R. A. Vitale

ON AN EXPONENTIAL FUNCTIONAL FOR GAUSSIAN PROCESSES AND ITS GEOMETRIC FOUNDATIONS

Abstract

After setting geometric notions, we revisit an exponential functional that has arisen in several contexts, with special attention to a set of geometric parameters and associated inequalities.

§1. Introduction

It is an honor and a pleasure to contribute to this volume. V.N. Sudakov's work has had a great influence on my own interests. In that spirit, what follows is a note on an exponential functional that bears on the structure of bounded Gaussian processes. The content is largely expository and begins with a review of relevant notions from classical convex geometry and their extension to infinite dimensions. We then recall the exponential functional, including a basic inequality, and a set of geometric parameters. The latter are re-examined for an alternate representation and then related inequalities are discussed.

§2. Background

In what follows, aspects of geometric convexity not otherwise referenced can be found in the excellent monograph [19]. As stated there, the key feature of Brunn-Minkowski theory is the interaction of volume evaluation and vector addition of convex bodies (non-empty, compact, convex subsets): for convex bodies $K_{1}, K_{2}, \ldots, K_{n}$ in \mathbb{R}^{d} and positive coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$,

[^0]\[

$$
\begin{align*}
\operatorname{vol}_{d}\left(\lambda_{1} K_{1}+\lambda_{2} K_{2}\right. & \left.+\cdots+\lambda_{n} K_{n}\right) \\
& =\sum_{i_{1}, i_{2}, \cdots, i_{d}=1}^{n} \lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{d}} V\left(K_{i_{1}}, K_{i_{2}}, \ldots, K_{i_{d}}\right) \tag{1}
\end{align*}
$$
\]

where, without loss of generality, the "mixed volumes" $V(\cdots)$ are taken to be symmetric in their arguments. For the special case of a parallel body $K+\lambda B_{d}\left(B_{d}\right.$, the unit ball in $\left.\mathbb{R}^{d}\right),(1)$ is the classical Steiner formula

$$
\begin{equation*}
\operatorname{vol}_{d}\left(K+\lambda B_{d}\right)=\sum_{j=0}^{d} \lambda^{i}\binom{d}{j} W_{j}(K) \tag{2}
\end{equation*}
$$

where

$$
W_{j}(K)=V(\underbrace{K, K, \cdots, K}_{k-j}, \underbrace{B_{d}, B_{d}, \cdots, B_{d}}_{j}), \quad 0 \leqslant j \leqslant d
$$

are the quermassintegrals or Minkowski functionals (one should note that the latter term also refers to a different object in the literature). Unfortunately, they have the inconvenient property of depending on d, the dimension of the specific ambient space. A modified collection is free of this property: the intrinsic volumes $[2,16]$ are given by

$$
\begin{equation*}
V_{j}(K)=\frac{\binom{d}{j}}{\kappa_{j}} W_{d-j}(K), \quad 0 \leqslant j \leqslant d \tag{3}
\end{equation*}
$$

Here κ_{j} is the volume of B_{j}, and one can extend (3) by taking $V_{j}(K)=0$ for $d<j$ (by contrast, infinite-dimensional K will have $V_{j}(K)>0$ for all j). We note $V_{0}(K)=1$ and three other specific cases: $V_{d}(K)=\operatorname{vol}_{d}(K)$, $V_{d-1}(K)=(1 / 2) S_{d-1}(K)$ (i.e., $1 / 2$ the surface area of K), and $V_{1}(K)$, which is a mean-width type functional normalized so that if K is a line segment, then $V_{1}(K)$ is its length.

The corresponding version of the Steiner formula reads

$$
\begin{equation*}
\operatorname{vol}_{d}\left(K+\lambda B_{d}\right)=\sum_{i=0}^{d} \lambda^{j} \kappa_{j} V_{d-j}(K) \tag{4}
\end{equation*}
$$

The Alexandrov-Fenchel inequality asserts that for convex bodies K_{1}, K_{2}, \ldots, K_{d} in \mathbb{R}^{d}

$$
\begin{align*}
V^{2}\left(K_{1}, K_{2}, K_{3}, \ldots\right. & \left., K_{d}\right) \\
& \geqslant V\left(K_{1}, K_{1}, K_{3}, \ldots, K_{d}\right) V\left(K_{2}, K_{2}, K_{3}, \ldots, K_{d}\right) \tag{5}
\end{align*}
$$

Specifying to intrinsic volumes and making an appropriate adjustment of constants, (5) can be shown to imply logconcavity of the sequence $\left\{j!V_{j}(K)\right\}_{j=0}^{\infty}$:

$$
\begin{equation*}
\left(j!V_{j}(K)\right)^{2} \geqslant(j-1)!V_{j-1}(K) \cdot(j+1)!V_{j+1}(K) \quad j=1,2, \ldots \tag{6}
\end{equation*}
$$

and a direct consequence

$$
\begin{equation*}
V_{j}(K) \leqslant \frac{V_{1}^{j}(K)}{j!} \quad j=1,2, \ldots \tag{7}
\end{equation*}
$$

$[2,17]$.

§3. Extension of Intrinsic Volumes to Infinite-Dimensional Bodies

It was the celebrated insight of Sudakov ([21-23]; Theorem 1 below) that connected the geometric structure just described and Gaussian processes. This was subsequently elaborated by Chevet and Tsirelson. We give a brief review.

For a convex body K in Hilbert space $\left(\Longleftrightarrow \ell_{2}\right)$, consider a Gaussian process $\left\{X_{t}, t \in K\right\}^{1}$ that is isonormal:

$$
t \longmapsto X_{t} \sim N\left(0, \sigma_{t}^{2}\right)
$$

where $\sigma_{t}^{2}=\operatorname{Var} X_{t}=\|t\|^{2}$ and $\operatorname{Cov}\left(X_{t}, X_{\hat{t}}\right)=\langle t, \widehat{t}\rangle$ (scalar product). An important question is whether there is a version that is a.s. bounded, formulated by Dudley [3] as to whether K is a $G B$-set.

On the geometric side, and making use of the monotonicity of $V_{1}(\cdot)$, set

$$
\begin{equation*}
V_{1}(K)=\sup \left\{V_{1}(\widehat{K}): \widehat{K} \subseteq K, \widehat{K} \text { finite-dimensional }\right\} \tag{8}
\end{equation*}
$$

Then Sudakov established
Theorem 1. K is a $G B$-set if and only if $V_{1}(K)$ is finite.

[^1]In what follows, we assume that all relevant K are GB.
Chevet [2] similarly extended by monotonicity the other intrinsic volumes $V_{j}, j=2,3, \ldots$, established (7), and thereby concluded that

$$
V_{1}(K)<\infty \Longrightarrow V_{j}(K)<\infty, \quad j=2,3, \ldots
$$

Sudakov showed specifically that

$$
\begin{equation*}
V_{1}(K)=\sqrt{2 \pi} \mathrm{E} \sup _{t \in K} X_{t} \tag{9}
\end{equation*}
$$

In an important step, Tsirelson [25] placed (9) within a family of representations for all of the intrinsic volumes. Accommodating technical issues somewhat differently, a sketch is as follows: for given j, consider

$$
X_{t}^{j *}=\left(X_{t}^{(1)}, X_{t}^{(2)}, \ldots, X_{t}^{(j)}\right)
$$

where the components are independent copies of X_{t}, together with the vector process

$$
X_{K}^{j *}=\left\{X_{t}^{j *}, t \in K\right\}
$$

The closed convex hull

$$
Y_{j, K}=\overline{\operatorname{conv}}\left(X_{K}^{j *}\right)
$$

is a candidate for a random convex body in \mathbb{R}^{j}, and, accordingly, its measurability must be established. To do this, we make use of its support function $h_{Y_{j, K}}: S^{j-1} \rightarrow \mathbb{R}^{1}$, given by

$$
\begin{aligned}
h_{Y_{j, K}}(u) & =\sup \left\{<y, u>\mid y \in Y_{j, K}\right\} \\
& =\sup \left\{<x, u>\mid x \in X_{K}^{j *}\right\} \\
& =\sup \left\{\sum_{i=1}^{j} X_{t}^{(i)} u_{i} \mid t \in K\right\},
\end{aligned}
$$

which is evidently a random variable for each u. Now measurability of $Y_{j, K}$ coincides with measurability of the quantity $\delta_{H}\left(Y_{j, K}, L\right)$ for every convex body L in \mathbb{R}^{j}, where δ_{H} is the Hausdorff metric. This is confirmed by recalling that

$$
\begin{aligned}
& \delta_{H}\left(Y_{j, K}, L\right) \\
& \quad=\sup \left\{\left|h_{Y_{j, K}}(u)-h_{L}(u)\right| \mid u \in \text { a countable, dense subset of } S^{j-1}\right\} .
\end{aligned}
$$

With the foregoing in place, Tsirelson's representation [25, Theorem 6] is

$$
\begin{equation*}
V_{j}(K)=\frac{(2 \pi)^{j / 2}}{j!\kappa_{j}} \mathrm{E} \mathrm{vol}_{j}\left(Y_{j, K}\right) \quad j=1,2, \ldots \tag{10}
\end{equation*}
$$

For what follows, and in view of the standard isonormal map $t \mapsto X_{t}=$ $\langle t, Z\rangle=\sum_{1}^{\infty} t_{i} Z_{i}$, where $\left\{Z_{i}\right\}_{1}^{\infty}$ is a sequence of standard normal random variables, we introduce the suggestive notation

$$
\begin{equation*}
Z_{[j, \infty]} K=Y_{j, K} \tag{11}
\end{equation*}
$$

where $Z_{[j, \infty]}$ is a $j \times \infty$ matrix of independent standard normal random variables. Finally we mention that an alternate proof of the representation was given by the author [31] based on a theorem of Hadwiger characterizing intrinsic volumes ([6]; see also [10]).

§4. The Wills Functional

In various forms, the functional of the title has arisen independently in (i) geometry [7, 8, 32] (from where we take its name), (ii) maximum likelihood estimation of location [24-26], and (iii) financial mathematics [1]; see also [27-29]. For a convex body K in \mathbb{R}^{d}, the Wills functional is given by

$$
\begin{equation*}
W(K)=\sum_{j=0}^{d} V_{j}((1 / \sqrt{2 \pi}) K)=\sum_{j=0}^{d}\left(1 /(2 \pi)^{j / 2}\right) V_{j}(K) \tag{12}
\end{equation*}
$$

[32]. ${ }^{2}$ A different expression for $W(K)$ also obtains:

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} e^{-\pi \operatorname{dist}^{2}(x,(1 / \sqrt{2 \pi}) K)} \mathrm{d} x \tag{13}
\end{equation*}
$$

where $\operatorname{dist}(x,(1 / \sqrt{2 \pi}) K)=\inf _{t \in(1 / \sqrt{2 \pi}) K}\|x-t\|$. Following [7], the equivalence of the two expressions was shown in [27], and we repeat that here for the reader's convenience. Consider

$$
\begin{equation*}
W(K)=\mathrm{Evol}_{d}\left((1 / \sqrt{2 \pi}) K+\Lambda B_{d}\right) \tag{14}
\end{equation*}
$$

[^2]where Λ is a random variable with density $f(\lambda)=1(\lambda \geqslant 0) 2 \pi \lambda e^{-\pi \lambda^{2}} x$. Expanding the volume expression, taking expectations, and making note of $\mathrm{E} \Lambda^{j}=\frac{1}{\kappa_{j}}, j=0,1,2, \ldots$ yields (12). For the second representation, again start with (14), but now set
$$
\operatorname{vol}_{d}\left((1 / \sqrt{2 \pi}) K+\Lambda B_{d}\right)=\int_{\mathbb{R}^{d}} 1[\operatorname{dist}(x,(1 / \sqrt{2 \pi}) K) \leqslant \Lambda] \mathrm{d} x
$$

Taking expectations and invoking Fubini gives (13).
Now we make a change of variables $z=\sqrt{2 \pi} x$ in (13) to get equivalently

$$
\begin{aligned}
\left(\frac{1}{2 \pi}\right)^{d / 2} & \int_{\mathbb{R}^{d}} e^{-(1 / 2) \operatorname{dist}^{2}(z, K)} \mathrm{d} z=\left(\frac{1}{2 \pi}\right)^{d / 2} \\
& \int_{\mathbb{R}^{d}} e^{\sup _{t \in K}\left[\langle t, z\rangle-(1 / 2)\|t\|^{2}\right]} e^{-(1 / 2)\|z\|^{2}} \mathrm{~d} z .
\end{aligned}
$$

For an isonormal Gaussian process $\left\{X_{t}, t \in K\right\}$ given by $X_{t}=\langle t, Z\rangle, Z$ d-dimensional standard normal, we have thus shown that

$$
\begin{equation*}
W(K)=\mathrm{E} e^{\sup _{t \in K}\left[X_{t}-(1 / 2) \sigma_{t}^{2}\right]} \tag{15}
\end{equation*}
$$

Extension of the domain of W to infinite-dimensional K is naturally done via finite-dimensional approximation as in (8). Representation (15), and also (12) in the form

$$
\begin{equation*}
W(K)=\sum_{j=0}^{\infty}\left(1 /(2 \pi)^{j / 2}\right) V_{j}(K) \tag{16}
\end{equation*}
$$

are maintained. Tsirelson [25] gave a proof of this using specifically polytopal approximants and a result of Chevet [2]. He further showed, by inserting the domination (7) into (16), the inequality

$$
\begin{equation*}
W(K) \leqslant e^{(1 / \sqrt{2 \pi}) V_{1}(K)}, \tag{17}
\end{equation*}
$$

equivalently,

$$
\begin{equation*}
\mathrm{E} e^{\sup _{t \in K}\left\{X_{t}-(1 / 2) \sigma_{t}^{2}\right\}} \leqslant e^{\mathrm{E} \sup _{t \in K} X_{t}} \tag{18}
\end{equation*}
$$

($[25]$; see also $[17,27,28]$ and Remark 1 below). The latter guarantee that (15) and (16) are in fact finite for any GB K and are interesting in their own right as well. In section 6 , we discuss variants.

The asymptotic form of $W(r K), r \rightarrow \infty$, was studied in [29]. The context there (see also [11]) was a geometric treatment of the Itô-Nisio phenomenon [9] which showed that, in a weak sense, a local neighborhood of a discontinuity of $\left\{X_{t}, t \in K\right\}$ generically resembles a ball of small radius and high dimension. Relevant here is the following: for $t \in K$, let $B(t, \varepsilon)$ be the t-centered ball of radius ε and set

$$
\delta(t)=\lim _{\varepsilon \rightarrow 0}\left[\sup _{s \in K \cap B(t, \varepsilon)} X_{s}-\inf _{s \in K \cap B(t, \varepsilon)} X_{s}\right] .
$$

Each of these limits is an almost sure constant. Considering them as numbers, set $\Delta(K)=\sup _{t \in K} \delta(t)$ (departing from convention, we regard this as over all $t \in K$). Then

$$
\begin{equation*}
W(r K)=e^{(\Delta(K) / 2) r+o(r)} \tag{19}
\end{equation*}
$$

An important tool in [29] was a class of geometric parameters $\left\{m_{j}(K)\right\}_{1}^{\infty}$ such that

$$
\begin{equation*}
\mathrm{E} \sup _{t \in K} X_{t}=m_{1}(K) \geqslant \cdots \geqslant m_{j-1}(K) \geqslant m_{j}(K) \geqslant \cdots \rightarrow \Delta(K) / 2 \tag{20}
\end{equation*}
$$

In what follows we examine their structure further and discuss related inequalities.

§5. QuAsI-WIDTHS

Following [29, 30], we set

$$
\begin{equation*}
m_{j}(K)=\frac{j V_{j}(K)}{\sqrt{2 \pi} V_{j-1}(K)} \quad j=1,2, \ldots \tag{21}
\end{equation*}
$$

For each $j, m_{j}(r K)$ is homogeneous of degree 1 in r and accordingly we call it the quasi-width of order j. One has

$$
\begin{equation*}
m_{1}(K)=(1 / \sqrt{2 \pi}) V_{1}(K)=\mathrm{E} \sup _{t \in K} X_{t} \tag{22}
\end{equation*}
$$

and that, as a consequence of (6), the quasi-widths form a decreasing sequence. For a further understanding, we derive an alternate expression to (21). In the numerator, recall that

$$
\begin{equation*}
V_{j}(K)=\frac{(2 \pi)^{j / 2}}{j!\kappa_{j}}{\mathrm{E} \operatorname{vol}_{j}\left(Z_{[j, \infty]} K\right)} \tag{23}
\end{equation*}
$$

Similarly, in the denominator there is

$$
\begin{equation*}
V_{j-1}(K)=\frac{(2 \pi)^{(j-1) / 2}}{(j-1)!\kappa_{j-1}}{\operatorname{E} \operatorname{vol}_{j-1}\left(Z_{[j-1, \infty]} K\right), ~}_{\text {l }} \tag{24}
\end{equation*}
$$

which we re-express by noting that in distribution

$$
Z_{[(j-1), \infty]}=\Pi_{j-1} Z_{[j, \infty]},
$$

where the independent matrix Π_{j-1} consists of the first $j-1$ rows of a random $j \times j$ orthogonal matrix. Then

$$
\begin{align*}
\operatorname{Evol}_{j-1}\left(Z_{[j-1, \infty]} K\right) & \\
& =\mathrm{E} \mathrm{vol}_{j-1}\left(\Pi_{j-1} Z_{[j, \infty]} K\right) \tag{25}\\
& =\mathrm{E}\left\{\mathrm{E}\left[\operatorname{vol}_{j-1}\left(\Pi_{j-1} Z_{[j, \infty]} K\right) \mid Z_{[j, \infty]} K\right]\right\}
\end{align*}
$$

Now with Kubota's integral recursion $[2,19,25]$ in the special case of Cauchy's surface area formula, one has for j-dimensional K_{0}

$$
\operatorname{Evol}_{j-1}\left(\Pi_{j-1} K_{0}\right)=\frac{2 \kappa_{j-1}}{j \kappa_{j}} V_{j-1}\left(K_{0}\right)=\frac{\kappa_{j-1}}{j \kappa_{j}} S_{j-1}\left(K_{0}\right)
$$

Applying this to the inner expectation in the final expression in (25), we have

$$
\mathrm{E}\left[\operatorname{vol}_{j-1}\left(\Pi_{j-1} Z_{[j, \infty]} K\right) \mid Z_{[j, \infty]} K\right]=\frac{\kappa_{j-1}}{j \kappa_{j}} S_{j-1}\left(Z_{[j, \infty]} K\right)
$$

It follows that

$$
\operatorname{Evol}_{j-1}\left(Z_{[j-1, \infty]} K\right)=\frac{\kappa_{j-1}}{j \kappa_{j}} \mathrm{E} S_{j-1}\left(Z_{[j, \infty]} K\right) .
$$

Inserting this into (24) gives

$$
\begin{equation*}
V_{j-1}(K)=\frac{(2 \pi)^{(j-1) / 2}}{j!\kappa_{j}} \mathrm{E}\left[S_{j-1}\left(Z_{[j, \infty]} K\right)\right] \tag{26}
\end{equation*}
$$

Substituting this and (23) into (21), we finally get

$$
\begin{equation*}
m_{j}(K)=\frac{j \cdot \operatorname{Evol}_{j}\left(Z_{[j, \infty]} K\right)}{\operatorname{E~S} S_{j-1}\left(Z_{[j, \infty]} K\right)} \tag{27}
\end{equation*}
$$

which was our goal. It expresses $m_{j}(K)$ in terms of mean behavior of the single j-dimensional random convex body $Z_{[j, \infty]} K$.

§6. A Class of Inequalities

We turn now to a generalization of (17). Specifically, following [30], we show that a class of bounds in terms of quasi-widths comes about by varying the domination (7): recall from (6) that $a_{j}=j!V_{j}(K), j=$ $0,1,2, \ldots$ is a log-concave sequence:

$$
\log a_{j} \leqslant \log a_{i}+\left(\log a_{i+1}-\log a_{i}\right)(j-i)
$$

for all $i, j=0,1,2, \ldots$. Equivalently, for any fixed $i \in\{0,1,2, \ldots\}$, this can be read as

$$
\begin{equation*}
V_{j}(K) \leqslant \frac{i!V_{i}(K)}{j!}\left(\frac{(i+1) V_{i+1}(K)}{V_{i}(K)}\right)^{j-i} \quad j=0,1,2, \ldots \tag{28}
\end{equation*}
$$

It is of interest to re-express this. From (21), one has

$$
\begin{equation*}
\frac{(i+1) V_{i+1}(K)}{V_{i}(K)}=(2 \pi)^{1 / 2} m_{i+1}(K) \tag{29}
\end{equation*}
$$

and taking the product of (21) for $j=1,2, \ldots, i$ provides

$$
\begin{equation*}
i!V_{i}(K)=(2 \pi)^{i / 2} \prod_{j=1}^{i} m_{j}(K) \tag{30}
\end{equation*}
$$

Substituting (29) and (30) into (28) and re-arranging gives

$$
\begin{equation*}
V_{j}(K) \leqslant c_{i}(K) \cdot \frac{(2 \pi)^{j / 2} m_{i+1}^{j}(K)}{j!} \tag{31}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{i}(K)=\frac{\prod_{j=1}^{i} m_{j}(K)}{m_{i+1}^{i}(K)}=\prod_{j=1}^{i} \frac{m_{j}(K)}{m_{i+1}(K)} \tag{32}
\end{equation*}
$$

(taking $c_{0}(K)=1$). Finally, substituting the domination (31) into (16) yields

$$
\begin{equation*}
W(K) \leqslant c_{i}(K) e^{m_{i+1}(K)}, \quad i=0,1,2, \ldots \tag{33}
\end{equation*}
$$

thus generalizing (17) (i.e., $i=0$) to the other quasi-widths (we note there is a minor typo in the corresponding expression in [30]).

A class of deviation bounds can also be deduced. First note that, from (33) with $r \geqslant 0$,

$$
\begin{equation*}
W(r K) \leqslant c_{i}(K) e^{m_{i+1}(K) r}, \quad i=0,1,2, \ldots \tag{34}
\end{equation*}
$$

using the fact that $c_{i}(r K)$ is homogeneous of degree 0 in r. Then following [27], one can re-express (34) as

$$
\begin{equation*}
\mathrm{E} e^{\sup _{t \in K}\left\{r X_{t}-r^{2}(1 / 2) \sigma_{t}^{2}\right\}} \leqslant c_{i}(K) e^{m_{i+1}(K) r} \tag{35}
\end{equation*}
$$

Setting $\sigma^{2}=\sup _{t \in K} \sigma_{t}^{2}$ and re-arranging then provides

$$
\begin{equation*}
\mathrm{E} e^{r\left[\sup _{t \in K} X_{t}-m_{i+1}(K)\right]} \leqslant c_{i}(K) e^{(1 / 2) \sigma^{2} r^{2}} . \tag{36}
\end{equation*}
$$

Applying Markov's inequality gives for $a>0$

$$
\mathrm{P}\left(\sup _{t \in K} X_{t}-m_{i+1}(K) \geqslant a\right) \leqslant c_{i}(K) e^{(1 / 2) \sigma^{2} r^{2}-a r}
$$

and minimizing the bound at $r=a / \sigma^{2}$ finally yields

$$
\begin{equation*}
\mathrm{P}\left(\sup _{t \in K} X_{t}-m_{i+1}(K) \geqslant a\right) \leqslant c_{i}(K) e^{-a^{2} /\left(2 \sigma^{2}\right)} . \quad i=0,1,2, \ldots \tag{37}
\end{equation*}
$$

The case $i=0$, well-known in the probability literature in the form

$$
\mathrm{P}\left(\sup _{t \in K} X_{t}-\mathrm{E} \sup _{t \in K} X_{t} \geqslant a\right) \leqslant e^{-a^{2} /\left(2 \sigma^{2}\right)}
$$

(e.g., $[12,14]$), was similarly shown in [27].

In a different vein, one can think of looking for bounds sharper than those in (33). One option is to express (31) for both $i \geqslant 1$ and $i-1$. Then, for a given j, choose the domination that is tighter. This amounts to using the first domination for $j \geqslant i$ and the second for $j \leqslant i-1$ (the two being the same at $j=i$). That is,

$$
V_{j}(K) \leqslant\left\{\begin{array}{ll}
c_{i-1}(K) \cdot \frac{\left.(2 \pi)^{j / 2} m_{i}^{j}(K)\right)}{j!} & j=0,1,2, \ldots, i-1 \\
c_{i}(K) \cdot \frac{\left.(2 \pi)^{j / 2} m_{i+1}^{j}(K)\right)}{j!} & j=i, i+1, i+2, \ldots
\end{array},\right.
$$

and consequently

$$
W(K) \leqslant c_{i-1}(K) \sum_{j=0}^{i-1} \frac{m_{i}^{j}(K)}{j!}+c_{i}(K) \sum_{j=i}^{\infty} \frac{m_{i+1}^{j}(K)}{j!}
$$

Finally, echoing a comment in [30], we note that the natural way in which quasi-widths emerge in the derivation of (33), as well as their appearance in (20), suggests that they bear further examination as functionals of interest for both K and the process $\left\{X_{t}, t \in K\right\}$. In this regard, we mention as well the functionals $c_{i}(K), i=1,2, \ldots$, which, as noted, are homogeneous of degree 0 in r and thus can be regarded as "shape" parameters for K.

§7. Final Remarks

(1) A significant generalization of (18), including a left-tail probability bound, was shown by Borell [1].
(2) Following the above discussion, it is not possible to let $i \rightarrow \infty$ in (37), make use of (20), and produce the analogous statement with $m_{i}(K)$ replaced by $\Delta / 2$, this because of no established control over the $c_{i}(K)$. However, a result of this type was shown in [29] using other means, in which the explicit intermediate estimates (35), (37) are bypassed (note there that the statement of Theorem 4 has a typographical error ("=" should be " \leqslant ") and, in any case, does not always reflect the exact asymptotics as claimed (e.g., [13, 14]); the reader is also cautioned that in [29] the definition of "oscillation" carries a factor of $1 / 2$ compared to the conventional definition).
(3) For additional geometric understanding of $m_{2}(K)$ (via $V_{2}(K)$), see [2] and [4].
(4) In view of the key role that (6) played in the discussion above, we note that it appeared in [18] as ultra-logconcavity of order ∞ of the sequence $\left\{V_{j}(K)\right\}_{1}^{\infty}$. In that study (relating to negative dependence of random variables), the closure of the class of such sequences under convolution was conjectured. This was verified in [15] with a later, geometrically-based, proof in [5] using a theorem of Shephard [20] involving mixed volumes and a special case of (1).

§8. Acknowledgment

I am grateful to the anonymous referee for a careful reading of the paper and comments that have been incorporated.

References

[^3]2. S. Chevet, Processus gaussiens et volumes mixtes. - Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 36, No. 1 (1976), 47-65.
3. R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. - J. Functional Analysis, 1 (1967), 290-330.
4. X. Fernique, Corps convexes et processus gaussiens de petit rang. - Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35, No. 4 (1976), 349-353.
5. L. Gurvits, A short proof, based on mixed volumes, of Liggett's theorem on the convolution of ultra-logconcave sequences. - Electron. J. Combin., 16, No. 1 (2009). Note 5.
6. H. Hadwiger, Vorlesungen über Inhalt, Oberflache, und Isoperimetrie. Berlin: Springer Verlag. (1957)
7. H. Hadwiger, Das Wills'sche Funktional. - Monatsh. Math. 79 (1975), 213-221.
8. H. Hadwiger, Gitterpunktanzahl im Simplex und Willssche Vermutung. - Math. Ann. 239 (1979), 271-288.
9. K. Itô, M. Nisio, On the oscillation functions of Gaussian processes. - Math. Scand. 221968 (1969), 209-223.
10. D. A. Klain, A short proof of Hadwiger's characterization theorem. - Mathematika, 42, No. 2 (1995), 329-339.
11. H. Le, On bounded Gaussian processes. - Statist. Probab. Lett. 78 (2008), 669674.
12. M. Ledoux, The Concentration of Measure Phenomenon. American Mathematical Society, Providence (2001).
13. M. Ledoux, M. Talagrand, Probability in Banach Spaces. Springer-Verlag, New York (1991).
14. M. Lifshits, Gaussian Random Functions. Kluwer, Boston (1995).
15. T. M. Liggett, Ultra logconcave sequences and negative dependence. - J. Combin. Theory Ser. A 79 (1997), 315-325.
16. P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes. - Math. Proc. Cambridge Philos. Soc. 78, No. 2 (1975), 247-261.
17. P. McMullen, Inequalities between intrinsic volumes. - Monatsh. Math. 111, No. 1 (1991), 47-53.
18. R. Pemantle, Towards a theory of negative dependence. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. - J. Math. Phys. 41 (2000), 1371-1390.
19. R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, second ed. Cambridge University Press, New York (2014).
20. G. C. Shephard, Inequalities between mixed volumes of convex sets. - Mathematika, 7 (1960), 125-138.
21. V. N. Sudakov, Gaussian random processes and the measures of solid angles in Hilbert space. - Dokl. Akad. Nauk SSSR, 197 (1971), 43-45.
22. V. N. Sudakov, Geometric problems of the theory of infinite-dimensional probability distributions. - Trudy Mat. Inst. Steklov. 141 (1976), 191 pp.
23. V. N. Sudakov, Geometric problems in the theory of infinite-dimensional probability distributions. - Cover to cover translation of Trudy Mat. Inst. Steklov 141 (1976). Proc. Steklov Inst. Math. No. 2 (1979), 1-178.
24. B. S. Tsirel'son, A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location I. - Theory Prob. Appl. 27 (1982), 411418.
25. B. S. Tsirel'son, A geometric approach to maximum likelihood estimation for infinite-dimensional Gaussian location II. - Theory Prob. Appl. 30 (1985), 820828.
26. B. S. Tsirel'son, A geometric approach to maximum likelihood estimation for infinite-dimensional location III. - Theory Prob. Appl. 31 (1986), 470-483.
27. R. A. Vitale, The Wills functional and Gaussian processes. - Ann. Probab. 24 (1996), 2172-2178.
28. R. A. Vitale, A log-concavity proof for a Gaussian exponential bound. - In: Contemporary Math.: Advances in Stochastic Inequalities (T.P. Hill, C. Houdré, eds.) 234, AMS (1999), 209-212.
29. R. A. Vitale, Intrinsic volumes and Gaussian processes. - Adv. Appl. Prob. 33 (2001), 354-364.
30. R. A. Vitale, A question of geometry and probability. - In: A Festschrift for Herman Rubin, IMS Lecture Notes Monogr. Ser. 45 (2004), 337-341.
31. R. A. Vitale, On the Gaussian representation of intrinsic volumes. - Statist. Probab. Lett. 78 (2008), 1246-1249.
32. J. M. Wills, Zur Gitterpunktanzahl konvexer Mengen. - Elemente der Math. 28 (1973), 57-63.

Department of Statistics
Поступило 24 июля 2017 г.
University of Connecticut
Storrs, CT 06269-4120 USA
E-mail: r.vitale@uconn.edu

[^0]: Key words and phrases: Alexandrov-Fenchel inequality, Brunn-Minkowski theory, deviation bound, Gaussian process, intrinsic volume, isonormal Gaussian process, ItôNisio, logconcavity, Minkowski functional, mixed volume, oscillation, quermassintegral, Steiner formula, supremum, ultra-logconcavity, Wills functional.

[^1]: ${ }^{1}$ Here, and below, $t \in K$ means by convention that t ranges over a (resp., any) countable dense subset of K.

[^2]: ${ }^{2}$ We note that the scaling of K by $1 / \sqrt{2 \pi}$ does not appear in the original formulation of Wills as followed in the geometry literature and also in [27]. The present normalization was adopted by the author in [29] as somewhat better fitted to Gaussian contexts; see also [25].

[^3]: 1. C. Borell, On a certain exponential inequality for Gaussian processes. - Extremes, 9, No.3-4 (2006), 169-176.
