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LARGE DEVIATIONS FOR LEVEL SETS OF
BRANCHING BROWNIAN MOTION AND GAUSSIAN
FREE FIELDS

ABSTRACT. We study deviation probabilities for the number of high
positioned particles in branching Brownian motion, and confirm a
conjecture of Derrida and Shi [10]. We also solve the correspond-
ing problem for the two-dimensional discrete Gaussian free field.
Our method relies on an elementary inequality for inhomogeneous
Galton—Watson processes.

Dedicated to the memory of Professor V. N. Sudakov

§1. INTRODUCTION

Consider the model of one-dimensional Branching Brownian Motion
(BBM): Initially a particle starts at the origin and performs standard
(one-dimensional) Brownian motion. After a random exponential time of
parameter 1, the particle splits into two particles; they perform indepen-
dent Brownian motions. Each of the particles splits into two after an ex-
ponential time. We assume that the exponential random variables and the
Brownian motions are independent. The system goes on indefinitely.

Let Xmax(t) denote the rightmost position in the BBM at time ¢. McK-
ean [14] proves that the distribution function of Xy, (t) satisfies the F-
KPP equation (Fisher [11], Kolmogorov, Petrovskii and Piskunov [12]),
from which it follows that

lim XLX(t) — 91/ 2

t—oo
in probability. Further order developments can be found in Bramson [5]
and [6]. For an account of general properties of BBM, see Bovier [4].

Key words and phrases: branching Brownian motion, Gaussian free field, large
deviation.
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LARGE DEVIATIONS FOR LEVEL SETS 13

The following large deviation estimate for Xpax(t) is known (see [15],
[8]): for = > 21/2,

Jim %log]P’(Xmax(t) > a:t) — (1.1)
where
.,172

For z > 0 and ¢ > 0, let N(¢,z) denote the number of particles, in the
BBM, alive at time ¢ and positioned in [tz, c0). It is well-known (Big-
gins [1]) that for 0 < z < 2'/2,

log N 2

lim 08Nt (1.2)

t—oo t 2’

Theorem 1.1. Let x > 0 and (1 — %)* <a<1. We have
1
tlim " logP(N(t,z) > e™) = —I(a, z),

where

172

I(a, 117) = m*l

Theorem 1.1 gives an affirmative answer to a conjecture by Derrida
and Shi [10]. The conjecture was motivated by a problem for the N-BBM,
which is a BBM with the additional criterion that the number of particles
in the system should never exceed N (whenever the number is more than
N, the particle at the leftmost position is removed from the system). Let

&’X,l(t) denote the rightmost position in the N-BBM at time ¢. It is known
([10]) that

max

1
Yn(z) == — lim ~logP(XN)(t) > xt),
t—oo t

exists. In [10], it is proved that Theorem 1.1 implies the following estimate
for Y (x):

Theorem 1.2. For x > 2'/2, we have

. log[n () — ()] x?
h;;n_ilop log N S- ( ) '
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The inequality in Theorem 1.2 is conjectured in [10] to be an equality.

The rest of the paper is as follows. In Section 2, we present an inequality
for inhomogeneous Galton—Watson processes. This inequality will be used
in Section 3 for the proof of Theorem 1.1, and in Section 4 to establish the
corresponding result for two-dimensional Gaussian free fields.

§2. AN INEQUALITY FOR INHOMOGENEOUS GALTON—WATSON
PROCESSES

Let (Z,, n > 0) be an inhomogeneous Galton-Watson process, the re-
production law at generation n being denoted by v,,.! More precisely,

Zn
Tur =3 v, w0,

where 1/7(f), i > 1, are independent copies of v,, and are independent of
everything up to generation n. Let

my = E(v,).
We assume 0 < m,, < oo, for n > 0.

Proposition 2.1. Let a > 1 andn > 1. For all 0 < i < n, we assume the
existence of \; > 0 such that

E(e")
Then for all § > 0 and all integer ¢

< eimi (2.1)
=1

J

P(Zn >max{£, (a4 6)" £ max Hm]}‘ZO —Z)

o<i<n i
Y4
< A Ai)-
ST eXP ( a+d 0<z£n + Orilza<xn

We say some words about forthcoming applications of the proposition
to BBM (in Section 3) and to Gaussian free fields (in Section 4). In both
applications, o + § is taken to be as close to 1 as possible, whereas ¢ is
taken to be ™ with ¢ > 0 that can be as small as possible (so that ¢ is suf-

ficiently large to compensate mingg;<p A; on the right-hand side, but suf-
n—1

ficiently small in front of maxog;<n [[ m; on the left-hand side). Roughly
j=i

IWe write, indifferently, a probability measure v, on {0,1,2,...} and a random
variable whose distribution is vy, .
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speaking, Proposition 2.1 says that if (2.1) is satisfied with appropriate
i, then starting at Zy = ¢, the inhomogeneous Galton—Watson process
exceeds max{/, et )" maxy; ., H;L:_ZI m;} at generation n with very
small probability.

Proof of Proposition 2.1. Let £ > 1 be an integer. For notational sim-
plification, we write P¢(-) :=P(-| Zy = £).
Let b; > 1, 1 < i < n, be integers. We have, for 1 <1i < n,

PY(Ziy1 > biv1) <PYZi > b;) +Pl(zl/ B> bi+1),
k=1
whereas for ¢ = 0, the inequality simply says

By Chebyshev’s inequality,

b;
]P’l(z v > bi+1> < e MbE(eM ),

which, by assumption (2.1), is bounded by exp(—A; bj+1 +ab;A\;m;). Hence
P (Zit1 > biy1) <PYUZ;i > bi) 4 exp(=Xi iyt + aXim;b;).
Let 6 > 0. We choose by := £ and, by induction,

biy1 1= max{L(a + 8)m;b; |, L}, 0<i<n—1
Then aX\;m;b; = a+6(a+6)ml i < a+5(1 +bir1) < AN+ S—Jrjsbiﬂ, SO
_/\i bi+1 + a/\imibz NS /\ bz+1 + /\ + _/:61)14_1
I\
=——b; Ai
a+9d 1t
O\
< _
a+9d

Consequently, we have, for 1 <i < n —1,

P Zip1 = biv1) <PYZ; = b;) + exp ( - aé-/i\-ié i>,

whereas P/(Z, > b)) < e Mbi[E(et0)] < exp(— zi‘)&é + Ao). Summing
over i, we obtain:
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O\
P(Z0 > ba) < Y exp (= b+ )
( ) pad P a+d +
< nexp ( - min \; + max )\i>.
a + § 0<i<n—1 0<i<n—1

n—1
By induction in n, by, < max{¢, maxog;cn—1[(a@+0)""* [[ m;]¢}, which is
j=i

n—1

bounded by max{¥¢, (a+0)"¢ maxogi<n—1 || m;}. The proposition follows
j=i

immediately. O

§3. PROOF OF THEOREM 1.1

The proof of the theorem relies on the following elementary result, which
2
explains the presence of the constant I(a, ) := 2({”—7@ —1in the theorem.

Lemma 3.1. Let x > 0 and (1 — é)"‘ < a < 1. We have, for anyt >0,

1 y2
O - I
t o se(o,1), y<at: 2s
o (@t—=yp)?
(t 5) 3(t—s) =at
1 y2
z sup (s - —) = —I(a, z). (3.2)
t se0,1), yer, z>at: 2s
(t—s)— 572 >at

Proof. Clearly, (3.2) is a consequence of (3.1): It suffices to observe that
for given (s, z), the supremum in y € R is the supremum in y € (—oo, z].

The proof of (3.1) is elementary: The maximizer is s, = %ﬁfg“”t,
Yx = 79-Ss, which is the unique root of the gradient of the Lagrangian,

and the supremum is not reached at the boundary. O

We often use the elementary Gaussian tail estimate:

2

T
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for all mean-zero non-degenerate Gaussian random variable .4". As a con-
sequence, for z € R and y > 0,

2

s < <o (- e )

3.1. Lower bound. The strategy of the lower bound in Theorem 1.1 is
2

as follows: Let € > 0. Let s, = %ﬁ%ﬂt and y. = 7%-s. be the

maximizer in (3.1) of Lemma 3.1. Let the BBM reach [y., c0) at time s,

(which, by (1.1), happens with probability at least exp[—(1+¢)( yf* —5.)] =

2s
e-(Fe)(a, )t for all sufficiently large t), then after time s, the system
behaves “normally” in the sense that by (1.2), with probability at least
1 — ¢ for all sufficiently large ¢, the number of descendants positioned in
[xt, o0) at time t of the particle positioned in [y., co) at time s, is at least

exp{(1—¢)[(t—s.) — (2I(tt7—$;i))2]} (which is e(*==)%); note that the condition

0< % < 2'/?in (1.2) is automatically satisfied. Consequently, for all
sufficiently large t,

P(N(t2) > e79) > (1 - g) e (9 (w0,

Since € > 0 can be as small as possible, this yields the lower bound in
Theorem 1.1. O

3.2. Upper bound. Let 1 < § < 1. We discretize time by splitting time
interval [0, #] into intervals of length #°: Let s; := it® for 0 <i < M = ' 79,
For notational simplification, we treat M as an integer (upper integer part
should be used for a rigorous treatment; a similar remark applies later
when we discretize space).

We first throw away some uninteresting situations. Let C' > 0 be a con-
stant, and let E;(t) denote the event that all the particles in the BBM lie in
[—-Ct, Ct] at time s;, for all 1 < i < M. The expected number of particles

M
that fall out of the interval is bounded by Y e P( sup |B(u)| > Ct),
i=1 u€e(o, s;]
where (B(u), u > 0) denotes a standard one-dimensional Brownian mo-
tion. We choose and fix the constant C' > 0 (whose value depends on a and
) such that this expected number is o(e~7(®?)t) t — co. By the Markov
inequality,

P(E,(t)) = oe "D, t— o
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Let E»(t) be the event that for all 0 < ¢ < M, any particle in the
BBM alive at time s; has a total number of descendants fewer than t2et’
at time s;y1. This number has the geometric distribution of parameter
e~(si+1751) = o=t" ie. it equals k with probability (1— e_tJ)k_le_té for
all integers k > 1. By the Markov inequality again, we have

M—1
P(E>(t)) < > e Y (1 ety le ! —pe Lty o
=0

k>t2et’
Consequently, for t — oo,
P(N(t,2) > &) < B(N(t,2) > e, By (1), Ba(t)) + o(e™ /@), (3.4)

We now discretize space. Let §’ € (0, 8). [Later, we are going to assume
d < 2§ —1.] Let € > 0 be a small constant (which will ultimately go
to 0). Space interval [—Ct, Ct] is split into intervals of length #9: Let
xp, o= kt? for ' <k <t Wecall f: {s;,0<i< M} — {z;:=
jt¥, —Ct' =9 < j < Ct'=9"} a path if

f0)=0,  flsm) > (z—e)t.

The total number of paths is bounded by (209" + 1)t175 =e’) t — oo,

Consider the BBM. For 1 < i < M, a particle at time s; is said to follow
the path f until time s; if for all 0 < j < ¢, the ancestor of the particle at
time s; lies in [f(s;) — 7, f(s;) +17]. Let

Z;(f) := number of particles following the path f until time s;.

On the event F; (t), we have (using the fact that ot — 9 > (z — &)t for
all large t)

N(t,z) < Zu(f) < #(paths) max Zu(f),
f

where ) and max; denote sum and maximum, respectively, over all pos-

f
sible paths f, and #(paths) stands for the total number of paths.
Let a’ € (0, a). Since #(paths) = e°®) (for t — 00), it follows that for
all sufficiently large ¢ (say ¢t > tg), on the event {N(t,z) > e} N E; (1),
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there exists a path f such that Z(f) > e*t. Accordingly, for t > to,

P(N(t,z) > ™, Er(t), Ex(t) < D P(Zu(f) = e, Bx(t))
s

< e m?x]P’(ZM( f) = e¥t, Ey(t)).

In view of (3.4), and since a’ can be as close to a as possible, the proof of
the upper bound in Theorem 1.1 is reduced to showing the following: For

$>Oand(1—“”2—2)+<a<1,

1
lim sup 7 m}zca,x logP(Zar(f) = e™, Es(t)) < —I(a, z), (3.5)
t—o0
with I(a, x) := 2(f—ia) —1 as before. [The meaning of a has slightly changed:
It is, in fact, a’.]
To bound P(Zy;(f) > e, Es(t)), we distinguish two situations. A path
f is said to be good if there exists i € [1, M) N Z such that

It is said to be bad if it is not good.

When the path f is good, it is easy to bound P(Zy(f) = e, Ex(t));
we can even drop Es(t) in this case: Let i € [1, M)NZ be as in (3.6); since
{Zm(f) = e¥} C{Zi(f) > 1}, we have

P(Zn(f) 2 ™) SE[Zi(f)] <" P(B(s:) — f(s0)] <), (3.7)

with (B(s), s > 0) denoting, as before, a standard Brownian motion. Since
§' <8< 1,s; =it and f(s;) = O(t), it follows from (3.3) that

f(si 2
(2—52+o(t)),

> (a —e)t. (3.6)

P(IB(ss) — f(s)l <) <exp (—
uniformly in ¢ and in f. This yields that

P(Zu(f) > e™)

< exp (si - f(;slf + o(t))

2
< exp{ sup (sf Z—) +o(t)}.
s€(0,t), yER, 2= (x—e)t: 8

2—y)2
(t—s5)— S5 >(a—e)t
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By (3.2) of Lemma 3.1, the supremum equals —I(a — ¢, x —¢)t, as long

as € > 0 is sufficiently small such that = > ¢ and that (1— @)* <a—ce.
Hence, uniformly in all good paths f,

1
lim sup Elog]P’(ZM(f) >ey< ~I(a—¢, z—¢).

t—o0

Since I(a — e,  — €) can be as close to I(a, ) as possible, this will settle
the case of good paths f. To prove (3.5), it suffices to check that, uniformly
in all bad paths f,

1
tlim 7 logP(Zy(f) = e™, Fa(t)) = —c0. (3.8)
—00
Let ¢’ € (0, €). For any path f, define
r=7(f, ) :=inf{i: 1<i< M, Z(f) >}, info:=c.

On the event {Zy(f) > e}, we have 7 < o0, and Z,(f) < t2e’ et on
the event {7 < co} N Ex(t). Hence

P(Zu(f) = e, Bs(t))
< P(Zu(f) = ™, Z.(f) < 2+t By (1))
M
< STP@Zulf) 2 e, 7t < Zi(f) < 26 By(t))
i=1
MtZet5+5't
= Y 3 PZulf) ze™, Zi(f) = ¢, Ex(t)). (3.9)

i=1 p—epc’t

Let us have a close look at the probability P(Za(f) > e, Zi(f) =
{, E,(t)) on the right-hand side, for 1 < i < M and et < £ < 2et’+e't,
The sequence Z;1;(f), for 0 < j < M — 4, can be written as Z;41(f) =
Zkzi(lf) V,gj), where for each j, I/,(j), k > 1, would be i.i.d. if the particle
at time s;1; were exactly positioned at f(s;;;) rather than only lying in
the interval [f(siy;) — t°, f(sir;) + t°]. However, ) i stochastically
smaller than or equal to 7(), the number of particles in a BBM, starting
at position f(siy;), that lie in [f(siyj1) — 26, f(sivje1) + 2t°] at time
t°. So we can make a coupling for (Z;1;(f), 0 < j < M — i) and a new

process (Z;1+;(f), 0 < j < M —1i), which satisfies Zj+1(f) = Zfi(lf) '17,9),

where for each j, ﬁ,(cj), k > 1, are i.i.d. having the law of 7¥), such that
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Zi+j(f) < ZH-J(f) for all 0 g ] g M —i. Since (Zi+j (f), 0 < ] < M—’L) is
an inhomogeneous Galton—Watson process, we can apply Proposition 2.1.
Write Af(sit;) := f(sitj+1) — f(six+;) = O(t). Note that by (3.3),

E(7Y) =" P(IB(t) — Af(si)| < 2t7)

Af(siti))? ,
< exp (ta _ ( f(25t5+1)) n O(t1+5 —5)>
=: mj,

with O(t”‘j/"j) being uniform in 4, j and f. In order to apply Proposi-
M—i—1
tion 2.1, we need to bound maxocr<rr—i [] m;, as well as to find a
j=k
convenient Ay satisfying condition (2.1) in Proposition 2.1.
Recall that M := ¢t'=9. We have, for 0 < k < M — i,

M—i—1 1 M—i—1 ,
[T mi=cp (M —i=k)t" =55 D (Af(siry) + 0 ~2))
Jj=k j=k
M—i—1
= e (M =i~ — o S (Af(s4))” +o(0)).
j=k

as long as 2+ ¢’ — 26 < 1 (which is equivalent to ¢’ < 2§ — 1), which we
take for granted from now on. By the Cauchy—Schwarz inequality,

M—i—1 ,
S (A > L (Sﬂﬁ: if(_si]:k» |

i=k
Recall that s; := jt® and that M#° = t. Hence
M—i—1
. (f(sm) — f(sivi))?
jl;[k mj < exp ((M —i— k)t — QiAMI — _s];;; + o(t))
_ ) 2
—exp (0 suna) - LT 4 o).

If f is a bad path, then by definition of good paths in (3.6), (t — s;1x) —

W < (a —e€)t for all k. Thus

M—i—1

< pla—e)tro(t) _
o max g mj < e (3.10)
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In order to apply Proposition 2.1, we still need to find a convenient A
satisfying condition (2.1) in the proposition. Let o > 1. There exists r > 0
sufficiently small such that e¥ < 1+« forally € [0, r]. On the event Ex(t),
we have 7)< 2et’ by definition. Let \; := e2t" Then ;79 < r for
all sufficiently large ¢ (and we will be working with such large t); hence
v <1+ aAjﬁ(j), which yields that

E(e’\j;(j)) < 1+ Oé/\JE(g(J)) g 1+ Oé/\jm]’ g ea)‘jmj .

In words, condition (2.1) of Proposition 2.1 is satisfied with the choice
of A\j := o2t Applying Proposition 2.1 to n := M — i, we see that for
all sufficiently large ¢ and uniformly in 1 <i < M and et < £ < {2et’+e't
(recalling that ¢’ < e and €’ < a)

P(Zu(f) = e, Ba(t)| Zi(f) =€) < M exp(—cle™"),

where ¢ > 0 is an unimportant constant that does not depend on t. A
fortiori, P(Zar(f) = e, Es(t), Zi(f) = £) < M exp(—cle~2t"). By (3.9),
we obtain

P(Zu(f) = ™, Ex(t)) < M? 26!+ exp(—cLe™2").

This yields (3.8), and completes the proof of the upper bound in Theo-
rem 1.1. Il

§4. APPLICATION TO DISCRETE GAUSSIAN FREE FIELDS

Let Viy :={1,...,N}2, and Vx be the inner boundary of Vi which is
the set of points in Vi having a nearest neighbour outside. Consider the
two-dimensional discrete Gaussian free field (GFF) ® = (®(z), z € V)
in Vi with zero boundary conditions as follows: ® is a collection of jointly
mean-zero Gaussian random variables with ®(z) = 0 for z € dVy and
with covariance given by the discrete Green’s function

Tovy

Gy, ) =B D Lgsimyy), oy €V \OVx,

i=0

where (S;, i > 0) is a two-dimensional simple random walk on Z2, Ty,
the first time the walk hits 0V, and E, is expectation with respect to P,
under which P,(Sp = z) = 1.
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In the rest of the paper, we write
1/2
5= (2) / . (4.1)
m
This constant originates from the fact that G (0, 0) = v2log N + O(1),
N — oo (Lawler [13], Theorem 1.6.6). The maximum of ® on Vy was
studied by Bolthausen, Deuschel and Giacomin [3], who proved that

A}iinoo og N ;1612‘1/)15 d(z) = 27, in probability.

It is possible to have a further development for max,cy, ®(x) until con-
stant order of magnitude; see Bramson, Ding and Zeitouni [7]. Daviaud [9]
was interested in the intermediate level sets
JN(n) ={z € Vn: ®(z) > 2ynlog N}, 0<n<l,
and proved that for all 0 < 5 < 1,
#AN(n) = NQ(I_"Z)"'O(I), in probability,

where #5#y(n) denotes the cardinality of % (n). Recently, Biskup and
Louidor [2] established the scaling limit of 7 (n) upon an encoding via a

point measure.
We study the deviation probability P(#.4(n) > N2%), for 1 — 5> <
a <1

Theorem 4.1. Letn € (0, 1) and a € (1 —n?, 1). We have
P(#%N(n) > NQa) — N—J(a7n)+o(1), N — oo,

where )
2n
J =
(@, m) = 1—
To prove Theorem 4.1, let us introduce a useful decomposition. Let
D C Vy be a square. Define

hp(z) :== E(®(z) | Zop), z €D,
where Z4 := o(®(x), x € A) for all A C Vy, and 0D denotes the inner
boundary of D. Let

®P(z) := ®(z) — hp(z), xe€D. (4.2)

Then (®P(z), z € D) is independent of .Zsp_p-; in particular, (& (z),
r € D) and (hp(z), z € D) are independent. Moreover, (®°(z), = € D)
is a GFF in D in the sense that it is a mean-zero Gaussian field vanishing
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on @D with covariance Cov(®P (z), ®L(y)) = E.( ij lig,—yy), for z, y €
=0

D\ 0D, where 1pp is the first hitting time at the inner boundary D by
the simple random walk (S;).
Write zp for the centre of D. Let

¢D = E(CI)(JZD) |§3D) = hD(a;D).

[Degenerate case: ¢p = ®(z) if D = {x}.] We frequently use an elementary
inequality: By Bolthausen, Deuschel and Giacomin [3] p. 1687,

Var(hp(x) — ¢p) < 2 sup [a(zr —y) —a(zp — y)],
yedD

where a(z) := Y [Po(Sp = 0) — Po(Sy, = 2)] with (S, n > 0) denoting as
n=0

before a simple random walk on Z?. Since a(z) = 7 log |2|+O(1), |z| — oo

([13], Theorem 1.6.2), there exists a constant ¢; > 0 (independent of N)

such that for all square D C Vy,
Var(hp(z) — ¢p) < ¢, zeD. (4.3)

It is possible to estimate Var(¢p). Let v := (2)'/? as in (4.1). By
equation (7) and Lemma 1 of Bolthausen, Deuschel and Giacomin [3],
there exists a constant ¢ > 0 such that for all square D C V with side
length m,

5 N
Var(¢p) <77 log(—)
and for any 0 < § < %, there exists c3(d) > 0 such that for all square
D C Vi with dist(zp, V) = 6N,

—+ Ca2, (44)

Var(ép) > 72 log(%) —c3(9). (4.5)

[Degenerate case: m := 1if D is a singleton.]

The proof of Theorem 4.1 uses the same ideas as the proof of Theo-
rem 1.1 in Section 3, with some appropriate modifications. Again, for the
sake of clarity, we prove the upper and the lower bounds in distinct para-
graphs. The proof is based on the following elementary fact: For 0 <n < 1
andl—n’<a<l,

b2 2

}:—( U —1). (4.6)

1—a

sup (1-s)—
(s,b,2): 0<s<1, 227, [ 1—s

_p)2
s— >
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(This is (3.2) of Lemma 3.1 after a linear transform. The maximizer is

2 2 (1 a4 .
= —nz_a(;?_a)za b* = [22_8_5]2”7 z*=m.)

As in the proof for BBM, for notational simplification, we treat several
counting quantities (such as (log N)!~% and N'=% below) as integers.

5*

4.1. Upper bound. Let 2 < § < 1. Let L = L(N) := (log N)'~°. Let
so:=1>s81 >+ >sp:=0with s; — s;41 = (logN)_(l_‘s).

For 0 < i < L, let 2,,(N) denote the partition of N2~2% squares of
side length N*¢ of V. (In particular, Z,,(N) = {Vn}, the singleton Vy.)
Let 5, (N) = {{z}, z € Vn}, the family of singletons of Vx. [So for
D ={z} € 9, (N), ¢p = ®(z).] Let C > 0 be a constant, and let

&(N) = {I¢p| < Clog N, V1 <i < L, VD € %,,(N) }.

This is the analogue for GFF of the event E;(f) in Section 3.2. Since
Var(¢p) < v?log N +c5 (see (4.4)), we can choose C' > 0 sufficiently large
such that

P(& (N)) =o(N~7»m), N — 0.
Let o € (3, 3 — ). Let

&(N) ;:{ max_|hp(zp)—bp| < (log N)?, v1<i<L,VDe%i(N)},
Bech(D)

where g denotes as before the centre of the square B, and for all D €
s, (N) with 1 <i < L,

ch(D) := {B C D with B € Z,,,,(N)}. (4.7)

[In words, the elements in ch(D) play the role of children in the ge-
nealogical tree of BBM.] By (4.3), Var(hp(z) — ¢p) < ¢ for all z € D,
which allows to see that

P(&(N)°) = o(N~7=m), N — .
Consequently, the following analogue for GFF of (3.4) holds: for N — oo,
P(#n () = N**)
< P(#5(n) = N?2, 6(N), &(N)) +o(N~7(@m)  (4.8)

Let us discretize space. Let £ > 0 be a small constant such that a —e >
1—(np—e¢)2. Let & € (0, o). Space interval [-C'log N, C'log N1 is split into



26 E. AIDEKON, YUEYUN HU, ZHAN SHI

intervals of length (log ). We call
qg: {Si, 0 < ) § L} — {W, 7C(IOgN)1*5/ g ] g C(lOgN)lfé'/}
a path if

g(s0) =0,  g(sp) =2n—e.

The total number of paths is N°() when N — oo.
Define sets of squares Zy(g) := {Vn} (the singleton) and for 1 < i <

L,
Zig) :={D € Z,,(N) : ép, —g(s1)2710g N|<2y(log N)"', V1 <k <},
where Dy, denotes the unique square in %;, (N) containing D (so D; = D
for D € Z5,(N)). We write
Zi(9) == #2Zi(9),  0<i<L,
the cardinality of Z;(g). On the event &1 (N), we have #.72n(n) < > Z1r(9),
9

where > sums over all possible paths g.

g
Let a’ € (0, a). For all sufficiently large IV,

P(#5 () > N**, &(N), &(N))
< #(paths) maxP(Z1(g) > N>, &(N)),

where max, denotes maximum over all possible paths g, and #(paths)
stands for the total number of paths, which is N°®) when N — oco. In
view of (4.8), the proof of the upper bound in Theorem 4.1 is reduced to
showing the following: For 0 <n<land1—-7n*><a< 1,

lim sup
N—o0

1
~ maxlogP(Zr(g) > N?¢, &(N)) < —J(a, 1), (4.9)
g

with J(a, n) := % — 2 as before.

A path g is said to be good if there exists ¢ € [1, L) NZ such that

_ [9(si) — g(s2)]? >a

—&. (4.10)

K3

[Since a —e > 1 — (n —€)?, it is clear that g(s;) # 0 in this case.] The
path is said to be bad if it is not good.
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Let g be a good path. Let ¢ € [1, L) N Z be as in (4.10). We have the
following analogue for GFF of (3.7):

P(Zi(9) > N*) < Y P{Ignl > lg(si)2ylog N — 29(10g N)*'}.
DeP,,(N)

Since g(s;) # 0, we have |g(s;)|271og N — 2y(log N)* > 0 by definition of
g- By (4.4), Var(¢p) < (1 — si)y?log N + ¢z, so for D € %, (N),

P{|¢nl > lg(si)[271og N — 27(log V)" }

< exp - gl 2ylog N — 21(log V)" '
b 2[(1 = s;)y?log N + ¢2]

202 (s;
= exp ( - %(ZZ) log N + o(logN)) ’

uniformly in i € [1, L) N Z (recalling that 1 < ¢ < 1 and that 0 < ¢’ < §).
Since #2;,(N) = N2(1=5)  this yields

(0o -3
( >

P(Zr(g) > N*%) < exp ogN+o(logN)>

2 sup [(1—s)— (IOgN)>a

(s,b,2)

< exp

the supremum being over (s, b, z) satisfying 0 < s < 1, 2 > n — ¢ and

— b b) > a—e. By (4.6), we get that uniformly in good paths g,

lim sup logP(Z1(g9) = N**) < —J(a—e,m—¢).

Nooo log N
As such, the proof of (4.9) is reduced to checking that

logP(Z1(g) > N?%, &(N)) = —c0. (4.11)

i
Ngnoo log N ¢ bra&ia;(ath
Let, for 0 <i¢ < L and D € %;,(N),

D
Y7 = DT Lion-glsisn2yion N<2rtog M)} (4.12)
Bech(D)
where ch(D) is as in (4.7). Then
Zin(g)= Y. P, 0<i<L (4.13)

DeZ;(g)
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This gives a branching-type process, except that there is lack of inde-
pendence. So we are going to replace I/Z(D) by something slightly different.

Consider two squares B C D in V. Let ®P () := ®(z) —hp(z), z € D,
as in (4.2). Define

o5 = E(@"(zp) | F3p),

where #1, := o(®P(y), y € OB), and zp is as before the centre of B.
Then ¢& is independent of hp(zg), and

¢p = ¢B — hp(ap). (4.14)
We now replace I/Z»(D) (defined in (4.12)) by
~(D) ._
Vi = Z L4162 —(g(si+1)—g(5:))27 log N|<4~(log N)¥' +(log N)e}-

Bech(D)

Conditionally on Z;(g), the random variables DZ(D), for D € Z;(g), are

independent. On the event &(N), we have I/ED) < ﬁi(D), which implies
that
Zi9) < Zilg),  VO<i<L,
where Zo(g) := 1 and for 0 <i < L,
~ Zi(9) ,
Ziv1(g) = 7,
=1

with ﬁy), ¢ > 1, denoting independent, copies of ﬁi(D), which are indepen-
dent of Z;(g). As such, (Z;(g), 0 < i < L) is an inhomogeneous Galton—
Watson process.

Let us estimate Var(¢5) on the right-hand side. We may assume that
d(D,0Vy) > &; otherwise we may consider a GFF @ defined on [~ N, 2N]?
instead of Viy in the following computations of variances (because Var(¢X)
only depends on the GFF in D).

Recall from (4.14) that ¢p = ¢§ + hp(zp), the random variables ¢%
and hp(zp) being independent. So Var(¢X) = Var(¢p) — Var(hp(zg)). To
estimate Var(hp(zg)), we use Var(X)—Var(Y) = Var(X —Y) +2Cov(X —
Y,Y) and [Cov(X — Y,Y)| < [Var(X — Y) Var(Y)]'/?, as well as the fact
Var(hp(zp) — ¢p) < c1 (see (4.3)), to see that

|Var(hp(zp)) — Var(¢p)| < ¢1 + 2+/c1 Var(¢p). (4.15)
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Since Var(¢p) = (1 — s;) log N + O(1) and
Var(¢p) = 7*(1 — sip1) log N + O(1)

uniformly in 4, B and D (see (4.4) and (4.5); this is why we need to assume
that d(D, BVN) ), we get

Var(¢5) = Var(¢p) — Var(hp(zg))

= ~2(s; — si41) log N + O((log N)'/?) (4.16)
1 2
=(1+ O(W))’Y (si — siy1)log N, (4.17)

uniformly in 0 < ¢ < L.

We now estimate E(7;), where 7; denotes a random variable having
the distribution of ﬁZ(D) (for any D € Z5,(N)). Applying (3.3) to z =
(9(sis1) — g(s:))2v1og N and y = 4y(log N)?" + (log N)?, and using (4.17)
(noting that #ch(D) = N2(5i=si+1)) we arrive at: uniformly in 0 <4 < L,

2[g(s:) — g(ss44))°
E('ﬁl) < N2(si7si+1) exp ( o [g(s ) g(s + )] IOgN
Si — Sit1

+0((log N)3~2%) + O((log N)'+¢77)).

Note that (log N)'2~% = O((log N)22) (because ¢ < 2—4). Recalling
sp =0 and L = (log N)' =%, we obtain, uniformly in 1 < j < L,

2652 55 [9(s0)—g (504012 /(55 —si41)+o(1)

L—1
[[E@) <N =
i=j

[This is Where the condition § > 2 is needed.] By the Cauchy—-Schwarz

D=g(sas)]* 5 [o(si)—g(sr)]”

inequality, Z [o(s . Since ¢ is a bad path, this

8i—8i41 Sj
yields the followmg analogue for GFF of (3.10):
-1
max E(7;) < N2(e=e)+e()
1<j<L P

On the other hand, for any ¢’ € (0, £) and all sufficiently large N,

I N2(si_i—si)+e’

(ORI DID DI (AR S AL

=1 =Nz’
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[This is the analogue for GFF of (3.9).] To apply Proposition 2.1 to
P(Zr(g) = N**| Z;(g) = £), we need to find the corresponding \; (notation

log N)?

of the proposition): Since 7; < N2(si—si+1) = ¢2( , we can take \j :=

e~300gN)* (in place of 3, any constant greater than 2 will do the job).
Applying Proposition 2.1 to n := L — i, we see that for all sufficiently large
N and uniformly in 1 <i < L and N < ¢ < N2(sici—si)+e’

IP(ZL(Q) > N2 | Zz(g) = Z) < Lexp(—c[e—3(105N)5)’

where ¢ > 0 is an unimportant constant. This yields that P(Zz(g) >
N2y < [2N2(i1=30+< exp(—c N= e=3006 M) Since Z;,(g) < Z1(g) on
&»(N), this yields (4.11), and completes the proof of the upper bound in
Theorem 4.1. O

4.2. Lower bound. Let 0 <n<1,0<b<n,e>0.Let 0 < <1.
Let Z;(N) denote the partition of N2~2¢ squares of side length N¢ of

Vn. For any D € Z:(N), let D:={z €D :d(z,0D) > 1N°¢} and
Ap = {Va: €D : |hp(z) —ép| < slogN},

B = { D L(#p@)229(n-0)10g ¥y > Nl
zeD

It is clear that if there exists D € Z.(N) such that ¢p > (2yb+¢)log N
and that both Ap and Bp are realized, then we have #. % () > N227¢.
Hence

p(#(n) > N*)

> p(ap € 9e(N): ¢p > (2vb+¢)log N, Ap N BD). (4.18)

By Daviaud [9], if "T_b < 1, then for any D € Z;(N) and N — oo,

- e

]P’{#{a: €D: ®Px) >2v(n—0) logN} > N } L

Hence, we have, for all sufficiently large N (say N > Ny), P(Bp) > % "
(n —b)?

a < C(l— e ) (4.19)
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The events Bp, D € Z¢(N), are i.i.d. and each Bp is independent of
(pc, Ac), C € Z:(N). We now go back to (4.18), and use the fact that

B(Uennm) > i, Fop(U ),

i=1

if each Bj; is independent of (4;, 1 < j < n). As such, for N > Ny (and
for a satisfying (4.19)),

1
]P’(#%”N(n) > N2“*5) >3 ]P’(HD € De(N): ¢p > (2yb+¢)log N, AD) .

By (4.3) and the Gaussian tail, P(A$) < N2g=="(log N)*/(2e1) ypiformly in
D € 9¢(N). Hence P(Upcg, (n)AD) < N2e=¢’(10g N)*/(2¢1)  Consequently,
for a satisfying (4.19), any constant ¢ > 0 and all sufficiently large NV,

B(#5#3(m) > N*~)
> %p(ap € Ze(N): 6p > (27b+)logN) — N°. (4.20)
The probability on the right-hand side is studied in the following lemma.
Lemma 4.2. Let 0< (<1 and b>1— (. Then for N — oo,
IP(EID € Z:(N): ¢p > 27blogN) A==l o),

Admitting Lemma 4.2 for the moment, we are able to finish the proof
of the lower bound in Theorem 4.1. Indeed, applying Lemma 4.2 to b+ %

in place of b, it follows from (4.20) that if b > 1 — ¢ and a satisfies (4.19),

(b4 5)2
P(#0 () > N*~) > N> 22T 0 N oo,

The lower bound in Theorem 4.1 follows immediately, with the optimal
choice n = 7772_‘?7172_@2 and b = 7[22:8:3]2".

It remains to prove Lemma 4.2.
Proof of Lemma 4.2. The argument is quite standard.

The upper bound, which is not needed in the paper, follows immediately
from the Markov inequality, with Var(¢p) being controlled by (4.4).

For the lower bound, we only consider those D away from 0Vy: D €

P¢(N) such that D C V3 with V3 C Vv denoting a fixed square of length
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5N such that d(Vy,d0Vy) > ;N. Denoting by Z¢(N) the set of such
squares D. We are going to prove that

P(3ID € ZE(N) : 6p > 29blogN ) > NA=O— o) (4 91)

Let K > 1 be a large integer. Define (; := ¢ + (1 — C)% for0<i< K.
For a square D € Z}(N), let D; be the square in Z7,(N) containing D
(for 0 < i < K;s0 Dy = D) and Dk := V3. For any 1 <i < K, we write

¢p, = cp(i)¢p + Yp(i),
where Yp (i), 1 <@ < K, is a Gaussian vector independent of ¢p, and

c (Z) . COV(¢D” (bD)
P Var(én)

Since D C D;, we can use the decomposition (4.14) and in its notation:
¢p = ¢p’ + hp, (xp).
The independence of gbg" and ¢p, gives

Cov(ép;, ¢p) = Cov(ép,, hp,(zD))
= Var(¢Di) + COV((bDi’ hDi (xD) - ¢Dz) (4'22)

Let us look at the covariance expression on the right-hand side. By (4.4)
and (4.5) (since D C V), for 0 <i < K,

Var(¢p,) = (1 — (;)7*log N + O(1), N — oo, (4.23)
whereas by (4.3), Var(hp,(zp) — ¢p,) < c1- Hence Cov(¢p,, hp,(xp) —

ép;) = O((log N)'/?) (by Cauchy-Schwarz). Putting this and (4.23) into
(4.22), we get

Cov(ép,, ¢p) = (1 - ()7’ log N + O((log N)'/?).
Together with (4.23) (case ¢ =0, so D; = D), this yields

N COV(¢Di7 ¢D) _ 1-G

cp(i) = Varlog) = T¢ + O((log N)~'/?). (4.24)
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Let £+ <6 < 1. Let
In := [27log N, 2v1og N + (log N)?],
. . [
dp = {¢D € In, 1rglnisgg(lYD(l)| < (log ) }

= {6 € In, max_|6p, — en(i)én| < (log N)’}.

Z = Z 1o,

De;(N)
For each D € Z7(N), ¢p is independent of Yp(i), 1 <i < K. So

Let

E(Z) = N*'= B(gp € Iy) B max_[Vp(i)| < (log N)’).

By (4.23) (case i =0), P(¢pp € IN) = N~ +olt . On the other hand,
Var(Yp(i)) < Var(ép,) = O(log N) (by (4.23)), so ]P’(max1<l<K [Yp(i)] <
(log N)?) — 1. It follows that

E(Z) = N2(-0— o), (4.25)

We now estimate the second moment E(Z?2). Write

7Y Y Y Y L

ZlFeg* N) E,E’" D,D’

where >y g sumsover E, E' € ¢, (N)withE,E' C Fand ENE' =@
and » over D, D' € Z7(N) satisfying D C E and D' C E'. We define
D, D’

&(N) ::{vpegg (N), \hp(zp) — ¢r|<(log N)ﬂ}.

max
0<i<K, Ee@g_(N) with EDD

The set &(N) plays the same role as &(N) in the proof of the upper
bound. Exactly as for &3(N), we have, for any constant ¢ > 0, P(&(N)¢) =
o(N—¢); since Z2 < N*(1=9 it follows from (4.25) that

E(Z% 15 5.) = 0(E(Z)), N — co. (4.26)

We have
K
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Recall from (4.14) that ¢& = ¢p — hg(zp). On the event &(N),
he(zp) < ¢ + (log N)?, so ¢& > ¢p — ¢r — (log N)?. On the event o7p,
¢r < cp(l—1)pp+(log N)?. Consequently, on the event .o/pN.o/p/ ﬂg(N),
we have

¢p > [1—cp(l —1)])ép — 2(log N)°
> [1—cp(f—1)]2yblog N — 2(log N)?,
and ¢85, > [1 — ¢p/ (€ — 1)]2vblog N — 2(log N)? for the same reason. Fur-
thermore, on @/p,
or = cp(O)dpp — (log N)? > ep(€)2vblog N — (log N)°.
By independence of ¢5, ¢%, and ¢, this yields

P(o/p N /p N g(N)) < P1,N P2,N P3,N,

pin =P{¢} = [1 - ep(€ - 1)]29blog N — 2(log N)},
pon i=P{pE, > [1 —cp (£ —1)]2yblog N — 2(log N)’1,
ps,N = P{or > cp(£)2yblog N — (log N)*}.

(Note that pi,v = pa,n.) By (4.16) (with s; and s;+1 replaced by (,—1
and (, respectively),

Var(¢) = v*(C—1 — () log N + O((log N)*/?),

whereas Var(¢r) = (1 — (;)y*log N + O(1) (case i = £ in (4.23)), and in
view of the value of ¢p(i) in (4.24), we obtain:

202 (-1
v =pon e (= 7o e logN +0((log N))),
202 K — ¢
D3,N < exp ( T1-¢ TIOgN+ O((logN)9)> )
Consequently,

K
E(Z°1zy,) <E(Z) + 3 N2 NGO N-2E - Etto(1).
=1
2 2 5
Note that 2(1-Co)+4(Ge—0)—1%¢ T —i0¢ ‘& = 2(1-0— =] (A+5)+
which is bounded by 2[(1—¢)— b2

4b>
(1-¢Q)K>
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recalling our assumption b > 1 — ¢ which implies (1 — () — % < 0).

Consequently, for any £ > 0, we can choose K sufficiently large such that

2
E(Z*15.,) <E(Z) + N20-O775t 0 N o0,

Together with (4.26) and (4.25), we obtain, for all sufficiently large N,
E(Z?) < N* E(Z). By the Cauchy-Schwarz inequality,

(E(2))* _ \—oe
P(Z>1)> By 2N E(Z),.

In view of (4.25), this yields the lower bound in Lemma 4.2. O

Remark 4.3. When ¢ = 0, Lemma 4.2 gives the following analogue for
GFF of (1.1): For b > 1,

IP( max ¢(x) > 27blogN) = N2(1*b2)+0(1), N — 0.

zeVn
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