
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 455, 2017 Ç.I. Ponomarenko, A. Vasil'evTESTING ISOMORPHISM OF CENTRAL CAYLEYGRAPHS OVER ALMOST SIMPLE GROUPS INPOLYNOMIAL TIMEAbstra
t. A Cayley graph over a group G is said to be 
entralif its 
onne
tion set is a normal subset of G. It is proved that forany two 
entral Cayley graphs over expli
itly given almost simplegroups of order n, the set of all isomorphisms from the �rst graphonto the se
ond 
an be found in time poly(n).In memory of Sergei Evdokimov
§1. Introdu
tionIn the present paper, we are interested in a spe
ial 
ase of the follow-ing restri
tion of the Graph Isomorphism Problem to the 
lass of Cayleygraphs.Cayley Graph Isomorphism Problem. For two expli
itly given �-nite groups G and G′ and two sets X ⊂ G and X ′ ⊂ G′, 
onstru
t the setIso(�;�′), where � = Cay(G;X) and �′ = Cay(G;X ′).Here the input 
onsists of the multipli
ation tables of G and G′ and thesets X and X ′, whereas the output is either empty or given by an elementof the set Iso(�;�′) and a generating set of the group Aut(�) (of size poly-nomial in the order n of the group G). Obviously, the Luks algorithm [12℄solves the Cayley Graph Isomorphism Problem in polynomial time for ev-ery group G, whenever the set X is of 
onstant sizes. If G is 
y
li
, thenthe problem with no restri
tion for X is also solvable in polynomial time(see [6℄ and [13℄). It should be noted that if G = G′ and G is a so-
alled CI-group, then an obvious algorithm solves the Cayley Graph IsomorphismProblem in time polynomial in |Aut(G)| (for details, see [10℄).The aforementioned spe
ial 
ase is formed by the two following 
ondi-tions imposed on the input graphs and groups. First, we assume that �is a 
entral Cayley graph over G, whi
h means that X is a normal subsetKey words and phrases: Cayley graph, almost simple group, polynomial-timealgorithm. 154



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 155of G, i.e., Xg = X for every g ∈ G. Se
ond, the group G is assumed tobe almost simple, i.e., the so
le of G is a nonabelian simple group. Thesame 
onditions are imposed on the graph �′ and group G′. Even in thisrather restri
tive 
ase, the problem is still nontrivial; at least the numberof possible input graphs is exponential in n.Example. Let G = Sym(m) be a symmetri
 group of degree m. Then thenumber N(m) of 
entral 
olored Cayley graphs over G is equal to 2p(m),where p(m) is the number of all partitions of the set {1; : : :m}. Sin
e p(m)is approximately equal to 2√m, the numberN(m) is exponential in n = m!.By te
hni
al reasons, it is more 
onvenient to deal with 
olored Cayleygraphs. Su
h a graph is given by a partition P of the group G into k > 2
lasses X0; : : : ; Xk−1 with X0 = {1}, and 
an be thought as ar
-
olored
omplete graph with vertex set G and the ith 
olor 
lass of ar
s 
oin
idingwith the ar
 set of the Cayley graph Cay(G;Xi), i = 0; : : : ; k − 1. Wesay that P is the Cayley partition of this graph and denote the latter byCay(G;P). In what follows, all Cayley graphs are assumed to be 
olored:the graph Cay(G;X) is treated as Cay(G;P) for k = 3 and X1 = X .Theorem 1.1. For any two 
entral Cayley graphs � and �′ over expli
itlygiven almost simple groups G and G′ of order n, the set Iso(�;�′) 
an befound in time poly(n).Corollary 1.2. The automorphism group of a 
entral Cayley graph overan expli
itly given almost simple group of order n 
an be found in timepoly(n).The proof of Theorem 1.1 is a mix of 
ombinatorial and permutationgroup te
hniques. Se
tion 2 provides a relevant ba
kground for the 
om-binatorial part in
luding 
oherent 
on�gurations and Cayley s
hemes. InSe
tion 3, we use a 
lassi�
ation of regular almost simple subgroups ofprimitive groups [11℄ to prove (Lemma 3.2) that ex
ept for one spe
ial
ase, if K 6 Sym(G) is a 2-
losed primitive group 
ontaining regular al-most simple subgroup, thenK = Sym(G) or K 6 D(2; G); (1)where D(2; G) is the subgroup of Sym(G) generated by the holomorphof G and the permutation � : g 7→ g−1, g ∈ G. We extend this resultto non-primitive groups in Se
tions 4 and 5 by showing that in this 
ase,either formula (1) holds or K is a nontrivial generalized wreath produ
t



156 I. PONOMARENKO, A. VASIL'EV(Theorems 4.1 and 5.1). We apply this fa
t in Se
tion 6 to the automor-phism group K of a 
entral Cayley graph � over the group G to establishthat KS = Sym(S) or KS 6 D(2; S); (2)where S = So
(G) is the so
le of G and KS is the restri
tion to S of thesetwise stabilizer of S in K. Note that if G is a symmetri
 group of degreeat least 5, then the group D(2; G) is isomorphi
 to the group G ≀ Sym(2).Thus, as a byprodu
t of (2), we obtain the following generalization ofthe result [9, Theorem 1.1℄ on the automorphism group of the Cayleygraph Cay(G;X), where G is a symmetri
 group and X is the set of itstranspositions.Theorem 1.3. Let G be a symmetri
 group of degree at least 5, X a propernormal subset of G\So
(G), and � = Cay(G;X). Then Aut(�) = D(2; G).In Se
tions 7 and 8, we develop algorithmi
 tools to �nd the abovestru
ture of the group K with the help of the related Cayley s
heme andthe group G. The main algorithm providing the proof of Theorem 1.1 isgiven in Se
tion 9.Notation.The diagonal of the Cartesian produ
t 
× 
 is denoted by 1
.For s ⊆ 
× 
, set s∗ = {(�; �) : (�; �) ∈ s}.For � ∈ 
 and s ⊆ 
× 
, set �s = {� ∈ 
 : (�; �) ∈ s}.For � ⊆ 
 and s ⊆ 
× 
, set s� = s ∩ (�×�).For a partition E of a set 
 and s ⊆ 
 × 
, set sE to be the relation
onsisting of the pairs (�;�′) ∈ E × E su
h that s meets �×�′.For a set S of binary relations, put S∪ to be the set of all unions ofrelations from S.The symmetri
 and alternating groups on 
 are denoted by Sym(
)and Alt(
), respe
tively.For f ∈ Sym(
) and s ⊆ 
× 
, set sf = {(�f ; �f ) : (�; �) ∈ s}.For a group G and its subgroup L, set Lleft and Lright to be the sub-groups of Sym(G) indu
ed by left and right multipli
ations of L, respe
-tively, and L∗ = LleftLright.For a group G, set D(2; G) to be the subgroup of Sym(G) generated bythe group Hol(G) = NSym(G)(Gright) and the permutation � : g 7→ g−1.For a group K 6 Sym(G) and a set H ⊆ G, the restri
tion to H of thesetwise stabilizer of H in K is denoted by KH .



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 157For an imprimitivity system L of a transitive group K, set KL andKL to be, respe
tively, the interse
tion of all KH with H ∈ L and thepermutation group indu
ed by the a
tion of K on L.For a group G and a permutation group K, set Reg(K;G) to be the setof all regular subgroups of K that are isomorphi
 to G.
§2. Coherent 
onfigurations and Cayley s
hemesThis se
tion 
ontains well-known basi
 fa
ts on 
oherent 
on�gurations.All of them 
an be found in [7℄ and papers 
ited there.2.1. Main de�nitions. Let 
 be a �nite set and S a partition of 
×
.The pair X = (
; S) is 
alled a 
oherent 
on�guration on 
 if the following
onditions hold:(C1) 1
 ∈ S∪,(C2) S∗ = S,(C3) given r; s; t ∈ S, the number 
trs = |�r ∩ �s∗| does not depend onthe 
hoi
e of the pair (�; �) ∈ t.The elements of 
 and S, and the numbers 
trs are 
alled the points andbasis relations, and the interse
tion numbers of X , respe
tively. The num-bers |
| and |S| are 
alled the degree and the rank of X . The 
oherent
on�guration X is said to be homogeneous if 1
 ∈ S.Denote by � = �(X ) the set of � ⊆ 
 su
h that 1� ∈ S. The elementsof � are 
alled the �bers of X . In view of 
ondition (C1), the set 
 is thedisjoint union of all of them. Moreover, for ea
h s ∈ S, there exist uniquelydetermined �bers � and � su
h that s ⊆ � ×�. Note that the 
oherent
on�guration X is homogeneous if and only if |�| = 1.Let e ∈ S∪ be an equivalen
e relation and E the set of its 
lasses. Given� ∈ E denote by S� the set of all nonempty relations s� with s ∈ S. Thenthe pair

X� = (�; S�)is a 
oherent 
on�guration 
alled the restri
tion of X to �. This enables tode�ne the restri
tion of X to a set � ∈ �∪: the 
orresponding equivalen
erelation is equal to the union of �×�, where � runs over the �bers 
on-tained in �. Another 
oherent 
on�guration asso
iated with e is obtainedas follows. Denote by SE the set of all nonempty relations sE, s ∈ S. Then
XE = (E; SE)is a 
oherent 
on�guration 
alled the quotient of X modulo e.



158 I. PONOMARENKO, A. VASIL'EV2.2. Combinatorial and algebrai
 isomorphisms. A bije
tion f :
 → 
′ is 
alled the (
ombinatorial) isomorphism from X onto a 
oherent
on�guration X ′ = (
′; S′) if the set S′ 
ontains the relation sf for ea
hs ∈ S. The set of all isomorphisms f is denoted by Iso(X ;X ′). The groupof all isomorphisms of X to itself 
ontains a normal subgroupAut(X ) = {f ∈ Sym(
) : sf = s; s ∈ S}
alled the automorphism group of X . Conversely, let G 6 Sym(
) be apermutation group, and let S be the set of orbits of the 
omponent-wisea
tion of G on 
×
. Then the pair X = (
; S) is a 
oherent 
on�guration;we say that X is asso
iated with G and denote it by Inv(G).A

ording to Wielandt [17℄, a permutation group G on 
 is said to be2-
losed if it is equal to its 2-
losureG(2) = Aut(Inv(G));or, equivalently, if G is an automorphism group of a family of binary rela-tions on 
 (su
h a family 
an always be 
hosen as the set of basis relationsof a 
oherent 
on�guration on 
). If G is 2-
losed and L is an imprimitivitysystem of G, then the group GL is 2-
losed. However, the group GL is notalways 2-
losed.A bije
tion ' : S → S′; r 7→ r′, is 
alled an algebrai
 isomorphismfrom X onto X ′ if 
trs = 
t′r′s′ ; r; s; t ∈ S: (3)In this 
ase, X and X ′ are said to be algebrai
ally isomorphi
. Ea
h isomor-phism f from X onto X ′ indu
es an algebrai
 isomorphism 'f : r 7→ rfbetween these 
on�gurations. The set of all isomorphisms indu
ing thealgebrai
 isomorphism ' is denoted by Iso(X ;X ′; '). In parti
ular,Iso(X ;X ; idS) = Aut(X ); (4)where idS is the identity mapping on S.An algebrai
 isomorphism ' indu
es a bije
tion from S∪ onto (S′)∪:the union r ∪ s ∪ · · · of basis relations of X is taken to r′ ∪ s′ ∪ · · · . Thisbije
tion is also denoted by '. It preserves the equivalen
e relations e ∈ S∪;moreover, the equivalen
e relations e and '(e) have the same number of
lasses as well as the same multiset of their sizes. In this 
ase, if E and
E′ are the sets of 
lasses of e and '(e), respe
tively, and � ∈ E, then 'indu
es the algebrai
 isomorphisms'� : X� → X ′�′ ; s 7→ '(s)�′ and 'E : XE → X ′

E′ ; sE 7→ '(s)E′



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 159for a suitable �′ ∈ E′.2.3. Dire
t sum and wreath produ
t. Let X = (
; S) and X ′ =(
′; S′) be 
oherent 
on�gurations. Denote by 
 ⊔ 
′ the disjoint unionof 
 and 
′, and by S ⊞ S′ the union of the set S ⊔ S′ and the set of allrelations � ×�′ and �′ ×� with � ∈ �(X ) and �′ ∈ �(X ′). Then thepair
X ⊞ X ′ = (
 ⊔
′; S ⊞ S′)is a 
oherent 
on�guration 
alled the dire
t sum of X and X ′. The auto-morphism group of this 
on�guration equals the dire
t produ
t Aut(X )×Aut(X ′) a
ting on the set 
⊔
′. Furthermore, if ' is an algebrai
 isomor-phism from X⊞X ′ to another 
oherent 
on�guration, then the latter is alsothe dire
t sum Y ⊞ Y ′ and ' indu
es algebrai
 isomorphisms X → Y and

X ′ → Y ′ 
oin
iding with the restri
tions of ' on 
 and 
′, respe
tively.Let X be a homogeneous 
oherent 
on�guration, e ∈ S∪ an equivalen
erelation, and E the set of 
lasses of e. We say that X is the wreath produ
twith respe
t to e if for ea
h s ∈ S su
h that s 6⊆ e,s = ⋃(�;�)∈sE

�×�:In what follows, we always assume that the 
lasses of e 
an be identi�edwith the help of a family of the isomorphisms f�;� : X� → X�, �;� ∈ E,su
h that (s�)f�;� = s�; s ∈ S: (5)In this 
ase, X is isomorphi
 to the usual wreath produ
t X�≀XE for all � ∈
E (see [15, p.45℄). The automorphism group of this 
oherent 
on�gurationis permutation isomorphi
 to the wreath produ
t Aut(X�) ≀ Aut(XE) inimprimitive a
tion.Furthermore, if ' is an algebrai
 isomorphism from the wreath produ
t
X with respe
t to e to another 
oherent 
on�guration, then the latteris also the wreath produ
t X ′ with respe
t to e′ = '(e) and ' indu
esalgebrai
 isomorphisms X� → X ′�′ and XE → X ′

E′ 
oin
iding with therestri
tions of ' on � and E, respe
tively, where E′ is the set of 
lassesof e′ and �′ ∈ E′.2.4. Cayley s
hemes. A 
oherent 
on�guration X = (
; S) is 
alled theCayley s
heme over a group G if
 = G and Gright 6 Aut(X ):



160 I. PONOMARENKO, A. VASIL'EVIn this 
ase, X is homogeneous and ea
h basis relation s is the set ofar
s of the Cayley graph Cay(G;X), where X is the neighborhood of theidentity of G in the relation s. In parti
ular, X 
an be treated as a 
olorgraph Cay(G;P), where the 
lasses of the Cayley partition P are theneighborhoods of the identity of G in the basis relations of X .The 
lass of Cayley s
hemes is 
losed with respe
t to taking restri
tionsand quotients. Namely, if X is a Cayley s
heme over a group G and e ∈ S∪is an equivalen
e relation, then the 
lass H of e 
ontaining the identityof G is a subgroup of G. Moreover, the set E of 
lasses of e 
oin
ides withthe right H-
osets of G. It follows that
XH = Cay(H;EH) and XE = Cay(G=H;EG=H);with

EH = {X ∈ E : X ⊂ H} and EG=H = {�(X) : X ∈ E};where in the latter 
ase, H is a normal subgroup of G and � : G → G=His the 
anoni
al epimorphism.Assume that the Cayley s
heme X is the wreath produ
t with respe
tto an equivalen
e relation e ∈ S∪. Then for any two 
lasses �;� ∈ E,there exists a permutation f ∈ Gright taking � to �; set f�;� to be therestri
tion of f to �. Sin
e all these f are automorphisms of X , the family
{f�;�}�;�∈E satis�es 
onditions (5).The Cayley s
heme X is said to be 
entral if Gleft 6 Aut(X ) whi
h is byde�nition of a Cayley s
heme is equivalent to G∗ 6 Aut(X ). One 
an seethat X is 
entral if and only if the 
olored Cayley graph asso
iated with
X is 
entral.2.5. Partial order and the WL-algorithm. There is a natural par-tial order 6 on the set of all 
oherent 
on�gurations on the same set 
.Namely, given two 
oherent 
on�gurations X = (
; S) and X ′ = (
; S′),we set

X 6 X ′ ⇔ S∪ ⊆ (S′)∪:The minimal and maximal elements with respe
t to this order are, re-spe
tively, the trivial and dis
rete 
oherent 
on�gurations. The �rst one isa unique 
oherent 
on�guration T
 with at most two basis relations: 1
and its 
omplement to 
× 
 (if 
 
onsists of at least two points). Everybasis relation of the dis
rete 
on�guration is a singleton. With respe
t tothis order, the dire
t sum X ⊞ X ′ is the minimal 
oherent 
on�guration
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 ⊔ 
′, the restri
tions of whi
h to 
 and 
′ are equal to X and X ′,respe
tively.One 
an prove that given a set T ⊆ 2
×
, there exists a unique minimal
oherent 
on�guration X ′ su
h that every relation of T is the union of somebasis relations of X ′. This 
oherent 
on�guration is 
alled the 
oherent
losure of T and 
an be 
onstru
ted by the well-known Weisfeiler{Lemanalgorithm (WL-algorithm) [15, Se
tion B℄ in time polynomial in sizes of Tand 
. To stress this fa
t, the 
oherent 
losure of T is denoted by WL(T ).For a 
olor graph � with the set S of 
olor 
lasses, we setWL(�; T ) = WL(S ∪ T )and write WL(�) instead of WL(�;∅). It is important to note that theautomorphism group of the 
oherent 
on�guration WL(�; T ) is equal tothe subgroup of Aut(�) leaving ea
h relation of T �xed (as a set). Thisimplies that if � is a Cayley graph over G, then the 
oherent 
on�gurationWL(�) is a Cayley s
heme over G. Sin
e any 
oherent 
on�guration X 
anbe 
onsidered as a 
olor graph, we extend our notation to write WL(X ; T ).Con
erning the following statement, we refer to [14, Theorem 2.4℄.Theorem 2.1. Let S and S′ be m-sets of binary relations on an n-element set. Then given a bije
tion  : S → S′, one 
an 
he
k in timemnO(1) whether or not there exists an algebrai
 isomorphism ' : WL(S) →WL(S′) su
h that '|S =  . Moreover, if ' does exist, then it 
an be foundwithin the same time.
§3. Almost simple groupsIn this se
tion, we 
olle
t several known fa
ts on �nite almost simplegroups and dedu
e some auxiliary results to be used throughout the paper.Lemma 3.1. Let G be an almost simple group of order n. Then(i) |G=L| 6 log n, where L = So
(G),(ii) |Reg(K;G)| = nO(1) for every K 6 Sym(G) 
ontaining G as anormal regular subgroup.Proof. From the des
ription of the automorphism groups of simple groups(see, e.g., [4, Introdu
tion℄), it follows that |Aut(L)=L| 6 log |L|. There-fore, statement (i) is a 
onsequen
e of the in
lusions L 6 G 6 Aut(G) 6Aut(L). The in
lusions also imply that |Aut(G)| 6 n logn. Sin
e the 
en-tralizer of G in Sym(G) is of order n [16, Exer
ise 4.5'℄, we have

|K| 6 |NSym(G)(G)| 6 |CSym(G)(G)| · |Aut(G)| 6 n2 logn:



162 I. PONOMARENKO, A. VASIL'EVOn the other hand, the group G is 3-generated [5℄. Thus, the number ofregular subgroups of K isomorphi
 to G is at most (K3 ) and statement (ii)follows. �In the following statement, we use the 
lassi�
ation of regular almostsimple subgroups of a primitive group [11, Theorem 1.4℄.Lemma 3.2. Let G be an almost simple group and G∗ 6 K 6 Sym(G).Suppose that K is primitive. Then one of the following holds:(i) K > Alt(G),(ii) G = So
(G) and K 6 D(2; G),(iii) G = Sym(5) and K = Sp8(2) is 2-transitive.Proof. Without loss of generality, we assume that neither K > Alt(G),nor G = So
(G) and K 6 D(2; G). Then by aforementioned 
lassi�
ation,exa
tly one of the following pairs (G; So
(K)) o

urs:(a) (Alt(p2 − 2);Alt(p2 + 1)), where p = 3 (mod 4) is prime,(b) (Sym(p − 2);Alt(p)) or (Sym(p − 2);Alt(p + 1)), where p > 7 isprime,(
) the twelve pairs in the table below.No: G So
(K)1 Alt(5) L2(59)2 Alt(7) Alt(11)3 Alt(7) Alt(12)4 Sym(5) Alt(9)5 Sym(5) Sp4(4)6 Sym(5) Sp6(2)
No: G So
(K)7 Sym(5) 
+8 (2)8 Sym(5) Sp8(2)9 L2(16):4 Sp6(4)10 L2(16):4 
+8 (4)11 L3(4):2 M2312 L3(4):2 M24The assumption G∗ 6 K, in parti
ular, implies that |G|2 6 |K|. Bystraightforward 
he
k this ex
ludes 
ases (a) with p > 3, (b) with p > 7,and 
ases 11 and 12 from the table. Similarly, the remaining 
ases in (a)and (b) as well as 
ases 1{4, and 9 are impossible be
ause |G|2 must divide

|K|.In 
ases 5, 6, 7, and 10 from the table, we 
he
k the maximal subgroupsof K and show that none of them in
ludes the subgroup isomorphi
 toG∗. Indeed, in 
ases 5 and 6 none of the maximal subgroups 
ontainsAlt(5)×Alt(5) [2, Tables 8.14, 8.28, 8.29℄. In 
ase 10, information from [11,Table 2℄ shows that K is an extension of 
+8 (4) by a �eld automorphism.
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ontains the only (up-to 
onjugation) maximal subgroup withse
tion isomorphi
 to L2(16)×L2(16) [2, Table 8.50℄, but the order of thissubgroup is less than |G∗|. In 
ase 7, we make use of [11, Table 2℄ to seethat K = 
+8 (2). Again this group in
ludes up to 
onjugation the onlymaximal subgroup M with se
tion isomorphi
 to Alt(5) × Alt(5) (see [2,Table 8.50℄). However, |M | = |G∗| butM ≃ D(2;Alt(5)) is not isomorphi
to G∗ ≃ Sym(5)× Sym(5).This leaves us with 
ase 8 of the table where So
(K) = Sp8(2) = K andwe arrive at 
ase (iii) of the 
on
lusion of the lemma. �

§4. The stru
ture of automorphism groups: theprin
ipal se
tion4.1. Preliminaries. Let G be a �nite group. The automorphism group ofevery 
entral Cayley graph over G 
ontains a subgroup G∗ (see Notation).In this se
tion, we establish some basi
 fa
ts on the permutation groupsK satisfying the following 
ondition:G∗ 6 K 6 Sym(G); (6)where G is an almost simple group. We use 
on
ept of the generalizedwreath produ
t of permutation groups introdu
ed and studied in [8℄.Namely, a transitive group K is the generalized wreath produ
t if it hastwo imprimitivity systems L and U su
h that every blo
k of L is 
ontainedin a blo
k of U and KL = ∏X∈U

(KL)X :The generalized wreath produ
t is said to be trivial if either L 
onsistsof singletons or U = {
}. When L = U, the group K is permutationisomorphi
 to the wreath produ
t KX ≀KL in imprimitive a
tion, whereX ∈ U.Theorem 4.1. Let G be an almost simple group, and let K be a 2-
losedgroup satisfying 
ondition (6). Then one of the following statements holds:(i) K = Sym(G) or G∗ E K,(ii) K is a nontrivial generalized wreath produ
t.The proof of Theorem 4.1 is given in the end of Se
tion 6.



164 I. PONOMARENKO, A. VASIL'EV4.2. The minimal blo
k. Let K satisfy 
ondition (6) and X be theK-blo
k 
ontaining the identity of G. Sin
e K is a permutation group onG that 
ontainsGright, the blo
k X is a subgroup of G [16, Theorem 24.12℄.Taking into a

ount that Gleft also lies inK, we 
on
lude that X is normal.Denote by L the interse
tion of all non-singleton K-blo
ks 
ontaining theidentity of the group G. Then L is a K-blo
k and we 
all it the minimalblo
k of K.Lemma 4.2. Let K satisfy 
ondition (6) and L the minimal blo
k of K.Then L is normal subgroup of G in
luding So
(G). In parti
ular, L is analmost simple group su
h that So
(L) = So
(G).Proof. A

ording to the above remark, everyK-blo
k 
ontaining the iden-tity of G is a normal subgroup of G. If the blo
k is not a singleton, thenthis normal subgroup is nontrivial and hen
e 
ontains So
(G), be
ausethe group G is almost simple. Thus, the minimal blo
k L being the in-terse
tion of nontrivial normal subgroups of G is a normal subgroup and
ontains So
(G). �Denote by L the imprimitivity system 
ontaining L. Obviously,Orb(L∗; G) = L:Re
all that a

ording to the de�nition, KL is a normal subgroup of Kleaving ea
h blo
k of L �xed (as a set), and given X ∈ L, the group(L∗)X 6 Sym(X) is indu
ed by right multipli
ations of L.Lemma 4.3. For any X ∈ L, the group (KL)X is primitive and 
ontains(L∗)X .Proof. The normality of L in G implies that the orbits of the a
tionof L∗ on G 
oin
ide with the L-
osets. It follows that the permutationgroup indu
ed by this a
tion is 
ontained in KL. This proves the se
ondstatement. To prove the �rst statement, in view of the transitivity of K,we may assume that X = L.Assume on the 
ontrary that the group K ′ = (KL)L is not primitive.Then there exists a minimal non-singleton K ′-blo
k L′ < L. Taking intoa

ount that K ′ E KL, we 
on
lude that L′′ = (L′)k is a also K ′-blo
kfor every k ∈ K [16, Proposition 6.2℄. The imprimitivity system L′ of thegroup K ′ that 
ontains L′ 
oin
ides with the imprimitivity system 
on-taining L′′, for otherwise by the minimality of L′ and Lemma 4.2 applied
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an 
hoose the blo
k L′′ so that1 = L′ ∩ L′′ ⊇ So
(L) = So
(G) ) 1;a 
ontradi
tion. Thus, L′ is an imprimitivity system of the group KL.Consequently, L′ is a non-singleton K-blo
k stri
tly 
ontained in L, whi
his impossible by the de�nition of L. �4.3. The wreath de
omposition of KL. For every two sets X;X ′ ∈ L,we write X ∼ X ′ if the restri
tion epimorphisms(KL)X∪X′ → (KL)X and (KL)X∪X′ → (KL)X′ (7)are isomorphisms. In parti
ular, the groups (KL)X and (KL)X′ are iso-morphi
. It is easily seen that ∼ is an equivalen
e relation on L. Thisrelation is K-invariant, be
ause KL is a normal subgroup of K. Denote byU the union of L-
osets belonging to the 
lass of ∼ that 
ontains L. ThenU is obviously a K-blo
k and hen
e is a normal subgroup of G. Thus,L E U E G:The imprimitivity system of the group K that 
ontains the blo
k U isdenoted by U. We say that U=L is the prin
ipal K-se
tion of G, and U and
L are the asso
iated partitions.Theorem 4.4. Let G be an almost simple group, K a 2-
losed groupsatisfying 
ondition (6), and U, L are the partitions asso
iated with theprin
ipal K-se
tion. Then the 
oherent 
on�guration Inv(KL) is the dire
tsum of the 
oherent 
on�gurations Inv(KL)Y , where Y ∈ U. In parti
ular,KL = ∏Y ∈U

(KL)Y ; (8)i.e., K is generalized wreath produ
t.Proof. The subgroup KL of 2-
losed group K is 2-
losed too (see Sub-se
tion 2.2). Therefore, equality (8) follows from the �rst statement of thetheorem, be
ause the automorphism group of the dire
t sum equals thedire
t produ
t of the summands (see Subse
tion 2.3). To prove the �rststatement, it suÆ
es to verify that given X;X ′ ∈ Orb(KL; G),X 6∼ X ′ ⇒ X ×X ′ ∈ Orb(KL; X ×X ′): (9)To this end, we note that the group (KL)X∪X′ is the subdire
t produ
tof the transitive 
onstituents M = (KL)X and M ′ = (KL)X′ . Therefore,
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tively, and a group isomorphism ' :M=H →M ′=H ′ su
h that(KL)X∪X′ = {(k; k′) ∈M ×M ′ : '(k) = k′}: (10)Now if X 6∼ X ′, then at least one of the epimorphisms (7) is not anisomorphism. Therefore, one of the groups H and H ′, say H , is nontriv-ial. It follows that H being a normal subgroup of the primitive group M(Lemma 4.3) a
ts transitively on X . By (10), this implies that (KL)X∪X′
ontains the subgroup H × 1. Thus,(x; x′)H×1 = X × {x′}for all x′ ∈ X ′ and hen
e the group (KL)X∪X′ is transitive on the setX ×X ′. �

§5. The normalizer of So
(G)∗ in Sym(G)The goal of this se
tion is to prove the following theorem that shows(as we will see) that the 
ase U = G is very similar to the 
ase where thegroup K is primitive.Theorem 5.1. Let G be an almost simple group, S = So
(G), and N =NSym(G)(S∗). Then N = D(2; G): (11)Clearly, N is a proper subgroup of Sym(G) and 
ondition (6) is satis�edfor K = N . In parti
ular, the minimal blo
k of N 
oin
ides with S.Lemma 5.2. In the above notation, CSym(G)(S∗) = 1.Proof. Set C = CSym(G)(S∗). Then obviously, C = CN (S∗). Sin
e N istransitive and C is normal in N , the orbits of C form an imprimitivitysystem of N . Denote by X the blo
k of this system that 
ontains theidentity of G. We may assume that the blo
k X is not a singleton, forotherwise C = 1 and we are done. Then S ⊆ X , be
ause S is the minimalN -blo
k. Sin
e C is transitive on X and S is a blo
k of CX , there exists
 ∈ C su
h that S
 = S and 
S 6= 1. However, the latter is impossible,be
ause 
S 
entralizes the subgroups Sleft and Sright. �Proof of Theorem 5.1. By Lemma 5.2, there exists a monomorphismfrom N = NSym(G)(S∗) to Aut(S∗). Sin
e the latter is isomorphi
 to
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t W = Aut(S) ≀ Sym(2), this monomorphism indu
esa monomorphism ' : N →W:Clearly, ' 
an be 
hosen so that the subgroups Sleft and Sright of thegroup N go to the subgroup Inn(S)× 1 of the group A = Aut(S)× 1 andto the subgroup 1× Inn(S) of the group B = 1×Aut(S), respe
tively. SetW1 = im(') and W0 = im(') ∩ (A ×B):Then sin
e the index of A× B in W equals 2 and W1 is not 
ontained inA×B, we 
on
lude that
|W1 :W0| = 2: (12)Note that the 
entralizer of the group '(Sright) 6 B in the group W0is 
ontained in A, be
ause the group B is almost simple with the so
le'(Sright). Sin
e the group Gleft 6 N 
entralizes Sright, this proves the �rstof the two following in
lusions (the se
ond one 
an be proved in a similarway): '(Gleft) 6 A and '(Gright) 6 B:The �rst in
lusion implies that '(Gleft) 6 W0 ∩ A. The reverse in
lusionfollows from the fa
t that the 
entralizer of Gleft in Sym(G) is equal toGright [16, Proposition 4.3℄. Thus, we obtain the equalities:'(Gleft) =W0 ∩ A and '(Gright) =W0 ∩B: (13)This immediately implies that '(Gleft) and '(Gright) are normal in W0.This group has trivial 
enter and hen
e 
an be identi�ed with a sub-group of the dire
t produ
t of the groups A′ = Aut('(Gleft)) and B′ =Aut('(Gright)) (isomorphi
 to Aut(G)). It follows thatW 0 =W0='(G∗) 6 A′ ×B′;where A′ = A′='(Gleft) and B′ = B′='(Gright). Moreover in view of for-mulas (13), the groupW 0 interse
ts ea
h of the groups A′ and B′ trivially.Therefore,

|W 0| = |Aut(G)=G|: (14)Now, the in
lusion '(Aut(G)) 6 W0 and formula (14) show that W0 ='(Hol(G)). Formula (12) yields that |N : Hol(G)| = 2. Sin
e the permuta-tion � : g 7→ g−1 lies in N , formula (11) holds. �
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§6. Symmetri
 and normal types of the automorphismgroupLet G be an almost simple group, K be a 2-
losed group satisfying
ondition (6), and U=L the prin
ipal K-se
tion of G. Then the group Lis almost simple (Lemma 4.2) and KL is primitive (Lemma 4.3). We saythat K is of symmetri
 type if either KL > Alt(L), or G = Sym(5) andK = Sp8(2) is 2-transitive; if L = So
(L) and KL 6 D(2; L), the group Kis said to be of normal type. The following statement is a straightforward
onsequen
e of Lemma 3.2 and the above de�nitions.Proposition 6.1. Let G be an almost simple group, and let K 6 Sym(G)be a 2-
losed group 
ontaining G∗. Then K is of symmetri
 or normaltype.Let us study a group of symmetri
 and normal types in detail. As thefollowing statement shows, any group of symmetri
 type is, in fa
t, thewreath produ
t in imprimitive a
tion. In what follows, U and L are thepartitions asso
iated with the prin
ipal K-se
tion of G.Theorem 6.2. Let K be a group of symmetri
 type. Then

L = U and (KL)L = Sym(L):In parti
ular, K is permutation isomorphi
 to the wreath produ
t Sym(L) ≀KL in imprimitive a
tion.Proof. Let X;X ′ ∈ L and X ∼ X ′. We 
laim that there exists a bije
tionf : X → X ′, for whi
h sf ∈ Orb(KL; X ×X ′); (15)where sf = {(�; �f) : � ∈ X} is the graph of f . Indeed, 
onsider the groupM = (KL)X∪X′ . Sin
e X ∼ X ′, the groupM a
ts faithfully on X and X ′.As the group K is of symmetri
 type, ea
h of these a
tions is 2-transitive.However, M has a unique faithful 2-transitive representation of degreed = |X |: this is obvious ifM > Alt(d) and follows from the 
lassi�
ation of2-transitive groups if M = Sp8(2) (see, e.g., [3, Table 7.4℄). Consequently,among 2d point stabilizers M� , � ∈ X ∪X ′, there are exa
tly d distin
t,and also M� 6=M
 whenever � and 
 are distin
t points in X . Therefore,for every � ∈ X there is the only �′ ∈ X ′ su
h thatM� =M�′ =M�;�′ :Thus, the required bije
tion f takes � to �′.
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ontrary that U 
ontains a blo
kX ∈ L other than L. Denote by f : L → X the bije
tion de�ned in theabove 
laim for X = L and X ′ = X . Then by the assumption, the elementf(1), where 1 is the identity of the group G, does not belong to L. Thebinary relation sf is invariant with respe
t to the group KL > L∗ andhen
e for all x ∈ L,(x; f(1)x) = (1; f(1))xr = (x; f(x)) = (1; f(1))xl = (x; xf(1));where xr and xl are the permutations of L∗ indu
ed by the right andleft multipli
ation by x. This implies that the element f(1) ∈ X ⊂ U
entralizes L. However, this is impossible, be
ause f(1) 6= 1 and the groupU is almost simple.Let us prove the se
ond equality. The 2-
losedness of K implies that KLis 2-
losed. Furthermore, in view of the 2-transitivity of the group (KL)Xits the 2-
losure equals Sym(X). By Theorem 4.4 and equality L = U, thisimplies thatKL = (KL)(2) = ( ∏X∈L

(KL)X)(2) = ∏X∈L

((KL)X)(2) = ∏X∈L

Sym(X):Thus, (KL)X = Sym(X) for all X ∈ L and we are done. �Theorem 6.2 shows that in the 
ase of symmetri
 type, the group KU =Sym(U) is the largest possible. In the normal type 
ase, the group KU isquite small. More exa
tly, the following statement holds.Theorem 6.3. Let K be a group of normal type. Then KU 6 D(2; U).Proof. By the hypothesis of the theorem, L = So
(L) and KL 6 D(2; L).By Lemma 4.2, the �rst equality implies that L = So
(G) and hen
eL = So
(U): (16)The se
ond in
lusion implies that (L∗)X is a 
hara
teristi
 subgroup ofthe group (KL)X for all X ∈ L. By the de�nition of U , this implies that(L∗)U is a 
hara
teristi
 subgroup of the group (KL)U . However, the lattergroup is normal in KU . Thus,(L∗)U E KU :It follows that KU is 
ontained in the normalizer of (L∗)U in Sym(U).However, this normalizer is 
ontained in D(2; U) by Theorem 5.1 appliedfor G = U with taking into a

ount equality (16). �
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ipal K-se
tion of thegroup G. By Proposition 6.1, the group K is of symmetri
 or normal type.Suppose �rst that U = G. Then statement (i) of Theorem 4.1 holds. In-deed, ifK is of symmetri
 type, then K = Sym(G) (Theorem 6.2), whereasif K is of normal type, then K 6 D(2; G) (Theorem 6.3) and the requiredstatement follows from the fa
t that G∗ is normal in D(2; G). Finally, ifU < G, then statement (ii) of Theorem 4.1 holds by Theorem 4.4. �Proof of Theorem 1.3. First, assume that the group K = Aut(�) is anontrivial generalized wreath produ
t. Note that S = So
(G) is a uniqueproper normal subgroup in G and |G=S| = 2. Therefore the generalizedwreath produ
t must be a usual one and the group K is permutationisomorphi
 to the wreath produ
t M ≀ C2 in imprimitive a
tion for somegroupM 6 Sym(S). It follows that G\S is an orbit of the point stabilizerK�, where � is the identity of G. Sin
e X ⊂ G\S is a union of some orbitsof K�, we 
on
lude that X = G \ S, a 
ontradi
tion.The group K is 2-
losed as the automorphism group of a graph. Thenormality of X implies that K satis�es 
ondition (6) with G = Sym(m)for m > 5. Finally, K is not a nontrivial generalized wreath produ
t byabove, and K 6= Sym(G), be
ause the graph � is neither 
omplete norempty. Thus, by Theorem 4.1, the group G∗ is normal in K andG∗ 6 K 6 D(2; G);hen
e K = G∗ or K = D(2; G), be
ause |D(2; G) : G∗| = 2. However,sin
e X is a normal subset of a symmetri
 group, we have X = X−1,so the graph � has the automorphism � : g 7→ g−1, g ∈ G. Thus, K =
〈G∗; �〉 = D(2; G), as required. �

§7. Finding the prin
ipal se
tion in a Cayley s
heme7.1. The main result. Let X be a 
entral Cayley s
heme over an almostsimple group G. Then the group K = Aut(X ) is 2-
losed and satis�es 
on-dition (6). Therefore,K is of symmetri
 or normal type by Proposition 6.1.In this se
tion, we develop an algorithmi
 te
hnique to determine (with noK in hand) whi
h of these 
ases o

urs for the s
heme X . The main resulthere is Theorem 7.1 below whi
h immediately follows from Corollaries 7.3and 7.5 proved in Subse
tions 7.2 and 7.3, respe
tively.
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entral Cayley s
heme X over an almost simplegroup G of order n, one 
an determine the type of K = Aut(X ) and �ndthe prin
ipal K-se
tion of G in time poly(n).7.2. The 
ase of symmetri
 type. For a group H 6 G, denote by Hand WL(X ;H) the partition of G into the right H-
osets and the Cayleys
heme WL(X ; T ) with T = {1X : X ∈ H}, respe
tively. Re
all that TXis the trivial 
oherent 
on�guration on X . Denote by H0 the set of groupsH su
h that So
(G) 6 H 6 G andWL(X ;H) = ⊞X∈H
TX : (17)Lemma 7.2. In the above notation, the following statements hold:(i) if the group K is of symmetri
 type, then the set H0 is nonemptyand the minimal blo
k L of K is the largest (by in
lusion) elementof H0,(ii) K is of symmetri
 type if and only if H0 
ontains S = So
(G).Proof. To prove statement (i), assume that the group K is of symmetri
type. Set U and L to be the partitions asso
iated with the prin
ipal K-se
tion of G. Then by Theorem 6.2, we have L = U and Inv(KX) = TXfor all X ∈ L. By Theorem 4.4, this implies thatInv(KL) = ⊞X∈L
TX : (18)The minimality of the dire
t sum implies that WL(X ;L) = Inv(KL), whi
hproves formula (17) for H = L and H = L, in parti
ular, H0 is nonempty.If L is not the largest element of H0, then there exists H ∈ H0 su
h thatH \ L 6= ∅. It follows thatK > Sym(H)× idG\H ;where idG\H is the identity subgroup of Sym(G \ H). Hen
e there is apermutation k ∈ K that moves the identity of G to H \ L and leaves allnon-identity elements of L �xed. But this is impossible, be
ause L is aK-blo
k.To prove the ne
essity for statement (ii), let K be of symmetri
 type.Then formula (18) holds. Therefore, if S is the partition of G into the
osets of S, then S re�nes L and hen
eWL(X ;S) = WL(WL(X ;L);S) = ⊞X∈L
WL(TX ;SX) = ⊞X∈S

TX ;
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ed by S. Consequently, S ∈ H0.Conversely, assume on the 
ontrary that K is of normal type. Then KU 6D(2; U) by Theorem 6.3. Therefore KS 6 Hol(S). On the other hand,sin
e S ∈ H0, we have Sym(S) = KS 6 Hol(S), a 
ontradi
tion. �From statement (i) of Lemma 3.1, it follows that the number of groupsH 6 G 
ontaining So
(G) is at most logn, where n is the order of G; inparti
ular, |H0| 6 logn. Moreover, for ea
h H , the 
oherent 
on�gurationWL(X ;H) 
an be eÆ
iently found by the WL-algorithm and 
ondition (17)
an be veri�ed by 
he
king at most |H|2 6 n2 basis relations. Therefore,the set H0 
an be found in time poly(n). By statement (ii) of Lemma 7.2,this is enough to test eÆ
iently whether or notK is of symmetri
 type, andif it so, then to �nd the minimal blo
k L = U of the groupK (statement (i)of the same lemma).Corollary 7.3. Given a 
entral Cayley s
heme X over an almost simplegroup G of order n, one 
an test in time poly(n) whether the group Aut(X )is of symmetri
 type, and (if so) �nd the prin
ipal se
tion of Aut(X ) withinthe same time.7.3. The 
ase of normal type. In view of Corollary 7.3 and Proposi-tion 6.1, one 
an eÆ
iently test whether the automorphism group K of a
entral Cayley s
heme X is of normal type. Denote by H1 the set of allgroups H su
h that So
(G) 6 H E G andH∗ × idG\H 6 K; (19)where the left-hand side denotes the subgroup of Sym(G) that leaves ea
hpoint of G \H �xed and 
oin
ides with H∗ on H .Lemma 7.4. Suppose that the group K is of normal type and U=L is theprin
ipal K-se
tion of G. Then L = So
(G), the set H1 is nonempty, andU is the smallest element of H1.Proof. Lemma 3.2 yields that L = So
(G). From Theorem 4.4, it is easilyfollows that U ∈ H1. Assume on the 
ontrary that the group U is not thesmallest in H1. Then there is a group V ∈ H1 su
h that L 6 U ∩ V < U .Take a non-identity element w ∈ U∩V and denote by kU (respe
tively, kV )the permutation on G a
ting on U (respe
tively, V ) by right multipli
ationby w and a
ting trivially outside U (respe
tively, V ). Then kU ; kV ∈ K,the permutation k = kUk−1V
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e to D(2; U) be
ause K is of normal type. However,as is easily seen, the identity element is the only element of D(2; U) thatleaves all points of L 6 U ∩ V �xed, a 
ontradi
tion. �Again from statement (i) of Lemma 3.1 it follows that the number ofgroups H su
h that So
(G) 6 H E G is at most logn, and so is |H1|. Forevery H and ea
h k ∈ H∗ × idG\H one 
an eÆ
iently test whether k is anautomorphism of X . Thus, Lemma 7.4 immediately implies the followingstatement.Corollary 7.5. Given a 
entral Cayley s
heme X over an almost simplegroup G of order n, one 
an test in time poly(n) whether the group Aut(X )is of normal type, and (if so) �nd the prin
ipal se
tion of Aut(X ) withinthe same time.
§8. A majorant for the 
oset of isomorphismsThroughout this se
tion, we assume that X is a 
entral Cayley s
hemeover an almost simple group G and K = Aut(X ). The prin
ipal K-se
tionof G and the asso
iated partitions are denoted by U=L and U and L,respe
tively. The equivalen
e relations 
orresponding to the partitions Uand L, are denoted by eU and eL. Let ' be an algebrai
 isomorphism from

X onto a Cayley s
heme X ′ over an almost simple group G′. Assume that'(eU) = eU′ and '(eL) = eL′ ; (20)where in what follows, the group K ′, the prin
ipal se
tion U ′=L′, the par-titions U′ and L′, and the equivalen
e relations eU′ and eL′ are de�ned forthe s
heme X ′ in a similar way.Lemma 8.1. In the above notation, |U| = |U′| and |L| = |L′|. Moreover,the groups K and K ′ either both of symmetri
 type, or both of normal type.Proof. The �rst statement follows from assumption (20). To prove these
ond one, we note that by Lemma 7.2 the group K is of symmetri
 typeif and only if the s
heme X is isomorphi
 to the wreath produ
t TU ≀ Y,where Y is the quotient of X modulo the equivalen
e relation eL. Sin
ealgebrai
 isomorphisms respe
t wreath produ
ts, we are done. �For all Y ∈ U and Y ′ ∈ U′, the algebrai
 isomorphism ' indu
es analgebrai
 isomorphism 'Y ;Y ′ : XY → X ′Y ′ ;



174 I. PONOMARENKO, A. VASIL'EVthat takes a relation sY to the relation s′Y ′ for all basis relations s ⊆ eU ofthe s
heme X , where s′ = '(s). It follows that if X ′ = X and ' is trivial,then 'Y;Y is trivial for all Y ∈ U.For ea
h Y ∈ U, setDY = {Sym(Y ) if K is of symmetri
 type;D(2; UY ) ∩ Aut(XY ) otherwise;where, for brevity, UY denotes the restri
tion of the permutation groupUright to the set Y . Note that the form of the group DY does not dependon Y ∈ U, and DY 
ontains KY for all Y (Theorems 6.2 and 6.3). Fur-thermore, if Z ∈ U, then any permutation of G∗ taking Y to Z indu
es apermutation isomorphism from the group DY onto the group DZ .Lemma 8.2. (DY )f = DY f for all Y ∈ U and all f ∈ Iso(X ;X ′; ').Proof. Without loss of generality, we may assume that both K and K ′are of normal types (Lemma 8.1). Let Y ∈ U and f ∈ Iso(X ;X ′; '). Thenin view of (20), Aut(XY )f = Aut(X ′Y ′); (21)where Y ′ = Y f . Thus, it suÆ
es to verify that D(2; V )f = D(2; V ′), whereV = UY and V ′ = (U ′)Y ′ . However, by the de�nition of U, we have V = Ugfor suitable g ∈ G and D(2; V ) = D(2; Ugr);where gr : U → V is the bije
tion indu
ed by right multipli
ation by g. Asimilar statement holds for V ′, U ′, and a suitable bije
tion (g′)r. Therefore,without loss of generality, we may assume that Y = U and Y ′ = U ′.Re
all that U is an almost simple group with So
(U) = L, and alsoU∗ 6 KU . Therefore, So
(KU ) = L∗. The same is true with K, U , and L,repla
ed by K ′, U ′, and L′, respe
tively. Taking into a

ount that f takesKU to (K ′)U ′ , we 
on
lude that(L∗)f = (L′)∗:This implies that f takes the normalizer of the group L∗ 6 Sym(U) to thenormalizer of the group (L′)∗ 6 Sym(U ′). However by Theorem 5.1, thesenormalizers are equal to D(2; U) and D(2; U ′). Thus, f takes the �rst ofthese groups to the se
ond, and we are done. �
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tions f : G→ G′taking U to U′ and satisfying the following 
onditions for every Y ∈ U :fY ∈ Iso(XY ;X ′Y f ; 'Y ;Y f ) and (DY )f = DY f : (22)Let us �nd the expli
it form of the set C = C'(X ;X ′) when X = X ′and ' = id. In this 
ase, C is obviously a subgroup of Sym(G) preservingthe partition U. Condition (22) means that fY belongs to the interse
tionof Aut(XY ) and the normalizer of DY in Sym(Y ) for all f ∈ CU. Thisproves the �rst of the equalities
∏Y ∈U

DY = CU and CU = Sym(U);the se
ond equality follows from the fa
t that any g ∈ G indu
es thepermutation isomorphism from DY onto DY g that indu
es 'Y ;Y g . Thus,the group C is permutation isomorphi
 to the wreath produ
t DU ≀Sym(U)(in imprimitive a
tion). For arbitrary X ′ and ', an for ea
h f ∈ C'(X ;X ′),we obviously have C'(X ;X ′) = Cid(X ;X )f: (23)Thus if the set C'(X ;X ′) is not empty, then it 
an be given by a gen-erator set of the group C = Cid(X ;X ) and the bije
tion f . In the senseof the following statement, the set C'(X ;X ′) 
an be 
alled a majorant ofIso(X ;X ′; ').Theorem 8.4. Iso(X ;X ′; ') ⊆ C'(X ;X ′). Moreover, the set C'(X ;X ′)
an be found in time poly(n).Proof. The �rst statement immediately follows from Lemma 8.2. To provethe se
ond one, it suÆ
es to �nd the setC0 = {f0 ∈ Iso (XU ;X ′U ′ ) : (DU )f0 = DU ′};where  = 'U ;U ′ . Indeed, if this set is empty, then obviously so is themajorant C'(X ;X ′). On the other hand, if f0 ∈ C0, then to 
onstru
t themajorant given by formula (23) it suÆ
es to �nd DU and the bije
tion fde�ned as follows: fY = (gY )−1f0g′Y ′ ; Y ∈ U;where Y 7→ Y ′ is an arbitrary bije
tion from U onto U′ taking U to U ′,and the bije
tions gY : U → Y and g′Y ′ : U ′ → Y ′ are indu
ed by the rightmultipli
ations by the elements g ∈ G and g′ ∈ G′ su
h that Y = Ug andY ′ = U ′g′.



176 I. PONOMARENKO, A. VASIL'EVTo �nd the sets DU and C0, assume �rst that K is of symmetri
 type(re
all that this 
an eÆ
iently 
he
ked by Theorem 7.1). Then the 
oherent
on�gurations XU and X ′U ′ are trivial. Thus, DU = Sym(U) and for anybije
tion f0 : U → U ′, C0 = Sym(U)f0:Let nowK be of normal type. Then DU 6 D(2; U) and DU ′ 6 D(2; U ′).In parti
ular, DU = D(2; U) ∩ Aut(XU ) 
an be found in time poly(n).Furthermore, every element f0 ∈ C0 takes DU to DU ′ (Lemma 8.2), andindu
es a permutation group isomorphism from Uright onto a groupV ′ ∈ Reg(DU ′ ; U ′):By statement (ii) of Lemma 3.1, the set Reg(DU ′ ; U ′) is of 
ardinality atmost |U ′|
 6 n
 for some 
onstant 
 > 0, and all its elements 
an be foundby exhaustive sear
h of all 3-generated subgroups of the group DU ′ . Sin
efor a �xed V ′, there are at most |Aut(V ′)| 6 n
 distin
t elements f0 ∈ C0taking Uright to V ′, one 
an test in time poly(n), whether the set C0 is notempty and (if so) �nd it in the formC0 = DUf0with arbitrary f0 ∈ C0. �

§9. Proof of Theorem 1.19.1. Redu
tion to Cayley s
hemes. Let � be a 
entral Cayley graphover an almost simple groupG, {ei : i ∈ I} the set of 
olor 
lasses of �, andK = Aut(�). The prin
ipal K-se
tion of G and the asso
iated partitionsare denoted by U=L and U and L, respe
tively. Set
X = WL(�; {eU; eL});where eU and eL are the equivalen
e relations 
orresponding to the parti-tions U and L. For other 
entral Cayley graphs �′, we use similar notation,e.g., G′ and K ′ denote the underlying group and the automorphism groupof �′, respe
tively.Lemma 9.1. Given 
entral Cayley graphs � and �′ over almost simplegroups G and G′, respe
tively, one 
an 
onstru
t in time poly(n) the Cayleys
hemes X and X ′ over the same underlying groups and 
he
k whetherthere exists a (unique) algebrai
 isomorphism ' : X → X ′ su
h that'(ei) = e′i for all i ∈ I and '(eU) = eU′ ; '(eL) = eL′ ; (24)



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 177and (if so) �nd ' within the same time. Moreover, K = Aut(X ), K ′ =Aut(X ′), and also Iso(�;�′) = Iso(X ;X ′; '): (25)Proof. By Theorem 7.1, the prin
ipal se
tions and hen
e the equivalen
erelations eU , eL and eU′ , eL′ 
an be found in time poly(n). Therefore the�rst part of the statement immediately follows from Theorem 2.1. To provethe se
ond one, we observe that every f ∈ Iso(�;�′) takes the group Kto the group K ′. By the de�nition of the minimal blo
k (Subse
tion 4.2)this implies that f takes eL to eL′ and hen
e takes eU to eU′ . Thus, theisomorphism f indu
es '. This means that f ∈ Iso(X ;X ′; ') and hen
ethe left-hand side of (25) is 
ontained in the right-hand side. Sin
e thereverse in
lusion is obvious, equality (25) is 
ompletely proved. Next, if�′ = �, then ' = id and equality (25) shows that K = Aut(X ). Similarly,K ′ = Aut(X ′). �9.2. Determining the 
oset of isomorphisms. Denote by � the 
a-noni
al epimorphism from G onto G = G=L = L. Then � indu
es a maptaking the set S of basis relations of the Cayley s
heme X over G to the set
S of basis relations of the quotient Cayley s
heme X over G. In parti
ular,� takes S∪ to S∪. Set � to be the Cayley graph over G with 
olor 
lasses�(ei), i ∈ I . For any set C of the bije
tions f : G → G′ taking eU to eU′and eL to eL′ , we denote by C the set of bije
tions f : G → G′ indu
edby f ∈ C.Theorem 9.2. Let � and �′ be 
entral Cayley graphs over almost simplegroups G and G′, respe
tively. Assume that the algebrai
 isomorphism 'from Theorem 9.1 does exist. ThenIso(�;�′) = �−1(C ∩B); (26)where B = Iso(�;�′), C = C'(X ;X ′), and the right-hand side 
onsists ofall f ∈ C for whi
h f ∈ B.Proof. To prove that the left-hand side of (26) is 
ontained in the right-hand side, let f ∈ Iso(�;�′). Then the uniqueness of the prin
ipal se
tionsimplies that (eU)f = eU′ and (eL)f = eL′ :Therefore, the isomorphism f indu
es the algebrai
 isomorphism '. ByTheorem 8.4, this implies that f ∈ C. Consequently, the indu
ed bije
tion



178 I. PONOMARENKO, A. VASIL'EVf : G → G′ belongs to the set C . Sin
e obviously f ∈ B, we 
on
lude thatf belongs to the right-hand side of (26), as required.Conversely, let f belong to the right-hand side of (26). By formula (25)in Lemma 9.1, it suÆ
es to verify that f indu
es '. To this end, let s ∈ S.Assume �rst that s ⊆ eU. Then s equals the union of sY , Y ∈ U. Thereforesin
e f ∈ C, 
onditions (22) are satis�ed for all Y and hen
esf = ( ⋃Y ∈U

sY )f = ⋃Y ∈U

(sY )f = ⋃Y ∈U

'Y;Y f (sY ) = '(s):Now assume that s is outside the equivalen
e relation eU. Let us provethat s = ⋃X;Y ∈L;(X;Y )∈sX × Y and sf = ⋃X′;Y ′∈L
′;(X′;Y ′)∈s′X ′ × Y ′; (27)where s = �(s) and s′ = �′(sf ). Sin
e (eU)f = eU′ , the relation sf isoutside the equivalen
e relation eU′ . Therefore, it suÆ
es to verify the�rst equality of (27); denote the right-hand side of this equality by t.Clearly, s ⊆ t. Conversely, let (X;Y ) ∈ t for some (X;Y ) ∈ s. Sin
e sis outside eU, we 
on
lude that X × Y is a basis relation of the 
oherent
on�guration Inv(KL) (Theorem 4.4). Sin
e Inv(KL) > X , it follows thatthis basis relation is 
ontained in a basis relation of X whi
h equals s,be
ause (X;Y ) ∈ s. Therefore, t ⊆ s. This 
ompletes the proof of (27)implying s = �−1(s) and sf = (�′)−1(s′).On the other hand, the graph isomorphism f ∈ B ∩C indu
es an alge-brai
 isomorphism ' : X → X ′ that 
oin
ides with the restri
tion of thealgebrai
 isomorphism ' modulo eL. Thus,'(s) = '(�−1(s)) = (�′)−1('(s)) = (�′)−1((s)f ) = (�′)−1(s′) = sf ;as required. �9.3. The algorithm. In the algorithm below, the input is given by two
entral Cayley graphs � and �′ over almost simple groupsG andG′, respe
-tively. It is assumed that these groups are presented by the multipli
ationtables. The output 
onsists of the set Iso(�;�′), whi
h is either empty orequals the set Aut(�)f for some f ∈ Iso(�;�′). Here, the group Aut(�) ispresented by a generating set.



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 179Central Cayley graph isomorphism testStep 1. Find the prin
ipal se
tions of the automorphism groups of the(
entral Cayley) s
hemes WL(�) and WL(�′) (Theorem 7.1); denote by U,
L and U′, L′ the asso
iated partitions of G and G′, respe
tively.Step 2. Find the s
hemes X = WL(�; {eU; eL}) and X ′ = WL(�′; {eU′ ,eL′}) and the algebrai
 isomorphism ' satisfying 
ondition (24); if ' doesnot exist, output Iso(�;�′) = ∅.Step 3. Find the set C = C'(X ;X ′) (Theorem 8.4).Step 4. Using the graph isomorphism and 
oset interse
tion algorithmsfrom [1℄, �nd the set B = Iso(�;�′) and then the set B′ = B ∩ C.Step 5. Output Iso(�;�′) = �−1(B′). �To 
omplete the proof of Theorem 1.1, we show that the above algo-rithm 
orre
tly �nds the set Iso(�;�′) in time poly(n). Note that everygraph isomorphism f ∈ Iso(�;�′) indu
es an algebrai
 isomorphism ' sat-isfying 
ondition (24). Therefore, the output at Step 2 is 
orre
t. Thus, the
orre
tness of the output at Step 5 and hen
e of the algorithm immediatelyfollows from Theorem 9.2.To estimate the running time, we note that all the steps ex
ept for Step 4run in polynomial time (Theorem 7.1, Lemma 9.1, and Theorem 8.4). Fur-thermore, the graph isomorphism and 
oset interse
tion algorithms from[1℄ are applied at Step 4 to graphs with m = |L| verti
es and to the 
osets
ontained in Sym(m), respe
tively. Ea
h of these algorithms runs in timeat most exp((logm)
√m). Sin
e m 6 logn, the 
omplexity of this stepdoes not ex
eedexp((logm)
√m) 6 exp((log logn)
(logn)1=2) 6 exp(logn) 6 nfor suÆ
iently large n and a suitable 
onstant 
 > 0. Thus, the runningtime of the algorithm is polynomial in n, as required. �Referen
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