)
J
Here k; is the volume of B;, and one can extend (3) by taking V;(K) =0
for d < j (by contrast, infinite-dimensional K will have V;(K) > 0 for all
7). We note V5(K) = 1 and three other specific cases: V4(K) = voly(K),
Va—1(K) = (1/2)Sq—1(K) (i-e., 1/2 the surface area of K), and V;(K),
which is a mean—width type functional normalized so that if K is a line
segment, then V;(K) is its length.

The corresponding version of the Steiner formula reads

d
volg(K + ABa) = > N k;Vy;(K). (4)
i=0
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The Alexandrov—Fenchel inequality asserts that for convex bodies Ky,
Ks,...,K,in R*
V2 (K, Ko, K3, ..., K,)
> V(K1, K1, Ks,...,Kq) V(K> K2, K3, ..., Kq). (5)

Specifying to intrinsic volumes and making an appropriate adjustment
of constants, (5) can be shown to imply logconcavity of the sequence

{1V ()52, :
V() 2 (= DV (K) - (G + D!V (K) i=1,2,... (6)

and a direct consequence

[2,17].

§3. EXTENSION OF INTRINSIC VOLUMES TO
INFINITE-DIMENSIONAL BODIES

It was the celebrated insight of Sudakov ([21-23]; Theorem 1 below) that
connected the geometric structure just described and Gaussian processes.
This was subsequently elaborated by Chevet and Tsirelson. We give a brief
review.

For a convex body K in Hilbert space ( <= /»), consider a Gaussian
process {X;,t € K}! that is isonormal:

t— X; ~ N(O,af),

where 07 = VarX; = ||t||> and Cov (X, X;) = (t,t) (scalar product).
An important question is whether there is a version that is a.s. bounded,
formulated by Dudley [3] as to whether K is a GB-set.

On the geometric side, and making use of the monotonicity of V; (-), set

Vi(K) = sup {V1 (K): KCK, K ﬁnite—dimensional} NG
Then Sudakov established
Theorem 1. K is a GB-set if and only if V1 (K) is finite.

lHere, and below, t € K means by convention that ¢ ranges over a (resp., any)
countable dense subset of K.
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In what follows, we assume that all relevant K are GB.
Chevet [2] similarly extended by monotonicity the other intrinsic vol-
umes Vj,j = 2,3, ..., established (7), and thereby concluded that

Vi(K)<oo = Vj(K)<oo, j=23,....
Sudakov showed specifically that

Vi(K) = V2r Esup X;. (9)
teK

In an important step, Tsirelson [25] placed (9) within a family of repre-
sentations for all of the intrinsic volumes. Accommodating technical issues
somewhat differently, a sketch is as follows: for given j, consider

Xi° = (X0, X0, X0,

where the components are independent copies of X;, together with the
vector process

X{ ={x{", te K}.
The closed convex hull

Y, xk = conv (X}(*)

is a candidate for a random convex body in IR’, and, accordingly, its
measurability must be established. To do this, we make use of its support
function hy, . : S7~' — IR', given by

hy;  (u) = sup{<y,u> |y € Y;x}
:sup{< T,u > |a:€X§(*}
j .
= sup{ZXt(l)uﬂt € K} ,
i=1
which is evidently a random variable for each u. Now measurability of Y} x
coincides with measurability of the quantity dg (Y; k', L) for every convex
body L in IR’, where g is the Hausdorff metric. This is confirmed by
recalling that
Om (YJ'7K7 L)
= sup {|hy, , (u) — hr(u)| | u € a countable, dense subset of S7~"} .
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With the foregoing in place, Tsirelson’s representation [25, Theorem 6] is

27)i/? .
V() = B B vl (3.0 j=12... (10
vy

For what follows, and in view of the standard isonormal map ¢t — X; =
o)
(t,Z)y = > t;Z;, where {Z;}5° is a sequence of standard normal random

variables, we introduce the suggestive notation
Zijoal K =YK, (11)

where Z; ] is a j x 0o matrix of independent standard normal random
variables. Finally we mention that an alternate proof of the representation
was given by the author [31] based on a theorem of Hadwiger characterizing
intrinsic volumes ( [6]; see also [10]).

§4. THE WILLS FUNCTIONAL

In various forms, the functional of the title has arisen independently
in (i) geometry [7,8,32] (from where we take its name), (ii) maximum
likelihood estimation of location [24-26], and (iii) financial mathematics
[1]; see also [27-29]. For a convex body K in IRY, the Wills functional is
given by

d
W) = Y GV = Y 0/exIGE) (1)
[32].2 A different expression for W (K) also obtains:
/e*”di“Q(z’(l/m)mdx. (13)

R4
where dist(z, (1/v27) K) = infye(1/vam) ||z —t||. Following [7], the equiv-

alence of the two expressions was shown in [27], and we repeat that here
for the reader’s convenience. Consider

W (K) = Evoly ((1/\/%)1( + ABd) : (14)

2\We note that the scaling of K by 1/+/2m does not appear in the original formulation
of Wills as followed in the geometry literature and also in [27]. The present normalization
was adopted by the author in [29] as somewhat better fitted to Gaussian contexts; see
also [25].
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where A is a random variable with density f(\) = 1(A > 0)2r Ae ™z
Expanding the volume expression, taking expectations, and making note
of EAJ = Ni,j = 0,1,2,... yields (12). For the second representation,

again start with (14), but now set

vola(1/VER)K + ABa) = [ 1 [dist (s, (1/VEDK) < A] do
Rd
Taking expectations and invoking Fubini gives (13).
Now we make a change of variables z = v/27 z in (13) to get equivalently

d/2 d/2
1 / /67(1/2)dist2(z,K)dZZ 1 /
27 27
Bd

/esuptEK[<t,z>—<1/2>|\t||21e—<1/2>||zn2dz.

Bd
For an isonormal Gaussian process {X;,t € K} given by X; = (¢,2), Z
d—dimensional standard normal, we have thus shown that

W(K) = E eSuPrex [Xe—(1/2)07] (15)

Extension of the domain of W to infinite-dimensional K is naturally
done via finite-dimensional approximation as in (8). Representation (15),
and also (12) in the form

(o]

= (1/@r)y?)V;(K), (16)

7=0
are maintained. Tsirelson [25] gave a proof of this using specifically poly-
topal approximants and a result of Chevet [2]. He further showed, by in-
serting the domination (7) into (16), the inequality

W(K) < e(l/Vﬁ)Vl(K), (17)
equivalently,
EetPeex { Xe—(1/2)0%} < ePsuprex Xt (18)

( [25]; see also [17,27,28] and Remark 1 below). The latter guarantee that
(15) and (16) are in fact finite for any GB K and are interesting in their
own right as well. In section 6, we discuss variants.
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The asymptotic form of W (rK), r — oo, was studied in [29]. The con-
text there (see also [11]) was a geometric treatment of the It6—Nisio phe-
nomenon [9] which showed that, in a weak sense, a local neighborhood of
a discontinuity of {X¢,t € K} generically resembles a ball of small radius
and high dimension. Relevant here is the following: for t € K, let B(t,¢)
be the t-centered ball of radius € and set

0(t) = lim sup Xg;— inf X
€20 | se KNB(t,e) s€EKNB(t,e)
Each of these limits is an almost sure constant. Considering them as num-

bers, set A(K) = sup,cg 0(t) (departing from convention, we regard this
as over all t € K). Then

W(rK) = eAU)/2r+o(r), (19)

An important tool in [29] was a class of geometric parameters {m;(K)}{°
such that
Esup Xy =my(K) 2 -+ 2 mj1(K) Z2m;(K) > --- — A(K) /2. (20)
teK

In what follows we examine their structure further and discuss related
inequalities.

§5. QUASI-WIDTHS
Following [29,30], we set
iVi(K
mj(K):L() i=1,2,... (21)
vV 27(‘/}‘,1 (K)
For each j, m;(rK) is homogeneous of degree 1 in r and accordingly we
call it the quasi—width of order j. One has
mi(K) = (1/V2m)Vi (K) = Esup X, (22)
teK
and that, as a consequence of (6), the quasi—widths form a decreasing
sequence. For a further understanding, we derive an alternate expression
to (21). In the numerator, recall that
(2m)I/?

Vi(K) = 55— E vol; (Z0q ) (23)
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Similarly, in the denominator there is

(@m)i—/>
Vioi(K) = G-Dtr Evolj_1(Z;j-1,00K), (24)

which we re—express by noting that in distribution
Z1(j-1),00) = j=12] 005

where the independent matrix II;_; consists of the first j — 1 rows of a
random j X j orthogonal matrix. Then

Evolj_1(Z]j-1,00/K)
= Evolj_1(Ij-1 7} 00 K) (25)
= B{E [volj 1 (TTj -1 2,0 K) | Z ) K]}
Now with Kubota’s integral recursion [2,19,25] in the special case of
Cauchy’s surface area formula, one has for j—dimensional K
2K

Vie1(Kp) =
jHj J 1( 0) ]Ii]

Kj—1

EVOljfl(ijlKo) = ijl(KO)
Applying this to the inner expectation in the final expression in (25), we
have

Ki—1
E [volj1 (17} 00 K) | Zpj.00) K] = JJH_ Sj—1(Z] j,00 ).
J

It follows that

Ki_—
Evol; 1 (Z(j-1.0qK) = ]Jﬁ,l E 8j-1(Z;j,00K).-
7

Inserting this into (24) gives
(2m)T=1/2
J' K

Substituting this and (23) into (21), we finally get
j - Evol; (Z .00 K
i) = JE Sjlj((Zu[';]]K)) ’

Vici(K) = E [Sj_l(Z[j,oo]K)} . (26)

(27)

which was our goal. It expresses m; (k) in terms of mean behavior of the
single j—dimensional random convex body Z|; ) K.
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§6. A CLASS OF INEQUALITIES

We turn now to a generalization of (17). Specifically, following [30],
we show that a class of bounds in terms of quasi—widths comes about
by varying the domination (7): recall from (6) that a; = j!V;(K), j =
0,1,2,...1s a log-concave sequence:

loga; < loga; + (logair1 —loga;)(j — 1),

foralli,7 =0,1,2,.... Equivalently, for any fixed ¢ € {0,1,2,...}, this can
be read as

Vi(K) <

i'Vi(K) <(l + DVin1 (K)

J! Vi(K)

It is of interest to re—express this. From (21), one has

(i +1)Vig1 (K)
Vi(K)

j—i
> j=0,1,2,.... (28)

= (2m)"*mit1 (K) (29)

and taking the product of (21) for j = 1,2,...,i provides
iWi(K) = 2m)"? ] my(K). (30)
j=1

Substituting (29) and (30) into (28) and re—arranging gives

1) < o0y B, (31)
where '
1.71 mj K i .y
oty < oo miE) gm0 @2)

m§+1(K) B e mi1(K)
(taking co(K) = 1). Finally, substituting the domination (31) into (16)
yields

W(K) < ¢i(K)e™+15) - i=0,1,2,... (33)

thus generalizing (17) (i.e., i = 0) to the other quasi-widths (we note there
is a minor typo in the corresponding expression in [30]).
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A class of deviation bounds can also be deduced. First note that, from
(33) with r > 0,

W(rK) < ¢(K)em+Er - i=0,1,2,..., (34)

using the fact that ¢;(rK) is homogeneous of degree 0 in r. Then follow-
ing [27], one can re-express (34) as

E " Per {rXe—r2 /20t o (B)emit (KT, (35)
Setting 0? = sup,c i 07 and re-arranging then provides

B er[suprer Xemmisni(K)] ¢ (R)e(1/2)7777, (36)
Applying Markov’s inequality gives for a > 0

P(sup X; —m;1(K) > a) < ci(K)e(lm)"Zrz_”
teK

and minimizing the bound at r = a/o? finally yields

P(sup Xy —my1(K) 2 a) < ci(K)e_QZ/(%Z). i=0,1,2,... (37)
teK

The case ¢ = 0, well-known in the probability literature in the form

P(sup X; — Esup X; > a) < e’/ (20%)
teK tekK
(e.g., [12,14]), was similarly shown in [27].

In a different vein, one can think of looking for bounds sharper than
those in (33). One option is to express (31) for both i > 1 and i — 1. Then,
for a given j, choose the domination that is tighter. This amounts to using
the first domination for j > 7 and the second for j <4 — 1 (the two being
the same at j = 4). That is,

i/ J
cioa(K) - CTmUD g 10 i1

)i/2 ml )
¢i(F) - B )G i1t

Vi(K) <

and consequently

W( < ¢ 1 Zz_:m +cz )i hLl(K)-
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Finally, echoing a comment in [30], we note that the natural way in
which quasi-widths emerge in the derivation of (33), as well as their ap-
pearance in (20), suggests that they bear further examination as function-
als of interest for both K and the process {X;,t € K}. In this regard,
we mention as well the functionals ¢;(K),i = 1,2,..., which, as noted,
are homogeneous of degree 0 in r and thus can be regarded as “shape”
parameters for K.

(1)
(2)

§7. FINAL REMARKS

A significant generalization of (18), including a left—tail probability
bound, was shown by Borell [1].

Following the above discussion, it is not possible to let i — oo in
(37), make use of (20), and produce the analogous statement with
m;(K) replaced by A/2, this because of no established control over
the ¢;(K). However, a result of this type was shown in [29] using
other means, in which the explicit intermediate estimates (35), (37)
are bypassed (note there that the statement of Theorem 4 has a
typographical error (“=" should be “<”) and, in any case, does not
always reflect the exact asymptotics as claimed (e.g., [13,14]); the
reader is also cautioned that in [29] the definition of “oscillation”
carries a factor of 1/2 compared to the conventional definition).
For additional geometric understanding of mq(K) (via Va2(K)),
see [2] and [4].

In view of the key role that (6) played in the discussion above,
we note that it appeared in [18] as ultra—logconcavity of order oo
of the sequence {V;(K)}{°. In that study (relating to negative
dependence of random variables), the closure of the class of such
sequences under convolution was conjectured. This was verified in
[15] with a later, geometrically-based, proof in [5] using a theorem
of Shephard [20] involving mixed volumes and a special case of (1).
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