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SUBGROUPS OF THE GENERAL LINEAR GROUP
CONTAINING THE ELEMENTARY SUBGROUP OVER
A COMMUTATIVE RING EXTENSION OF RANK 2

ABSTRACT. Let R = Hiel F; be a direct product of fields and let
S = R[Vd] = [Licr F;[/d;] be a ring extension of rank 2 of R. The
subgroups of the general linear group GL(2n, R),n > 3 that contain
the elementary group E(n,S) are described. It is shown that for
every such a subgroup H there exists a unique ideal A <R such that

E(n, S)E(2n, R, A) < H < Ngr(20,r) (E(n, S)E(2n, R, A)).

§1. INTRODUCTION

Let R be an associative ring with 1 and let S be a ring extension of R,
which is a free R-module of rank m. Then S is considered as a subring of
the matrix ring M (m, R) via the regular representation, and so GL(n, S)
is a subgroup of the general linear group GL(mn, R). We are interested in
intermediate subgroups between E(n,S) and GL(mn, R). When R = S,
the lattice of all such subgroups is described for various classes of rings
such as commutative rings, regular rings, rings with condition of stable
rank, etc (see, e.g. [1], [2], [3]). It is shown that every subgroup H of
GL(n, R) normalized by E(n, R) has a standard description, i.e., there ex-
ists a unique ideal A < R such that E(n,R,A) < H < C(n, R, A). When
m > 1, ShangZhi Li [4] solved the problem for division rings R, S. In this
case, for every such a subgroup H, there exists an intermediate division ring
T between R and S such that SL(nk,T) < H < GL(nk,T) x Aut(T/R),
where k=dim7S. In this paper, we consider the problem when R=]],_; F;
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is a direct product of fields and S C ], IE is a commutative ring ex-
tension of rank 2 of R. We show that under some assumptions, for every
subgroup H in GL(2n, R) containing E(n,S), there exists a unique ideal
A < R such that

E(TL, S)E(QTL, R7 A) <H< NGL(2n,R) (E(TL, S)E(QTL, R7 A))

§2. PRINCIPAL NOTATION

Let G be a group. For two elements z,y € G, we denote by
[z,y] = zyz~ty~! their commutator, by z¥ = y~lzy and Yz = yzy~
the conjugates of by y and y~', respectively. We write H < G to mean
that H is a subgroup of G. For a subset X C G, we denote by (X) the
subgroup of G generated by X, and by (X)) the smallest subgroup G
normalized by H which contains X. For two subgroups F, H < G,[F, H]
is the corresponding relative commutator subgroup generated by all com-
mutators [f, h], f € F,h € H. The group G is called perfect if [G,G] = G.

Now, let R be an arbitrary associative ring with 1. When A is an
ideal of R, we write A < R. For two natural numbers m,n, M (m,n, R)
is the additive group of m X n matrices with entries in R, in particular,
M(n,R) = M(n,n, R) is the matrix ring of degree n over R. For every
b=(b,s) € M (mn, R), considering be M (n, (M (m, R)), we write b= (Bps),
1 < h,k < n with Bpy = (b;) € M(m,R),(h—1)m +1 < i < hm,
(k—1m+ 1< j < km. As always, R* is the multiplicative group of R
and GL(n,R) = M(n,R)* is the general linear group of degree n over
R. As usual, a;; is the entry of a matrix a € GL(n, R) at the position
(i,7),i.e.,a = (a;j),1 < i,j < n. Next, a=t = (a;j) is the inverse of a
and a’ is its transpose. By a.; = (aij,...,anj)" we denote the jth col-
umn of ¢ and by a;. = (a1, ..., ain) its ith row. As usual, we denote by
e the identity matrix and e;; a standard matrix unit, that is the ma-
trix which has 1 in the position (7, j) and zeros elsewhere. For £ € R and
1<i#j<n,t;(§) =e+Ee;; is an elementary transvection. In the sequel,
without any special reference we use standard relations among elementary
transvections, such as the additivity formula ¢;;(€);;(¢) = ¢i;(€ + () and
the Chevalley commutator formula [¢;;(€), tjn(C)] = tin(£C).

We denote by R™ the right free R-module of all columns of height n
with components from R, and by "R the left free R-module of all rows
of length n with components from R. The standard bases of R™ and "R
are denoted by e,...,e, and fi,..., f, respectively. In other words, e; is
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SUBGROUPS OF THE GENERAL LINEAR GROUP 211

the ith column e,; of the identity matrix e of degree n, while f; is the ith

row e of e. A column v = (vy,...,v,)" € R" is said to be unimodular
if the left ideal generated by vy,..., v, coincides with R. Similarly, a row
u = (ug,...,uy)" €" Rissaid to be unimodular if the right ideal generated
by uq,...,u, coincides with R.

Now, let A be an ideal in R. We denote by E(n, A) the subgroup in
GL(n, R) generated by all elementary transvections of level A:

E(n,A) = <tij(£),€ e A 1< #J< TL>

In the most important case where A = R, the group E(n, R) generated by
all elementary transvections is called the elementary group. In the sequel
a major role is played by the relative elementary group E(n, R, A). Recall
that the group E(n, R, A) is the normal closure of E(n, A) in E(n, R):

E(n,R,A) = (t;;(€),6 € A,1<i#j<n)PR),

The canonical projection ps : R — R /A sending any element A € R to
the element A = A+ A, defines the corresponding reduction homomorphism

pa : GL(n, R) — GL(n, R/A).

The kernel of p4 is denoted by GL(n, R, A) and is called the principal
congruence subgroup in GL(n, R) of level A.

In the proofs, often without any special reference, we shall use a bunch
of classical facts on elementary groups. The following fact, first proved in
[5], is cited as the Suslin theorem.

Lemma 1. Let R be a commutative ring and n > 3. Then for any ideal
A < R, we have [E(n,R),GL(n,R,A)] = E(n,R,A). In particular,
E(n, R, A) is normal in GL(n, R).

The following statement was proved by Vaserstein and Suslin [6] and,
in the context of Chevalley groups, by Tits [11].

Lemma 2. For n > 3, the relative elementary subgroup E(n,R,A) is
generated by all transvections of the form

2i;(&,¢) = (Ot ()t (=), E € A, (€ R,11<i # j < n.

§3. THE REGULAR REPRESENTATION

Let R be a commutative ring and let S be a commutative ring extension
of R, which is a free R-module of rank m. Suppose that 1 = wy, ..., wy, is
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a basis of S/R. For @ € S,1 < j < m, there exist aij,...,an; € R such
that
QW; = Q1W1 + *++ + QW

Then [¢] := (o) € M(m, R). It is clear that the map a — [a] is a ring
monomorphism from S to M (m, R) and so GL(n, S) is considered as a sub-
group of GL(mn, R). Then E(n,S) is a subgroup of E(mn, R). The sym-
bols e,e1,...,emn, f1, ..., fmn, €ij, tij (€)(§ € R) are used for GL(mn, R)
as in §1, now we write E, E;,...E,, Fi,...,F,, E;j, Tjj(a)(a € S) to de-
note the corresponding concepts in GL(n,S), namely, E is the identity
matrix in GL(n, S); E; is the ith column of E; F} is the jth row of E; E;;
is a standard matrix unit and Tj;(a) = E + aE;;.

Suppose that S = R[v/d] be a commutative ring extension of rank 2 of
R with the basis 1, vd. Then

5:{<“y’ Ciy>;a:,yeR},

1 0
0 1
a zero row or a zero column, then a = 0.

Lemma 3. Let S = R[V/d]. Suppose that 2 € R* and d € R*. Then the
group of all automorphisms of S that are identical on R is

Aut(S/R)z{(é S):reR,r2:1}.

Proof. Let ¢ € Aut(S/R). Suppose that p(v/d) = a+bvd, where a,b € R.
We have d = ¢(d) = o(Vd)p(Vd) = (a®+b*d)+2ab\V/d, so a*>+b*d = d and
2ab = 0. Moreover, there exists z + yv/d € S such that o(z + yvd) = Vd,
it follows that yb = 1. By invertibility of d and 2, we get a = 0,b% = 1,

so the matrix of ¢ with respect to the basis 1,Vd is ( 10 ) . Now,

where the identity is I = ( ) . Note that if d € R* and a € S has

0 b
let » € R,r> = 1, then the map ¢ : S — S which maps z + yV/d to
x4+ yrv/d belongs to Aut(S/R) and its matrix with respect to the basis 1,

\/Eis(ég). O

§4. DECOMPOSITION OF TRANSVECTIONS

Theorem 1. Let R be a commutative ring, and let S = R[\Vd] be a
commutative ring extension of rank 2 of R and n > 3. Then for any
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g € GL(2n, R), the elementary subgroup E(n, S) is generated by the trans-
vections E + UF;,1 < j < n, where the column U € S™ has at most two
nonzero components and its jth component is zero such that
gU € M(2n,2,R) has at least one zero row.

Proof. Put T.;(U) = E 4+ UFj, then T,;(U) € E(n,S). We need to show

that any transvection T;; («) is expressed as a product of T},;(U), 1 < j < n.

Let 1 <i#j<nand a€S. Choose h ¢ {i,j}. For any 1 < k < 2n, put
U(k) = a922h)k(UkhEi — UkiEp),

where

Ukl — ( gk(?l) dgk(?l—l) ) c S, l: 'L,h
Gk(21-1) Jk(20)

Clearly, U(k) € S™ and U(k); = 0, moreover, (gU(k))g« = 0.
To finish the proof, it suffices to observer that

2n 2n
[ 7 k) = T Tis(egiamyeUsn) Thi (—ganycUsi)
k=1 k=1
2n 2n
= 11 T (@gnyUn) H Thj(—g(2n)kUri)
k=1
2n
= T35 9(onyUkn)) T (— Zg(Qh 1Uki)) = Tij(a).
k=1

To justify the last equality, note that

2n 2n
2n Zg(Qh)kgk(Qh) Zg(Qh)kdgk(Qh—l) 10
Zg(2h)kUkh = %) , “on , - ( 0 1 )’
k=1 Z 92n)kIk(2h—1) Z 92n)kIk(2h)

k=1 k=1

n -, 2n
no, Zg(gh)kgk(m') Zg(gh)kdgk(%fl) 0 0
Zg(Qh)kUki = k2:n1 , k2:nl = ( 0 0 )

Z g(2h)kgk(2ifl) Z g(2h)kgk(2i)
k=1 k=1
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§5. ELEMENTARY TRANSVECTIONS IN SUBGROUPS NORMALIZED
BY E(n,S)

Proposition 1. Let R be a commutative ring, and let S = R[\Vd] be a
commutative ring extension of rank 2 of R and n > 3. For any ideal A of
R, we have

E(2n, A)P9 = E(2n, R, A).

Proof. Put H = E(2n, A)?(»5 . Since E(n,S) < E(2n,R), we have
H < E(2n,R,A). By Lemma 2, it suffices to check that the z;;(&,()
= tji(C)tij(g)tji(_C) € H for anyf S A,C € R. Note that H is nor-
malized by E(n,S), conjugating by a monomial matrix from E(n,S), we
can suppose that i € {1,2},5 € {1,2,3,4}.

1. (i,7) € {(1,2),(2,1)}. We have

212(€,¢) = 21 Ot15(€) = 2 Ofty5(1), t52()]
= [21Ot15(1), =1 Ot (€))

[[t21(€), t13(1)]t13(1), [t21(C), ta2(§)]ta2(—€)]
[t23({)t13(1), 31 (—EQ)t32(E)],

therefore
212(&, Q)ta1 (—EQ)t32(€) = t23(C)t13(1)t31 (=€) 32 () t13(—1)t23(—C)
=T15(1 + (Vd)t14(—dQ)taa (—1)ts1 (—EQ)ts2 (&) taa ()t14(dC) Tha (—1 — ¢Vd)
=T12(1 + (Vd)tra(—dQ)tsr (—EQ)t1a (dC)taa (—1)ts2 (&) taa (1) Tiz(—1 — (V)
=T1o(1 + (Vd)tsa(—dEC Va1 (—EQ)taa (€)tsa () Tha(—1 — (Vd) € H.
It follows that z12(&, ) € H. Similarly, 221 (¢, () € H.
2. (i,7) = (2,3). We have
()taa(—C) = "2 [ta5(1), ts3(£)]
(1), Ot55(8)]
[t55(C)tas (1), ts2(—€C)ts3 (€]
[ta6 (Q)t35()tas (1)t16(d), tsa(—ECQ)ts3(E)]
[T23(Q)T15(Vd), tso(—EQ)ts3(€)] € H.

223(€, ¢) = t32(()t23
[t32(C tos
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3. (i,7) € {(1,3), (1,4), (2, 4)}. We have
z13(€, ¢) = t31(Q)t13(€)t31(—()

= To1(Qtaz (—=Qt13(ta2 () To1 (—C)
=To1(Qt13( T (—C) € H.
Similarly,
214(€,¢) = Tor (CVd)t14 () Tor (—CVd) € H
and

224(&,¢) = T21(Q)t24(§)To1(—¢) € H.
O

Lemma 4. Let R be a commutative ring, and let S = R[\/d] be a commu-
tative ring extension of rank 2 of R and n > 3. Let a = gT;j(a)Thi(8)g ™,
where g € GL(2n,R),a,8 € S,j # h,i # k. Suppose that d € R* and
2 € R*. If a € NgL(2n,r) (E(n, S)) and ap. = fi for some 1 <1 < 2n, then
a € GL(n, S).

Proof. Conjugating by a monomial matrix from E(n, S
that [ = 1 or [ = 2. Now, a = (4;;) € Nar2n,r) (E(n,S
of [12], there exist 0 € Aut(S/R) and b = (B;;) € G
a = (Bjjo). We have By; = Ajjo~! for all 1 < j <

), we can suppose
)), by Corollary 1
L(n,S) such that
n, so the lth row

of Byj is zero for any 2 < j < n. By Lemma 3, 0 = ( ) , where

r € R,r?> = 1, so the Ith row of By is r't'f; € 2R. From d € R* and
By; € S, it follows that By = r'™'I, and By; = 0, so A;; = r'*lo and
Aij =0forall 2 < j < n. Since i # k,j # h, we have

(a—e)” = g(Tij()Thi(B) — 6)29_1 —0.

Note that a — e = (Cy;), where Ci; = 0 for all 2 < j < n, we have
(TH_IU - 2) = 0121 =0,
so r =1, hence o = I5. Therefore a = b € GL(n, S). O

Lemma 5. Under assumptions of Lemma 4, let H be a subgroup in GL(2n,
R) that contains E(n,S). Suppose that d € R* and 2 € R*. If H €
Nar2n,r) (E(n, S)), then H contains a matriz a ¢ Ngy,2n,r) (E(n, S)) such
that ap. = fi for some 1 < 1 < 2n, moreover, a = gT;;(a)Thr(B)g™" for
some g € H \ Nav(2n,r)(E(n,S)),a,8 € S,i #k,j # h.
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Proof. Let g € H \ Ngr(2n,r)(E(n,S)). By Corollary 2 of [12], we have
E(n,S)? £ GL(n,S). By Theorem 1, there exists u = E + UFj,
1 < j < n, where the column U € S™ has at most two nonzero com-
ponents and gU € M (2n,2, R) has one zero row, say [th row, such that
gug~' ¢ GL(n,S). Clearly, u has the form Tjj(a)Thi(8) with o, 8 € S,
i #k,j # hand (qug'). = fi. Put @ = gug™', then a ¢ Ngr(2n,R)
(E(n,S)) by Lemma 4. O

Proposition 2. Let R be a commutative ring, and let S = R[\/E] be a
commutative ring extension of rank 2 of R and n > 3. Let H be a subgroup
in GL(2n, R) that contains E(n,S). For 1 <i # j < 2n, put

Lij ={{ € R| t;;(§) € H}.
Then there exist ideals A, B of R such that

(Z) f07" (’L,]) S {(2k — 1,2]{:), (2k,2k2 — 1), 1<k< n},Iij =I5 Zfl
is odd, and I;; = I» if i is even;

(”) fOT‘ (7’7.7) g {(2k - 172k)7 (2k72k - 1)7 1<k< n}aIij =4 ZfZ
is odd and j is even, and I;; =[A : d] if i is even and j is odd, moreover,
I;; = B ifi,j are simultaneously even or odd;

(HZ) A g B g [A : d],A2 g [12 ﬂIQl,Ilg g A and 121 g [A : d]

Proof. We have t13(£)t24(€) = Tm(f) S H, so I13 = Ioy. Conjugat—
ing by monomial matrices from E(n,S), we have (i), moreover, for any
(7’7.7) g {(2k - 172k)7 (2k72k - 1)7 1<k< n}a

— if ¢ is odd and j is even, then I;; = I14;

— if ¢, 5 are simultaneously even or odd, then I;; = I 3;

— if ¢ is even and j is odd, then I;; = I»3.

Put A = I4, B = I13. Clearly, A, B are additional subgroups of R. For

any £ € A,( € R, we have,

t14(£C) = [t16(£), te6a ()] = [t16(€), tea (O)t53(Q)] = [t16(€), T52(C)] € H,
therefore A < R. Moreover, for any £ € B,( € R, we have

t13(6C) = [t15(C), t53(§)] = [t15(O)t26(C), t53(E)] = [T13(C), t53(8)] € H,

so B<R.
Let £ € A, then

t15(€) = [t14(€), tas(1)] = [t14(€), tas (V)tz6(d)] = [t14(€), Tos (V)] € H,

so A C B. Since t14(d€)ta3(€) = Ti2(£V/d) € E(n, S), we have t14(d€)t23(€)
€ Hforall £ € R, so b3 =[A:d].
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Let £ € B, then

t23(8) = [t25(1), 53(&)] = [t25(Lt16(d), t53(8)] = [T13(\/E),t53(f)] € H,

so & € I3 = [A : d]. Hence B C [A : d].
Let ¢,& € A. It follows from A C B C [A : d] that

t12(6€") = [t14(§),ta2(¢)] € H and t21(£€) = [t23(§),t1(¢')] € H, so
A2 C LiaNy.
Now, since

t14(§) = [t12(€), t24 (V)] = [t12(§), t24 (D t13(1)] = [t12(E), T12(1)]

and

t23(&) = [t21(€), t13(1)] = [t21(€), t13(V)t24(1)] = [t21(§), T12(1)],
we claim that I1o C A and I»; C[A:d]. O

Corollary 1. Under assumptions of Proposition 2, suppose that any ideal
of R is idempotent and d € R*. Then for every subgroup H in GL(2n, R)
that contains E(n,S), there exists a unique ideal A of R such that

A:{feRitij(f)GH}

forany 1 <i# j < 2n.

§6. MAIN RESULTS

In this section we always assume that R is a direct product of fields,
R=[l,c; F;, and S C [[;c; Fi is a commutative ring extension of rank 2
of R with the basis 1,v/d. Then S = R[V/d], where d = (d;)ics € [Lics Fi-
We have

S =R[Vd] = R+ RVd = [[(F; + Fi/d;) = [ [ Fi(\/di).
il iel
Let i € I and o; + Bivd; = 0,0;,8; € F;. Put a = (Oéjfsij)jej,ﬂ
= (Bjdij)jer, then a+Bvd=0.Tt follows that « = 8 =0, s0 a; = 3; = 0.

Therefore 1,/d; is linearly independent, i.e., F(v/d;) is a field extension
of rank 2 of Fj. In particular, d; # 0 for any ¢ € I. Hence d € R*.

Lemma 6. Let A, B € M (2, R). Suppose that B has a zero row. If AB € S,
then AB = 0.
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Proof. Let A = <z Z;),B: 2 ?)).It follows from AB € S
that yu = tv and yv = dtu, so d(tu)? = (tv)%. Put t = (t;)icr,u = (ui)icr,
v = (v;)ier. We have d;(t;u;)? = (t;v;)? for any i € I. Since F;(v/d;) is
a field extension of rank 2 of Fj, we have t;u; = t;v; = 0, it follows that
tu = tv = 0 and hence AB = 0. Similarly, we have the above conclusion

u v
forB—<00>. O

) or

Proof. Since BA = 0, we have 2zy = 0 and z? + dy?> = 0. Put

x = (z;)ier,y = (yi)ier, we have 2z;y; = 0 and 27 +d;y? = 0 for any i € I.
If char(F;) = 2, then 2? — d;y? = 27 + d;y? = 0, and hence z; = y; = 0.
If char(F;) # 2, then z;y; = 0 = z? + d;y?, so z; = y; = 0. Therefore
z=y=0. O

Lemma 7. Let A = < ;: Ciéy ), and let B be either <

o8

Y
0
(0 0 ).IfBA:O, then A= B = 0.

y oz

Lemma 8. Suppose that 2 € R* and n > 3. Let H be a subgroup in
GL(2n, R) that contains E(n,S) and H € Ngr(2n,r)(E(n,S)). Then H
contains a matriz g = (Gi;) € GL(n, M2(R)) \ Nar2n,r)(E(n,S)) such
that there exists an index i, G;; =0 for all 1 < j #¢ < n.

Proof. By Lemma 5, there exist a € H \ Ngp(n,r) (E(n,S)) and
u = Tij(a)Th(B) € E(n,S) such that aua™" ¢ GL(n,S) and (aua™")
= f; for some 1 <1 < 2n. Put g = aua™! € H. Conjugating by monomial
matrices from E(n,S), we can suppose that [ € {1,2}. For k € {1,2}\ {l}
and 2 < s < n, we put

U — ( Gk(2s)  AGr(25—1) > ‘
’ Ir(2s—1)  Jk(2s)
For 3 < s < n, put
h = (H;;) = gT(s—l)l(Us)Ts (*Usfl)gila

then Gl(s—l)Us - G15U371 = 0, SO Hl* = Fl. Ifh € NGL(QmR)(E(naS))a
then we can finish here. Suppose that h € Ngr2n,r) (E(n,S)). By Lemma
4, h € GL(n, S). We have

Hij = (Gi(s—l)Us — GisUsfl)Gllj + (SijIQ S S, 1<4,5 <n.
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Note that (97'). = fi, by Lemma 6, (Gi;—1)Us — GisUs—1)GY; = 0
for all 2 < 4,j < n. Therefore (Gi;—1)Us — GisUs—1)Gq; = 0 for all
1<i<n,2<j<n,s0

UGl = Gl 1)iGits—1yUsGhy = > Gy 1)iGisUs 1 Gh
i=1 =1

= Gl 1yi(Gis—1)Us — GisUs1)G1; = 0.
i=1

It follows that G;sUs—1GY; = 0 for all 1 <i < n. Since (G, .- -, Gns)t
is unimodular, we have Us,lG’lj =0.

We have proved USG’U =0forall 2 < 5,5 < n. Now, for any 2 < s < n,
put b = (B;;) = gTs1(Us)g~". Obviously, b € H, b, = f; and By; = 0 for all
2 < j < n. If there exists s such that b ¢ GL(n, S), then by Lemma 4, the
matrix b satisfies the conditions of the lemma. Therefore we can suppose
that b € GL(n, S) for all 2 < s < n, then G1,U;G}; = B11 — I> € S. Note
that the lth row of the matrix G1,U;GY; is zero, so G1,UsG}; = 0. We

have
n

G1sUs = GrsUs (Y G1;Gjn) = > (Gi:UGY ;)G = 0.
j=1 j=1
By Lemma 7, G1s = 0 and the matrix g itself satisfies the conditions of
the lemma. |

Lemma 9. Suppose that 2 € R* and n > 3. Let H be a subgroup in
GL(2n, R) that contains E(n,S). If there exists g = (G;;) € GL(n, M (2,
R))\ NgL(2n,r) (E(n,S)) such that G1; =0 for all2 < j < n and gE(n, S)
g 'Ug 'E(n,S)g C H, then H contains an elementary transvection
T;;(C) with C & S.

Proof. Suppose that H doesn’t contain any elementary transvection 7j;
(C) with C € S. For any 2 < j <nand a € S, put g1 = gTj1(a)g " € H.
We have

I, 0 0
Boj I ... 0 L

g1 = . .. , Bij:GijaGll,ngén.
5n] 0 I2

Then



220 T. N. HOI, N. H. T. NHAT

nl(ﬁz]) [ m(IQ) zl(ﬁz])] = [ m(IQ) ] € H, forall2<i<n—1
and

T51(Bnj) = [Ton(I2), Tn1 (Bnj)] = [Ton(I2), g1] € H,
therefore f§;; € S for all 2 < 4,j < n,a € S. In particular, Giijll e s,
i.e., there exist ay; € 5,2 < ¢, < n, such that G;; = «a;;G11. Note
that G € GL(Q,R) and (Gl] 2<i,j<n € GL(?TL — Q,R), SO (Oéij)Qgi,jgn
€ GL(2n — 2, R). We have

0 d 1 _f(a
GH(I O)Gll_(sa>
(73 d’l)i

for some a,r,s € R. Let a;» = ( ) with u;,v; € R, we have

1] Uj

_ 0 d —1 _ [ uwia+dsv; u;r—dav;
Bﬂ_aﬂGn(l 0)G11_< via + su;  v;r — au; )

Since ;2 € S, we get the system

w;a + dsv; = v;r — auy;
uir — dav; = d(via + su;).

Hence (r—sd)(u? —dv?) = 0, so (r—sd)u; = (r—sd)v; = 0 for all 2 < i < n.
Since (u2,v2, ..., Uy, vy)" is unimodular, r = sd. Using invertibility of 2
and d, we have au; = av; = 0, so a = 0. Therefore

0 d _ 0 ds
Gll(lO)Gnl:(s O)ES

It follows that GnozGl_1 eSforallae S, ie. (}’115'(}’1_1 C S. Replacing
g by ¢~ ', we have G11 SG1, C S, therefore G115G11 =S.

Put h = gGi' = (GG, then hE(n,S)h™' = g¢GE(n,S)
Gug ' = gE(n,S)g_1 C H, s0 g~'h € NgL(2n,r) (E(n,S)).

Since ¢ € Navnen,r)(E0,S)),h & Narienr)(E(n,S)). Moreover,
Hi, = F and Hy = GGl € Sforall 2 < i,j <n, e, h= ( 3 g )

with U = (y2,...,7)t € Ma(R)" !, D € M(n—1,S5). Replacing g by g,
we have g7 1Gy1 = L0 ) with U" € My(R)"1,D" € M(n —1,5).

Then

u D

I 0
=Gulg Gn)G, = ( GnuU'GH' GuD'G ) ’
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therefore D~' = G11D'G;' € M(n — 1,S) due to G;1SG;' = S. If
I, 0 I 0
n—1 _ 2 —1_ 2
UeS™*, then h= U D €M(n,S),and h —< _p-y p-1 >
€ M(n,S), so h € GL(n,S) C NgL(2n,r) (E(n,S)), contradicting the hy-
pothesis. Hence there exists v, ¢ S for some 2 < k < n. Take 1 < j
gn_la]#k_laput

-1
_ I2 0 I2 0 I2 0
(5 5) (8 nusen ) (5 p)eres

then

. _ [2 0 —1 —1
Tip1a(m) = ( 0 Tyur (L) )hah € E(n,S)h(E(n,S)h~" C H,

contradicting the hypothesis.
O

Lemma 10. Suppose that 2 € R* and n > 3. Let H be a subgroup in
GL(2n, R) that contains E(n,S). If H € Ngv(2n,r) (E(n,S)), then H con-
tains an elementary transvection T;;(C) with C ¢ S.

Proof. By Lemma 8, there exist a matrix g = (Gi;) € H\ Ngr(2n,r) (E(n,
S)) and an index ¢ such that G3; = 0 for all 1 < j # i < n. Clearly,
gE(n,S)g ' Ug 1E(n,S)g C H, moreover, conjugating by monomial ma-
trices from E(n, S), we can suppose that G1; = 0 for all 2 < j < n. By
Lemma 9, H contains an elementary transvection T;;(C) with C ¢ S. O

Lemma 11. Suppose that 2 € R* and n > 3. Let H be a subgroup in
GL(2n, R) that contains E(n,S). Then either H < Ngr2n,r) (E(n, S)), or
H contains a nontrivial elementary transvection of the form t(s;)(25)(§).

Proof. Suppose that H € Nqr,(2n,r)(E(n, S)), by Lemma 10, H contains
an elementary transvection T3;(C) with C' ¢ S. Choose @ € S such that

its first column is the same as in C, then C — a = ( 8 Z > , where

z,y € R, (2,y) # (0,0). Now, put v = —dy + 2\/d € S, we have

we-a=( 2 5)(35)=(8 0 a0
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Takei € {1,...,n}\ {h,j}, then

L(2i)(25) (% — dy?®) = Ti;(y(C — a)) = [Tin (), Tnj (C — )]
= [Tin(7), Thj(C)Thj(—)] € H.

Now, we are ready to prove the following main result of the paper.

Theorem 2. Let R = Hiel F; be a direct product of fields, and let
S = R[Vd) C [Tic; Fi be a commutative ring extension of rank 2 of R.
Suppose that 2 € R* and n > 3. Then for every such a subgroup H in
G = GL(2n, R) that contains E(n,S), there exists a unique ideal A of R
such that

E(n,S)E(2n,R,A) < H < Ng(E(n,S)E(2n, R, A)).

Proof. Let A be the largest ideal such that E(2n, A) < H, the existence
of such an ideal was established in Corollary 1. By Proposition 1, we have

E(2n,R,A) = E(2n, A)P™9) < H.

Let H = pa(H), clearly, H contains E(n,S/SA). We have A =[], ; 4,
where 4; < F;, therefore R/A = [[,.; Fj and S/SA = [[,; Fi(\/d;),
where J = {j : A; = 0}. By Lemma 11, we have the following alternative:
either H < Narzn,r/a)(E(n,S/SA)), or H contains a nontrivial elemen-
tary transvection #(y;)(2;) (€) for some ¢ € R\ A. We show that the second
possibility cannot occur. Indeed, presenting t(2;)(25)(§) € HGL(2n, R, A)
in the form
t(24)(25) (§) = ab,a € H,b e GL(2n, R, A).

Take k € {1,...,n}\ {i,7}, we have
tiy2k) () = [t2i)25)(§)s Tjr (I2)] = “[b, Ty (I2)][a, Tk (I2)]-

The first of the commutators on the right-hand side belongs E(2n, R, A),
while the second lies in H. This means that #5521 (£) € H, where £ ¢ A,

which contradicts the maximality of A. Therefore H < Ngi,(2n,r/4)(E(n,
S/SA)), by Theorem 2 of [12], we have the desired inclusion

H < NGL(QmR) (E(?’L, S)E(2n7 R, A))
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§7. COUNTEREXAMPLES

In this section, we establish counterexamples to show that the result in
Theorem 2 does not hold for some rings.

Lemma 12. Let R be a commutative ring, and let S = R[\/d] be a com-
mutative ring extension of rank 2 of R and n > 3. Suppose that d € R*
and a € R\ {0},ad = a. Then the subgroup H = E(n,S[M]) with

M = ( 0 2 ) does not contain any nontrivial elementary transvection

a

in E(2n, R).

Proof. By Proposition 2, it suffices to prove that if B= < 2 8 > eS[M],
then b = 0. Indeed, since M ( (1) g ) = M, B is written in the form

k

. dus

B= g a;M*, where a; = ( zl wyl >, Ti,yi € R,
i—0 (2 13

that is

k i k ;
Yo+ > ;g xia o+ ;4 wia'

Therefore xo + dezl yia® = d(yo + Zle yial) = xo + Zle ziat =0
and b = yo + Zle z;a’. Now, it follows from ad = a and d € R* that
b =1yo — xo = 0 as required. O

Theorem 3. Let R = Z or R = Z, with m € {4,15,50,63}, and n > 3.
Then there exist a commutative ring extension S = R[\/E] of rank 2 of
R and an intermediate subgroup H,E(n,S) < H < GL(2n, R) such that
there is no ideal A of R so that

E(TL, S)E(QTL, R7 A) <H< NGL(2n,R) (E(TL, S)E(QTL, R7 A))
Proof. 1) Case R = Z,, with m € {4,15,50,63}. Put
(—1,2), if m =4;

B ( zo +dY i, yia' dlyo + X1, yia') ) _

) (@,5), it m=15;
(d,a) = (3,25), if m = 50;
(8,9), if m = 63.

Then S = R[V/d] is a commutative ring extension of rank 2 of R and d€ R*,
a € R\ {0},ad = a. By Lemma 12, the subgroup H = E(n, S[M]) with
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M = 2 2 > does not contain any nontrivial elementary transvection
in E(2n, R). Suppose that there exists an ideal A satisfying the property
in the theorem. Then A = 0 and H < Ng(E(n, S)). By Corollary 1, [12]
é lc) ) € Aut(R/S) such that Mo € S, so a = 0 and
we have a contradiction.

2) Case R = Z. Let m,d,a, M and H be as above. Suppose that there

exists an ideal A such that
E(n, Z[Vd))E(2n,Z, A) < H < Navnz) (E(n, Z[Vd) E(2n, Z, A)).
Let I = mZ and let 7 : Z — Z, be the canonical epimorphism. We have
E(n, Zn[Vd)E(2n, Zyn, 7(4)) < pr(H)
< pr(Navganz) (E(n, ZVd])E(2n, Z, A)).

there exists o = (

Note that
p1(Nav(anz) (E(n, Z[Vd) E(2n, Z, A))
C Naw(2nz) (B, Zn [Vd) E(2n, Zy, w(A))
and we have a contradiction. (]

Remark. By Theorem 3 with R = Z;5, we see that the condition S C R in
Theorem 2 can not be omitted. It is also shown that the result in Theorem
2 does not hold for Z and Z,, if m is not square-free.
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