
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 457, 2017 Ç.R. A. VitaleON AN EXPONENTIAL FUNCTIONAL FORGAUSSIAN PROCESSES AND ITS GEOMETRICFOUNDATIONSAbstrat. After setting geometri notions, we revisit an exponen-tial funtional that has arisen in several ontexts, with speial at-tention to a set of geometri parameters and assoiated inequalities.
§1. IntrodutionIt is an honor and a pleasure to ontribute to this volume. V.N. Su-dakov's work has had a great inuene on my own interests. In that spirit,what follows is a note on an exponential funtional that bears on the stru-ture of bounded Gaussian proesses. The ontent is largely expository andbegins with a review of relevant notions from lassial onvex geometryand their extension to in�nite dimensions. We then reall the exponentialfuntional, inluding a basi inequality, and a set of geometri parameters.The latter are re-examined for an alternate representation and then relatedinequalities are disussed.
§2. BakgroundIn what follows, aspets of geometri onvexity not otherwise referenedan be found in the exellent monograph [19℄. As stated there, the key fea-ture of Brunn{Minkowski theory is the interation of volume evaluationand vetor addition of onvex bodies (non-empty, ompat, onvex sub-sets): for onvex bodies K1;K2; : : : ;Kn in IRd and positive oeÆients�1; �2; : : : ; �n,Key words and phrases: Alexandrov{Fenhel inequality, Brunn{Minkowski theory,deviation bound, Gaussian proess, intrinsi volume, isonormal Gaussian proess, Itô{Nisio, logonavity, Minkowski funtional, mixed volume, osillation, quermassintegral,Steiner formula, supremum, ultra-logonavity, Wills funtional.101



102 R. A. VITALEvold (�1K1 + �2K2 + · · ·+ �nKn)= n∑i1;i2;··· ;id=1�i1�i2 · · ·�idV (Ki1 ;Ki2 ; : : : ;Kid); (1)where, without loss of generality, the \mixed volumes" V (· · · ) are takento be symmetri in their arguments. For the speial ase of a parallel bodyK + �Bd (Bd, the unit ball in IRd), (1) is the lassial Steiner formulavold(K + �Bd) = d∑j=0 �i(dj)Wj(K); (2)where Wj(K) = V (K;K; · · · ;K︸ ︷︷ ︸k−j ; Bd; Bd; · · · ; Bd︸ ︷︷ ︸j ); 0 6 j 6 dare the quermassintegrals or Minkowski funtionals (one should note thatthe latter term also refers to a di�erent objet in the literature). Un-fortunately, they have the inonvenient property of depending on d, thedimension of the spei� ambient spae. A modi�ed olletion is free ofthis property: the intrinsi volumes [2, 16℄ are given byVj(K) = (dj)�j Wd−j(K); 0 6 j 6 d: (3)Here �j is the volume of Bj , and one an extend (3) by taking Vj(K) = 0for d < j (by ontrast, in�nite{dimensional K will have Vj(K) > 0 for allj). We note V0(K) = 1 and three other spei� ases: Vd(K) = vold(K),Vd−1(K) = (1=2)Sd−1(K) (i.e., 1/2 the surfae area of K), and V1(K),whih is a mean{width type funtional normalized so that if K is a linesegment, then V1(K) is its length.The orresponding version of the Steiner formula readsvold(K + �Bd) = d∑i=0 �j�jVd−j(K): (4)



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 103The Alexandrov{Fenhel inequality asserts that for onvex bodies K1,K2; : : : ;Kd in IRdV 2(K1;K2;K3; : : : ;Kd)
> V (K1;K1;K3; : : : ;Kd) V (K2;K2;K3; : : : ;Kd): (5)Speifying to intrinsi volumes and making an appropriate adjustmentof onstants, (5) an be shown to imply logonavity of the sequene

{j!Vj(K)}∞j=0 :(j!Vj(K))2 > (j − 1)!Vj−1(K) · (j + 1)!Vj+1(K) j = 1; 2; : : : (6)and a diret onsequeneVj(K) 6
V j1 (K)j! j = 1; 2; : : : (7)[2, 17℄.

§3. Extension of Intrinsi Volumes toInfinite{Dimensional BodiesIt was the elebrated insight of Sudakov ([21{23℄; Theorem 1 below) thatonneted the geometri struture just desribed and Gaussian proesses.This was subsequently elaborated by Chevet and Tsirelson. We give a briefreview.For a onvex body K in Hilbert spae ( ⇐⇒ `2), onsider a Gaussianproess {Xt; t ∈ K}1 that is isonormal:t 7−→ Xt ∼ N(0; �2t );where �2t = VarXt = ‖t‖2 and Cov (Xt; Xt̂) = 〈t; t̂〉 (salar produt).An important question is whether there is a version that is a.s. bounded,formulated by Dudley [3℄ as to whether K is a GB{set.On the geometri side, and making use of the monotoniity of V1(·), setV1(K) = sup{V1(K̂) : K̂ ⊆ K; K̂ �nite-dimensional} : (8)Then Sudakov establishedTheorem 1. K is a GB{set if and only if V1(K) is �nite.1Here, and below, t ∈ K means by onvention that t ranges over a (resp., any)ountable dense subset of K.



104 R. A. VITALEIn what follows, we assume that all relevant K are GB.Chevet [2℄ similarly extended by monotoniity the other intrinsi vol-umes Vj ; j = 2; 3; : : :, established (7), and thereby onluded thatV1(K) <∞ =⇒ Vj(K) <∞; j = 2; 3; : : : :Sudakov showed spei�ally thatV1(K) = √2� E supt∈KXt : (9)In an important step, Tsirelson [25℄ plaed (9) within a family of repre-sentations for all of the intrinsi volumes. Aommodating tehnial issuessomewhat di�erently, a sketh is as follows: for given j, onsiderXj∗t = (X(1)t ; X(2)t ; : : : ; X(j)t ) ;where the omponents are independent opies of Xt, together with thevetor proess Xj∗K = {Xj∗t ; t ∈ K}:The losed onvex hull Yj;K = onv(Xj∗K )is a andidate for a random onvex body in IRj , and, aordingly, itsmeasurability must be established. To do this, we make use of its supportfuntion hYj;K : Sj−1 → IR1; given byhYj;K (u) = sup {< y; u > | y ∈ Yj;K}= sup{< x; u > |x ∈ Xj∗K }= sup{ j∑i=1X(i)t ui | t ∈ K} ;whih is evidently a random variable for eah u. Now measurability of Yj;Koinides with measurability of the quantity ÆH (Yj;K ; L) for every onvexbody L in IRj , where ÆH is the Hausdor� metri. This is on�rmed byrealling thatÆH (Yj;K ; L)= sup{
|hYj;K (u)− hL(u)| |u ∈ a ountable, dense subset of Sj−1} :



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 105With the foregoing in plae, Tsirelson's representation [25, Theorem 6℄ isVj(K) = (2�)j=2j!�j E volj (Yj;K) j = 1; 2; : : : : (10)For what follows, and in view of the standard isonormal map t 7→ Xt =
〈t; Z〉 = ∞∑1 tiZi, where {Zi}∞1 is a sequene of standard normal randomvariables, we introdue the suggestive notationZ[ j;∞℄K = Yj;K ; (11)where Z[ j;∞℄ is a j ×∞ matrix of independent standard normal randomvariables. Finally we mention that an alternate proof of the representationwas given by the author [31℄ based on a theorem of Hadwiger haraterizingintrinsi volumes ( [6℄; see also [10℄).

§4. The Wills FuntionalIn various forms, the funtional of the title has arisen independentlyin (i) geometry [7, 8, 32℄ (from where we take its name), (ii) maximumlikelihood estimation of loation [24{26℄, and (iii) �nanial mathematis[1℄; see also [27{29℄. For a onvex body K in IRd, the Wills funtional isgiven by W (K) = d∑j=0 Vj((1=√2�)K) = d∑j=0(1=(2�)j=2)Vj(K) (12)[32℄.2 A di�erent expression for W (K) also obtains:
∫IRd e−� dist2(x;(1=√2�)K)dx: (13)where dist(x; (1=√2�)K) = inft∈(1=√2�)K ‖x−t‖: Following [7℄, the equiv-alene of the two expressions was shown in [27℄, and we repeat that herefor the reader's onveniene. ConsiderW (K) = Evold ((1=√2�)K +�Bd) ; (14)2We note that the saling ofK by 1=√2� does not appear in the original formulationof Wills as followed in the geometry literature and also in [27℄. The present normalizationwas adopted by the author in [29℄ as somewhat better �tted to Gaussian ontexts; seealso [25℄.



106 R. A. VITALEwhere � is a random variable with density f(�) = 1(� > 0)2� � e−��2x:Expanding the volume expression, taking expetations, and making noteof E�j = 1�j ; j = 0; 1; 2; : : : yields (12). For the seond representation,again start with (14), but now setvold((1=√2�)K +�Bd) = ∫IRd 1 [dist(x; (1=√2�)K)
6 �] dx:Taking expetations and invoking Fubini gives (13).Now we make a hange of variables z = √2� x in (13) to get equivalently

( 12�)d=2 ∫IRd e−(1=2) dist2(z;K)dz = ( 12�)d=2
∫IRd esupt∈K [〈t;z〉−(1=2)‖t‖2℄e−(1=2)‖z‖2dz:For an isonormal Gaussian proess {Xt; t ∈ K} given by Xt = 〈t; Z〉, Zd{dimensional standard normal, we have thus shown thatW (K) = E esupt∈K [Xt−(1=2)�2t ℄: (15)Extension of the domain of W to in�nite{dimensional K is naturallydone via �nite{dimensional approximation as in (8). Representation (15),and also (12) in the formW (K) = ∞∑j=0(1=(2�)j=2)Vj(K); (16)are maintained. Tsirelson [25℄ gave a proof of this using spei�ally poly-topal approximants and a result of Chevet [2℄. He further showed, by in-serting the domination (7) into (16), the inequalityW (K) 6 e(1=√2�)V1(K); (17)equivalently, E esupt∈K{Xt−(1=2)�2t} 6 eE supt∈K Xt : (18)( [25℄; see also [17,27,28℄ and Remark 1 below). The latter guarantee that(15) and (16) are in fat �nite for any GB K and are interesting in theirown right as well. In setion 6, we disuss variants.



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 107The asymptoti form of W (rK), r → ∞, was studied in [29℄. The on-text there (see also [11℄) was a geometri treatment of the Itô{Nisio phe-nomenon [9℄ whih showed that, in a weak sense, a loal neighborhood ofa disontinuity of {Xt; t ∈ K} generially resembles a ball of small radiusand high dimension. Relevant here is the following: for t ∈ K, let B(t; ")be the t-entered ball of radius " and setÆ(t) = lim"→0 [ sups∈K∩B(t;")Xs − infs∈K∩B(t;")Xs] :Eah of these limits is an almost sure onstant. Considering them as num-bers, set �(K) = supt∈K Æ(t) (departing from onvention, we regard thisas over all t ∈ K). ThenW (rK) = e(�(K)=2)r+o(r): (19)An important tool in [29℄ was a lass of geometri parameters {mj(K)}∞1suh thatE supt∈KXt = m1(K) > · · · > mj−1(K) > mj(K) > · · · → �(K)=2: (20)In what follows we examine their struture further and disuss relatedinequalities.
§5. Quasi{widthsFollowing [29, 30℄, we setmj(K) = jVj(K)√2�Vj−1(K) j = 1; 2; : : : (21)For eah j, mj(rK) is homogeneous of degree 1 in r and aordingly weall it the quasi{width of order j. One hasm1(K) = (1=√2�)V1(K) = E supt∈KXt; (22)and that, as a onsequene of (6), the quasi{widths form a dereasingsequene. For a further understanding, we derive an alternate expressionto (21). In the numerator, reall thatVj(K) = (2�)j=2j!�j E volj (Z[ j;∞℄K) : (23)



108 R. A. VITALESimilarly, in the denominator there isVj−1(K) = (2�)(j−1)=2(j − 1) !�j−1 Evolj−1(Z[ j−1;∞℄K); (24)whih we re{express by noting that in distributionZ[ (j−1);∞℄ = �j−1Z[ j;∞℄;where the independent matrix �j−1 onsists of the �rst j − 1 rows of arandom j × j orthogonal matrix. ThenEvolj−1(Z[ j−1;∞℄K) = Evolj−1(�j−1Z[ j;∞℄K)= E{E [volj−1(�j−1Z[ j;∞℄K) | Z[ j;∞℄K]
}: (25)Now with Kubota's integral reursion [2, 19, 25℄ in the speial ase ofCauhy's surfae area formula, one has for j{dimensional K0Evolj−1(�j−1K0) = 2�j−1j �j Vj−1(K0) = �j−1j�j Sj−1(K0)Applying this to the inner expetation in the �nal expression in (25), wehave E [volj−1(�j−1Z[ j;∞℄K) | Z[ j;∞℄K] = �j−1j �j Sj−1(Z[ j;∞℄K):It follows thatEvolj−1(Z[ j−1;∞℄K) = �j−1j �j ESj−1(Z[ j;∞℄K):Inserting this into (24) givesVj−1(K) = (2�)(j−1)=2j!�j E [Sj−1(Z[ j;∞℄K)] : (26)Substituting this and (23) into (21), we �nally getmj(K) = j · Evolj(Z[ j;∞℄K)ESj−1(Z[ j;∞℄K) ; (27)whih was our goal. It expresses mj(K) in terms of mean behavior of thesingle j{dimensional random onvex body Z[ j;∞℄K.



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 109
§6. A Class of InequalitiesWe turn now to a generalization of (17). Spei�ally, following [30℄,we show that a lass of bounds in terms of quasi{widths omes aboutby varying the domination (7): reall from (6) that aj = j!Vj(K); j =0; 1; 2; : : : is a log-onave sequene:log aj 6 log ai + (log ai+1 − log ai)(j − i);for all i; j = 0; 1; 2; : : :. Equivalently, for any �xed i ∈ {0; 1; 2; : : :}, this anbe read asVj(K) 6

i!Vi(K)j! ( (i+ 1)Vi+1(K)Vi(K) )j−i j = 0; 1; 2; : : : : (28)It is of interest to re{express this. From (21), one has(i+ 1)Vi+1(K)Vi(K) = (2�)1=2mi+1(K) (29)and taking the produt of (21) for j = 1; 2; : : : ; i providesi!Vi(K) = (2�)i=2 i∏j=1mj(K): (30)Substituting (29) and (30) into (28) and re{arranging givesVj(K) 6 i(K) · (2�)j=2mji+1(K)j! ; (31)where i(K) = ∏ij=1mj(K)mii+1(K) = i∏j=1 mj(K)mi+1(K) (32)(taking 0(K) = 1). Finally, substituting the domination (31) into (16)yields W (K) 6 i(K)emi+1(K); i = 0; 1; 2; : : : (33)thus generalizing (17) (i.e., i = 0) to the other quasi{widths (we note thereis a minor typo in the orresponding expression in [30℄).



110 R. A. VITALEA lass of deviation bounds an also be dedued. First note that, from(33) with r > 0,W (rK) 6 i(K)emi+1(K)r; i = 0; 1; 2; : : : ; (34)using the fat that i(rK) is homogeneous of degree 0 in r. Then follow-ing [27℄, one an re{express (34) asE esupt∈K{rXt−r2(1=2)�2t} 6 i(K)emi+1(K)r: (35)Setting �2 = supt∈K �2t and re-arranging then providesE er[supt∈K Xt−mi+1(K)℄ 6 i(K)e(1=2)�2r2 : (36)Applying Markov's inequality gives for a > 0P(supt∈KXt −mi+1(K) > a) 6 i(K)e(1=2)�2r2−arand minimizing the bound at r = a=�2 �nally yieldsP(supt∈KXt −mi+1(K) > a) 6 i(K)e−a2=(2�2): i = 0; 1; 2; : : : (37)The ase i = 0, well{known in the probability literature in the formP(supt∈KXt − E supt∈KXt > a) 6 e−a2=(2�2)(e.g., [12, 14℄), was similarly shown in [27℄.In a di�erent vein, one an think of looking for bounds sharper thanthose in (33). One option is to express (31) for both i > 1 and i−1. Then,for a given j, hoose the domination that is tighter. This amounts to usingthe �rst domination for j > i and the seond for j 6 i− 1 (the two beingthe same at j = i). That is,Vj(K) 6





i−1(K) · (2�)j=2mji (K))j! j = 0; 1; 2; : : : ; i− 1i(K) · (2�)j=2mji+1(K))j! j = i; i+ 1; i+ 2; : : : ;and onsequentlyW (K) 6 i−1(K) i−1∑j=0 mji (K)j! + i(K) ∞∑j=i mji+1(K)j! :



ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN 111Finally, ehoing a omment in [30℄, we note that the natural way inwhih quasi{widths emerge in the derivation of (33), as well as their ap-pearane in (20), suggests that they bear further examination as funtion-als of interest for both K and the proess {Xt; t ∈ K}. In this regard,we mention as well the funtionals i(K); i = 1; 2; : : :, whih, as noted,are homogeneous of degree 0 in r and thus an be regarded as \shape"parameters for K.
§7. Final Remarks(1) A signi�ant generalization of (18), inluding a left{tail probabilitybound, was shown by Borell [1℄.(2) Following the above disussion, it is not possible to let i → ∞ in(37), make use of (20), and produe the analogous statement withmi(K) replaed by �=2; this beause of no established ontrol overthe i(K). However, a result of this type was shown in [29℄ usingother means, in whih the expliit intermediate estimates (35), (37)are bypassed (note there that the statement of Theorem 4 has atypographial error (\=" should be \6") and, in any ase, does notalways reet the exat asymptotis as laimed (e.g., [13,14℄); thereader is also autioned that in [29℄ the de�nition of \osillation"arries a fator of 1=2 ompared to the onventional de�nition).(3) For additional geometri understanding of m2(K) (via V2(K)),see [2℄ and [4℄.(4) In view of the key role that (6) played in the disussion above,we note that it appeared in [18℄ as ultra{logonavity of order ∞of the sequene {Vj(K)}∞1 . In that study (relating to negativedependene of random variables), the losure of the lass of suhsequenes under onvolution was onjetured. This was veri�ed in[15℄ with a later, geometrially{based, proof in [5℄ using a theoremof Shephard [20℄ involving mixed volumes and a speial ase of (1).
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