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TAMASCHKE’S RESULTS ON SCHUR RINGS AND A
GENERALIZATION OF ASSOCIATION SCHEMES

ABSTRACT. The concepts of an association scheme and a coherent
configuration are generalized by analyzing a relationship between
S-rings (Schur rings) and association schemes. In this connection,
Tamaschke’s results on S-rings and other generalizations of associa-
tion schemes are discussed.

Dedicated to the memory of Sergei Evdokimov

§1. INTRODUCTION

In Wielandt’s book [25], an S-ring (Schur ring) is defined as follows.
Let G be a finite group and G = T U- - - U T} be a partition of G. Suppose
that Ty = {1¢} and, for every i € {1,...,/}, there exists i* € {1,...,¢}
such that Tj- = {g7' |g € T;}. Put s = Y g € ZG. If 7 = @®'_, Z;

€T
is a subring of ZG, then we say that 7 is ;n S-ring. A typical example of
an S-ring is obtained by orbits of a subgroup of the automorphism group
of G on G. Theory of S-rings were studied by many authors, for example,
Klin—Pdschel [18], Leung-Man [19, 20], and Evdokimov—Ponomarenko [8].
A recent survey on S-rings was given in Muzychuk—Ponomarenko [21].

In [22, 23], Tamaschke used a weak definition for S-rings. Tamaschke did
not assume 77 = {1g}. To avoid confusion, we call Tamaschke’s S-rings
quasi-S-rings (quasi-Schur rings). If the underlying group G is abelian,
then quasi-S-rings are S-rings by a suitable identification. However they
are different, in general. Tamaschke considered structure theory and rep-
resentation theory of quasi-S-rings.

It is well known that an S-ring defines an association scheme in the
sense of Zieschang [28], a fusion of a thin association scheme. Motivated
by Tamaschke’s S-rings, we generalize association schemes and coherent
configurations (Definition 2.1). However, we show that they are essentially
association schemes or coherent configurations (Theorem 2.9). Thus we
can get no new object, but the author believe that the arguments are still
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valuable because the definitions are weaker than the usual ones. As we
wrote, an S-ring is characterized as a fusion of a thin association scheme.
Similarly, we can characterize a quasi-S-ring as a correspondent of a fusion
of a schurian association scheme (Theorem 3.4).

In the section §4, we summarize how Tamaschke’s results were gener-
alized to association schemes. We also give answers to two Tamaschke’s
questions in §4.4 and §5.

§2. GENERALIZATIONS OF COHERENT CONFIGURATIONS AND
ASSOCIATION SCHEMES

Let X be a finite set. We denote by M x (R) the full matrix algebra over
a commutative ring R both rows and columns of whose matrices are index
by the set X. For a subset s of X x X, we denote by o5 the adjacency
matrix of s, namely o, € Mx(Z) with the (z,y)-entry is 1 if (z,y) € s and
0 otherwise. We set 1x = {(z,z) | z € X }.

Definition 2.1. Let X be a finite set, and let S be a collection of non-
empty subsets of X x X. The pair (X, S) is called a quasi-coherent config-
uration if the following conditions hold:

(1) X x X = | s is a partition,
seS
(2) for every s € S, there exists s* € S such that
s* ={(y,2) | (x,y) € 5} €5,
and

(3) @,cgZos is a subring of Mx (Z) (possibly without units).
The pair (X, S) is called a coherent configuration [17] if the conditions (1),
(2), (3) and

(4) there is a subset Sy of S such that |J s =1x
s€Sp

hold. The pair (X, S) is called a quasi-association scheme if the conditions
(1), (2), (3) and

(5) there is an s € S such that s D 1x
hold. The pair (X, S) is called an association scheme [3, 28] if the condi-
tions (1), (2), (3) and

(6) 1x € S
hold.
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An association scheme is also called a homogeneous coherent configu-
ration [17]. We remark that some authors use another definitions of asso-
ciation schemes. For example, it is assumed that s* = s for all s € S (a
symmetric association scheme) in Bailey [1], Cameron [4], Cameron-van
Lint [5], Godsil [10], and it is assumed that the ring @, g Zos is com-
mutative (a commutative association scheme) in Delsarte [7]. It is easy to
see that symmetric association schemes are commutative. By definition,
we have

e an association scheme is a coherent configuration,

e an association scheme is a quasi-association scheme,

e a coherent configuration is a quasi-coherent configuration, and
e a quasi-association scheme is a quasi-coherent configuration.

We will see that a quasi-coherent configuration defines a coherent con-
figuration and a quasi-association scheme defines an association scheme
in a natural way (Theorem 2.9). Thus the generalizations yield no new
objects, but the author believe that they are still useful. For example, S-
rings by Tamaschke’s definition [22, 23] (we call them quasi-S-rings) are
quasi-association schemes but not association schemes.

Let (X,S) be a quasi-coherent configuration. We set Sp = {s € S |
sN1lx # 0}. We use letters s,¢,u,... for elements in S, and a,b,c,...
for elements in Sp. Note that a* = a for a € Sy, since (z,z) € a for some
x € X. A quasi-coherent configuration (X, .S) is a quasi-association scheme
if and only if |Sp| = 1. By the condition (3) in Definition 2.1, there are
non-negative integers p% (s,t,u € S) such that os0; = > p¥o,. In other

ueSs
words, for (z,y) € u, it holds that §{z € X | (z,2) € s, (2,y) € t} = pY%.
We call p¥ the intersection numbers. Clearly p%, # 0 for a € Sp. For a
commutative ring R with unity, we can define an R-algebra RS = R ®z
(@365 Zas). We call RS the adjacency algebra of (X, S) over R. We define
the complex product by st = {u € S | p% # 0} for s,t € S. For T,U C S,

we also define the complex product by TU = |J |J tu. It is easy to see
teT uecU
that the complex product is associative.

Lemma 2.2. For s, t,u € S, the following conditions are equivalent:

(1) pi #0,
(2) piy # 0,
(3) pls # 0, and
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(4) there exists x,y,z € X such that (xz,y) € s, (y,2) € t, and
(z,z) € u.

Proof. This is clear by definition. O

Lemma 2.3. For s,t € S, s #t and a € Sy, we have p%. = 0.

Proof. By definition, all diagonal entries of o504+ are 0 if s # . O
For a € Sy, we set X, = {z € X | (z,z) €a}. Then X = |J X, isa

partition of X. e

Lemma 2.4. For a € Sy, we have a C X, x X, and 0,2 = PeoTa-

Moreover, o,0, =0 for a,b € Sy, a # b.

Proof. Suppose s € S and s # a. We have p%,. = 0 by Lemma 2.3
and a* = a. By Lemma 2.2, we have p$, = 0. Thus 0,? = p%,0, holds.
Suppose that (z,y) € a. By 0,2 = p%,04, (z,7) € a, and similarly we have
(y,y) € a. Thus a C X, x X,.

Now it is clear that o,05 = 0 for a,b € Sy, a # b. O

Proposition 2.5. For every s € S, there exists a unique pair (a,b) €
So X So such that o,050, # 0. Moreover, in this case, s C X, X Xp,
0a0s0p = plaphyos and asb = as = sb = {s} for complex products.

Proof. Since s # 0, we choose (z,y) € s. There are a,b € Sy such that
(z,z) € a and (y,y) € b. Thus o,0503 # 0.

Suppose t € S and t # s. Then p%. = 0 by Lemma 2.3, and thus
pt. = 0. This means that we can write o,05 = pS .05 for p5, > 0. If
ou0s # 0 for o’ € Sp, a’ # a, then 0 # pi, 0,05 = 040,05 and this is
impossible by Lemma 2.4. Therefore a € Sy is unique, and similarly b € Sy
is unique.

By the above arguments, we can write 0,050, = fos for some positive
integer 3. On the other hand, we have

0.2050,” = (P5,00)05(Phy0s) = BPLPhy0s,
0,°050y" = 04(040500)0y = Bogosoy = P05
Thus g = pgapgb. O
Proposition 2.6. The relation A = |J a is an equivalence relation
a€So

on X.
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Proof. We claim that a € Sy is an equivalence relation on X,. By defini-
tion, a is a reflexive relation. By a* = a, a is a symmetric relation. Since
(z,y) € aand (y,2) € aimply (z,2) € a by Lemma 2.4, a is an associative
relation. Therefore a is an equivalence relation on X,.

Now, since X = |J X, is a partition of X, the assertion holds. (I

a€Soy

We consider the set of equivalence classes X/A. We denote by zA the

equivalence class containing z € X.

Lemma 2.7. For © € X,, we have ztA = {y € X | (z,y) € a} and
|2A] = Paq-

Proof. Since o,0, =0 for b € Sy, b # a, the assertions are clear. O

Lemma 2.8. Suppose x' € zA, y' € yA, and (z,y) € s. Then we have
(z",y') € 5.

Proof. Suppose that (z',y") € t. By Proposition 2.5, there is a unique pair
(a,b) € Sy x Sy such that asb = as = sb = {s}. Thus z € X,, (z,2) € a,
y € Xy, and (y,y’) € b. Therefore t € asb = {s} and ¢t = s. O

By Lemma 2.8, for s € S, we can define s2 = {(zA,yA) | (z,y) €

s} C X/A x X/A, and we have a partition X/A x X/A = [J s2. We
seS

remark that s® # () for every s € S and s Nt® = () for s # t. We put

SA = {8 | se 8.

Theorem 2.9. For a quasi-coherent configuration (X,S), the pair
(X/A,S?) is a coherent configuration. If (X,S) is a quasi-association
scheme, then (X/A, S®) is an association scheme.

Proof. The conditions (1) and (2) in Definition 2.1 are clearly satisfied.
We prove (3) in Definition 2.1. Suppose s,t,u € S and (zA, yA) € u®. We
put I ={z€ X |(z,2) €s, (z,y) €t} and I’ = {zA € X/A | (zA,zA) €
52, (zA,yA) € t*}. There are a,b € Sy such that sa = {s} and bt = {t}
by Proposition 2.5. If a # b, then I’ = () and so |I’| = 0 does not depend on
(xA,yA) € u”. Assume that a = b. In this case, I C X, and |zA| = p?,
for every zA € I’ by Lemma 2.7. Now |I'| = |I|/p%, = p%/p%, does not
depend on (zA,yA) € u®.

The last statement is clearly holds. O

Remark 2.10. (1) The argument here is similar to the definition of
factor schemes of association schemes [28, §1.5].



202 A. HANAKI

(2) Let R be a commutative ring with unity. In general, the adjacency
algebras of (X, S) and (X/A, S?) over R are non-isomorphic. How-
ever, if all p?, (a € Sp) are invertible in R, then RS has the identity

element > (p?,) 'o, and the adjacency algebras of (X,S) and
a€So

(X/A,S?) over R are isomorphic by the map (p%,) o, — 04a,
where a € Sy is determined by as = {s}.

§3. SCHUR RINGS AND QUASI-SCHUR RINGS

Following Wielandt’s book [25], we define S-rings (Schur rings). How-
ever, Tamaschke used a weaker definition, and Wielandt also used it in [24].
To avoid confusion, we call Tamaschke’s S-rings quasi-S-rings (quasi-Schur
rings).

Definition 3.1. Let G be a finite group. We say that a subring (not
necessarily contains units)  of the group ring ZG is a quasi-S-ring (quasi-
Schur ring) on G if the following conditions hold:
(1) there is a partition G =Ty U --- U Ty,
(2) for every i € {1,...,(}, there exists i* € {1,...,¢} such that
Ti- ={9' | g € T3}, and

(3) we put 7; = > g, then the set {r,...7} is a Z-basis of 7.
g€eT;

A quasi-S-ring is called an S-ring (Schur ring) if
4) T = {1a}-

The set T; is called a .7 -class and 7; is called a 7 -class sum. For a
quasi-S-ring, we suppose T1 3 1. The next example is [22, Example 1.2].

Example 3.2. (1) Let G = {g1,...,9n} be a finite group. The par-

tition G = {g1} U--- U {gn} defines an S-ring on G. In this case,
I =1G.

(2) Let G be a finite group with conjugacy classes Ci,...,Cy. The
partition G = C1 U --- U C defines an S-ring on G. In this case,
I = Z(ZG), the center of the group ring.

(3) Let G be a finite group and H a subgroup of G. The double coset
partition G = Hg1 HU---U HgyH defines a quasi-S-ring on G. We
call this quasi-S-ring the double coset quasi-S-ring.

Let .7 be a quasi-S-ring on a finite group G with partition G = Ty U
~UTy, 1g € Ty. We define s; = {(g,h) € G x G | gh™! € T;} and



SCHUR RINGS AND ASSOCIATION SCHEMES 203

put S = {s; | i =1,...,¢}. Then it is easy to see that (G, S) is a quasi-
association scheme. If 7 is an S-ring then (G, S) is an association scheme.
Let ® be the right regular permutation representation of G. Then the

adjacency matrix of s; is Y. ®(g). By Theorem 2.9, every quasi-S-ring
g€eT;
defines an association scheme. We will characterize what kind of association

schemes can be obtained by quasi-S-rings in Theorem 3.4.

Example 3.3. We consider association schemes obtained from (quasi-)
Schur-rings in Example 3.2.

(1) An association scheme obtained from an S-ring in Example 3.2 (1)
is called a thin association scheme. The adjacency matrices are
permutation matrices {®(g) | g € G}, where ® is the right regular
permutation representation of G.

(2) An association scheme obtained from an S-ring in Example 3.2 (2)
is called a group association scheme.

(3) An association scheme obtained from a quasi-S-ring in Example
3.2 (3) is called a schurian association scheme. Usually, a schurian
association scheme is defined by a transitive permutation group,
but it is equivalent to our definition. A schurian association scheme
is defined by a finite group G and its subgroup H.

Let .7 and 7' be quasi-S-rings on G with partitions G =Ty U---UT;
and G = T{ U ---UT),, respectively. We say that J’ is a fission of T
if every 7T}/ is contained in some Tj. Is this case, we also say that .7 is a
fusion of . For (quasi-) coherent configurations and (quasi-) association

schemes, we also define fissions and fusions similarly.

Theorem 3.4. The association scheme obtained from an S-ring is a fusion
of thin an association scheme. The association scheme obtained from a
quasi-S-ring is a fusion of a schurian association scheme.

Proof. The first statement is clear by definition. We show the second
statement. Let .7 be a quasi-S-ring on G with partition G =Ty U---UT}.
Suppose 1 € Ty. Put H = T;. Then H is a subgroup of G by Propo-
sition 2.6 or [22, §1]. By Proposition 2.5, every T; is a union of (H, H)-
double cosets. Thus .7 is a fusion of the double coset quasi-S-ring, and
the corresponding association scheme is a fusion of a schurian association
scheme. O

The converses of the statements of Theorem 3.4 also hold. Namely, every
fusion of a schurian association scheme is realized by a quasi-S-ring.
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If T} is a normal subgroup of GG, especially if G is an abelian group,
then essentially the quasi-S-ring .7 can be considered as an S-ring on G/T}
though their ring structures are different, in general (see Remark 2.10 (2)).

§4. TAMASCHKE’S RESULTS AND GENERALIZATIONS

In this section, we will summarize how Tamaschke’s results on qu-
asi-S-rings were generalized to association schemes. In this section, 7
is a quasi-S-ring on a finite group G with partition G = Ty U --- U Ty,
H =T, 51g, and (X, S) is the association scheme obtained from .7.

For a commutative ring R with unity we define an quasi-S-algebra RS
of  over R by R = R ®z 7. For the complex number field C, C5
is isomorphic to the adjacency algebra CS of (X,S) as a C-algebra by
Remark 2.10 (2), and thus it is semisimple [28, Theorem 4.1.3]. We can
identify the sets of all irreducible characters of C.7 and CS, and we will
denote it by Irr(.7) or Irr(S).

4.1. Ordinary representations. Ordinary representations, representa-
tions over the complex number field C, of quasi-S-rings were considered
in [23, §1]. Orthogonality relations [23, Theorem 1.5] and a formula on
central primitive idempotents [23, Theorem 1.7] were given and general-
ized to coherent configurations in Higman [17]. In particular, for double
coset quasi-S-rings (Example 3.2 (3)), we can understand all irreducible
representations by [6, Theorem 11.25], and this fact was generalized to
more general cases in [16]. Since every quasi-S-ring is a fusion of a dou-
ble coset quasi-S-ring, we are interested in representations of a fusion. For
commutative association schemes, fusions were considered in Bannai [2]
(he call a fusion association scheme a subscheme). An another result for
representations of fusions were given in [15].

4.2. Z-Subgroups and closed subsets. A subgroup K of G is called
a J -subgroup if it is a union of some J-classes [23, §2]. A J-subgroup
corresponds to a closed subset of (X, S) (see [28, §1.3]).

4.3. 7-Conjugacy classes, CS-rings, and group-like association

schemes. Two J-classes T; and T are said to be J -conjugate if

|T;| " x(m) = |Tj|"*x(7;), where 7; = Y g is the J-class sum, for all
g€T;

x € Irr(7) (this is different from Tamaschke’s definition [23, Defini-

tion 2.1], but essentially they are same). This was generalized to association

schemes in [11, §4].
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Note that the cardinality of .7 -conjugacy classes is greater than or equal
to |Irr(7)|. We say that .7 is a CS-ring if the equality holds [23, Defi-
nition 3.2]. In this case, the center of 7 is also a quasi-S-ring with the
partition given by .7 -conjugacy classes. If 7 is commutative, then clearly
T is a CS-ring. The definition of CS-rings was generalized to association
schemes in [11, §4]. We call such an association scheme a group-like asso-
ciation scheme.

When the double coset S-ring 7 is a CS-ring, the subgroup H =T} is
called a CS-subgroup [23, §5]. It seems that CS-subgroups are not studied
so well. It is natural to define a. CS-closed subset of an association scheme,
that is a closed subset and the factor scheme is group-like.

4.4. -Normal subgroups and normal closed subsets. We start
with Tamaschke’s ambiguous definitions [22, §4]. Let K be a J-subgroup
of G.

(1) K is said to be T-normal if T;K = KT, for alli € {1,...,¢}.

(2) K is said to be T-normal if Y g is in the center of 7.
geK

In [22, §4], Tamaschke wrote “This definition of T-normality is not suffi-
cient for T-normality. At least we do not know yet whether it is sufficient or
not”, see also [22, Problem 4.12]. However, we know that they are equiva-
lent. A closed subset U of an association scheme (X, S) is said to be normal
if sU = Us for all s € S, and thus this corresponds to “T-normality”. In

[12, Proposition 3.3], it was shown that U is normal if and only if > o,
uelU
is in the center of the adjacency algebra CS. Thus T-normality and T-

normality are equivalent for a .7-subgroup.

It is known that the intersection of two T-normal subgroups is not nec-
essarily T-normal [26]. Thus the intersection of two normal closed subset
of an association scheme is not necessarily normal [27]. If .7 is a CS-ring,
then the intersection of two T-normal subgroups is T-normal [23, Theorem
4.2]. Similarly, if (X, S) is a group-like association scheme, then the inter-
section of two normal closed subsets is normal. We also remark that the
“kernel” of a character of an association scheme is not necessarily normal
[11, Example 3.3], in general. However the “kernel” of a character of an
association scheme is normal, if the association scheme is group-like [11,
Theorem 4.3].
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The factor ring of a CS-ring .7 by a .7-normal subgroup is also a CS-
ring [23, Theorem 4.3]. This fact was generalized to association schemes
in [13, Proposition 4.2].

4.5. Tensor products of quasi-S-ring. Tensor products of quasi-S-
rings were defined in [23, §6] and were generalized to coherent configu-
rations or association schemes in a natural way.

4.6. Categories of S-rings and association schemes. In [22, §1],
Tamaschke defined some categories. His definition of a category of quasi-S-
algebras was generalized to a category of association schemes in French [9].
Their morphisms induce algebra homomorphisms. An another definition
of a category of association schemes was considered in [14].

4.7. The homomorphism theorem, isomorphism theorems, and
the Jordan—Holder theorem. In [22], the homomorphism theorem, iso-
morphism theorems, and the Jordan—Hd&lder theorem for quasi-S-rings were
given. We can find them for association schemes in Zieschang [28].

§5. AN ANSWER TO A QUESTION BY TAMASCHKE

When a partition of a finite group, closed by taking inverse, defines
a semigroup by complex products ab = {gh | g € a, h € b}, we call
the semigroup an S-semigroup [22, Definition 1.9]. Let 7 be a quasi-S-
ring with a partition G = T7 U--- U T}. Then the semigroup generated by
{T1,...,T¢}is an S-semigroup. Thus a quasi-S-ring defines an S-semigroup.

A Tamaschke’s question [22, Question 1.19] is whether all S-semigroups
are obtained by S-rings or not. We will give an example of an S-semigroup
which does not come from an S-ring. Therefore S-semigroups are not nec-
essarily obtained by S-rings.

Example 5.1. Let G be the symmetric group of degree 4. Put

T = {0}

T = {(172)7 (173)7 (174)7 (273)7 (17273)7 (17372)7
(2,3,4), (2,4,3), (1,2,3,4), (1,4,3,2)},
T3 = G\ (T1UTy).

Then G =T, UT, UTs, T, ' =T; (i = 1,2,3) and
LT =TT:=G=T UThUTs, ToT3 =TT, =G\{()}=ToUT;
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Thus this partition defines an S-semigroup {71, T, T3, ToUT5, Ty UT>U
T3}, but easily we can see that this partition does not define an S-ring.

10.

11.

12.

13.

14.

15.

16.

17.

18.
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