
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 455, 2017 Ç.I. Ponomarenko, A. Vasil'evTESTING ISOMORPHISM OF CENTRAL CAYLEYGRAPHS OVER ALMOST SIMPLE GROUPS INPOLYNOMIAL TIMEAbstrat. A Cayley graph over a group G is said to be entralif its onnetion set is a normal subset of G. It is proved that forany two entral Cayley graphs over expliitly given almost simplegroups of order n, the set of all isomorphisms from the �rst graphonto the seond an be found in time poly(n).In memory of Sergei Evdokimov
§1. IntrodutionIn the present paper, we are interested in a speial ase of the follow-ing restrition of the Graph Isomorphism Problem to the lass of Cayleygraphs.Cayley Graph Isomorphism Problem. For two expliitly given �-nite groups G and G′ and two sets X ⊂ G and X ′ ⊂ G′, onstrut the setIso(�;�′), where � = Cay(G;X) and �′ = Cay(G;X ′).Here the input onsists of the multipliation tables of G and G′ and thesets X and X ′, whereas the output is either empty or given by an elementof the set Iso(�;�′) and a generating set of the group Aut(�) (of size poly-nomial in the order n of the group G). Obviously, the Luks algorithm [12℄solves the Cayley Graph Isomorphism Problem in polynomial time for ev-ery group G, whenever the set X is of onstant sizes. If G is yli, thenthe problem with no restrition for X is also solvable in polynomial time(see [6℄ and [13℄). It should be noted that if G = G′ and G is a so-alled CI-group, then an obvious algorithm solves the Cayley Graph IsomorphismProblem in time polynomial in |Aut(G)| (for details, see [10℄).The aforementioned speial ase is formed by the two following ondi-tions imposed on the input graphs and groups. First, we assume that �is a entral Cayley graph over G, whih means that X is a normal subsetKey words and phrases: Cayley graph, almost simple group, polynomial-timealgorithm. 154



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 155of G, i.e., Xg = X for every g ∈ G. Seond, the group G is assumed tobe almost simple, i.e., the sole of G is a nonabelian simple group. Thesame onditions are imposed on the graph �′ and group G′. Even in thisrather restritive ase, the problem is still nontrivial; at least the numberof possible input graphs is exponential in n.Example. Let G = Sym(m) be a symmetri group of degree m. Then thenumber N(m) of entral olored Cayley graphs over G is equal to 2p(m),where p(m) is the number of all partitions of the set {1; : : :m}. Sine p(m)is approximately equal to 2√m, the numberN(m) is exponential in n = m!.By tehnial reasons, it is more onvenient to deal with olored Cayleygraphs. Suh a graph is given by a partition P of the group G into k > 2lasses X0; : : : ; Xk−1 with X0 = {1}, and an be thought as ar-oloredomplete graph with vertex set G and the ith olor lass of ars oinidingwith the ar set of the Cayley graph Cay(G;Xi), i = 0; : : : ; k − 1. Wesay that P is the Cayley partition of this graph and denote the latter byCay(G;P). In what follows, all Cayley graphs are assumed to be olored:the graph Cay(G;X) is treated as Cay(G;P) for k = 3 and X1 = X .Theorem 1.1. For any two entral Cayley graphs � and �′ over expliitlygiven almost simple groups G and G′ of order n, the set Iso(�;�′) an befound in time poly(n).Corollary 1.2. The automorphism group of a entral Cayley graph overan expliitly given almost simple group of order n an be found in timepoly(n).The proof of Theorem 1.1 is a mix of ombinatorial and permutationgroup tehniques. Setion 2 provides a relevant bakground for the om-binatorial part inluding oherent on�gurations and Cayley shemes. InSetion 3, we use a lassi�ation of regular almost simple subgroups ofprimitive groups [11℄ to prove (Lemma 3.2) that exept for one speialase, if K 6 Sym(G) is a 2-losed primitive group ontaining regular al-most simple subgroup, thenK = Sym(G) or K 6 D(2; G); (1)where D(2; G) is the subgroup of Sym(G) generated by the holomorphof G and the permutation � : g 7→ g−1, g ∈ G. We extend this resultto non-primitive groups in Setions 4 and 5 by showing that in this ase,either formula (1) holds or K is a nontrivial generalized wreath produt



156 I. PONOMARENKO, A. VASIL'EV(Theorems 4.1 and 5.1). We apply this fat in Setion 6 to the automor-phism group K of a entral Cayley graph � over the group G to establishthat KS = Sym(S) or KS 6 D(2; S); (2)where S = So(G) is the sole of G and KS is the restrition to S of thesetwise stabilizer of S in K. Note that if G is a symmetri group of degreeat least 5, then the group D(2; G) is isomorphi to the group G ≀ Sym(2).Thus, as a byprodut of (2), we obtain the following generalization ofthe result [9, Theorem 1.1℄ on the automorphism group of the Cayleygraph Cay(G;X), where G is a symmetri group and X is the set of itstranspositions.Theorem 1.3. Let G be a symmetri group of degree at least 5, X a propernormal subset of G\So(G), and � = Cay(G;X). Then Aut(�) = D(2; G).In Setions 7 and 8, we develop algorithmi tools to �nd the abovestruture of the group K with the help of the related Cayley sheme andthe group G. The main algorithm providing the proof of Theorem 1.1 isgiven in Setion 9.Notation.The diagonal of the Cartesian produt 
× 
 is denoted by 1
.For s ⊆ 
× 
, set s∗ = {(�; �) : (�; �) ∈ s}.For � ∈ 
 and s ⊆ 
× 
, set �s = {� ∈ 
 : (�; �) ∈ s}.For � ⊆ 
 and s ⊆ 
× 
, set s� = s ∩ (�×�).For a partition E of a set 
 and s ⊆ 
 × 
, set sE to be the relationonsisting of the pairs (�;�′) ∈ E × E suh that s meets �×�′.For a set S of binary relations, put S∪ to be the set of all unions ofrelations from S.The symmetri and alternating groups on 
 are denoted by Sym(
)and Alt(
), respetively.For f ∈ Sym(
) and s ⊆ 
× 
, set sf = {(�f ; �f ) : (�; �) ∈ s}.For a group G and its subgroup L, set Lleft and Lright to be the sub-groups of Sym(G) indued by left and right multipliations of L, respe-tively, and L∗ = LleftLright.For a group G, set D(2; G) to be the subgroup of Sym(G) generated bythe group Hol(G) = NSym(G)(Gright) and the permutation � : g 7→ g−1.For a group K 6 Sym(G) and a set H ⊆ G, the restrition to H of thesetwise stabilizer of H in K is denoted by KH .



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 157For an imprimitivity system L of a transitive group K, set KL andKL to be, respetively, the intersetion of all KH with H ∈ L and thepermutation group indued by the ation of K on L.For a group G and a permutation group K, set Reg(K;G) to be the setof all regular subgroups of K that are isomorphi to G.
§2. Coherent onfigurations and Cayley shemesThis setion ontains well-known basi fats on oherent on�gurations.All of them an be found in [7℄ and papers ited there.2.1. Main de�nitions. Let 
 be a �nite set and S a partition of 
×
.The pair X = (
; S) is alled a oherent on�guration on 
 if the followingonditions hold:(C1) 1
 ∈ S∪,(C2) S∗ = S,(C3) given r; s; t ∈ S, the number trs = |�r ∩ �s∗| does not depend onthe hoie of the pair (�; �) ∈ t.The elements of 
 and S, and the numbers trs are alled the points andbasis relations, and the intersetion numbers of X , respetively. The num-bers |
| and |S| are alled the degree and the rank of X . The oherenton�guration X is said to be homogeneous if 1
 ∈ S.Denote by � = �(X ) the set of � ⊆ 
 suh that 1� ∈ S. The elementsof � are alled the �bers of X . In view of ondition (C1), the set 
 is thedisjoint union of all of them. Moreover, for eah s ∈ S, there exist uniquelydetermined �bers � and � suh that s ⊆ � ×�. Note that the oherenton�guration X is homogeneous if and only if |�| = 1.Let e ∈ S∪ be an equivalene relation and E the set of its lasses. Given� ∈ E denote by S� the set of all nonempty relations s� with s ∈ S. Thenthe pair

X� = (�; S�)is a oherent on�guration alled the restrition of X to �. This enables tode�ne the restrition of X to a set � ∈ �∪: the orresponding equivalenerelation is equal to the union of �×�, where � runs over the �bers on-tained in �. Another oherent on�guration assoiated with e is obtainedas follows. Denote by SE the set of all nonempty relations sE, s ∈ S. Then
XE = (E; SE)is a oherent on�guration alled the quotient of X modulo e.



158 I. PONOMARENKO, A. VASIL'EV2.2. Combinatorial and algebrai isomorphisms. A bijetion f :
 → 
′ is alled the (ombinatorial) isomorphism from X onto a oherenton�guration X ′ = (
′; S′) if the set S′ ontains the relation sf for eahs ∈ S. The set of all isomorphisms f is denoted by Iso(X ;X ′). The groupof all isomorphisms of X to itself ontains a normal subgroupAut(X ) = {f ∈ Sym(
) : sf = s; s ∈ S}alled the automorphism group of X . Conversely, let G 6 Sym(
) be apermutation group, and let S be the set of orbits of the omponent-wiseation of G on 
×
. Then the pair X = (
; S) is a oherent on�guration;we say that X is assoiated with G and denote it by Inv(G).Aording to Wielandt [17℄, a permutation group G on 
 is said to be2-losed if it is equal to its 2-losureG(2) = Aut(Inv(G));or, equivalently, if G is an automorphism group of a family of binary rela-tions on 
 (suh a family an always be hosen as the set of basis relationsof a oherent on�guration on 
). If G is 2-losed and L is an imprimitivitysystem of G, then the group GL is 2-losed. However, the group GL is notalways 2-losed.A bijetion ' : S → S′; r 7→ r′, is alled an algebrai isomorphismfrom X onto X ′ if trs = t′r′s′ ; r; s; t ∈ S: (3)In this ase, X and X ′ are said to be algebraially isomorphi. Eah isomor-phism f from X onto X ′ indues an algebrai isomorphism 'f : r 7→ rfbetween these on�gurations. The set of all isomorphisms induing thealgebrai isomorphism ' is denoted by Iso(X ;X ′; '). In partiular,Iso(X ;X ; idS) = Aut(X ); (4)where idS is the identity mapping on S.An algebrai isomorphism ' indues a bijetion from S∪ onto (S′)∪:the union r ∪ s ∪ · · · of basis relations of X is taken to r′ ∪ s′ ∪ · · · . Thisbijetion is also denoted by '. It preserves the equivalene relations e ∈ S∪;moreover, the equivalene relations e and '(e) have the same number oflasses as well as the same multiset of their sizes. In this ase, if E and
E′ are the sets of lasses of e and '(e), respetively, and � ∈ E, then 'indues the algebrai isomorphisms'� : X� → X ′�′ ; s 7→ '(s)�′ and 'E : XE → X ′

E′ ; sE 7→ '(s)E′



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 159for a suitable �′ ∈ E′.2.3. Diret sum and wreath produt. Let X = (
; S) and X ′ =(
′; S′) be oherent on�gurations. Denote by 
 ⊔ 
′ the disjoint unionof 
 and 
′, and by S ⊞ S′ the union of the set S ⊔ S′ and the set of allrelations � ×�′ and �′ ×� with � ∈ �(X ) and �′ ∈ �(X ′). Then thepair
X ⊞ X ′ = (
 ⊔
′; S ⊞ S′)is a oherent on�guration alled the diret sum of X and X ′. The auto-morphism group of this on�guration equals the diret produt Aut(X )×Aut(X ′) ating on the set 
⊔
′. Furthermore, if ' is an algebrai isomor-phism from X⊞X ′ to another oherent on�guration, then the latter is alsothe diret sum Y ⊞ Y ′ and ' indues algebrai isomorphisms X → Y and

X ′ → Y ′ oiniding with the restritions of ' on 
 and 
′, respetively.Let X be a homogeneous oherent on�guration, e ∈ S∪ an equivalenerelation, and E the set of lasses of e. We say that X is the wreath produtwith respet to e if for eah s ∈ S suh that s 6⊆ e,s = ⋃(�;�)∈sE

�×�:In what follows, we always assume that the lasses of e an be identi�edwith the help of a family of the isomorphisms f�;� : X� → X�, �;� ∈ E,suh that (s�)f�;� = s�; s ∈ S: (5)In this ase, X is isomorphi to the usual wreath produt X�≀XE for all � ∈
E (see [15, p.45℄). The automorphism group of this oherent on�gurationis permutation isomorphi to the wreath produt Aut(X�) ≀ Aut(XE) inimprimitive ation.Furthermore, if ' is an algebrai isomorphism from the wreath produt
X with respet to e to another oherent on�guration, then the latteris also the wreath produt X ′ with respet to e′ = '(e) and ' induesalgebrai isomorphisms X� → X ′�′ and XE → X ′

E′ oiniding with therestritions of ' on � and E, respetively, where E′ is the set of lassesof e′ and �′ ∈ E′.2.4. Cayley shemes. A oherent on�guration X = (
; S) is alled theCayley sheme over a group G if
 = G and Gright 6 Aut(X ):



160 I. PONOMARENKO, A. VASIL'EVIn this ase, X is homogeneous and eah basis relation s is the set ofars of the Cayley graph Cay(G;X), where X is the neighborhood of theidentity of G in the relation s. In partiular, X an be treated as a olorgraph Cay(G;P), where the lasses of the Cayley partition P are theneighborhoods of the identity of G in the basis relations of X .The lass of Cayley shemes is losed with respet to taking restritionsand quotients. Namely, if X is a Cayley sheme over a group G and e ∈ S∪is an equivalene relation, then the lass H of e ontaining the identityof G is a subgroup of G. Moreover, the set E of lasses of e oinides withthe right H-osets of G. It follows that
XH = Cay(H;EH) and XE = Cay(G=H;EG=H);with

EH = {X ∈ E : X ⊂ H} and EG=H = {�(X) : X ∈ E};where in the latter ase, H is a normal subgroup of G and � : G → G=His the anonial epimorphism.Assume that the Cayley sheme X is the wreath produt with respetto an equivalene relation e ∈ S∪. Then for any two lasses �;� ∈ E,there exists a permutation f ∈ Gright taking � to �; set f�;� to be therestrition of f to �. Sine all these f are automorphisms of X , the family
{f�;�}�;�∈E satis�es onditions (5).The Cayley sheme X is said to be entral if Gleft 6 Aut(X ) whih is byde�nition of a Cayley sheme is equivalent to G∗ 6 Aut(X ). One an seethat X is entral if and only if the olored Cayley graph assoiated with
X is entral.2.5. Partial order and the WL-algorithm. There is a natural par-tial order 6 on the set of all oherent on�gurations on the same set 
.Namely, given two oherent on�gurations X = (
; S) and X ′ = (
; S′),we set

X 6 X ′ ⇔ S∪ ⊆ (S′)∪:The minimal and maximal elements with respet to this order are, re-spetively, the trivial and disrete oherent on�gurations. The �rst one isa unique oherent on�guration T
 with at most two basis relations: 1
and its omplement to 
× 
 (if 
 onsists of at least two points). Everybasis relation of the disrete on�guration is a singleton. With respet tothis order, the diret sum X ⊞ X ′ is the minimal oherent on�guration



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 161on 
 ⊔ 
′, the restritions of whih to 
 and 
′ are equal to X and X ′,respetively.One an prove that given a set T ⊆ 2
×
, there exists a unique minimaloherent on�guration X ′ suh that every relation of T is the union of somebasis relations of X ′. This oherent on�guration is alled the oherentlosure of T and an be onstruted by the well-known Weisfeiler{Lemanalgorithm (WL-algorithm) [15, Setion B℄ in time polynomial in sizes of Tand 
. To stress this fat, the oherent losure of T is denoted by WL(T ).For a olor graph � with the set S of olor lasses, we setWL(�; T ) = WL(S ∪ T )and write WL(�) instead of WL(�;∅). It is important to note that theautomorphism group of the oherent on�guration WL(�; T ) is equal tothe subgroup of Aut(�) leaving eah relation of T �xed (as a set). Thisimplies that if � is a Cayley graph over G, then the oherent on�gurationWL(�) is a Cayley sheme over G. Sine any oherent on�guration X anbe onsidered as a olor graph, we extend our notation to write WL(X ; T ).Conerning the following statement, we refer to [14, Theorem 2.4℄.Theorem 2.1. Let S and S′ be m-sets of binary relations on an n-element set. Then given a bijetion  : S → S′, one an hek in timemnO(1) whether or not there exists an algebrai isomorphism ' : WL(S) →WL(S′) suh that '|S =  . Moreover, if ' does exist, then it an be foundwithin the same time.
§3. Almost simple groupsIn this setion, we ollet several known fats on �nite almost simplegroups and dedue some auxiliary results to be used throughout the paper.Lemma 3.1. Let G be an almost simple group of order n. Then(i) |G=L| 6 log n, where L = So(G),(ii) |Reg(K;G)| = nO(1) for every K 6 Sym(G) ontaining G as anormal regular subgroup.Proof. From the desription of the automorphism groups of simple groups(see, e.g., [4, Introdution℄), it follows that |Aut(L)=L| 6 log |L|. There-fore, statement (i) is a onsequene of the inlusions L 6 G 6 Aut(G) 6Aut(L). The inlusions also imply that |Aut(G)| 6 n logn. Sine the en-tralizer of G in Sym(G) is of order n [16, Exerise 4.5'℄, we have

|K| 6 |NSym(G)(G)| 6 |CSym(G)(G)| · |Aut(G)| 6 n2 logn:



162 I. PONOMARENKO, A. VASIL'EVOn the other hand, the group G is 3-generated [5℄. Thus, the number ofregular subgroups of K isomorphi to G is at most (K3 ) and statement (ii)follows. �In the following statement, we use the lassi�ation of regular almostsimple subgroups of a primitive group [11, Theorem 1.4℄.Lemma 3.2. Let G be an almost simple group and G∗ 6 K 6 Sym(G).Suppose that K is primitive. Then one of the following holds:(i) K > Alt(G),(ii) G = So(G) and K 6 D(2; G),(iii) G = Sym(5) and K = Sp8(2) is 2-transitive.Proof. Without loss of generality, we assume that neither K > Alt(G),nor G = So(G) and K 6 D(2; G). Then by aforementioned lassi�ation,exatly one of the following pairs (G; So(K)) ours:(a) (Alt(p2 − 2);Alt(p2 + 1)), where p = 3 (mod 4) is prime,(b) (Sym(p − 2);Alt(p)) or (Sym(p − 2);Alt(p + 1)), where p > 7 isprime,() the twelve pairs in the table below.No: G So(K)1 Alt(5) L2(59)2 Alt(7) Alt(11)3 Alt(7) Alt(12)4 Sym(5) Alt(9)5 Sym(5) Sp4(4)6 Sym(5) Sp6(2)
No: G So(K)7 Sym(5) 
+8 (2)8 Sym(5) Sp8(2)9 L2(16):4 Sp6(4)10 L2(16):4 
+8 (4)11 L3(4):2 M2312 L3(4):2 M24The assumption G∗ 6 K, in partiular, implies that |G|2 6 |K|. Bystraightforward hek this exludes ases (a) with p > 3, (b) with p > 7,and ases 11 and 12 from the table. Similarly, the remaining ases in (a)and (b) as well as ases 1{4, and 9 are impossible beause |G|2 must divide

|K|.In ases 5, 6, 7, and 10 from the table, we hek the maximal subgroupsof K and show that none of them inludes the subgroup isomorphi toG∗. Indeed, in ases 5 and 6 none of the maximal subgroups ontainsAlt(5)×Alt(5) [2, Tables 8.14, 8.28, 8.29℄. In ase 10, information from [11,Table 2℄ shows that K is an extension of 
+8 (4) by a �eld automorphism.



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 163This group ontains the only (up-to onjugation) maximal subgroup withsetion isomorphi to L2(16)×L2(16) [2, Table 8.50℄, but the order of thissubgroup is less than |G∗|. In ase 7, we make use of [11, Table 2℄ to seethat K = 
+8 (2). Again this group inludes up to onjugation the onlymaximal subgroup M with setion isomorphi to Alt(5) × Alt(5) (see [2,Table 8.50℄). However, |M | = |G∗| butM ≃ D(2;Alt(5)) is not isomorphito G∗ ≃ Sym(5)× Sym(5).This leaves us with ase 8 of the table where So(K) = Sp8(2) = K andwe arrive at ase (iii) of the onlusion of the lemma. �

§4. The struture of automorphism groups: theprinipal setion4.1. Preliminaries. Let G be a �nite group. The automorphism group ofevery entral Cayley graph over G ontains a subgroup G∗ (see Notation).In this setion, we establish some basi fats on the permutation groupsK satisfying the following ondition:G∗ 6 K 6 Sym(G); (6)where G is an almost simple group. We use onept of the generalizedwreath produt of permutation groups introdued and studied in [8℄.Namely, a transitive group K is the generalized wreath produt if it hastwo imprimitivity systems L and U suh that every blok of L is ontainedin a blok of U and KL = ∏X∈U

(KL)X :The generalized wreath produt is said to be trivial if either L onsistsof singletons or U = {
}. When L = U, the group K is permutationisomorphi to the wreath produt KX ≀KL in imprimitive ation, whereX ∈ U.Theorem 4.1. Let G be an almost simple group, and let K be a 2-losedgroup satisfying ondition (6). Then one of the following statements holds:(i) K = Sym(G) or G∗ E K,(ii) K is a nontrivial generalized wreath produt.The proof of Theorem 4.1 is given in the end of Setion 6.



164 I. PONOMARENKO, A. VASIL'EV4.2. The minimal blok. Let K satisfy ondition (6) and X be theK-blok ontaining the identity of G. Sine K is a permutation group onG that ontainsGright, the blok X is a subgroup of G [16, Theorem 24.12℄.Taking into aount that Gleft also lies inK, we onlude that X is normal.Denote by L the intersetion of all non-singleton K-bloks ontaining theidentity of the group G. Then L is a K-blok and we all it the minimalblok of K.Lemma 4.2. Let K satisfy ondition (6) and L the minimal blok of K.Then L is normal subgroup of G inluding So(G). In partiular, L is analmost simple group suh that So(L) = So(G).Proof. Aording to the above remark, everyK-blok ontaining the iden-tity of G is a normal subgroup of G. If the blok is not a singleton, thenthis normal subgroup is nontrivial and hene ontains So(G), beausethe group G is almost simple. Thus, the minimal blok L being the in-tersetion of nontrivial normal subgroups of G is a normal subgroup andontains So(G). �Denote by L the imprimitivity system ontaining L. Obviously,Orb(L∗; G) = L:Reall that aording to the de�nition, KL is a normal subgroup of Kleaving eah blok of L �xed (as a set), and given X ∈ L, the group(L∗)X 6 Sym(X) is indued by right multipliations of L.Lemma 4.3. For any X ∈ L, the group (KL)X is primitive and ontains(L∗)X .Proof. The normality of L in G implies that the orbits of the ationof L∗ on G oinide with the L-osets. It follows that the permutationgroup indued by this ation is ontained in KL. This proves the seondstatement. To prove the �rst statement, in view of the transitivity of K,we may assume that X = L.Assume on the ontrary that the group K ′ = (KL)L is not primitive.Then there exists a minimal non-singleton K ′-blok L′ < L. Taking intoaount that K ′ E KL, we onlude that L′′ = (L′)k is a also K ′-blokfor every k ∈ K [16, Proposition 6.2℄. The imprimitivity system L′ of thegroup K ′ that ontains L′ oinides with the imprimitivity system on-taining L′′, for otherwise by the minimality of L′ and Lemma 4.2 applied



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 165for the group K ′, one an hoose the blok L′′ so that1 = L′ ∩ L′′ ⊇ So(L) = So(G) ) 1;a ontradition. Thus, L′ is an imprimitivity system of the group KL.Consequently, L′ is a non-singleton K-blok stritly ontained in L, whihis impossible by the de�nition of L. �4.3. The wreath deomposition of KL. For every two sets X;X ′ ∈ L,we write X ∼ X ′ if the restrition epimorphisms(KL)X∪X′ → (KL)X and (KL)X∪X′ → (KL)X′ (7)are isomorphisms. In partiular, the groups (KL)X and (KL)X′ are iso-morphi. It is easily seen that ∼ is an equivalene relation on L. Thisrelation is K-invariant, beause KL is a normal subgroup of K. Denote byU the union of L-osets belonging to the lass of ∼ that ontains L. ThenU is obviously a K-blok and hene is a normal subgroup of G. Thus,L E U E G:The imprimitivity system of the group K that ontains the blok U isdenoted by U. We say that U=L is the prinipal K-setion of G, and U and
L are the assoiated partitions.Theorem 4.4. Let G be an almost simple group, K a 2-losed groupsatisfying ondition (6), and U, L are the partitions assoiated with theprinipal K-setion. Then the oherent on�guration Inv(KL) is the diretsum of the oherent on�gurations Inv(KL)Y , where Y ∈ U. In partiular,KL = ∏Y ∈U

(KL)Y ; (8)i.e., K is generalized wreath produt.Proof. The subgroup KL of 2-losed group K is 2-losed too (see Sub-setion 2.2). Therefore, equality (8) follows from the �rst statement of thetheorem, beause the automorphism group of the diret sum equals thediret produt of the summands (see Subsetion 2.3). To prove the �rststatement, it suÆes to verify that given X;X ′ ∈ Orb(KL; G),X 6∼ X ′ ⇒ X ×X ′ ∈ Orb(KL; X ×X ′): (9)To this end, we note that the group (KL)X∪X′ is the subdiret produtof the transitive onstituents M = (KL)X and M ′ = (KL)X′ . Therefore,



166 I. PONOMARENKO, A. VASIL'EVthere exist uniquely determined normal subgroups H and H ′ of M andM ′, respetively, and a group isomorphism ' :M=H →M ′=H ′ suh that(KL)X∪X′ = {(k; k′) ∈M ×M ′ : '(k) = k′}: (10)Now if X 6∼ X ′, then at least one of the epimorphisms (7) is not anisomorphism. Therefore, one of the groups H and H ′, say H , is nontriv-ial. It follows that H being a normal subgroup of the primitive group M(Lemma 4.3) ats transitively on X . By (10), this implies that (KL)X∪X′ontains the subgroup H × 1. Thus,(x; x′)H×1 = X × {x′}for all x′ ∈ X ′ and hene the group (KL)X∪X′ is transitive on the setX ×X ′. �

§5. The normalizer of So(G)∗ in Sym(G)The goal of this setion is to prove the following theorem that shows(as we will see) that the ase U = G is very similar to the ase where thegroup K is primitive.Theorem 5.1. Let G be an almost simple group, S = So(G), and N =NSym(G)(S∗). Then N = D(2; G): (11)Clearly, N is a proper subgroup of Sym(G) and ondition (6) is satis�edfor K = N . In partiular, the minimal blok of N oinides with S.Lemma 5.2. In the above notation, CSym(G)(S∗) = 1.Proof. Set C = CSym(G)(S∗). Then obviously, C = CN (S∗). Sine N istransitive and C is normal in N , the orbits of C form an imprimitivitysystem of N . Denote by X the blok of this system that ontains theidentity of G. We may assume that the blok X is not a singleton, forotherwise C = 1 and we are done. Then S ⊆ X , beause S is the minimalN -blok. Sine C is transitive on X and S is a blok of CX , there exists ∈ C suh that S = S and S 6= 1. However, the latter is impossible,beause S entralizes the subgroups Sleft and Sright. �Proof of Theorem 5.1. By Lemma 5.2, there exists a monomorphismfrom N = NSym(G)(S∗) to Aut(S∗). Sine the latter is isomorphi to



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 167the wreath produt W = Aut(S) ≀ Sym(2), this monomorphism induesa monomorphism ' : N →W:Clearly, ' an be hosen so that the subgroups Sleft and Sright of thegroup N go to the subgroup Inn(S)× 1 of the group A = Aut(S)× 1 andto the subgroup 1× Inn(S) of the group B = 1×Aut(S), respetively. SetW1 = im(') and W0 = im(') ∩ (A ×B):Then sine the index of A× B in W equals 2 and W1 is not ontained inA×B, we onlude that
|W1 :W0| = 2: (12)Note that the entralizer of the group '(Sright) 6 B in the group W0is ontained in A, beause the group B is almost simple with the sole'(Sright). Sine the group Gleft 6 N entralizes Sright, this proves the �rstof the two following inlusions (the seond one an be proved in a similarway): '(Gleft) 6 A and '(Gright) 6 B:The �rst inlusion implies that '(Gleft) 6 W0 ∩ A. The reverse inlusionfollows from the fat that the entralizer of Gleft in Sym(G) is equal toGright [16, Proposition 4.3℄. Thus, we obtain the equalities:'(Gleft) =W0 ∩ A and '(Gright) =W0 ∩B: (13)This immediately implies that '(Gleft) and '(Gright) are normal in W0.This group has trivial enter and hene an be identi�ed with a sub-group of the diret produt of the groups A′ = Aut('(Gleft)) and B′ =Aut('(Gright)) (isomorphi to Aut(G)). It follows thatW 0 =W0='(G∗) 6 A′ ×B′;where A′ = A′='(Gleft) and B′ = B′='(Gright). Moreover in view of for-mulas (13), the groupW 0 intersets eah of the groups A′ and B′ trivially.Therefore,

|W 0| = |Aut(G)=G|: (14)Now, the inlusion '(Aut(G)) 6 W0 and formula (14) show that W0 ='(Hol(G)). Formula (12) yields that |N : Hol(G)| = 2. Sine the permuta-tion � : g 7→ g−1 lies in N , formula (11) holds. �
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§6. Symmetri and normal types of the automorphismgroupLet G be an almost simple group, K be a 2-losed group satisfyingondition (6), and U=L the prinipal K-setion of G. Then the group Lis almost simple (Lemma 4.2) and KL is primitive (Lemma 4.3). We saythat K is of symmetri type if either KL > Alt(L), or G = Sym(5) andK = Sp8(2) is 2-transitive; if L = So(L) and KL 6 D(2; L), the group Kis said to be of normal type. The following statement is a straightforwardonsequene of Lemma 3.2 and the above de�nitions.Proposition 6.1. Let G be an almost simple group, and let K 6 Sym(G)be a 2-losed group ontaining G∗. Then K is of symmetri or normaltype.Let us study a group of symmetri and normal types in detail. As thefollowing statement shows, any group of symmetri type is, in fat, thewreath produt in imprimitive ation. In what follows, U and L are thepartitions assoiated with the prinipal K-setion of G.Theorem 6.2. Let K be a group of symmetri type. Then

L = U and (KL)L = Sym(L):In partiular, K is permutation isomorphi to the wreath produt Sym(L) ≀KL in imprimitive ation.Proof. Let X;X ′ ∈ L and X ∼ X ′. We laim that there exists a bijetionf : X → X ′, for whih sf ∈ Orb(KL; X ×X ′); (15)where sf = {(�; �f) : � ∈ X} is the graph of f . Indeed, onsider the groupM = (KL)X∪X′ . Sine X ∼ X ′, the groupM ats faithfully on X and X ′.As the group K is of symmetri type, eah of these ations is 2-transitive.However, M has a unique faithful 2-transitive representation of degreed = |X |: this is obvious ifM > Alt(d) and follows from the lassi�ation of2-transitive groups if M = Sp8(2) (see, e.g., [3, Table 7.4℄). Consequently,among 2d point stabilizers M� , � ∈ X ∪X ′, there are exatly d distint,and also M� 6=M whenever � and  are distint points in X . Therefore,for every � ∈ X there is the only �′ ∈ X ′ suh thatM� =M�′ =M�;�′ :Thus, the required bijetion f takes � to �′.



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 169To prove that L = U, assume on the ontrary that U ontains a blokX ∈ L other than L. Denote by f : L → X the bijetion de�ned in theabove laim for X = L and X ′ = X . Then by the assumption, the elementf(1), where 1 is the identity of the group G, does not belong to L. Thebinary relation sf is invariant with respet to the group KL > L∗ andhene for all x ∈ L,(x; f(1)x) = (1; f(1))xr = (x; f(x)) = (1; f(1))xl = (x; xf(1));where xr and xl are the permutations of L∗ indued by the right andleft multipliation by x. This implies that the element f(1) ∈ X ⊂ Uentralizes L. However, this is impossible, beause f(1) 6= 1 and the groupU is almost simple.Let us prove the seond equality. The 2-losedness of K implies that KLis 2-losed. Furthermore, in view of the 2-transitivity of the group (KL)Xits the 2-losure equals Sym(X). By Theorem 4.4 and equality L = U, thisimplies thatKL = (KL)(2) = ( ∏X∈L

(KL)X)(2) = ∏X∈L

((KL)X)(2) = ∏X∈L

Sym(X):Thus, (KL)X = Sym(X) for all X ∈ L and we are done. �Theorem 6.2 shows that in the ase of symmetri type, the group KU =Sym(U) is the largest possible. In the normal type ase, the group KU isquite small. More exatly, the following statement holds.Theorem 6.3. Let K be a group of normal type. Then KU 6 D(2; U).Proof. By the hypothesis of the theorem, L = So(L) and KL 6 D(2; L).By Lemma 4.2, the �rst equality implies that L = So(G) and heneL = So(U): (16)The seond inlusion implies that (L∗)X is a harateristi subgroup ofthe group (KL)X for all X ∈ L. By the de�nition of U , this implies that(L∗)U is a harateristi subgroup of the group (KL)U . However, the lattergroup is normal in KU . Thus,(L∗)U E KU :It follows that KU is ontained in the normalizer of (L∗)U in Sym(U).However, this normalizer is ontained in D(2; U) by Theorem 5.1 appliedfor G = U with taking into aount equality (16). �



170 I. PONOMARENKO, A. VASIL'EVProof of Theorem 4.1. Let U=L be the prinipal K-setion of thegroup G. By Proposition 6.1, the group K is of symmetri or normal type.Suppose �rst that U = G. Then statement (i) of Theorem 4.1 holds. In-deed, ifK is of symmetri type, then K = Sym(G) (Theorem 6.2), whereasif K is of normal type, then K 6 D(2; G) (Theorem 6.3) and the requiredstatement follows from the fat that G∗ is normal in D(2; G). Finally, ifU < G, then statement (ii) of Theorem 4.1 holds by Theorem 4.4. �Proof of Theorem 1.3. First, assume that the group K = Aut(�) is anontrivial generalized wreath produt. Note that S = So(G) is a uniqueproper normal subgroup in G and |G=S| = 2. Therefore the generalizedwreath produt must be a usual one and the group K is permutationisomorphi to the wreath produt M ≀ C2 in imprimitive ation for somegroupM 6 Sym(S). It follows that G\S is an orbit of the point stabilizerK�, where � is the identity of G. Sine X ⊂ G\S is a union of some orbitsof K�, we onlude that X = G \ S, a ontradition.The group K is 2-losed as the automorphism group of a graph. Thenormality of X implies that K satis�es ondition (6) with G = Sym(m)for m > 5. Finally, K is not a nontrivial generalized wreath produt byabove, and K 6= Sym(G), beause the graph � is neither omplete norempty. Thus, by Theorem 4.1, the group G∗ is normal in K andG∗ 6 K 6 D(2; G);hene K = G∗ or K = D(2; G), beause |D(2; G) : G∗| = 2. However,sine X is a normal subset of a symmetri group, we have X = X−1,so the graph � has the automorphism � : g 7→ g−1, g ∈ G. Thus, K =
〈G∗; �〉 = D(2; G), as required. �

§7. Finding the prinipal setion in a Cayley sheme7.1. The main result. Let X be a entral Cayley sheme over an almostsimple group G. Then the group K = Aut(X ) is 2-losed and satis�es on-dition (6). Therefore,K is of symmetri or normal type by Proposition 6.1.In this setion, we develop an algorithmi tehnique to determine (with noK in hand) whih of these ases ours for the sheme X . The main resulthere is Theorem 7.1 below whih immediately follows from Corollaries 7.3and 7.5 proved in Subsetions 7.2 and 7.3, respetively.



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 171Theorem 7.1. Given a entral Cayley sheme X over an almost simplegroup G of order n, one an determine the type of K = Aut(X ) and �ndthe prinipal K-setion of G in time poly(n).7.2. The ase of symmetri type. For a group H 6 G, denote by Hand WL(X ;H) the partition of G into the right H-osets and the Cayleysheme WL(X ; T ) with T = {1X : X ∈ H}, respetively. Reall that TXis the trivial oherent on�guration on X . Denote by H0 the set of groupsH suh that So(G) 6 H 6 G andWL(X ;H) = ⊞X∈H
TX : (17)Lemma 7.2. In the above notation, the following statements hold:(i) if the group K is of symmetri type, then the set H0 is nonemptyand the minimal blok L of K is the largest (by inlusion) elementof H0,(ii) K is of symmetri type if and only if H0 ontains S = So(G).Proof. To prove statement (i), assume that the group K is of symmetritype. Set U and L to be the partitions assoiated with the prinipal K-setion of G. Then by Theorem 6.2, we have L = U and Inv(KX) = TXfor all X ∈ L. By Theorem 4.4, this implies thatInv(KL) = ⊞X∈L
TX : (18)The minimality of the diret sum implies that WL(X ;L) = Inv(KL), whihproves formula (17) for H = L and H = L, in partiular, H0 is nonempty.If L is not the largest element of H0, then there exists H ∈ H0 suh thatH \ L 6= ∅. It follows thatK > Sym(H)× idG\H ;where idG\H is the identity subgroup of Sym(G \ H). Hene there is apermutation k ∈ K that moves the identity of G to H \ L and leaves allnon-identity elements of L �xed. But this is impossible, beause L is aK-blok.To prove the neessity for statement (ii), let K be of symmetri type.Then formula (18) holds. Therefore, if S is the partition of G into theosets of S, then S re�nes L and heneWL(X ;S) = WL(WL(X ;L);S) = ⊞X∈L
WL(TX ;SX) = ⊞X∈S

TX ;



172 I. PONOMARENKO, A. VASIL'EVwhere SX is the partition of X indued by S. Consequently, S ∈ H0.Conversely, assume on the ontrary that K is of normal type. Then KU 6D(2; U) by Theorem 6.3. Therefore KS 6 Hol(S). On the other hand,sine S ∈ H0, we have Sym(S) = KS 6 Hol(S), a ontradition. �From statement (i) of Lemma 3.1, it follows that the number of groupsH 6 G ontaining So(G) is at most logn, where n is the order of G; inpartiular, |H0| 6 logn. Moreover, for eah H , the oherent on�gurationWL(X ;H) an be eÆiently found by the WL-algorithm and ondition (17)an be veri�ed by heking at most |H|2 6 n2 basis relations. Therefore,the set H0 an be found in time poly(n). By statement (ii) of Lemma 7.2,this is enough to test eÆiently whether or notK is of symmetri type, andif it so, then to �nd the minimal blok L = U of the groupK (statement (i)of the same lemma).Corollary 7.3. Given a entral Cayley sheme X over an almost simplegroup G of order n, one an test in time poly(n) whether the group Aut(X )is of symmetri type, and (if so) �nd the prinipal setion of Aut(X ) withinthe same time.7.3. The ase of normal type. In view of Corollary 7.3 and Proposi-tion 6.1, one an eÆiently test whether the automorphism group K of aentral Cayley sheme X is of normal type. Denote by H1 the set of allgroups H suh that So(G) 6 H E G andH∗ × idG\H 6 K; (19)where the left-hand side denotes the subgroup of Sym(G) that leaves eahpoint of G \H �xed and oinides with H∗ on H .Lemma 7.4. Suppose that the group K is of normal type and U=L is theprinipal K-setion of G. Then L = So(G), the set H1 is nonempty, andU is the smallest element of H1.Proof. Lemma 3.2 yields that L = So(G). From Theorem 4.4, it is easilyfollows that U ∈ H1. Assume on the ontrary that the group U is not thesmallest in H1. Then there is a group V ∈ H1 suh that L 6 U ∩ V < U .Take a non-identity element w ∈ U∩V and denote by kU (respetively, kV )the permutation on G ating on U (respetively, V ) by right multipliationby w and ating trivially outside U (respetively, V ). Then kU ; kV ∈ K,the permutation k = kUk−1V



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 173is not identity on U , and Uk = U and kU∩V = idU∩V : Clearly, kU be-longs to KU , and hene to D(2; U) beause K is of normal type. However,as is easily seen, the identity element is the only element of D(2; U) thatleaves all points of L 6 U ∩ V �xed, a ontradition. �Again from statement (i) of Lemma 3.1 it follows that the number ofgroups H suh that So(G) 6 H E G is at most logn, and so is |H1|. Forevery H and eah k ∈ H∗ × idG\H one an eÆiently test whether k is anautomorphism of X . Thus, Lemma 7.4 immediately implies the followingstatement.Corollary 7.5. Given a entral Cayley sheme X over an almost simplegroup G of order n, one an test in time poly(n) whether the group Aut(X )is of normal type, and (if so) �nd the prinipal setion of Aut(X ) withinthe same time.
§8. A majorant for the oset of isomorphismsThroughout this setion, we assume that X is a entral Cayley shemeover an almost simple group G and K = Aut(X ). The prinipal K-setionof G and the assoiated partitions are denoted by U=L and U and L,respetively. The equivalene relations orresponding to the partitions Uand L, are denoted by eU and eL. Let ' be an algebrai isomorphism from

X onto a Cayley sheme X ′ over an almost simple group G′. Assume that'(eU) = eU′ and '(eL) = eL′ ; (20)where in what follows, the group K ′, the prinipal setion U ′=L′, the par-titions U′ and L′, and the equivalene relations eU′ and eL′ are de�ned forthe sheme X ′ in a similar way.Lemma 8.1. In the above notation, |U| = |U′| and |L| = |L′|. Moreover,the groups K and K ′ either both of symmetri type, or both of normal type.Proof. The �rst statement follows from assumption (20). To prove theseond one, we note that by Lemma 7.2 the group K is of symmetri typeif and only if the sheme X is isomorphi to the wreath produt TU ≀ Y,where Y is the quotient of X modulo the equivalene relation eL. Sinealgebrai isomorphisms respet wreath produts, we are done. �For all Y ∈ U and Y ′ ∈ U′, the algebrai isomorphism ' indues analgebrai isomorphism 'Y ;Y ′ : XY → X ′Y ′ ;



174 I. PONOMARENKO, A. VASIL'EVthat takes a relation sY to the relation s′Y ′ for all basis relations s ⊆ eU ofthe sheme X , where s′ = '(s). It follows that if X ′ = X and ' is trivial,then 'Y;Y is trivial for all Y ∈ U.For eah Y ∈ U, setDY = {Sym(Y ) if K is of symmetri type;D(2; UY ) ∩ Aut(XY ) otherwise;where, for brevity, UY denotes the restrition of the permutation groupUright to the set Y . Note that the form of the group DY does not dependon Y ∈ U, and DY ontains KY for all Y (Theorems 6.2 and 6.3). Fur-thermore, if Z ∈ U, then any permutation of G∗ taking Y to Z indues apermutation isomorphism from the group DY onto the group DZ .Lemma 8.2. (DY )f = DY f for all Y ∈ U and all f ∈ Iso(X ;X ′; ').Proof. Without loss of generality, we may assume that both K and K ′are of normal types (Lemma 8.1). Let Y ∈ U and f ∈ Iso(X ;X ′; '). Thenin view of (20), Aut(XY )f = Aut(X ′Y ′); (21)where Y ′ = Y f . Thus, it suÆes to verify that D(2; V )f = D(2; V ′), whereV = UY and V ′ = (U ′)Y ′ . However, by the de�nition of U, we have V = Ugfor suitable g ∈ G and D(2; V ) = D(2; Ugr);where gr : U → V is the bijetion indued by right multipliation by g. Asimilar statement holds for V ′, U ′, and a suitable bijetion (g′)r. Therefore,without loss of generality, we may assume that Y = U and Y ′ = U ′.Reall that U is an almost simple group with So(U) = L, and alsoU∗ 6 KU . Therefore, So(KU ) = L∗. The same is true with K, U , and L,replaed by K ′, U ′, and L′, respetively. Taking into aount that f takesKU to (K ′)U ′ , we onlude that(L∗)f = (L′)∗:This implies that f takes the normalizer of the group L∗ 6 Sym(U) to thenormalizer of the group (L′)∗ 6 Sym(U ′). However by Theorem 5.1, thesenormalizers are equal to D(2; U) and D(2; U ′). Thus, f takes the �rst ofthese groups to the seond, and we are done. �



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 175De�nition 8.3. Denote by C'(X ;X ′) the set of all bijetions f : G→ G′taking U to U′ and satisfying the following onditions for every Y ∈ U :fY ∈ Iso(XY ;X ′Y f ; 'Y ;Y f ) and (DY )f = DY f : (22)Let us �nd the expliit form of the set C = C'(X ;X ′) when X = X ′and ' = id. In this ase, C is obviously a subgroup of Sym(G) preservingthe partition U. Condition (22) means that fY belongs to the intersetionof Aut(XY ) and the normalizer of DY in Sym(Y ) for all f ∈ CU. Thisproves the �rst of the equalities
∏Y ∈U

DY = CU and CU = Sym(U);the seond equality follows from the fat that any g ∈ G indues thepermutation isomorphism from DY onto DY g that indues 'Y ;Y g . Thus,the group C is permutation isomorphi to the wreath produt DU ≀Sym(U)(in imprimitive ation). For arbitrary X ′ and ', an for eah f ∈ C'(X ;X ′),we obviously have C'(X ;X ′) = Cid(X ;X )f: (23)Thus if the set C'(X ;X ′) is not empty, then it an be given by a gen-erator set of the group C = Cid(X ;X ) and the bijetion f . In the senseof the following statement, the set C'(X ;X ′) an be alled a majorant ofIso(X ;X ′; ').Theorem 8.4. Iso(X ;X ′; ') ⊆ C'(X ;X ′). Moreover, the set C'(X ;X ′)an be found in time poly(n).Proof. The �rst statement immediately follows from Lemma 8.2. To provethe seond one, it suÆes to �nd the setC0 = {f0 ∈ Iso (XU ;X ′U ′ ) : (DU )f0 = DU ′};where  = 'U ;U ′ . Indeed, if this set is empty, then obviously so is themajorant C'(X ;X ′). On the other hand, if f0 ∈ C0, then to onstrut themajorant given by formula (23) it suÆes to �nd DU and the bijetion fde�ned as follows: fY = (gY )−1f0g′Y ′ ; Y ∈ U;where Y 7→ Y ′ is an arbitrary bijetion from U onto U′ taking U to U ′,and the bijetions gY : U → Y and g′Y ′ : U ′ → Y ′ are indued by the rightmultipliations by the elements g ∈ G and g′ ∈ G′ suh that Y = Ug andY ′ = U ′g′.



176 I. PONOMARENKO, A. VASIL'EVTo �nd the sets DU and C0, assume �rst that K is of symmetri type(reall that this an eÆiently heked by Theorem 7.1). Then the oherenton�gurations XU and X ′U ′ are trivial. Thus, DU = Sym(U) and for anybijetion f0 : U → U ′, C0 = Sym(U)f0:Let nowK be of normal type. Then DU 6 D(2; U) and DU ′ 6 D(2; U ′).In partiular, DU = D(2; U) ∩ Aut(XU ) an be found in time poly(n).Furthermore, every element f0 ∈ C0 takes DU to DU ′ (Lemma 8.2), andindues a permutation group isomorphism from Uright onto a groupV ′ ∈ Reg(DU ′ ; U ′):By statement (ii) of Lemma 3.1, the set Reg(DU ′ ; U ′) is of ardinality atmost |U ′| 6 n for some onstant  > 0, and all its elements an be foundby exhaustive searh of all 3-generated subgroups of the group DU ′ . Sinefor a �xed V ′, there are at most |Aut(V ′)| 6 n distint elements f0 ∈ C0taking Uright to V ′, one an test in time poly(n), whether the set C0 is notempty and (if so) �nd it in the formC0 = DUf0with arbitrary f0 ∈ C0. �

§9. Proof of Theorem 1.19.1. Redution to Cayley shemes. Let � be a entral Cayley graphover an almost simple groupG, {ei : i ∈ I} the set of olor lasses of �, andK = Aut(�). The prinipal K-setion of G and the assoiated partitionsare denoted by U=L and U and L, respetively. Set
X = WL(�; {eU; eL});where eU and eL are the equivalene relations orresponding to the parti-tions U and L. For other entral Cayley graphs �′, we use similar notation,e.g., G′ and K ′ denote the underlying group and the automorphism groupof �′, respetively.Lemma 9.1. Given entral Cayley graphs � and �′ over almost simplegroups G and G′, respetively, one an onstrut in time poly(n) the Cayleyshemes X and X ′ over the same underlying groups and hek whetherthere exists a (unique) algebrai isomorphism ' : X → X ′ suh that'(ei) = e′i for all i ∈ I and '(eU) = eU′ ; '(eL) = eL′ ; (24)



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 177and (if so) �nd ' within the same time. Moreover, K = Aut(X ), K ′ =Aut(X ′), and also Iso(�;�′) = Iso(X ;X ′; '): (25)Proof. By Theorem 7.1, the prinipal setions and hene the equivalenerelations eU , eL and eU′ , eL′ an be found in time poly(n). Therefore the�rst part of the statement immediately follows from Theorem 2.1. To provethe seond one, we observe that every f ∈ Iso(�;�′) takes the group Kto the group K ′. By the de�nition of the minimal blok (Subsetion 4.2)this implies that f takes eL to eL′ and hene takes eU to eU′ . Thus, theisomorphism f indues '. This means that f ∈ Iso(X ;X ′; ') and henethe left-hand side of (25) is ontained in the right-hand side. Sine thereverse inlusion is obvious, equality (25) is ompletely proved. Next, if�′ = �, then ' = id and equality (25) shows that K = Aut(X ). Similarly,K ′ = Aut(X ′). �9.2. Determining the oset of isomorphisms. Denote by � the a-nonial epimorphism from G onto G = G=L = L. Then � indues a maptaking the set S of basis relations of the Cayley sheme X over G to the set
S of basis relations of the quotient Cayley sheme X over G. In partiular,� takes S∪ to S∪. Set � to be the Cayley graph over G with olor lasses�(ei), i ∈ I . For any set C of the bijetions f : G → G′ taking eU to eU′and eL to eL′ , we denote by C the set of bijetions f : G → G′ induedby f ∈ C.Theorem 9.2. Let � and �′ be entral Cayley graphs over almost simplegroups G and G′, respetively. Assume that the algebrai isomorphism 'from Theorem 9.1 does exist. ThenIso(�;�′) = �−1(C ∩B); (26)where B = Iso(�;�′), C = C'(X ;X ′), and the right-hand side onsists ofall f ∈ C for whih f ∈ B.Proof. To prove that the left-hand side of (26) is ontained in the right-hand side, let f ∈ Iso(�;�′). Then the uniqueness of the prinipal setionsimplies that (eU)f = eU′ and (eL)f = eL′ :Therefore, the isomorphism f indues the algebrai isomorphism '. ByTheorem 8.4, this implies that f ∈ C. Consequently, the indued bijetion



178 I. PONOMARENKO, A. VASIL'EVf : G → G′ belongs to the set C . Sine obviously f ∈ B, we onlude thatf belongs to the right-hand side of (26), as required.Conversely, let f belong to the right-hand side of (26). By formula (25)in Lemma 9.1, it suÆes to verify that f indues '. To this end, let s ∈ S.Assume �rst that s ⊆ eU. Then s equals the union of sY , Y ∈ U. Thereforesine f ∈ C, onditions (22) are satis�ed for all Y and henesf = ( ⋃Y ∈U

sY )f = ⋃Y ∈U

(sY )f = ⋃Y ∈U

'Y;Y f (sY ) = '(s):Now assume that s is outside the equivalene relation eU. Let us provethat s = ⋃X;Y ∈L;(X;Y )∈sX × Y and sf = ⋃X′;Y ′∈L
′;(X′;Y ′)∈s′X ′ × Y ′; (27)where s = �(s) and s′ = �′(sf ). Sine (eU)f = eU′ , the relation sf isoutside the equivalene relation eU′ . Therefore, it suÆes to verify the�rst equality of (27); denote the right-hand side of this equality by t.Clearly, s ⊆ t. Conversely, let (X;Y ) ∈ t for some (X;Y ) ∈ s. Sine sis outside eU, we onlude that X × Y is a basis relation of the oherenton�guration Inv(KL) (Theorem 4.4). Sine Inv(KL) > X , it follows thatthis basis relation is ontained in a basis relation of X whih equals s,beause (X;Y ) ∈ s. Therefore, t ⊆ s. This ompletes the proof of (27)implying s = �−1(s) and sf = (�′)−1(s′).On the other hand, the graph isomorphism f ∈ B ∩C indues an alge-brai isomorphism ' : X → X ′ that oinides with the restrition of thealgebrai isomorphism ' modulo eL. Thus,'(s) = '(�−1(s)) = (�′)−1('(s)) = (�′)−1((s)f ) = (�′)−1(s′) = sf ;as required. �9.3. The algorithm. In the algorithm below, the input is given by twoentral Cayley graphs � and �′ over almost simple groupsG andG′, respe-tively. It is assumed that these groups are presented by the multipliationtables. The output onsists of the set Iso(�;�′), whih is either empty orequals the set Aut(�)f for some f ∈ Iso(�;�′). Here, the group Aut(�) ispresented by a generating set.



TESTING ISOMORPHISM OF CENTRAL CAYLEY GRAPHS 179Central Cayley graph isomorphism testStep 1. Find the prinipal setions of the automorphism groups of the(entral Cayley) shemes WL(�) and WL(�′) (Theorem 7.1); denote by U,
L and U′, L′ the assoiated partitions of G and G′, respetively.Step 2. Find the shemes X = WL(�; {eU; eL}) and X ′ = WL(�′; {eU′ ,eL′}) and the algebrai isomorphism ' satisfying ondition (24); if ' doesnot exist, output Iso(�;�′) = ∅.Step 3. Find the set C = C'(X ;X ′) (Theorem 8.4).Step 4. Using the graph isomorphism and oset intersetion algorithmsfrom [1℄, �nd the set B = Iso(�;�′) and then the set B′ = B ∩ C.Step 5. Output Iso(�;�′) = �−1(B′). �To omplete the proof of Theorem 1.1, we show that the above algo-rithm orretly �nds the set Iso(�;�′) in time poly(n). Note that everygraph isomorphism f ∈ Iso(�;�′) indues an algebrai isomorphism ' sat-isfying ondition (24). Therefore, the output at Step 2 is orret. Thus, theorretness of the output at Step 5 and hene of the algorithm immediatelyfollows from Theorem 9.2.To estimate the running time, we note that all the steps exept for Step 4run in polynomial time (Theorem 7.1, Lemma 9.1, and Theorem 8.4). Fur-thermore, the graph isomorphism and oset intersetion algorithms from[1℄ are applied at Step 4 to graphs with m = |L| verties and to the osetsontained in Sym(m), respetively. Eah of these algorithms runs in timeat most exp((logm)√m). Sine m 6 logn, the omplexity of this stepdoes not exeedexp((logm)√m) 6 exp((log logn)(logn)1=2) 6 exp(logn) 6 nfor suÆiently large n and a suitable onstant  > 0. Thus, the runningtime of the algorithm is polynomial in n, as required. �Referenes1. L. Babai, W. Kantor, E. M. Luks, Computational omplexity and the lassi�ationof �nite simple groups, | in: Proeedings of the 24th Ann. Symp. Found. Comput.Si. (1983), 162{171.2. J. Bray, J. Holt, D. Roney-Dougal, The Maximal Subgroups of the Low-DimensionalFinite Classial Groups, Cambridge University Press, Cambridge (2013).3. P. J. Cameron, Permutation Groups, Cambridge University Press (1999).4. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, An ATLASof Finite Groups, Oxford University Press, Oxford (1985).
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