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§1. IntrodutionConsider the model of one-dimensional Branhing Brownian Motion(BBM): Initially a partile starts at the origin and performs standard(one-dimensional) Brownian motion. After a random exponential time ofparameter 1, the partile splits into two partiles; they perform indepen-dent Brownian motions. Eah of the partiles splits into two after an ex-ponential time. We assume that the exponential random variables and theBrownian motions are independent. The system goes on inde�nitely.Let Xmax(t) denote the rightmost position in the BBM at time t. MK-ean [14℄ proves that the distribution funtion of Xmax(t) satis�es the F-KPP equation (Fisher [11℄, Kolmogorov, Petrovskii and Piskunov [12℄),from whih it follows that limt→∞

Xmax(t)t = 21=2;in probability. Further order developments an be found in Bramson [5℄and [6℄. For an aount of general properties of BBM, see Bovier [4℄.Key words and phrases: branhing Brownian motion, Gaussian free �eld, largedeviation.The projet was partly supported by the ANR projet MALIN; E.A. also aknowl-edges supports from ANR GRAAL and ANR Liouville.12



LARGE DEVIATIONS FOR LEVEL SETS 13The following large deviation estimate for Xmax(t) is known (see [15℄,[8℄): for x > 21=2, limt→∞

1t logP

(Xmax(t) > xt) = − (x) ; (1.1)where  (x) := x22 − 1:For x > 0 and t > 0, let N(t; x) denote the number of partiles, in theBBM, alive at time t and positioned in [tx; ∞). It is well-known (Big-gins [1℄) that for 0 < x < 21=2,limt→∞

logN(t; x)t = 1− x22 ; a.s. (1.2)Theorem 1.1. Let x > 0 and (1− x22 )+ < a < 1. We havelimt→∞

1t logP(N(t; x) > eat) = −I(a; x);where I(a; x) := x22(1− a) − 1:Theorem 1.1 gives an aÆrmative answer to a onjeture by Derridaand Shi [10℄. The onjeture was motivated by a problem for the N -BBM,whih is a BBM with the additional riterion that the number of partilesin the system should never exeed N (whenever the number is more thanN , the partile at the leftmost position is removed from the system). LetX(N)max(t) denote the rightmost position in the N -BBM at time t. It is known([10℄) that  N (x) := − limt→∞

1t logP(X(N)max(t) > xt);exists. In [10℄, it is proved that Theorem 1.1 implies the following estimatefor  N (x):Theorem 1.2. For x > 21=2, we havelim supN→∞

log[ N (x)−  (x)℄logN 6 −
(x22 − 1):



14 E. A�ID�EKON, YUEYUN HU, ZHAN SHIThe inequality in Theorem 1.2 is onjetured in [10℄ to be an equality.The rest of the paper is as follows. In Setion 2, we present an inequalityfor inhomogeneous Galton{Watson proesses. This inequality will be usedin Setion 3 for the proof of Theorem 1.1, and in Setion 4 to establish theorresponding result for two-dimensional Gaussian free �elds.
§2. An inequality for inhomogeneous Galton{WatsonproessesLet (Zn; n > 0) be an inhomogeneous Galton{Watson proess, the re-prodution law at generation n being denoted by �n.1 More preisely,Zn+1 = Zn∑k=1 �(k)n ; n > 0;where �(i)n , i > 1, are independent opies of �n, and are independent ofeverything up to generation n. Letmn := E(�n):We assume 0 < mn <∞, for n > 0.Proposition 2.1. Let � > 1 and n > 1. For all 0 6 i < n, we assume theexistene of �i > 0 suh that

E(e�i�i) 6 e��imi : (2.1)Then for all Æ > 0 and all integer ` > 1,
P

(Zn > max{`; (� + Æ)n ` max06i<n n−1∏j=i mj} ∣∣∣Z0 = `)
6 n exp(

−
Æ`�+ Æ min06i<n�i + max06i<n�i):We say some words about forthoming appliations of the propositionto BBM (in Setion 3) and to Gaussian free �elds (in Setion 4). In bothappliations, � + Æ is taken to be as lose to 1 as possible, whereas ` istaken to be e"n with " > 0 that an be as small as possible (so that ` is suf-�iently large to ompensate min06i<n �i on the right-hand side, but suf-�iently small in front of max06i<n n−1∏j=i mj on the left-hand side). Roughly1We write, indi�erently, a probability measure �n on {0; 1; 2; : : :} and a randomvariable whose distribution is �n.



LARGE DEVIATIONS FOR LEVEL SETS 15speaking, Proposition 2.1 says that if (2.1) is satis�ed with appropriate�i, then starting at Z0 = `, the inhomogeneous Galton{Watson proessexeeds max{`; e(1+o(1))nmax06i<n ∏n−1j=i mj} at generation n with verysmall probability.Proof of Proposition 2.1. Let ` > 1 be an integer. For notational sim-pli�ation, we write P
`( · ) := P( · |Z0 = `).Let bi > 1, 1 6 i 6 n, be integers. We have, for 1 6 i < n,

P
`(Zi+1 > bi+1) 6 P

`(Zi > bi) + P
`( bi∑k=1 �(k)i > bi+1);whereas for i = 0, the inequality simply says

P
`(Z1 > b1) 6 P

`(∑̀k=1 �(k)0 > b1):By Chebyshev's inequality,
P
`( bi∑k=1 �(k)i > bi+1) 6 e−�i bi+1 [E(e�i�i)℄bi ;whih, by assumption (2.1), is bounded by exp(−�i bi+1+�bi�imi). Hene

P
`(Zi+1 > bi+1) 6 P

`(Zi > bi) + exp(−�i bi+1 + ��imibi):Let Æ > 0. We hoose b0 := ` and, by indution,bi+1 := max{⌊(�+ Æ)mibi⌋; `}; 0 6 i 6 n− 1:Then ��imibi = ��i�+Æ (�+ Æ)mibi 6 ��i�+Æ (1 + bi+1) 6 �i + ��i�+Æ bi+1, so
−�i bi+1 + ��imibi 6 −�i bi+1 + �i + ��i�+ Æ bi+1= −

Æ�i�+ Æ bi+1 + �i
6 −

Æ�i�+ Æ `+ �i:Consequently, we have, for 1 6 i 6 n− 1,
P
`(Zi+1 > bi+1) 6 P

`(Zi > bi) + exp(
−

Æ�i�+ Æ `+ �i);whereas P
`(Z1 > b1) 6 e−�0 b1 [E(e�0�0)℄` 6 exp(− Æ�0�+Æ ` + �0). Summingover i, we obtain:



16 E. A�ID�EKON, YUEYUN HU, ZHAN SHI
P
`(Zn > bn) 6

n−1∑i=0 exp(
−

Æ�i�+ Æ `+ �i)
6 n exp(

−
Æ`�+ Æ min06i6n−1�i + max06i6n−1 �i):By indution in n, bn 6 max{`; max06i6n−1[(�+Æ)n−i n−1∏j=i mj ℄`}, whih isbounded by max{`; (�+Æ)n`max06i6n−1 n−1∏j=i mj}. The proposition followsimmediately. �

§3. Proof of Theorem 1.1The proof of the theorem relies on the following elementary result, whihexplains the presene of the onstant I(a; x) := x22(1−a) − 1 in the theorem.Lemma 3.1. Let x > 0 and (1− x22 )+ < a < 1. We have, for any t > 0,1t sups∈(0; t); y6xt:(t−s)− (xt−y)22(t−s) =at(s− y22s) = −I(a; x): (3.1)1t sups∈(0; t); y∈R; z>xt:(t−s)− (z−y)22(t−s) >at (s− y22s) = −I(a; x): (3.2)Proof. Clearly, (3.2) is a onsequene of (3.1): It suÆes to observe thatfor given (s; z), the supremum in y ∈ R is the supremum in y ∈ (−∞; z℄.The proof of (3.1) is elementary: The maximizer is s∗= (1−a)[x2−2(1−a)℄x2−2(1−a)2 t,y∗ = x1−as∗, whih is the unique root of the gradient of the Lagrangian,and the supremum is not reahed at the boundary. �We often use the elementary Gaussian tail estimate:
P(|N | > x) 6 exp(

−
x22Var(N )); x > 0;



LARGE DEVIATIONS FOR LEVEL SETS 17for all mean-zero non-degenerate Gaussian random variable N . As a on-sequene, for x ∈ R and y > 0,
P(|N − x| 6 y) 6 exp(

−
x22Var(N ) + |x| yVar(N )): (3.3)3.1. Lower bound. The strategy of the lower bound in Theorem 1.1 isas follows: Let " > 0. Let s∗ = (1−a)[x2−2(1−a)℄x2−2(1−a)2 t and y∗ = x1−as∗ be themaximizer in (3.1) of Lemma 3.1. Let the BBM reah [y∗; ∞) at time s∗(whih, by (1.1), happens with probability at least exp[−(1+")( y2∗2s∗ −s∗)℄ =e−(1+")I(a; x)t for all suÆiently large t), then after time s∗ the systembehaves \normally" in the sense that by (1.2), with probability at least1 − " for all suÆiently large t, the number of desendants positioned in[xt; ∞) at time t of the partile positioned in [y∗; ∞) at time s∗ is at leastexp{(1−")[(t−s∗)− (xt−y∗)22(t−s∗) ℄} (whih is e(1−")at); note that the ondition0 < xt−y∗t−s∗ < 21=2 in (1.2) is automatially satis�ed. Consequently, for allsuÆiently large t,

P

(N(t; x) > e(1−")at) > (1− ") e−(1+")I(a; x)t:Sine " > 0 an be as small as possible, this yields the lower bound inTheorem 1.1. �3.2. Upper bound. Let 12 < Æ < 1. We disretize time by splitting timeinterval [0; t℄ into intervals of length tÆ : Let si := itÆ for 0 6 i 6 M := t1−Æ .For notational simpli�ation, we treatM as an integer (upper integer partshould be used for a rigorous treatment; a similar remark applies laterwhen we disretize spae).We �rst throw away some uninteresting situations. Let C > 0 be a on-stant, and let E1(t) denote the event that all the partiles in the BBM lie in[−Ct; Ct℄ at time si, for all 1 6 i 6 M . The expeted number of partilesthat fall out of the interval is bounded by M∑i=1 esi P( supu∈[0; si℄ |B(u)| > Ct),where (B(u); u > 0) denotes a standard one-dimensional Brownian mo-tion. We hoose and �x the onstant C > 0 (whose value depends on a andx) suh that this expeted number is o(e−I(a; x)t), t→ ∞. By the Markovinequality,
P(E1(t)) = o(e−I(a; x)t); t→ ∞:



18 E. A�ID�EKON, YUEYUN HU, ZHAN SHILet E2(t) be the event that for all 0 6 i < M , any partile in theBBM alive at time si has a total number of desendants fewer than t2etÆat time si+1. This number has the geometri distribution of parametere−(si+1−si) = e−tÆ , i.e., it equals k with probability (1 − e−tÆ)k−1e−tÆ forall integers k > 1. By the Markov inequality again, we have
P(E2(t)) 6

M−1∑i=0 esi ∑k>t2etÆ (1− e−tÆ)k−1e−tÆ = o(e−I(a; x)t); t→ ∞:Consequently, for t→ ∞,
P(N(t; x) > eat) 6 P(N(t; x) > eat; E1(t); E2(t)) + o(e−I(a; x)t): (3.4)We now disretize spae. Let Æ′ ∈ (0; Æ). [Later, we are going to assumeÆ′ < 2Æ − 1.℄ Let " > 0 be a small onstant (whih will ultimately goto 0). Spae interval [−Ct; Ct℄ is split into intervals of length tÆ′ : Letxk := ktÆ′ for −t1−Æ′ 6 k 6 t1−Æ′ . We all f : {si; 0 6 i 6 M} → {xj :=jtÆ′ ; −Ct1−Æ′ 6 j 6 Ct1−Æ′} a path iff(0) = 0; f(sM ) > (x− ")t:The total number of paths is bounded by (2Ct1−Æ′ +1)t1−Æ = eo(t), t→ ∞.Consider the BBM. For 1 6 i 6 M , a partile at time si is said to followthe path f until time si if for all 0 6 j 6 i, the anestor of the partile attime sj lies in [f(sj)− tÆ′ , f(sj) + tÆ′ ℄. LetZi(f) := number of partiles following the path f until time si:On the event E1(t), we have (using the fat that xt− tÆ′ > (x− ")t forall large t) N(t; x) 6

∑f ZM (f) 6 #(paths) maxf ZM (f);where ∑f and maxf denote sum and maximum, respetively, over all pos-sible paths f , and #(paths) stands for the total number of paths.Let a′ ∈ (0; a). Sine #(paths) = eo(t) (for t → ∞), it follows that forall suÆiently large t (say t > t0), on the event {N(t; x) > eat} ∩ E1(t),



LARGE DEVIATIONS FOR LEVEL SETS 19there exists a path f suh that ZM (f) > ea′t. Aordingly, for t > t0,
P(N(t; x) > eat; E1(t); E2(t)) 6

∑f P(ZM (f) > ea′t; E2(t))
6 eo(t) maxf P(ZM (f) > ea′t; E2(t)):In view of (3.4), and sine a′ an be as lose to a as possible, the proof ofthe upper bound in Theorem 1.1 is redued to showing the following: Forx > 0 and (1− x22 )+ < a < 1,lim supt→∞

1t maxf logP(ZM (f) > eat; E2(t)) 6 −I(a; x) ; (3.5)with I(a; x) := x22(1−a)−1 as before. [The meaning of a has slightly hanged:It is, in fat, a′.℄To bound P(ZM (f) > eat; E2(t)), we distinguish two situations. A pathf is said to be good if there exists i ∈ [1; M) ∩ Z suh that(t− si)− (f(sM )− f(si))22(t− si) > (a− ")t: (3.6)It is said to be bad if it is not good.When the path f is good, it is easy to bound P(ZM (f) > eat; E2(t));we an even drop E2(t) in this ase: Let i ∈ [1; M)∩Z be as in (3.6); sine
{ZM(f) > eat} ⊂ {Zi(f) > 1}, we have

P(ZM (f) > eat) 6 E[Zi(f)℄ 6 esi P(|B(si)− f(si)| 6 tÆ′); (3.7)with (B(s); s > 0) denoting, as before, a standard Brownian motion. SineÆ′ < Æ < 1, si = itÆ and f(si) = O(t), it follows from (3.3) that
P(|B(si)− f(si)| 6 tÆ′) 6 exp(

−
f(si)22si + o(t));uniformly in i and in f . This yields that

P(ZM (f) > eat)
6 exp(si − f(si)22si + o(t))
6 exp{ sups∈(0; t); y∈R; z>(x−")t:(t−s)− (z−y)22(t−s) >(a−")t (s− y22s)+ o(t)}:



20 E. A�ID�EKON, YUEYUN HU, ZHAN SHIBy (3.2) of Lemma 3.1, the supremum equals −I(a− "; x− ")t, as longas " > 0 is suÆiently small suh that x > " and that (1− (x−")22 )+ < a−".Hene, uniformly in all good paths f ,lim supt→∞

1t logP(ZM (f) > eat) 6 −I(a− "; x− "):Sine I(a− "; x− ") an be as lose to I(a; x) as possible, this will settlethe ase of good paths f . To prove (3.5), it suÆes to hek that, uniformlyin all bad paths f ,limt→∞

1t logP(ZM (f) > eat; E2(t)) = −∞ : (3.8)Let "′ ∈ (0; "). For any path f , de�ne� = �(f; t) := inf{i : 1 6 i 6 M; Zi(f) > e"′t}; inf ∅ := ∞:On the event {ZM (f) > eat}, we have � < ∞, and Z� (f) 6 t2etÆe"′t onthe event {� <∞} ∩E2(t). Hene
P(ZM (f) > eat; E2(t))

6 P(ZM (f) > eat; Z� (f) 6 t2etÆ+"′t; E2(t))
6

M∑i=1 P(ZM (f) > eat; e"′t 6 Zi(f) 6 t2etÆ+"′t; E2(t))= M∑i=1 t2etÆ+"′t∑`=e"′t P(ZM (f) > eat; Zi(f) = `; E2(t)) : (3.9)Let us have a lose look at the probability P(ZM (f) > eat; Zi(f) =`; E2(t)) on the right-hand side, for 1 6 i 6 M and e"′t 6 ` 6 t2etÆ+"′t.The sequene Zi+j(f), for 0 6 j 6 M − i, an be written as Zj+1(f) =∑Zj(f)k=1 �(j)k , where for eah j, �(j)k , k > 1, would be i.i.d. if the partileat time si+j were exatly positioned at f(si+j) rather than only lying inthe interval [f(si+j) − tÆ′ ; f(si+j) + tÆ′ ℄. However, �(j)k is stohastiallysmaller than or equal to �̃(j), the number of partiles in a BBM, startingat position f(si+j), that lie in [f(si+j+1)− 2tÆ′ ; f(si+j+1) + 2tÆ′ ℄ at timetÆ. So we an make a oupling for (Zi+j(f); 0 6 j 6 M − i) and a newproess (Z̃i+j(f); 0 6 j 6 M − i), whih satis�es Z̃j+1(f) = ∑Z̃j(f)k=1 �̃(j)k ,where for eah j, �̃(j)k , k > 1, are i.i.d. having the law of �̃(j), suh that



LARGE DEVIATIONS FOR LEVEL SETS 21Zi+j(f) 6 Z̃i+j(f) for all 0 6 j 6 M− i. Sine (Z̃i+j(f); 0 6 j 6 M− i) isan inhomogeneous Galton{Watson proess, we an apply Proposition 2.1.Write �f(si+j) := f(si+j+1)− f(si+j) = O(t). Note that by (3.3),
E(�̃(j)) = etÆ P(|B(tÆ)−�f(si+j)| 6 2tÆ′)

6 exp(tÆ − (�f(si+j))22tÆ +O(t1+Æ′−Æ))=: mj ;with O(t1+Æ′−Æ) being uniform in i, j and f . In order to apply Proposi-tion 2.1, we need to bound max06k<M−i M−i−1∏j=k mj , as well as to �nd aonvenient �k satisfying ondition (2.1) in Proposition 2.1.Reall that M := t1−Æ. We have, for 0 6 k < M − i,M−i−1∏j=k mj = exp((M − i− k)tÆ − 12tÆ M−i−1∑j=k (�f(si+j))2 +O(t2+Æ′−2Æ))= exp((M − i− k)tÆ − 12tÆ M−i−1∑j=k (�f(si+j))2 + o(t));as long as 2 + Æ′ − 2Æ < 1 (whih is equivalent to Æ′ < 2Æ − 1), whih wetake for granted from now on. By the Cauhy{Shwarz inequality,M−i−1∑j=k (�f(si+j))2 >
(f(sM )− f(si+k))2M − i− k :Reall that sj := jtÆ and that MtÆ = t. HeneM−i−1∏j=k mj 6 exp((M − i− k)tÆ − (f(sM )− f(si+k))22(M − i− k)tÆ + o(t))= exp((t− si+k)− (f(sM )− f(si+k))22(t− si+k) + o(t)) :If f is a bad path, then by de�nition of good paths in (3.6), (t−si+k)−(f(sM )−f(si+k))22(t−si+k) < (a− ")t for all k. Thusmax06k<M−i M−i−1∏j=k mj 6 e(a−")t+o(t): (3.10)



22 E. A�ID�EKON, YUEYUN HU, ZHAN SHIIn order to apply Proposition 2.1, we still need to �nd a onvenient �ksatisfying ondition (2.1) in the proposition. Let � > 1. There exists r > 0suÆiently small suh that ey 6 1+� for all y ∈ [0; r℄. On the event E2(t),we have �̃(j) 6 t2etÆ by de�nition. Let �j := e−2tÆ . Then �j �̃(j) 6 r forall suÆiently large t (and we will be working with suh large t); henee�j �̃(j) 6 1 + ��j �̃(j), whih yields that
E(e�j �̃(j) ) 6 1 + ��jE(�̃(j)) 6 1 + ��jmj 6 e��jmj :In words, ondition (2.1) of Proposition 2.1 is satis�ed with the hoieof �j := e−2tÆ . Applying Proposition 2.1 to n := M − i, we see that forall suÆiently large t and uniformly in 1 6 i 6 M and e"′t 6 ` 6 t2etÆ+"′t(realling that "′ < " and "′ < a)

P
(ZM (f) > eat; E2(t) |Zi(f) = `) 6 M exp(− ` e−2tÆ);where  > 0 is an unimportant onstant that does not depend on t. Afortiori, P(ZM (f) > eat; E2(t); Zi(f) = `) 6 M exp(− ` e−2tÆ). By (3.9),we obtain

P
(ZM (f) > eat; E2(t)) 6 M2 t2etÆ+"′t exp(− ` e−2tÆ):This yields (3.8), and ompletes the proof of the upper bound in Theo-rem 1.1. �

§4. Appliation to disrete Gaussian free fieldsLet VN := {1; : : : ; N}2, and �VN be the inner boundary of VN whih isthe set of points in VN having a nearest neighbour outside. Consider thetwo-dimensional disrete Gaussian free �eld (GFF) � = (�(x); x ∈ VN )in VN with zero boundary onditions as follows: � is a olletion of jointlymean-zero Gaussian random variables with �(x) = 0 for x ∈ �VN andwith ovariane given by the disrete Green's funtionGN (x; y) := Ex( ��VN∑i=0 1{Si=y}); x; y ∈ VN \ �VN ;where (Si; i > 0) is a two-dimensional simple random walk on Z
2, ��VNthe �rst time the walk hits �VN , and Ex is expetation with respet to Pxunder whih Px(S0 = x) = 1.



LARGE DEVIATIONS FOR LEVEL SETS 23In the rest of the paper, we write := ( 2�)1=2: (4.1)This onstant originates from the fat that GN (0; 0) = 2 logN + O(1),N → ∞ (Lawler [13℄, Theorem 1.6.6). The maximum of � on VN wasstudied by Bolthausen, Deushel and Giaomin [3℄, who proved thatlimN→∞

1logN maxx∈VN �(x) = 2; in probability.It is possible to have a further development for maxx∈VN �(x) until on-stant order of magnitude; see Bramson, Ding and Zeitouni [7℄. Daviaud [9℄was interested in the intermediate level sets
HN (�) := {x ∈ VN : �(x) > 2� logN}; 0 < � < 1;and proved that for all 0 < � < 1,#HN (�) = N2(1−�2)+o(1); in probability,where #HN (�) denotes the ardinality of HN (�). Reently, Biskup andLouidor [2℄ established the saling limit of HN (�) upon an enoding via apoint measure.We study the deviation probability P(#HN (�) > N2a), for 1 − �2 <a < 1.Theorem 4.1. Let � ∈ (0; 1) and a ∈ (1− �2; 1). We have

P(#HN (�) > N2a) = N−J(a; �)+o(1); N → ∞;where J(a; �) := 2�21− a − 2:To prove Theorem 4.1, let us introdue a useful deomposition. LetD ⊂ VN be a square. De�nehD(x) := E
(�(x) |F�D); x ∈ D;where FA := �(�(x); x ∈ A) for all A ⊂ VN , and �D denotes the innerboundary of D. Let�D(x) := �(x) − hD(x); x ∈ D: (4.2)Then (�D(x); x ∈ D) is independent of F�D∪D ; in partiular, (�D(x),x ∈ D) and (hD(x); x ∈ D) are independent. Moreover, (�D(x); x ∈ D)is a GFF in D in the sense that it is a mean-zero Gaussian �eld vanishing



24 E. A�ID�EKON, YUEYUN HU, ZHAN SHIon �D with ovariane Cov(�D(x); �D(y)) = Ex(��D∑i=0 1{Si=y}), for x, y ∈D \ �D, where ��D is the �rst hitting time at the inner boundary �D bythe simple random walk (Si).Write xD for the entre of D. Let�D := E(�(xD) |F�D) = hD(xD):[Degenerate ase: �D = �(x) if D = {x}.℄ We frequently use an elementaryinequality: By Bolthausen, Deushel and Giaomin [3℄ p. 1687,Var(hD(x) − �D) 6 2 supy∈�D[a(x− y)− a(xD − y)℄;where a(z) := ∞∑n=0[P0(Sn = 0)− P0(Sn = z)℄ with (Sn; n > 0) denoting asbefore a simple random walk on Z
2. Sine a(z) = 2 log |z|+O(1), |z| → ∞([13℄, Theorem 1.6.2), there exists a onstant 1 > 0 (independent of N)suh that for all square D ⊂ VN ,Var(hD(x) − �D) 6 1; x ∈ D: (4.3)It is possible to estimate Var(�D). Let  := ( 2� )1=2 as in (4.1). Byequation (7) and Lemma 1 of Bolthausen, Deushel and Giaomin [3℄,there exists a onstant 2 > 0 suh that for all square D ⊂ VN with sidelength m, Var(�D) 6 2 log(Nm ) + 2; (4.4)and for any 0 < Æ < 12 , there exists 3(Æ) > 0 suh that for all squareD ⊂ VN with dist(xD ; V N ) > ÆN ,Var(�D) > 2 log(Nm )− 3(Æ): (4.5)[Degenerate ase: m := 1 if D is a singleton.℄The proof of Theorem 4.1 uses the same ideas as the proof of Theo-rem 1.1 in Setion 3, with some appropriate modi�ations. Again, for thesake of larity, we prove the upper and the lower bounds in distint para-graphs. The proof is based on the following elementary fat: For 0 < � < 1and 1− �2 < a < 1,sup(s; b; z): 0<s<1; z>�;s− (z−b)2s >a [(1− s)− b21− s] = −

( �21− a − 1): (4.6)



LARGE DEVIATIONS FOR LEVEL SETS 25(This is (3.2) of Lemma 3.1 after a linear transform. The maximizer iss∗ := a�2�2−(1−a)2 , b∗ := [�2−(1−a)℄��2−(1−a)2 , z∗ = �.)As in the proof for BBM, for notational simpli�ation, we treat severalounting quantities (suh as (logN)1−Æ and N1−si below) as integers.4.1. Upper bound. Let 56 < Æ < 1. Let L = L(N) := (logN)1−Æ. Lets0 := 1 > s1 > · · · > sL := 0 with si − si+1 = (logN)−(1−Æ).For 0 6 i < L, let Dsi(N) denote the partition of N2−2si squares ofside length Nsi of VN . (In partiular, Ds0(N) = {VN}, the singleton VN .)Let DsL(N) := {{x}; x ∈ VN}, the family of singletons of VN . [So forD = {x} ∈ DsL(N), �D = �(x).℄ Let C > 0 be a onstant, and let
E1(N) := {

|�D | 6 C logN; ∀1 6 i 6 L; ∀D ∈ Dsi(N)}:This is the analogue for GFF of the event E1(t) in Setion 3.2. SineVar(�D) 6 2 logN + 2 (see (4.4)), we an hoose C > 0 suÆiently largesuh that
P(E1(N)) = o(N−J(a; �)); N → ∞:Let % ∈ ( 12 ; 32 − Æ). Let

E2(N) :={ maxB∈h(D) |hD(xB)−�D|6(logN)%; ∀1 6 i < L; ∀D∈Dsi(N)} ;where xB denotes as before the entre of the square B, and for all D ∈
Dsi(N) with 1 6 i < L,h(D) := {B ⊂ D with B ∈ Dsi+1(N)} : (4.7)[In words, the elements in h(D) play the role of hildren in the ge-nealogial tree of BBM.℄ By (4.3), Var(hD(x) − �D) 6 1 for all x ∈ D,whih allows to see that

P(E2(N)) = o(N−J(a; �)); N → ∞:Consequently, the following analogue for GFF of (3.4) holds: forN→∞,
P(#HN (�) > N2a)

6 P(#HN (�) > N2a; E1(N); E2(N)) + o(N−J(a; �)): (4.8)Let us disretize spae. Let " > 0 be a small onstant suh that a− " >1− (�− ")2. Let Æ′ ∈ (0; %). Spae interval [−C logN; C logN ℄ is split into



26 E. A�ID�EKON, YUEYUN HU, ZHAN SHIintervals of length (logN)Æ′ . We allg : {si; 0 6 i 6 L} →
{ j(logN)1−Æ′ ; −C(logN)1−Æ′ 6 j 6 C(logN)1−Æ′}a path if g(s0) = 0; g(sL) > � − ":The total number of paths is No(1) when N → ∞.De�ne sets of squares Z0(g) := {VN} (the singleton) and for 1 6 i 6 L,Zi(g) :={D ∈ Dsi (N) : |�Dk−g(sk)2 logN |62(logN)Æ′ ; ∀1 6 k 6 i};where Dk denotes the unique square in Dsk (N) ontaining D (so Di = Dfor D ∈ Dsi(N)). We writeZi(g) := #Zi(g); 0 6 i 6 L ;the ardinality of Zi(g). On the event E1(N), we have #HN (�) 6

∑g ZL(g),where ∑g sums over all possible paths g.Let a′ ∈ (0; a). For all suÆiently large N ,
P
(#HN (�) > N2a; E1(N); E2(N))

6 #(paths) maxg P(ZL(g) > N2a′ ; E2(N));where maxg denotes maximum over all possible paths g, and #(paths)stands for the total number of paths, whih is No(1) when N → ∞. Inview of (4.8), the proof of the upper bound in Theorem 4.1 is redued toshowing the following: For 0 < � < 1 and 1− �2 < a < 1,lim supN→∞

1logN maxg logP(ZL(g) > N2a; E2(N)) 6 −J(a; �) ; (4.9)with J(a; �) := 2�21−a − 2 as before.A path g is said to be good if there exists i ∈ [1; L) ∩ Z suh thatsi − [g(si)− g(sL)℄2si > a− ": (4.10)[Sine a− " > 1− (� − ")2, it is lear that g(si) 6= 0 in this ase.℄ Thepath is said to be bad if it is not good.



LARGE DEVIATIONS FOR LEVEL SETS 27Let g be a good path. Let i ∈ [1; L) ∩ Z be as in (4.10). We have thefollowing analogue for GFF of (3.7):
P(ZL(g) > N2a) 6

∑D∈Dsi (N)P{
|�D | > |g(si)|2 logN − 2(logN)Æ′}:Sine g(si) 6= 0, we have |g(si)|2 logN − 2(logN)Æ′ > 0 by de�nition ofg. By (4.4), Var(�D) 6 (1− si)2 logN + 2, so for D ∈ Dsi(N),

P

{
|�D | > |g(si)|2 logN − 2(logN)Æ′}

6 exp(
−

(|g(si)|2 logN − 2(logN)Æ′)22[(1− si)2 logN + 2℄ )= exp(
−

2g2(si)1− si logN + o(logN)) ;uniformly in i ∈ [1; L) ∩ Z (realling that 12 < Æ < 1 and that 0 < Æ′ < Æ).Sine #Dsi (N) = N2(1−si), this yields
P(ZL(g) > N2a) 6 exp([2(1− si)− 2g2(si)1− si ℄ logN + o(logN))

6 exp(2 sup(s; b; z)[(1− s)− b21− s ℄ logN + o(logN));the supremum being over (s; b; z) satisfying 0 < s < 1, z > � − " ands− (z−b)2s > a− ". By (4.6), we get that uniformly in good paths g,lim supN→∞

1logN logP(ZL(g) > N2a) 6 −J(a− "; � − ") :As suh, the proof of (4.9) is redued to heking thatlimN→∞

1logN maxg bad path logP(ZL(g) > N2a; E2(N)) = −∞: (4.11)Let, for 0 6 i < L and D ∈ Dsi(N),�(D)i := ∑B∈h(D)1{|�B−g(si+1)2 logN |62(logN)Æ′}; (4.12)where h(D) is as in (4.7). ThenZi+1(g) = ∑D∈Zi(g) �(D)i ; 0 6 i < L: (4.13)



28 E. A�ID�EKON, YUEYUN HU, ZHAN SHIThis gives a branhing-type proess, exept that there is lak of inde-pendene. So we are going to replae �(D)i by something slightly di�erent.Consider two squares B ⊂ D in VN . Let �D(x) := �(x)−hD(x), x ∈ D,as in (4.2). De�ne �DB := E(�D(xB) |FD�B);where FD�B := �(�D(y); y ∈ �B), and xB is as before the entre of B.Then �DB is independent of hD(xB), and�DB = �B − hD(xB): (4.14)We now replae �(D)i (de�ned in (4.12)) by�̃(D)i := ∑B∈h(D)1{|�DB−(g(si+1)−g(si))2 logN |64(logN)Æ′+(logN)%}:Conditionally on Zi(g), the random variables �̃(D)i , for D ∈ Zi(g), areindependent. On the event E2(N), we have �(D)i 6 �̃(D)i , whih impliesthat Zi(g) 6 Z̃i(g); ∀ 0 6 i 6 L;where Z̃0(g) := 1 and for 0 6 i < L,Z̃i+1(g) = Z̃i(g)∑`=1 �̃(`)i ;with �̃(`)i , ` > 1, denoting independent opies of �̃(D)i , whih are indepen-dent of Z̃i(g). As suh, (Z̃i(g); 0 6 i 6 L) is an inhomogeneous Galton{Watson proess.Let us estimate Var(�DB ) on the right-hand side. We may assume thatd(D; �VN )> N4 ; otherwise we may onsider a GFF � de�ned on [−N; 2N ℄2instead of VN in the following omputations of varianes (beause Var(�DB )only depends on the GFF in D).Reall from (4.14) that �B = �DB + hD(xB), the random variables �DBand hD(xB) being independent. So Var(�DB ) = Var(�B)−Var(hD(xB)). Toestimate Var(hD(xB)), we use Var(X)−Var(Y ) = Var(X−Y )+2Cov(X−Y; Y ) and |Cov(X − Y; Y )| 6 [Var(X − Y )Var(Y )℄1=2, as well as the fatVar(hD(xB)− �D) 6 1 (see (4.3)), to see that
|Var(hD(xB))−Var(�D)| 6 1 + 2√1Var(�D): (4.15)



LARGE DEVIATIONS FOR LEVEL SETS 29Sine Var(�D) = 2(1− si) logN +O(1) andVar(�B) = 2(1− si+1) logN +O(1)uniformly in i, B and D (see (4.4) and (4.5); this is why we need to assumethat d(D; �VN ) > N4 ), we getVar(�DB ) = Var(�B)−Var(hD(xB))= 2(si − si+1) logN +O((logN)1=2) (4.16)= (1 +O( 1(logN)Æ− 12 ))2(si − si+1) logN; (4.17)uniformly in 0 6 i < L.We now estimate E(�̃i), where �̃i denotes a random variable havingthe distribution of �̃(D)i (for any D ∈ Dsi(N)). Applying (3.3) to x =(g(si+1)− g(si))2 logN and y = 4(logN)Æ′ +(logN)%, and using (4.17)(noting that #h(D) = N2(si−si+1)), we arrive at: uniformly in 0 6 i < L,
E(�̃i) 6 N2(si−si+1) exp(

−
2[g(si)− g(ss+i)℄2si − si+1 logN+O((logN) 52−2Æ) +O((logN)1+%−Æ)):Note that (logN)1+%−Æ = O((logN) 52−2Æ) (beause % < 32−Æ). ReallingsL = 0 and L = (logN)1−Æ , we obtain, uniformly in 1 6 j < L,L−1∏i=j E(�̃i) 6 N2sj−2L−1∑i=j [g(si)−g(ss+i)℄2=(si−si+1)+o(1):[This is where the ondition Æ > 56 is needed.℄ By the Cauhy{Shwarzinequality, L−1∑i=j [g(si)−g(ss+i)℄2si−si+1 >

[g(sj )−g(sL)℄2sj . Sine g is a bad path, thisyields the following analogue for GFF of (3.10):max16j<L L−1∏i=j E(�̃i) 6 N2(a−")+o(1):On the other hand, for any "′ ∈ (0; ") and all suÆiently large N ,
P(Z̃L(g) > N2a) 6

L∑i=1 N2(si−1−si)+"′∑`=N"′ P(Z̃L(g) > N2a; Z̃i(g) = `):



30 E. A�ID�EKON, YUEYUN HU, ZHAN SHI[This is the analogue for GFF of (3.9).℄ To apply Proposition 2.1 to
P(Z̃L(g) > N2a | Z̃i(g) = `), we need to �nd the orresponding �j (notationof the proposition): Sine �̃j 6 N2(sj−sj+1) = e2(logN)Æ , we an take �j :=e−3(logN)Æ (in plae of 3, any onstant greater than 2 will do the job).Applying Proposition 2.1 to n := L− i, we see that for all suÆiently largeN and uniformly in 1 6 i 6 L and N"′ 6 ` 6 N2(si−1−si)+"′ ,

P(Z̃L(g) > N2a | Z̃i(g) = `) 6 L exp(− ` e−3(logN)Æ);where  > 0 is an unimportant onstant. This yields that P(Z̃L(g) >N2a) 6 L2N2(si−1−si)+"′ exp(−N"′ e−3(logN)Æ). Sine ZL(g) 6 Z̃L(g) on
E2(N), this yields (4.11), and ompletes the proof of the upper bound inTheorem 4.1. �4.2. Lower bound. Let 0 < � < 1, 0 < b < �, " > 0. Let 0 < � < 1.Let D�(N) denote the partition of N2−2� squares of side length N� ofVN . For any D ∈ D�(N), let D̃ := {x ∈ D : d(x; �D) > 14N�} andAD := {

∀x ∈ D̃ : |hD(x)− �D | 6 " logN};BD := { ∑x∈D̃ 1{�D(x)>2(�−b) logN} > N2a−"}:It is lear that if there exists D ∈ D�(N) suh that �D > (2b+") logNand that both AD and BD are realized, then we have #HN (�) > N2a−".Henep(#HN (�) > N2a−")
> P

(
∃D ∈ D�(N) : �D > (2b+ ") logN; AD ∩BD): (4.18)By Daviaud [9℄, if �−b� < 1, then for any D ∈ D�(N) and N → ∞,

P

[#{x ∈ D̃ : �D(x) > 2(� − b) logN}
> N2�[1− (�−b)2�2 ℄−"]

→ 1:Hene, we have, for all suÆiently large N (say N > N0), P(BD) > 12 ifa 6 �(1− (� − b)2�2 ): (4.19)



LARGE DEVIATIONS FOR LEVEL SETS 31The events BD, D ∈ D�(N), are i.i.d. and eah BD is independent of(�C ; AC), C ∈ D�(N). We now go bak to (4.18), and use the fat that
P

( n⋃i=1(Ai ∩Bi)) > min16i6nP(Bi)P

( n⋃j=1Aj);if eah Bi is independent of (Aj ; 1 6 j 6 n). As suh, for N > N0 (andfor a satisfying (4.19)),
P

(#HN (�) > N2a−") >
12 P

(
∃D ∈ D�(N) : �D > (2b+ ") logN;AD) :By (4.3) and the Gaussian tail, P(AD) 6 N2�e−"2(logN)2=(21), uniformly inD ∈ D�(N). Hene P(∪D∈D�(N)AD) 6 N2e−"2(logN)2=(21). Consequently,for a satisfying (4.19), any onstant  > 0 and all suÆiently large N ,

P

(#HN (�) > N2a−")
>

12 P

(
∃D ∈ D�(N) : �D > (2b+ ") logN)

−N−: (4.20)The probability on the right-hand side is studied in the following lemma.Lemma 4.2. Let 0 6 � < 1 and b > 1− �. Then for N → ∞,
P

(
∃D ∈ D�(N) : �D > 2b logN) = N2[(1−�)− b21−� ℄+o(1):Admitting Lemma 4.2 for the moment, we are able to �nish the proofof the lower bound in Theorem 4.1. Indeed, applying Lemma 4.2 to b+ "2in plae of b, it follows from (4.20) that if b > 1− � and a satis�es (4.19),

P

(#HN (�) > N2a−") > N2−2�−2 (b+ "2 )21−� +o(1); N → ∞:The lower bound in Theorem 4.1 follows immediately, with the optimalhoie � = a�2�2−(1−a)2 and b = [�2−(1−a)℄��2−(1−a)2 .It remains to prove Lemma 4.2.Proof of Lemma 4.2. The argument is quite standard.The upper bound, whih is not needed in the paper, follows immediatelyfrom the Markov inequality, with Var(�D) being ontrolled by (4.4).For the lower bound, we only onsider those D away from �VN : D ∈
D�(N) suh that D ⊂ V ∗N with V ∗N ⊂ VN denoting a �xed square of length



32 E. A�ID�EKON, YUEYUN HU, ZHAN SHI12N suh that d(V ∗N ; �VN ) > 14N . Denoting by D∗� (N) the set of suhsquares D. We are going to prove that
P

(
∃D ∈ D

∗� (N) : �D > 2b logN)
> N2[(1−�)− b21−� ℄+o(1): (4.21)Let K > 1 be a large integer. De�ne �i := � + (1− �) iK for 0 6 i 6 K.For a square D ∈ D∗� (N), let Di be the square in D∗�i(N) ontaining D(for 0 6 i < K; so D0 = D) and DK := V ∗N . For any 1 6 i 6 K, we write�Di = D(i)�D + YD(i);where YD(i), 1 6 i 6 K, is a Gaussian vetor independent of �D , andD(i) := Cov(�Di ; �D)Var(�D) :Sine D ⊂ Di, we an use the deomposition (4.14) and in its notation:�D = �DiD + hDi(xD):The independene of �DiD and �Di givesCov(�Di ; �D) = Cov(�Di ; hDi(xD))= Var(�Di ) + Cov(�Di ; hDi(xD)− �Di): (4.22)Let us look at the ovariane expression on the right-hand side. By (4.4)and (4.5) (sine D ⊂ V ∗N ), for 0 6 i 6 K,Var(�Di ) = (1− �i)2 logN +O(1); N → ∞ ; (4.23)whereas by (4.3), Var(hDi(xD) − �Di) 6 1. Hene Cov(�Di ; hDi(xD) −�Di) = O((logN)1=2) (by Cauhy{Shwarz). Putting this and (4.23) into(4.22), we getCov(�Di ; �D) = (1− �i)2 logN +O((logN)1=2):Together with (4.23) (ase i = 0, so Di = D), this yieldsD(i) = Cov(�Di ; �D)Var(�D) = 1− �i1− � +O((logN)−1=2): (4.24)



LARGE DEVIATIONS FOR LEVEL SETS 33Let 12 < � < 1. LetIN := [2 logN; 2 logN + (logN)�℄;
AD := {�D ∈ IN ; max16i6K |YD(i)| 6 (logN)�}= {�D ∈ IN ; max16i6K |�Di − D(i)�D | 6 (logN)�}:Let Z := ∑D∈D∗� (N)1AD :For eah D ∈ D∗� (N), �D is independent of YD(i), 1 6 i 6 K. So

E(Z) = N2(1−�)
P(�D ∈ IN )P

( max16i6K |YD(i)| 6 (logN)�):By (4.23) (ase i = 0), P(�D ∈ IN ) = N− 2b21−�+o(1). On the other hand,Var(YD(i)) 6 Var(�Di) = O(logN) (by (4.23)), so P(max16i6K |YD(i)| 6(logN)�) → 1. It follows that
E(Z) = N2(1−�)− 2b21−�+o(1): (4.25)We now estimate the seond moment E(Z2). WriteZ2 = Z + K∑`=1 ∑F∈D∗�`(N) ∑E;E′

∑D;D′

1AD∩AD′
;where∑E;E′ sums overE, E′ ∈ D∗�`−1(N) with E, E′ ⊂ F and E∩E′ = ∅,and ∑D;D′

over D, D′ ∈ D∗� (N) satisfying D ⊂ E and D′ ⊂ E′. We de�ne
Ẽ (N) :={

∀D∈D
∗� (N); max06i<K; E∈D∗�i(N) with E⊃D |hE(xD)−�E |6(logN)�}:The set Ẽ (N) plays the same role as E2(N) in the proof of the upperbound. Exatly as for E2(N), we have, for any onstant  > 0, P(Ẽ (N)) =o(N−); sine Z2 6 N4(1−�), it follows from (4.25) that
E(Z2 1

Ẽ (N)) = o(E(Z)); N → ∞: (4.26)We have
E(Z2 1

Ẽ (N)) 6 E(Z) + K∑`=1 ∑F∈D∗�`(N) ∑E;E′

∑D;D′

P(AD ∩ AD′ ∩ Ẽ (N)):



34 E. A�ID�EKON, YUEYUN HU, ZHAN SHIReall from (4.14) that �ED = �D − hE(xD). On the event Ẽ (N),hE(xD) 6 �E + (logN)�, so �ED > �D − �E − (logN)�. On the event AD,�E 6 D(`−1)�D+(logN)�. Consequently, on the event AD∩AD′∩Ẽ (N),we have �ED > [1− D(`− 1)℄�D − 2(logN)�
> [1− D(`− 1)℄2b logN − 2(logN)�;and �E′D′ > [1− D′(`− 1)℄2b logN − 2(logN)� for the same reason. Fur-thermore, on AD,�F > D(`)�D − (logN)� > D(`)2b logN − (logN)�:By independene of �ED, �E′D′ and �F , this yields

P(AD ∩ AD′ ∩ Ẽ (N)) 6 p1;N p2;N p3;N ;p1;N := P{�ED > [1− D(`− 1)℄2b logN − 2(logN)�};p2;N := P{�E′D′ > [1− D′(`− 1)℄2b logN − 2(logN)�};p3;N := P{�F > D(`)2b logN − (logN)�}:(Note that p1;N = p2;N .) By (4.16) (with si and si+1 replaed by �`−1and �, respetively),Var(�ED) = 2(�`−1 − �) logN +O((logN)1=2);whereas Var(�F ) = (1 − �`)2 logN + O(1) (ase i = ` in (4.23)), and inview of the value of D(i) in (4.24), we obtain:p1;N = p2;N 6 exp(
−

2b21− � `− 1K logN +O((logN)�));p3;N 6 exp(
−

2b21− � K − `K logN +O((logN)�)) :Consequently,
E(Z2 1

Ẽ (N)) 6 E(Z) + K∑`=1N2(1−�`)N4(�`−�)N− 4b21−� `−1K − 2b21−� K−`K +o(1):Note that 2(1−�`)+4(�`−�)− 4b21−� `−1K − 2b21−� K−`K = 2[(1−�)− b21−� ℄(1+ K̀ )+4b2(1−�)K , whih is bounded by 2[(1−�)− b21−� ℄(1+ 1K )+ 4b2(1−�)K (for 1 6 ` 6 K;



LARGE DEVIATIONS FOR LEVEL SETS 35realling our assumption b > 1 − � whih implies (1 − �) − b21−� < 0).Consequently, for any " > 0, we an hoose K suÆiently large suh that
E(Z2 1

Ẽ (N)) 6 E(Z) +N2[(1−�)− b21−� ℄+"; N → ∞:Together with (4.26) and (4.25), we obtain, for all suÆiently large N ,
E(Z2) 6 N2"

E(Z). By the Cauhy{Shwarz inequality,
P(Z > 1) >

(E(Z))2
E(Z2) > N−2"

E(Z); :In view of (4.25), this yields the lower bound in Lemma 4.2. �Remark 4.3. When � = 0, Lemma 4.2 gives the following analogue forGFF of (1.1): For b > 1,
P
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