
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 455, 2017 Ç.A. HanakiTAMASCHKE'S RESULTS ON SCHUR RINGS AND AGENERALIZATION OF ASSOCIATION SCHEMESAbstrat. The onepts of an assoiation sheme and a oherenton�guration are generalized by analyzing a relationship betweenS-rings (Shur rings) and assoiation shemes. In this onnetion,Tamashke's results on S-rings and other generalizations of assoia-tion shemes are disussed.Dediated to the memory of Sergei Evdokimov
§1. IntrodutionIn Wielandt's book [25℄, an S-ring (Shur ring) is de�ned as follows.Let G be a �nite group and G = T1 ∪ · · · ∪T` be a partition of G. Supposethat T1 = {1G} and, for every i ∈ {1; : : : ; `}, there exists i∗ ∈ {1; : : : ; `}suh that Ti∗ = {g−1 | g ∈ Ti}. Put �i = ∑g∈Ti g ∈ ZG. If T = ⊕ì=1 Z�iis a subring of ZG, then we say that T is an S-ring. A typial example ofan S-ring is obtained by orbits of a subgroup of the automorphism groupof G on G. Theory of S-rings were studied by many authors, for example,Klin{P�oshel [18℄, Leung{Man [19, 20℄, and Evdokimov{Ponomarenko [8℄.A reent survey on S-rings was given in Muzyhuk{Ponomarenko [21℄.In [22, 23℄, Tamashke used a weak de�nition for S-rings. Tamashke didnot assume T1 = {1G}. To avoid onfusion, we all Tamashke's S-ringsquasi-S-rings (quasi-Shur rings). If the underlying group G is abelian,then quasi-S-rings are S-rings by a suitable identi�ation. However theyare di�erent, in general. Tamashke onsidered struture theory and rep-resentation theory of quasi-S-rings.It is well known that an S-ring de�nes an assoiation sheme in thesense of Zieshang [28℄, a fusion of a thin assoiation sheme. Motivatedby Tamashke's S-rings, we generalize assoiation shemes and oherenton�gurations (De�nition 2.1). However, we show that they are essentiallyassoiation shemes or oherent on�gurations (Theorem 2.9). Thus wean get no new objet, but the author believe that the arguments are stillKey words and phrases: Shur ring, assoiation sheme, oherent on�guration.197



198 A. HANAKIvaluable beause the de�nitions are weaker than the usual ones. As wewrote, an S-ring is haraterized as a fusion of a thin assoiation sheme.Similarly, we an haraterize a quasi-S-ring as a orrespondent of a fusionof a shurian assoiation sheme (Theorem 3.4).In the setion §4, we summarize how Tamashke's results were gener-alized to assoiation shemes. We also give answers to two Tamashke'squestions in §4.4 and §5.
§2. Generalizations of oherent onfigurations andassoiation shemesLet X be a �nite set. We denote by MX(R) the full matrix algebra overa ommutative ring R both rows and olumns of whose matries are indexby the set X . For a subset s of X × X , we denote by �s the adjaenymatrix of s, namely �s ∈ MX(Z) with the (x; y)-entry is 1 if (x; y) ∈ s and0 otherwise. We set 1X = {(x; x) | x ∈ X}.De�nition 2.1. Let X be a �nite set, and let S be a olletion of non-empty subsets of X ×X . The pair (X;S) is alled a quasi-oherent on�g-uration if the following onditions hold:(1) X ×X = ⋃s∈S s is a partition,(2) for every s ∈ S, there exists s∗ ∈ S suh thats∗ = {(y; x) | (x; y) ∈ s} ∈ S;and(3) ⊕s∈S Z�s is a subring of MX(Z) (possibly without units).The pair (X;S) is alled a oherent on�guration [17℄ if the onditions (1),(2), (3) and(4) there is a subset S0 of S suh that ⋃s∈S0 s = 1Xhold. The pair (X;S) is alled a quasi-assoiation sheme if the onditions(1), (2), (3) and(5) there is an s ∈ S suh that s ⊃ 1Xhold. The pair (X;S) is alled an assoiation sheme [3, 28℄ if the ondi-tions (1), (2), (3) and(6) 1X ∈ Shold.



SCHUR RINGS AND ASSOCIATION SCHEMES 199An assoiation sheme is also alled a homogeneous oherent on�gu-ration [17℄. We remark that some authors use another de�nitions of asso-iation shemes. For example, it is assumed that s∗ = s for all s ∈ S (asymmetri assoiation sheme) in Bailey [1℄, Cameron [4℄, Cameron-vanLint [5℄, Godsil [10℄, and it is assumed that the ring ⊕s∈S Z�s is om-mutative (a ommutative assoiation sheme) in Delsarte [7℄. It is easy tosee that symmetri assoiation shemes are ommutative. By de�nition,we have
• an assoiation sheme is a oherent on�guration,
• an assoiation sheme is a quasi-assoiation sheme,
• a oherent on�guration is a quasi-oherent on�guration, and
• a quasi-assoiation sheme is a quasi-oherent on�guration.We will see that a quasi-oherent on�guration de�nes a oherent on-�guration and a quasi-assoiation sheme de�nes an assoiation shemein a natural way (Theorem 2.9). Thus the generalizations yield no newobjets, but the author believe that they are still useful. For example, S-rings by Tamashke's de�nition [22, 23℄ (we all them quasi-S-rings) arequasi-assoiation shemes but not assoiation shemes.Let (X;S) be a quasi-oherent on�guration. We set S0 = {s ∈ S |s ∩ 1X 6= ∅}. We use letters s; t; u; : : : for elements in S, and a; b; ; : : :for elements in S0. Note that a∗ = a for a ∈ S0, sine (x; x) ∈ a for somex ∈ X . A quasi-oherent on�guration (X;S) is a quasi-assoiation shemeif and only if |S0| = 1. By the ondition (3) in De�nition 2.1, there arenon-negative integers pust (s; t; u ∈ S) suh that �s�t = ∑u∈S pust�u. In otherwords, for (x; y) ∈ u, it holds that ℄{z ∈ X | (x; z) ∈ s; (z; y) ∈ t} = pust.We all pust the intersetion numbers. Clearly paaa 6= 0 for a ∈ S0. For aommutative ring R with unity, we an de�ne an R-algebra RS = R ⊗Z

(
⊕s∈S Z�s). We all RS the adjaeny algebra of (X;S) over R. We de�nethe omplex produt by st = {u ∈ S | pust 6= 0} for s; t ∈ S. For T; U ⊂ S,we also de�ne the omplex produt by TU = ⋃t∈T ⋃u∈U tu. It is easy to seethat the omplex produt is assoiative.Lemma 2.2. For s; t; u ∈ S, the following onditions are equivalent:(1) pu∗st 6= 0,(2) ps∗tu 6= 0,(3) pt∗us 6= 0, and



200 A. HANAKI(4) there exists x; y; z ∈ X suh that (x; y) ∈ s, (y; z) ∈ t, and(z; x) ∈ u.Proof. This is lear by de�nition. �Lemma 2.3. For s; t ∈ S, s 6= t and a ∈ S0, we have past∗ = 0.Proof. By de�nition, all diagonal entries of �s�t∗ are 0 if s 6= t. �For a ∈ S0, we set Xa = {x ∈ X | (x; x) ∈ a}. Then X = ⋃a∈S0Xa is apartition of X .Lemma 2.4. For a ∈ S0, we have a ⊂ Xa × Xa and �a2 = paaa�a.Moreover, �a�b = 0 for a; b ∈ S0, a 6= b.Proof. Suppose s ∈ S and s 6= a. We have paas∗ = 0 by Lemma 2.3and a∗ = a. By Lemma 2.2, we have psaa = 0. Thus �a2 = paaa�a holds.Suppose that (x; y) ∈ a. By �a2 = paaa�a, (x; x) ∈ a, and similarly we have(y; y) ∈ a. Thus a ⊂ Xa ×Xa.Now it is lear that �a�b = 0 for a; b ∈ S0, a 6= b. �Proposition 2.5. For every s ∈ S, there exists a unique pair (a; b) ∈S0 × S0 suh that �a�s�b 6= 0. Moreover, in this ase, s ⊂ Xa × Xb,�a�s�b = paaapbbb�s and asb = as = sb = {s} for omplex produts.Proof. Sine s 6= ∅, we hoose (x; y) ∈ s. There are a; b ∈ S0 suh that(x; x) ∈ a and (y; y) ∈ b. Thus �a�s�b 6= 0.Suppose t ∈ S and t 6= s. Then past∗ = 0 by Lemma 2.3, and thusptas = 0. This means that we an write �a�s = psas�s for psas > 0. If�a′�s 6= 0 for a′ ∈ S0, a′ 6= a, then 0 6= psas�a′�s = �a′�a�s and this isimpossible by Lemma 2.4. Therefore a ∈ S0 is unique, and similarly b ∈ S0is unique.By the above arguments, we an write �a�s�b = ��s for some positiveinteger �. On the other hand, we have�a2�s�b2 = (paaa�a)�s(pbbb�b) = �paaapbbb�s;�a2�s�b2 = �a(�a�s�b)�b = ��a�s�b = �2�s:Thus � = paaapbbb. �Proposition 2.6. The relation � = ⋃a∈S0 a is an equivalene relationon X.



SCHUR RINGS AND ASSOCIATION SCHEMES 201Proof. We laim that a ∈ S0 is an equivalene relation on Xa. By de�ni-tion, a is a reexive relation. By a∗ = a, a is a symmetri relation. Sine(x; y) ∈ a and (y; z) ∈ a imply (x; z) ∈ a by Lemma 2.4, a is an assoiativerelation. Therefore a is an equivalene relation on Xa.Now, sine X = ⋃a∈S0Xa is a partition of X , the assertion holds. �We onsider the set of equivalene lasses X=�. We denote by x� theequivalene lass ontaining x ∈ X .Lemma 2.7. For x ∈ Xa, we have x� = {y ∈ X | (x; y) ∈ a} and
|x�| = paaa.Proof. Sine �a�b = 0 for b ∈ S0, b 6= a, the assertions are lear. �Lemma 2.8. Suppose x′ ∈ x�, y′ ∈ y�, and (x; y) ∈ s. Then we have(x′; y′) ∈ s.Proof. Suppose that (x′; y′) ∈ t. By Proposition 2.5, there is a unique pair(a; b) ∈ S0 × S0 suh that asb = as = sb = {s}. Thus x ∈ Xa, (x; x′) ∈ a,y ∈ Xb, and (y; y′) ∈ b. Therefore t ∈ asb = {s} and t = s. �By Lemma 2.8, for s ∈ S, we an de�ne s� = {(x�; y�) | (x; y) ∈s} ⊂ X=� × X=�, and we have a partition X=� × X=� = ⋃s∈S s�. Weremark that s� 6= ∅ for every s ∈ S and s� ∩ t� = ∅ for s 6= t. We putS� = {s� | s ∈ S}.Theorem 2.9. For a quasi-oherent on�guration (X;S), the pair(X=�; S�) is a oherent on�guration. If (X;S) is a quasi-assoiationsheme, then (X=�; S�) is an assoiation sheme.Proof. The onditions (1) and (2) in De�nition 2.1 are learly satis�ed.We prove (3) in De�nition 2.1. Suppose s; t; u ∈ S and (x�; y�) ∈ u�. Weput I = {z ∈ X | (x; z) ∈ s; (z; y) ∈ t} and I ′ = {z� ∈ X=� | (x�; z�) ∈s�; (z�; y�) ∈ t�}. There are a; b ∈ S0 suh that sa = {s} and bt = {t}by Proposition 2.5. If a 6= b, then I ′ = ∅ and so |I ′| = 0 does not depend on(x�; y�) ∈ u�. Assume that a = b. In this ase, I ⊂ Xa and |z�| = paaafor every z� ∈ I ′ by Lemma 2.7. Now |I ′| = |I |=paaa = pust=paaa does notdepend on (x�; y�) ∈ u�.The last statement is learly holds. �Remark 2.10. (1) The argument here is similar to the de�nition offator shemes of assoiation shemes [28, §1.5℄.



202 A. HANAKI(2) Let R be a ommutative ring with unity. In general, the adjaenyalgebras of (X;S) and (X=�; S�) overR are non-isomorphi. How-ever, if all paaa (a ∈ S0) are invertible in R, then RS has the identityelement ∑a∈S0(paaa)−1�a and the adjaeny algebras of (X;S) and(X=�; S�) over R are isomorphi by the map (paaa)−1�s 7→ �s� ,where a ∈ S0 is determined by as = {s}.
§3. Shur rings and quasi-Shur ringsFollowing Wielandt's book [25℄, we de�ne S-rings (Shur rings). How-ever, Tamashke used a weaker de�nition, and Wielandt also used it in [24℄.To avoid onfusion, we all Tamashke's S-rings quasi-S-rings (quasi-Shurrings).De�nition 3.1. Let G be a �nite group. We say that a subring (notneessarily ontains units) T of the group ring ZG is a quasi-S-ring (quasi-Shur ring) on G if the following onditions hold:(1) there is a partition G = T1 ∪ · · · ∪ T`,(2) for every i ∈ {1; : : : ; `}, there exists i∗ ∈ {1; : : : ; `} suh thatTi∗ = {g−1 | g ∈ Ti}, and(3) we put �i = ∑g∈Ti g, then the set {�1; : : : �`} is a Z-basis of T .A quasi-S-ring is alled an S-ring (Shur ring) if(4) T1 = {1G}.The set Ti is alled a T -lass and �i is alled a T -lass sum. For aquasi-S-ring, we suppose T1 ∋ 1G. The next example is [22, Example 1.2℄.Example 3.2. (1) Let G = {g1; : : : ; gn} be a �nite group. The par-tition G = {g1} ∪ · · · ∪ {gn} de�nes an S-ring on G. In this ase,

T = ZG.(2) Let G be a �nite group with onjugay lasses C1; : : : ; C`. Thepartition G = C1 ∪ · · · ∪ C` de�nes an S-ring on G. In this ase,
T = Z(ZG), the enter of the group ring.(3) Let G be a �nite group and H a subgroup of G. The double osetpartition G = Hg1H ∪· · ·∪Hg`H de�nes a quasi-S-ring on G. Weall this quasi-S-ring the double oset quasi-S-ring.Let T be a quasi-S-ring on a �nite group G with partition G = T1 ∪

· · · ∪ T`, 1G ∈ T1. We de�ne si = {(g; h) ∈ G × G | gh−1 ∈ Ti} and



SCHUR RINGS AND ASSOCIATION SCHEMES 203put S = {si | i = 1; : : : ; `}. Then it is easy to see that (G;S) is a quasi-assoiation sheme. If T is an S-ring then (G;S) is an assoiation sheme.Let � be the right regular permutation representation of G. Then theadjaeny matrix of si is ∑g∈Ti �(g). By Theorem 2.9, every quasi-S-ringde�nes an assoiation sheme. We will haraterize what kind of assoiationshemes an be obtained by quasi-S-rings in Theorem 3.4.Example 3.3. We onsider assoiation shemes obtained from (quasi-)Shur-rings in Example 3.2.(1) An assoiation sheme obtained from an S-ring in Example 3.2 (1)is alled a thin assoiation sheme. The adjaeny matries arepermutation matries {�(g) | g ∈ G}, where � is the right regularpermutation representation of G.(2) An assoiation sheme obtained from an S-ring in Example 3.2 (2)is alled a group assoiation sheme.(3) An assoiation sheme obtained from a quasi-S-ring in Example3.2 (3) is alled a shurian assoiation sheme. Usually, a shurianassoiation sheme is de�ned by a transitive permutation group,but it is equivalent to our de�nition. A shurian assoiation shemeis de�ned by a �nite group G and its subgroup H .Let T and T ′ be quasi-S-rings on G with partitions G = T1 ∪ · · · ∪ T`and G = T ′1 ∪ · · · ∪ T ′m, respetively. We say that T ′ is a �ssion of Tif every T ′i is ontained in some Tj . Is this ase, we also say that T is afusion of T ′. For (quasi-) oherent on�gurations and (quasi-) assoiationshemes, we also de�ne �ssions and fusions similarly.Theorem 3.4. The assoiation sheme obtained from an S-ring is a fusionof thin an assoiation sheme. The assoiation sheme obtained from aquasi-S-ring is a fusion of a shurian assoiation sheme.Proof. The �rst statement is lear by de�nition. We show the seondstatement. Let T be a quasi-S-ring on G with partition G = T1 ∪ · · · ∪T`.Suppose 1G ∈ T1. Put H = T1. Then H is a subgroup of G by Propo-sition 2.6 or [22, §1℄. By Proposition 2.5, every Ti is a union of (H;H)-double osets. Thus T is a fusion of the double oset quasi-S-ring, andthe orresponding assoiation sheme is a fusion of a shurian assoiationsheme. �The onverses of the statements of Theorem 3.4 also hold. Namely, everyfusion of a shurian assoiation sheme is realized by a quasi-S-ring.



204 A. HANAKIIf T1 is a normal subgroup of G, espeially if G is an abelian group,then essentially the quasi-S-ring T an be onsidered as an S-ring on G=T1though their ring strutures are di�erent, in general (see Remark 2.10 (2)).
§4. Tamashke's results and generalizationsIn this setion, we will summarize how Tamashke's results on qu-asi-S-rings were generalized to assoiation shemes. In this setion, Tis a quasi-S-ring on a �nite group G with partition G = T1 ∪ · · · ∪ T`,H = T1 ∋ 1G, and (X;S) is the assoiation sheme obtained from T .For a ommutative ring R with unity we de�ne an quasi-S-algebra RTof T over R by RT = R ⊗Z T . For the omplex number �eld C, CTis isomorphi to the adjaeny algebra CS of (X;S) as a C-algebra byRemark 2.10 (2), and thus it is semisimple [28, Theorem 4.1.3℄. We anidentify the sets of all irreduible haraters of CT and CS, and we willdenote it by Irr(T ) or Irr(S).4.1. Ordinary representations. Ordinary representations, representa-tions over the omplex number �eld C, of quasi-S-rings were onsideredin [23, §1℄. Orthogonality relations [23, Theorem 1.5℄ and a formula onentral primitive idempotents [23, Theorem 1.7℄ were given and general-ized to oherent on�gurations in Higman [17℄. In partiular, for doubleoset quasi-S-rings (Example 3.2 (3)), we an understand all irreduiblerepresentations by [6, Theorem 11.25℄, and this fat was generalized tomore general ases in [16℄. Sine every quasi-S-ring is a fusion of a dou-ble oset quasi-S-ring, we are interested in representations of a fusion. Forommutative assoiation shemes, fusions were onsidered in Bannai [2℄(he all a fusion assoiation sheme a subsheme). An another result forrepresentations of fusions were given in [15℄.4.2. T -Subgroups and losed subsets. A subgroup K of G is alleda T -subgroup if it is a union of some T -lasses [23, §2℄. A T -subgrouporresponds to a losed subset of (X;S) (see [28, §1.3℄).4.3. T -Conjugay lasses, CS-rings, and group-like assoiationshemes. Two T -lasses Ti and Tj are said to be T -onjugate if

|Ti|−1�(�i) = |Tj |−1�(�j), where �i = ∑g∈Ti g is the T -lass sum, for all� ∈ Irr(T ) (this is di�erent from Tamashke's de�nition [23, De�ni-tion 2.1℄, but essentially they are same). This was generalized to assoiationshemes in [11, §4℄.



SCHUR RINGS AND ASSOCIATION SCHEMES 205Note that the ardinality of T -onjugay lasses is greater than or equalto | Irr(T )|. We say that T is a CS-ring if the equality holds [23, De�-nition 3.2℄. In this ase, the enter of T is also a quasi-S-ring with thepartition given by T -onjugay lasses. If T is ommutative, then learly
T is a CS-ring. The de�nition of CS-rings was generalized to assoiationshemes in [11, §4℄. We all suh an assoiation sheme a group-like asso-iation sheme.When the double oset S-ring T is a CS-ring, the subgroup H = T1 isalled a CS-subgroup [23, §5℄. It seems that CS-subgroups are not studiedso well. It is natural to de�ne a CS-losed subset of an assoiation sheme,that is a losed subset and the fator sheme is group-like.4.4. T -Normal subgroups and normal losed subsets. We startwith Tamashke's ambiguous de�nitions [22, §4℄. Let K be a T -subgroupof G.(1) K is said to be T-normal if TiK = KTi for all i ∈ {1; : : : ; `}.(2) K is said to be T-normal if ∑g∈K g is in the enter of T .In [22, §4℄, Tamashke wrote \This de�nition of T-normality is not suÆ-ient for T -normality. At least we do not know yet whether it is suÆient ornot", see also [22, Problem 4.12℄. However, we know that they are equiva-lent. A losed subset U of an assoiation sheme (X;S) is said to be normalif sU = Us for all s ∈ S, and thus this orresponds to \T-normality". In[12, Proposition 3.3℄, it was shown that U is normal if and only if ∑u∈U �uis in the enter of the adjaeny algebra CS. Thus T-normality and T -normality are equivalent for a T -subgroup.It is known that the intersetion of two T -normal subgroups is not ne-essarily T -normal [26℄. Thus the intersetion of two normal losed subsetof an assoiation sheme is not neessarily normal [27℄. If T is a CS-ring,then the intersetion of two T -normal subgroups is T -normal [23, Theorem4.2℄. Similarly, if (X;S) is a group-like assoiation sheme, then the inter-setion of two normal losed subsets is normal. We also remark that the\kernel" of a harater of an assoiation sheme is not neessarily normal[11, Example 3.3℄, in general. However the \kernel" of a harater of anassoiation sheme is normal, if the assoiation sheme is group-like [11,Theorem 4.3℄.



206 A. HANAKIThe fator ring of a CS-ring T by a T -normal subgroup is also a CS-ring [23, Theorem 4.3℄. This fat was generalized to assoiation shemesin [13, Proposition 4.2℄.4.5. Tensor produts of quasi-S-ring. Tensor produts of quasi-S-rings were de�ned in [23, §6℄ and were generalized to oherent on�gu-rations or assoiation shemes in a natural way.4.6. Categories of S-rings and assoiation shemes. In [22, §1℄,Tamashke de�ned some ategories. His de�nition of a ategory of quasi-S-algebras was generalized to a ategory of assoiation shemes in Frenh [9℄.Their morphisms indue algebra homomorphisms. An another de�nitionof a ategory of assoiation shemes was onsidered in [14℄.4.7. The homomorphism theorem, isomorphism theorems, andthe Jordan{H�older theorem. In [22℄, the homomorphism theorem, iso-morphism theorems, and the Jordan{H�older theorem for quasi-S-rings weregiven. We an �nd them for assoiation shemes in Zieshang [28℄.
§5. An answer to a question by TamashkeWhen a partition of a �nite group, losed by taking inverse, de�nesa semigroup by omplex produts ab = {gh | g ∈ a; h ∈ b}, we allthe semigroup an S-semigroup [22, De�nition 1.9℄. Let T be a quasi-S-ring with a partition G = T1 ∪ · · · ∪ T`. Then the semigroup generated by

{T1; : : : ; T`} is an S-semigroup. Thus a quasi-S-ring de�nes an S-semigroup.A Tamashke's question [22, Question 1.19℄ is whether all S-semigroupsare obtained by S-rings or not. We will give an example of an S-semigroupwhih does not ome from an S-ring. Therefore S-semigroups are not ne-essarily obtained by S-rings.Example 5.1. Let G be the symmetri group of degree 4. PutT1 = {()};T2 = {(1; 2); (1; 3); (1; 4); (2; 3); (1; 2; 3); (1; 3; 2);(2; 3; 4); (2; 4; 3); (1; 2; 3; 4); (1; 4; 3; 2)};T3 = G \ (T1 ∪ T2):Then G = T1 ∪ T2 ∪ T3, T−1i = Ti (i = 1; 2; 3) andT2T2 = T3T3 = G = T1 ∪ T2 ∪ T3; T2T3 = T3T2 = G \ {()} = T2 ∪ T3:



SCHUR RINGS AND ASSOCIATION SCHEMES 207Thus this partition de�nes an S-semigroup {T1; T2; T3; T2∪T3; T1∪T2∪T3}, but easily we an see that this partition does not de�ne an S-ring.AknowledgmentThis work was supported by JSPS KAKENHI Grant No. JP25400011.Referenes1. R. A. Bailey, Assoiation shemes, Cambridge Studies in Advaned Mathematis,vol. 84, Cambridge University Press, Cambridge, 2004.2. E. Bannai, Subshemes of some assoiation shemes. | J. Algebra 144, No. 1(1991), 167{188.3. E. Bannai and T. Ito, Algebrai ombinatoris. I, The Benjamin/Cummings Pub-lishing Co. In., Menlo Park, CA, 1984.4. P. J. Cameron, Permutation groups. | London Mathematial Soiety StudentTexts, vol. 45, Cambridge University Press, Cambridge, 1999.5. P. J. Cameron and J. H. van Lint, Designs, graphs, odes and their links. | LondonMathematial Soiety Student Texts, vol. 22, Cambridge University Press, Cam-bridge, 1991.6. C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I, John Wiley& Sons In., New York, 1981.7. P. Delsarte, An algebrai approah to the assoiation shemes of oding theory. |Philips Res. Rep. Suppl. (1973), No. 10, vi+97.8. S. Evdokimov and I. Ponomarenko, On a family of Shur rings over a �nite yligroup. | Algebra i Analiz 13 (2001), No. 3, 139{154.9. C. Frenh, Funtors from assoiation shemes. | J. Combin. Theory Ser. A 120(2013), No. 6, 1141{1165.10. C. D. Godsil, Algebrai ombinatoris, Chapman and Hall Mathematis Series,Chapman & Hall, New York, 1993.11. A. Hanaki, Charaters of assoiation shemes and normal losed subsets. | GraphsCombin. 19 (2003), No. 3, 363{369.12. A. Hanaki, Representations of assoiation shemes and their fator shemes. |Graphs Combin. 19 (2003), No. 2, 195{201.13. A. Hanaki, Nilpotent shemes and group-like shemes. | J. Combin. Theory Ser.A 115 (2008), No. 2, 226{236.14. A. Hanaki, A ategory of assoiation shemes. | J. Combin. Theory Ser. A 117(2010), No. 8, 1207{1217.15. A. Hanaki, Cli�ord type theorems for assoiation shemes and their algebrai fu-sions. | J. Algebra 363 (2012), 1{7.16. A. Hanaki and M. Hirasaka, Theory of Heke algebras to assoiation shemes. |SUT J. Math. 38 (2002), No. 1, 61{66.17. D. G. Higman, Coherent on�gurations. I. Ordinary representation theory. | Ge-ometriae Dediata 4 (1975), No. 1, 1{32.18. M. Klin and R. P�oshel, The K�onig problem, the isomorphism problem for yligraphs and the method of Shur rings, Algebrai methods in graph theory, Vol.
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