
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 455, 2017 Ç.A. HanakiTAMASCHKE'S RESULTS ON SCHUR RINGS AND AGENERALIZATION OF ASSOCIATION SCHEMESAbstra
t. The 
on
epts of an asso
iation s
heme and a 
oherent
on�guration are generalized by analyzing a relationship betweenS-rings (S
hur rings) and asso
iation s
hemes. In this 
onne
tion,Tamas
hke's results on S-rings and other generalizations of asso
ia-tion s
hemes are dis
ussed.Dedi
ated to the memory of Sergei Evdokimov
§1. Introdu
tionIn Wielandt's book [25℄, an S-ring (S
hur ring) is de�ned as follows.Let G be a �nite group and G = T1 ∪ · · · ∪T` be a partition of G. Supposethat T1 = {1G} and, for every i ∈ {1; : : : ; `}, there exists i∗ ∈ {1; : : : ; `}su
h that Ti∗ = {g−1 | g ∈ Ti}. Put �i = ∑g∈Ti g ∈ ZG. If T = ⊕ì=1 Z�iis a subring of ZG, then we say that T is an S-ring. A typi
al example ofan S-ring is obtained by orbits of a subgroup of the automorphism groupof G on G. Theory of S-rings were studied by many authors, for example,Klin{P�os
hel [18℄, Leung{Man [19, 20℄, and Evdokimov{Ponomarenko [8℄.A re
ent survey on S-rings was given in Muzy
huk{Ponomarenko [21℄.In [22, 23℄, Tamas
hke used a weak de�nition for S-rings. Tamas
hke didnot assume T1 = {1G}. To avoid 
onfusion, we 
all Tamas
hke's S-ringsquasi-S-rings (quasi-S
hur rings). If the underlying group G is abelian,then quasi-S-rings are S-rings by a suitable identi�
ation. However theyare di�erent, in general. Tamas
hke 
onsidered stru
ture theory and rep-resentation theory of quasi-S-rings.It is well known that an S-ring de�nes an asso
iation s
heme in thesense of Zies
hang [28℄, a fusion of a thin asso
iation s
heme. Motivatedby Tamas
hke's S-rings, we generalize asso
iation s
hemes and 
oherent
on�gurations (De�nition 2.1). However, we show that they are essentiallyasso
iation s
hemes or 
oherent 
on�gurations (Theorem 2.9). Thus we
an get no new obje
t, but the author believe that the arguments are stillKey words and phrases: S
hur ring, asso
iation s
heme, 
oherent 
on�guration.197



198 A. HANAKIvaluable be
ause the de�nitions are weaker than the usual ones. As wewrote, an S-ring is 
hara
terized as a fusion of a thin asso
iation s
heme.Similarly, we 
an 
hara
terize a quasi-S-ring as a 
orrespondent of a fusionof a s
hurian asso
iation s
heme (Theorem 3.4).In the se
tion §4, we summarize how Tamas
hke's results were gener-alized to asso
iation s
hemes. We also give answers to two Tamas
hke'squestions in §4.4 and §5.
§2. Generalizations of 
oherent 
onfigurations andasso
iation s
hemesLet X be a �nite set. We denote by MX(R) the full matrix algebra overa 
ommutative ring R both rows and 
olumns of whose matri
es are indexby the set X . For a subset s of X × X , we denote by �s the adja
en
ymatrix of s, namely �s ∈ MX(Z) with the (x; y)-entry is 1 if (x; y) ∈ s and0 otherwise. We set 1X = {(x; x) | x ∈ X}.De�nition 2.1. Let X be a �nite set, and let S be a 
olle
tion of non-empty subsets of X ×X . The pair (X;S) is 
alled a quasi-
oherent 
on�g-uration if the following 
onditions hold:(1) X ×X = ⋃s∈S s is a partition,(2) for every s ∈ S, there exists s∗ ∈ S su
h thats∗ = {(y; x) | (x; y) ∈ s} ∈ S;and(3) ⊕s∈S Z�s is a subring of MX(Z) (possibly without units).The pair (X;S) is 
alled a 
oherent 
on�guration [17℄ if the 
onditions (1),(2), (3) and(4) there is a subset S0 of S su
h that ⋃s∈S0 s = 1Xhold. The pair (X;S) is 
alled a quasi-asso
iation s
heme if the 
onditions(1), (2), (3) and(5) there is an s ∈ S su
h that s ⊃ 1Xhold. The pair (X;S) is 
alled an asso
iation s
heme [3, 28℄ if the 
ondi-tions (1), (2), (3) and(6) 1X ∈ Shold.



SCHUR RINGS AND ASSOCIATION SCHEMES 199An asso
iation s
heme is also 
alled a homogeneous 
oherent 
on�gu-ration [17℄. We remark that some authors use another de�nitions of asso-
iation s
hemes. For example, it is assumed that s∗ = s for all s ∈ S (asymmetri
 asso
iation s
heme) in Bailey [1℄, Cameron [4℄, Cameron-vanLint [5℄, Godsil [10℄, and it is assumed that the ring ⊕s∈S Z�s is 
om-mutative (a 
ommutative asso
iation s
heme) in Delsarte [7℄. It is easy tosee that symmetri
 asso
iation s
hemes are 
ommutative. By de�nition,we have
• an asso
iation s
heme is a 
oherent 
on�guration,
• an asso
iation s
heme is a quasi-asso
iation s
heme,
• a 
oherent 
on�guration is a quasi-
oherent 
on�guration, and
• a quasi-asso
iation s
heme is a quasi-
oherent 
on�guration.We will see that a quasi-
oherent 
on�guration de�nes a 
oherent 
on-�guration and a quasi-asso
iation s
heme de�nes an asso
iation s
hemein a natural way (Theorem 2.9). Thus the generalizations yield no newobje
ts, but the author believe that they are still useful. For example, S-rings by Tamas
hke's de�nition [22, 23℄ (we 
all them quasi-S-rings) arequasi-asso
iation s
hemes but not asso
iation s
hemes.Let (X;S) be a quasi-
oherent 
on�guration. We set S0 = {s ∈ S |s ∩ 1X 6= ∅}. We use letters s; t; u; : : : for elements in S, and a; b; 
; : : :for elements in S0. Note that a∗ = a for a ∈ S0, sin
e (x; x) ∈ a for somex ∈ X . A quasi-
oherent 
on�guration (X;S) is a quasi-asso
iation s
hemeif and only if |S0| = 1. By the 
ondition (3) in De�nition 2.1, there arenon-negative integers pust (s; t; u ∈ S) su
h that �s�t = ∑u∈S pust�u. In otherwords, for (x; y) ∈ u, it holds that ℄{z ∈ X | (x; z) ∈ s; (z; y) ∈ t} = pust.We 
all pust the interse
tion numbers. Clearly paaa 6= 0 for a ∈ S0. For a
ommutative ring R with unity, we 
an de�ne an R-algebra RS = R ⊗Z

(
⊕s∈S Z�s). We 
all RS the adja
en
y algebra of (X;S) over R. We de�nethe 
omplex produ
t by st = {u ∈ S | pust 6= 0} for s; t ∈ S. For T; U ⊂ S,we also de�ne the 
omplex produ
t by TU = ⋃t∈T ⋃u∈U tu. It is easy to seethat the 
omplex produ
t is asso
iative.Lemma 2.2. For s; t; u ∈ S, the following 
onditions are equivalent:(1) pu∗st 6= 0,(2) ps∗tu 6= 0,(3) pt∗us 6= 0, and



200 A. HANAKI(4) there exists x; y; z ∈ X su
h that (x; y) ∈ s, (y; z) ∈ t, and(z; x) ∈ u.Proof. This is 
lear by de�nition. �Lemma 2.3. For s; t ∈ S, s 6= t and a ∈ S0, we have past∗ = 0.Proof. By de�nition, all diagonal entries of �s�t∗ are 0 if s 6= t. �For a ∈ S0, we set Xa = {x ∈ X | (x; x) ∈ a}. Then X = ⋃a∈S0Xa is apartition of X .Lemma 2.4. For a ∈ S0, we have a ⊂ Xa × Xa and �a2 = paaa�a.Moreover, �a�b = 0 for a; b ∈ S0, a 6= b.Proof. Suppose s ∈ S and s 6= a. We have paas∗ = 0 by Lemma 2.3and a∗ = a. By Lemma 2.2, we have psaa = 0. Thus �a2 = paaa�a holds.Suppose that (x; y) ∈ a. By �a2 = paaa�a, (x; x) ∈ a, and similarly we have(y; y) ∈ a. Thus a ⊂ Xa ×Xa.Now it is 
lear that �a�b = 0 for a; b ∈ S0, a 6= b. �Proposition 2.5. For every s ∈ S, there exists a unique pair (a; b) ∈S0 × S0 su
h that �a�s�b 6= 0. Moreover, in this 
ase, s ⊂ Xa × Xb,�a�s�b = paaapbbb�s and asb = as = sb = {s} for 
omplex produ
ts.Proof. Sin
e s 6= ∅, we 
hoose (x; y) ∈ s. There are a; b ∈ S0 su
h that(x; x) ∈ a and (y; y) ∈ b. Thus �a�s�b 6= 0.Suppose t ∈ S and t 6= s. Then past∗ = 0 by Lemma 2.3, and thusptas = 0. This means that we 
an write �a�s = psas�s for psas > 0. If�a′�s 6= 0 for a′ ∈ S0, a′ 6= a, then 0 6= psas�a′�s = �a′�a�s and this isimpossible by Lemma 2.4. Therefore a ∈ S0 is unique, and similarly b ∈ S0is unique.By the above arguments, we 
an write �a�s�b = ��s for some positiveinteger �. On the other hand, we have�a2�s�b2 = (paaa�a)�s(pbbb�b) = �paaapbbb�s;�a2�s�b2 = �a(�a�s�b)�b = ��a�s�b = �2�s:Thus � = paaapbbb. �Proposition 2.6. The relation � = ⋃a∈S0 a is an equivalen
e relationon X.



SCHUR RINGS AND ASSOCIATION SCHEMES 201Proof. We 
laim that a ∈ S0 is an equivalen
e relation on Xa. By de�ni-tion, a is a re
exive relation. By a∗ = a, a is a symmetri
 relation. Sin
e(x; y) ∈ a and (y; z) ∈ a imply (x; z) ∈ a by Lemma 2.4, a is an asso
iativerelation. Therefore a is an equivalen
e relation on Xa.Now, sin
e X = ⋃a∈S0Xa is a partition of X , the assertion holds. �We 
onsider the set of equivalen
e 
lasses X=�. We denote by x� theequivalen
e 
lass 
ontaining x ∈ X .Lemma 2.7. For x ∈ Xa, we have x� = {y ∈ X | (x; y) ∈ a} and
|x�| = paaa.Proof. Sin
e �a�b = 0 for b ∈ S0, b 6= a, the assertions are 
lear. �Lemma 2.8. Suppose x′ ∈ x�, y′ ∈ y�, and (x; y) ∈ s. Then we have(x′; y′) ∈ s.Proof. Suppose that (x′; y′) ∈ t. By Proposition 2.5, there is a unique pair(a; b) ∈ S0 × S0 su
h that asb = as = sb = {s}. Thus x ∈ Xa, (x; x′) ∈ a,y ∈ Xb, and (y; y′) ∈ b. Therefore t ∈ asb = {s} and t = s. �By Lemma 2.8, for s ∈ S, we 
an de�ne s� = {(x�; y�) | (x; y) ∈s} ⊂ X=� × X=�, and we have a partition X=� × X=� = ⋃s∈S s�. Weremark that s� 6= ∅ for every s ∈ S and s� ∩ t� = ∅ for s 6= t. We putS� = {s� | s ∈ S}.Theorem 2.9. For a quasi-
oherent 
on�guration (X;S), the pair(X=�; S�) is a 
oherent 
on�guration. If (X;S) is a quasi-asso
iations
heme, then (X=�; S�) is an asso
iation s
heme.Proof. The 
onditions (1) and (2) in De�nition 2.1 are 
learly satis�ed.We prove (3) in De�nition 2.1. Suppose s; t; u ∈ S and (x�; y�) ∈ u�. Weput I = {z ∈ X | (x; z) ∈ s; (z; y) ∈ t} and I ′ = {z� ∈ X=� | (x�; z�) ∈s�; (z�; y�) ∈ t�}. There are a; b ∈ S0 su
h that sa = {s} and bt = {t}by Proposition 2.5. If a 6= b, then I ′ = ∅ and so |I ′| = 0 does not depend on(x�; y�) ∈ u�. Assume that a = b. In this 
ase, I ⊂ Xa and |z�| = paaafor every z� ∈ I ′ by Lemma 2.7. Now |I ′| = |I |=paaa = pust=paaa does notdepend on (x�; y�) ∈ u�.The last statement is 
learly holds. �Remark 2.10. (1) The argument here is similar to the de�nition offa
tor s
hemes of asso
iation s
hemes [28, §1.5℄.



202 A. HANAKI(2) Let R be a 
ommutative ring with unity. In general, the adja
en
yalgebras of (X;S) and (X=�; S�) overR are non-isomorphi
. How-ever, if all paaa (a ∈ S0) are invertible in R, then RS has the identityelement ∑a∈S0(paaa)−1�a and the adja
en
y algebras of (X;S) and(X=�; S�) over R are isomorphi
 by the map (paaa)−1�s 7→ �s� ,where a ∈ S0 is determined by as = {s}.
§3. S
hur rings and quasi-S
hur ringsFollowing Wielandt's book [25℄, we de�ne S-rings (S
hur rings). How-ever, Tamas
hke used a weaker de�nition, and Wielandt also used it in [24℄.To avoid 
onfusion, we 
all Tamas
hke's S-rings quasi-S-rings (quasi-S
hurrings).De�nition 3.1. Let G be a �nite group. We say that a subring (notne
essarily 
ontains units) T of the group ring ZG is a quasi-S-ring (quasi-S
hur ring) on G if the following 
onditions hold:(1) there is a partition G = T1 ∪ · · · ∪ T`,(2) for every i ∈ {1; : : : ; `}, there exists i∗ ∈ {1; : : : ; `} su
h thatTi∗ = {g−1 | g ∈ Ti}, and(3) we put �i = ∑g∈Ti g, then the set {�1; : : : �`} is a Z-basis of T .A quasi-S-ring is 
alled an S-ring (S
hur ring) if(4) T1 = {1G}.The set Ti is 
alled a T -
lass and �i is 
alled a T -
lass sum. For aquasi-S-ring, we suppose T1 ∋ 1G. The next example is [22, Example 1.2℄.Example 3.2. (1) Let G = {g1; : : : ; gn} be a �nite group. The par-tition G = {g1} ∪ · · · ∪ {gn} de�nes an S-ring on G. In this 
ase,

T = ZG.(2) Let G be a �nite group with 
onjuga
y 
lasses C1; : : : ; C`. Thepartition G = C1 ∪ · · · ∪ C` de�nes an S-ring on G. In this 
ase,
T = Z(ZG), the 
enter of the group ring.(3) Let G be a �nite group and H a subgroup of G. The double 
osetpartition G = Hg1H ∪· · ·∪Hg`H de�nes a quasi-S-ring on G. We
all this quasi-S-ring the double 
oset quasi-S-ring.Let T be a quasi-S-ring on a �nite group G with partition G = T1 ∪

· · · ∪ T`, 1G ∈ T1. We de�ne si = {(g; h) ∈ G × G | gh−1 ∈ Ti} and



SCHUR RINGS AND ASSOCIATION SCHEMES 203put S = {si | i = 1; : : : ; `}. Then it is easy to see that (G;S) is a quasi-asso
iation s
heme. If T is an S-ring then (G;S) is an asso
iation s
heme.Let � be the right regular permutation representation of G. Then theadja
en
y matrix of si is ∑g∈Ti �(g). By Theorem 2.9, every quasi-S-ringde�nes an asso
iation s
heme. We will 
hara
terize what kind of asso
iations
hemes 
an be obtained by quasi-S-rings in Theorem 3.4.Example 3.3. We 
onsider asso
iation s
hemes obtained from (quasi-)S
hur-rings in Example 3.2.(1) An asso
iation s
heme obtained from an S-ring in Example 3.2 (1)is 
alled a thin asso
iation s
heme. The adja
en
y matri
es arepermutation matri
es {�(g) | g ∈ G}, where � is the right regularpermutation representation of G.(2) An asso
iation s
heme obtained from an S-ring in Example 3.2 (2)is 
alled a group asso
iation s
heme.(3) An asso
iation s
heme obtained from a quasi-S-ring in Example3.2 (3) is 
alled a s
hurian asso
iation s
heme. Usually, a s
hurianasso
iation s
heme is de�ned by a transitive permutation group,but it is equivalent to our de�nition. A s
hurian asso
iation s
hemeis de�ned by a �nite group G and its subgroup H .Let T and T ′ be quasi-S-rings on G with partitions G = T1 ∪ · · · ∪ T`and G = T ′1 ∪ · · · ∪ T ′m, respe
tively. We say that T ′ is a �ssion of Tif every T ′i is 
ontained in some Tj . Is this 
ase, we also say that T is afusion of T ′. For (quasi-) 
oherent 
on�gurations and (quasi-) asso
iations
hemes, we also de�ne �ssions and fusions similarly.Theorem 3.4. The asso
iation s
heme obtained from an S-ring is a fusionof thin an asso
iation s
heme. The asso
iation s
heme obtained from aquasi-S-ring is a fusion of a s
hurian asso
iation s
heme.Proof. The �rst statement is 
lear by de�nition. We show the se
ondstatement. Let T be a quasi-S-ring on G with partition G = T1 ∪ · · · ∪T`.Suppose 1G ∈ T1. Put H = T1. Then H is a subgroup of G by Propo-sition 2.6 or [22, §1℄. By Proposition 2.5, every Ti is a union of (H;H)-double 
osets. Thus T is a fusion of the double 
oset quasi-S-ring, andthe 
orresponding asso
iation s
heme is a fusion of a s
hurian asso
iations
heme. �The 
onverses of the statements of Theorem 3.4 also hold. Namely, everyfusion of a s
hurian asso
iation s
heme is realized by a quasi-S-ring.



204 A. HANAKIIf T1 is a normal subgroup of G, espe
ially if G is an abelian group,then essentially the quasi-S-ring T 
an be 
onsidered as an S-ring on G=T1though their ring stru
tures are di�erent, in general (see Remark 2.10 (2)).
§4. Tamas
hke's results and generalizationsIn this se
tion, we will summarize how Tamas
hke's results on qu-asi-S-rings were generalized to asso
iation s
hemes. In this se
tion, Tis a quasi-S-ring on a �nite group G with partition G = T1 ∪ · · · ∪ T`,H = T1 ∋ 1G, and (X;S) is the asso
iation s
heme obtained from T .For a 
ommutative ring R with unity we de�ne an quasi-S-algebra RTof T over R by RT = R ⊗Z T . For the 
omplex number �eld C, CTis isomorphi
 to the adja
en
y algebra CS of (X;S) as a C-algebra byRemark 2.10 (2), and thus it is semisimple [28, Theorem 4.1.3℄. We 
anidentify the sets of all irredu
ible 
hara
ters of CT and CS, and we willdenote it by Irr(T ) or Irr(S).4.1. Ordinary representations. Ordinary representations, representa-tions over the 
omplex number �eld C, of quasi-S-rings were 
onsideredin [23, §1℄. Orthogonality relations [23, Theorem 1.5℄ and a formula on
entral primitive idempotents [23, Theorem 1.7℄ were given and general-ized to 
oherent 
on�gurations in Higman [17℄. In parti
ular, for double
oset quasi-S-rings (Example 3.2 (3)), we 
an understand all irredu
iblerepresentations by [6, Theorem 11.25℄, and this fa
t was generalized tomore general 
ases in [16℄. Sin
e every quasi-S-ring is a fusion of a dou-ble 
oset quasi-S-ring, we are interested in representations of a fusion. For
ommutative asso
iation s
hemes, fusions were 
onsidered in Bannai [2℄(he 
all a fusion asso
iation s
heme a subs
heme). An another result forrepresentations of fusions were given in [15℄.4.2. T -Subgroups and 
losed subsets. A subgroup K of G is 
alleda T -subgroup if it is a union of some T -
lasses [23, §2℄. A T -subgroup
orresponds to a 
losed subset of (X;S) (see [28, §1.3℄).4.3. T -Conjuga
y 
lasses, CS-rings, and group-like asso
iations
hemes. Two T -
lasses Ti and Tj are said to be T -
onjugate if

|Ti|−1�(�i) = |Tj |−1�(�j), where �i = ∑g∈Ti g is the T -
lass sum, for all� ∈ Irr(T ) (this is di�erent from Tamas
hke's de�nition [23, De�ni-tion 2.1℄, but essentially they are same). This was generalized to asso
iations
hemes in [11, §4℄.



SCHUR RINGS AND ASSOCIATION SCHEMES 205Note that the 
ardinality of T -
onjuga
y 
lasses is greater than or equalto | Irr(T )|. We say that T is a CS-ring if the equality holds [23, De�-nition 3.2℄. In this 
ase, the 
enter of T is also a quasi-S-ring with thepartition given by T -
onjuga
y 
lasses. If T is 
ommutative, then 
learly
T is a CS-ring. The de�nition of CS-rings was generalized to asso
iations
hemes in [11, §4℄. We 
all su
h an asso
iation s
heme a group-like asso-
iation s
heme.When the double 
oset S-ring T is a CS-ring, the subgroup H = T1 is
alled a CS-subgroup [23, §5℄. It seems that CS-subgroups are not studiedso well. It is natural to de�ne a CS-
losed subset of an asso
iation s
heme,that is a 
losed subset and the fa
tor s
heme is group-like.4.4. T -Normal subgroups and normal 
losed subsets. We startwith Tamas
hke's ambiguous de�nitions [22, §4℄. Let K be a T -subgroupof G.(1) K is said to be T-normal if TiK = KTi for all i ∈ {1; : : : ; `}.(2) K is said to be T-normal if ∑g∈K g is in the 
enter of T .In [22, §4℄, Tamas
hke wrote \This de�nition of T-normality is not suÆ-
ient for T -normality. At least we do not know yet whether it is suÆ
ient ornot", see also [22, Problem 4.12℄. However, we know that they are equiva-lent. A 
losed subset U of an asso
iation s
heme (X;S) is said to be normalif sU = Us for all s ∈ S, and thus this 
orresponds to \T-normality". In[12, Proposition 3.3℄, it was shown that U is normal if and only if ∑u∈U �uis in the 
enter of the adja
en
y algebra CS. Thus T-normality and T -normality are equivalent for a T -subgroup.It is known that the interse
tion of two T -normal subgroups is not ne
-essarily T -normal [26℄. Thus the interse
tion of two normal 
losed subsetof an asso
iation s
heme is not ne
essarily normal [27℄. If T is a CS-ring,then the interse
tion of two T -normal subgroups is T -normal [23, Theorem4.2℄. Similarly, if (X;S) is a group-like asso
iation s
heme, then the inter-se
tion of two normal 
losed subsets is normal. We also remark that the\kernel" of a 
hara
ter of an asso
iation s
heme is not ne
essarily normal[11, Example 3.3℄, in general. However the \kernel" of a 
hara
ter of anasso
iation s
heme is normal, if the asso
iation s
heme is group-like [11,Theorem 4.3℄.



206 A. HANAKIThe fa
tor ring of a CS-ring T by a T -normal subgroup is also a CS-ring [23, Theorem 4.3℄. This fa
t was generalized to asso
iation s
hemesin [13, Proposition 4.2℄.4.5. Tensor produ
ts of quasi-S-ring. Tensor produ
ts of quasi-S-rings were de�ned in [23, §6℄ and were generalized to 
oherent 
on�gu-rations or asso
iation s
hemes in a natural way.4.6. Categories of S-rings and asso
iation s
hemes. In [22, §1℄,Tamas
hke de�ned some 
ategories. His de�nition of a 
ategory of quasi-S-algebras was generalized to a 
ategory of asso
iation s
hemes in Fren
h [9℄.Their morphisms indu
e algebra homomorphisms. An another de�nitionof a 
ategory of asso
iation s
hemes was 
onsidered in [14℄.4.7. The homomorphism theorem, isomorphism theorems, andthe Jordan{H�older theorem. In [22℄, the homomorphism theorem, iso-morphism theorems, and the Jordan{H�older theorem for quasi-S-rings weregiven. We 
an �nd them for asso
iation s
hemes in Zies
hang [28℄.
§5. An answer to a question by Tamas
hkeWhen a partition of a �nite group, 
losed by taking inverse, de�nesa semigroup by 
omplex produ
ts ab = {gh | g ∈ a; h ∈ b}, we 
allthe semigroup an S-semigroup [22, De�nition 1.9℄. Let T be a quasi-S-ring with a partition G = T1 ∪ · · · ∪ T`. Then the semigroup generated by

{T1; : : : ; T`} is an S-semigroup. Thus a quasi-S-ring de�nes an S-semigroup.A Tamas
hke's question [22, Question 1.19℄ is whether all S-semigroupsare obtained by S-rings or not. We will give an example of an S-semigroupwhi
h does not 
ome from an S-ring. Therefore S-semigroups are not ne
-essarily obtained by S-rings.Example 5.1. Let G be the symmetri
 group of degree 4. PutT1 = {()};T2 = {(1; 2); (1; 3); (1; 4); (2; 3); (1; 2; 3); (1; 3; 2);(2; 3; 4); (2; 4; 3); (1; 2; 3; 4); (1; 4; 3; 2)};T3 = G \ (T1 ∪ T2):Then G = T1 ∪ T2 ∪ T3, T−1i = Ti (i = 1; 2; 3) andT2T2 = T3T3 = G = T1 ∪ T2 ∪ T3; T2T3 = T3T2 = G \ {()} = T2 ∪ T3:



SCHUR RINGS AND ASSOCIATION SCHEMES 207Thus this partition de�nes an S-semigroup {T1; T2; T3; T2∪T3; T1∪T2∪T3}, but easily we 
an see that this partition does not de�ne an S-ring.A
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