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TESTING ISOMORPHISM OF CENTRAL CAYLEY
GRAPHS OVER ALMOST SIMPLE GROUPS IN
POLYNOMIAL TIME

ABSTRACT. A Cayley graph over a group G is said to be central
if its connection set is a normal subset of G. It is proved that for
any two central Cayley graphs over explicitly given almost simple
groups of order n, the set of all isomorphisms from the first graph
onto the second can be found in time poly(n).

In memory of Sergei Evdokimov

§1. INTRODUCTION

In the present paper, we are interested in a special case of the follow-
ing restriction of the Graph Isomorphism Problem to the class of Cayley
graphs.

Cayley Graph Isomorphism Problem. For two explicitly given fi-
nite groups G and G' and two sets X C G and X' C G, construct the set
Iso(T,IV), where T’ = Cay(G,X) and I" = Cay(G, X’).

Here the input consists of the multiplication tables of G and G’ and the
sets X and X', whereas the output is either empty or given by an element
of the set Iso(I',I") and a generating set of the group Aut(T") (of size poly-
nomial in the order n of the group G). Obviously, the Luks algorithm [12]
solves the Cayley Graph Isomorphism Problem in polynomial time for ev-
ery group GG, whenever the set X is of constant sizes. If G is cyclic, then
the problem with no restriction for X is also solvable in polynomial time
(see [6] and [13]). It should be noted that if G = G’ and G is a so-called CI-
group, then an obvious algorithm solves the Cayley Graph Isomorphism
Problem in time polynomial in | Aut(G)| (for details, see [10]).

The aforementioned special case is formed by the two following condi-
tions imposed on the input graphs and groups. First, we assume that T’
is a central Cayley graph over GG, which means that X is a normal subset
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of G, i.e., X9 = X for every g € G. Second, the group G is assumed to
be almost simple, i.e., the socle of G is a nonabelian simple group. The
same conditions are imposed on the graph IV and group G’. Even in this
rather restrictive case, the problem is still nontrivial; at least the number
of possible input graphs is exponential in n.

Example. Let G = Sym(m) be a symmetric group of degree m. Then the
number N(m) of central colored Cayley graphs over G is equal to 2P(™),
where p(m) is the number of all partitions of the set {1,...m}. Since p(m)
is approximately equal to 2V, the number N (m) is exponential in n = m!.

By technical reasons, it is more convenient to deal with colored Cayley
graphs. Such a graph is given by a partition P of the group G into k > 2
classes Xy, ..., Xr—1 with Xy = {1}, and can be thought as arc-colored
complete graph with vertex set G and the ith color class of arcs coinciding
with the arc set of the Cayley graph Cay(G,X;), i = 0,...,k — 1. We
say that 3 is the Cayley partition of this graph and denote the latter by
Cay(G,P). In what follows, all Cayley graphs are assumed to be colored:
the graph Cay(G, X) is treated as Cay(G,*B) for k =3 and X; = X.

Theorem 1.1. For any two central Cayley graphs T' and T over explicitly
given almost simple groups G and G’ of order n, the set Iso(I',I") can be
found in time poly(n).

Corollary 1.2. The automorphism group of a central Cayley graph over
an explicitly given almost simple group of order n can be found in time

poly(n).

The proof of Theorem 1.1 is a mix of combinatorial and permutation
group techniques. Section 2 provides a relevant background for the com-
binatorial part including coherent configurations and Cayley schemes. In
Section 3, we use a classification of regular almost simple subgroups of
primitive groups [11] to prove (Lemma 3.2) that except for one special
case, if K < Sym(G) is a 2-closed primitive group containing regular al-
most simple subgroup, then

K =Sym(G) or K < D(2,G), (1)

where D(2,G) is the subgroup of Sym(G) generated by the holomorph
of G and the permutation o : g — ¢!, g € G. We extend this result
to non-primitive groups in Sections 4 and 5 by showing that in this case,
either formula (1) holds or K is a nontrivial generalized wreath product
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(Theorems 4.1 and 5.1). We apply this fact in Section 6 to the automor-
phism group K of a central Cayley graph I' over the group G to establish
that

K% =8ym(S) or K°<D(2,8), (2)

where S = Soc(G) is the socle of G and K is the restriction to S of the
setwise stabilizer of S in K. Note that if G is a symmetric group of degree
at least 5, then the group D(2,G) is isomorphic to the group G ! Sym(2).
Thus, as a byproduct of (2), we obtain the following generalization of
the result [9, Theorem 1.1] on the automorphism group of the Cayley
graph Cay(G, X), where G is a symmetric group and X is the set of its
transpositions.

Theorem 1.3. Let G be a symmetric group of degree at least 5, X a proper
normal subset of G\Soc(G), and I' = Cay(G, X). Then Aut(T') = D(2,G).

In Sections 7 and 8, we develop algorithmic tools to find the above
structure of the group K with the help of the related Cayley scheme and
the group GG. The main algorithm providing the proof of Theorem 1.1 is
given in Section 9.

Notation.

The diagonal of the Cartesian product Q x Q is denoted by 1gq.

For s CQx Q, set s* ={(8,a): (a,B) € s}.

ForaceQand sCQOxQ,setas={€Q: (a,f) € s}.

For ACQand s CQ xQ, set sp =sN(AxA).

For a partition & of a set 2 and s C Q x (2, set s¢ to be the relation
consisting of the pairs (A, A’) € € x & such that s meets A x A’

For a set S of binary relations, put SY to be the set of all unions of
relations from S.

The symmetric and alternating groups on 2 are denoted by Sym()
and Alt(Q2), respectively.

For f € Sym(Q) and s C Q x Q, set s/ = {(af,8/): (a,p) € s}.

For a group G and its subgroup L, set Lieg, and Lyighy to be the sub-
groups of Sym(G) induced by left and right multiplications of L, respec-
tively, and L* = LleftLright-

For a group G, set D(2,G) to be the subgroup of Sym(G) generated by
the group Hol(G) = Nsym(g)(Gright) and the permutation o : g +— g L.

For a group K < Sym(G) and a set H C G, the restriction to H of the
setwise stabilizer of H in K is denoted by K%,
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For an imprimitivity system £ of a transitive group K, set K¢ and
K* to be, respectively, the intersection of all K with H € £ and the
permutation group induced by the action of K on £.

For a group G and a permutation group K, set Reg(K, G) to be the set
of all regular subgroups of K that are isomorphic to G.

§2. COHERENT CONFIGURATIONS AND CAYLEY SCHEMES

This section contains well-known basic facts on coherent configurations.
All of them can be found in [7] and papers cited there.

2.1. Main definitions. Let {2 be a finite set and S a partition of Q x .
The pair X = (2, 5) is called a coherent configuration on Q if the following
conditions hold:
(Cl) 1g € SY,
(C2) S* =85,
(C3) given r,s,t € S, the number ¢’ = |ar N 3s*| does not depend on
the choice of the pair (a, 8) € t.

The elements of Q and S, and the numbers ¢!, are called the points and
basis relations, and the intersection numbers of X, respectively. The num-
bers | and |S| are called the degree and the rank of X. The coherent
configuration X is said to be homogeneous if 1o € S.

Denote by ® = ®(X) the set of A C Q such that 15 € S. The elements
of ® are called the fibers of X. In view of condition (C1), the set Q2 is the
disjoint union of all of them. Moreover, for each s € S, there exist uniquely
determined fibers A and A such that s C A x A. Note that the coherent
configuration X" is homogeneous if and only if |®| = 1.

Let e € SY be an equivalence relation and & the set of its classes. Given
A € € denote by Sa the set of all nonempty relations sp with s € S. Then
the pair

Xa = (A, S40)
is a coherent configuration called the restriction of X to A. This enables to
define the restriction of X to a set A € ®": the corresponding equivalence
relation is equal to the union of A x A, where A runs over the fibers con-
tained in A. Another coherent configuration associated with e is obtained
as follows. Denote by S¢ the set of all nonempty relations s¢, s € S. Then

X@ = (QE, S@)

is a coherent configuration called the quotient of X modulo e.



158 I. PONOMARENKO, A. VASIL’EV

2.2. Combinatorial and algebraic isomorphisms. A bijection f :
) — @ is called the (combinatorial) isomorphism from X onto a coherent
configuration X’ = (€', 8’) if the set S’ contains the relation s/ for each
s € S. The set of all isomorphisms f is denoted by Iso(X, X”). The group
of all isomorphisms of X to itself contains a normal subgroup

Aut(X) = {f €Sym(Q): s/ =5, s€ S}

called the automorphism group of X. Conversely, let G < Sym(f2) be a
permutation group, and let S be the set of orbits of the component-wise
action of G on 2 x 2. Then the pair X = (2, .5) is a coherent configuration;
we say that X is associated with G and denote it by Inv(G).

According to Wielandt [17], a permutation group G on (Q is said to be
2-closed if it is equal to its 2-closure

G? = Aut(Inv(@)),

or, equivalently, if G is an automorphism group of a family of binary rela-
tions on 2 (such a family can always be chosen as the set of basis relations
of a coherent configuration on ). If G is 2-closed and £ is an imprimitivity
system of G, then the group G is 2-closed. However, the group G* is not
always 2-closed.

A bijection ¢ : S — S, r— 71
from X onto X’ if

', is called an algebraic isomorphism

co=d,, r,s,t€S. (3)
In this case, X and X’ are said to be algebraically isomorphic. Each isomor-
phism f from X onto &’ induces an algebraic isomorphism ¢y : 7 +— 7/
between these configurations. The set of all isomorphisms inducing the
algebraic isomorphism ¢ is denoted by Iso(X, X”, ). In particular,

Iso(X, X,ids) = Aut(X), (4)

where idg is the identity mapping on S.

An algebraic isomorphism ¢ induces a bijection from S“ onto (S’)":
the union » U s U - - - of basis relations of X is taken to ' Us’ U---. This
bijection is also denoted by . It preserves the equivalence relations e € S“;
moreover, the equivalence relations e and p(e) have the same number of
classes as well as the same multiset of their sizes. In this case, if ¢ and
¢ are the sets of classes of e and p(e), respectively, and A € &, then ¢
induces the algebraic isomorphisms

pa Xy — Xar, s p(s)ar and ge : Xe — Xgr, se — @(8)er
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for a suitable A’ € ¢,

2.3. Direct sum and wreath product. Let X = (©,S5) and X’ =
(v, S’) be coherent configurations. Denote by Q U Q' the disjoint union
of Q and ', and by S H S’ the union of the set S LU S” and the set of all
relations A x A’ and A’ x A with A € ®(X) and A’ € &(X’). Then the
pair
XBXY =(QUQ,SES)

is a coherent configuration called the direct sum of X and X’. The auto-
morphism group of this configuration equals the direct product Aut(X) x
Aut(X') acting on the set QU Q. Furthermore, if ¢ is an algebraic isomor-
phism from XBHX’ to another coherent configuration, then the latter is also
the direct sum Y B )’ and ¢ induces algebraic isomorphisms X — ) and
X' — )’ coinciding with the restrictions of ¢ on 2 and 2, respectively.

Let X be a homogeneous coherent configuration, e € S an equivalence
relation, and € the set of classes of e. We say that X is the wreath product
with respect to e if for each s € S such that s Z e,

s = U A x A.
(AA)Ese

In what follows, we always assume that the classes of e can be identified
with the help of a family of the isomorphisms fa A : ¥a — XA, A, A € €,
such that

(SA)fA’A = SA, ses. (5)

In this case, X is isomorphic to the usual wreath product Xa1X¢ for all A €
¢ (see [15, p.45]). The automorphism group of this coherent configuration
is permutation isomorphic to the wreath product Aut(Xa) ! Aut(Xe) in
imprimitive action.

Furthermore, if ¢ is an algebraic isomorphism from the wreath product
X with respect to e to another coherent configuration, then the latter
is also the wreath product X’ with respect to ¢/ = ¢(e) and ¢ induces
algebraic isomorphisms X, — XA, and Xy — AXp coinciding with the
restrictions of ¢ on A and €, respectively, where ¢’ is the set of classes
of ¢/ and A’ € &',

2.4. Cayley schemes. A coherent configuration X = (12, 5) is called the
Cayley scheme over a group G if

Q=G and Grigne < Aut(X).
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In this case, X is homogeneous and each basis relation s is the set of
arcs of the Cayley graph Cay(G, X), where X is the neighborhood of the
identity of GG in the relation s. In particular, X can be treated as a color
graph Cay(G,8), where the classes of the Cayley partition 3 are the
neighborhoods of the identity of G in the basis relations of X.

The class of Cayley schemes is closed with respect to taking restrictions
and quotients. Namely, if X is a Cayley scheme over a group G and e € SV
is an equivalence relation, then the class H of e containing the identity
of G is a subgroup of G. Moreover, the set & of classes of e coincides with
the right H-cosets of G. It follows that

XH = Cay(H, @H) and X@ = Cay(G/H, QEG/H),
with
¢p={Xe¢: XCH} and €gpy={r(X): X € ¢},

where in the latter case, H is a normal subgroup of G and 7 : G — G/H
is the canonical epimorphism.

Assume that the Cayley scheme X is the wreath product with respect
to an equivalence relation e € SY. Then for any two classes A,A € &,
there exists a permutation f € Grighy taking A to A; set fao,a to be the
restriction of f to A. Since all these f are automorphisms of X', the family
{fa,a}a,ace satisfies conditions (5).

The Cayley scheme X is said to be central if Gleg, < Aut(X) which is by
definition of a Cayley scheme is equivalent to G* < Aut(X). One can see
that X is central if and only if the colored Cayley graph associated with
X is central.

2.5. Partial order and the WL-algorithm. There is a natural par-
tial order < on the set of all coherent configurations on the same set €.
Namely, given two coherent configurations X = (Q2,S) and X’ = (Q,5"),
we set
X <X & SYcC(9)".

The minimal and maximal elements with respect to this order are, re-
spectively, the trivial and discrete coherent configurations. The first one is
a unique coherent configuration 7 with at most two basis relations: 1q
and its complement to Q x Q (if  consists of at least two points). Every
basis relation of the discrete configuration is a singleton. With respect to
this order, the direct sum X B X’ is the minimal coherent configuration
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on Q LY, the restrictions of which to Q and Q' are equal to X’ and X",
respectively.

One can prove that given a set T C 2% there exists a unique minimal
coherent configuration X’ such that every relation of T is the union of some
basis relations of X’. This coherent configuration is called the coherent
closure of T and can be constructed by the well-known Weisfeiler—Leman
algorithm (WL-algorithm) [15, Section B] in time polynomial in sizes of T
and 2. To stress this fact, the coherent closure of T' is denoted by WL(T).
For a color graph T' with the set S of color classes, we set

WL(T,T) = WL(S U T)

and write WL(T') instead of WL(T',@). It is important to note that the
automorphism group of the coherent configuration WL(T,T) is equal to
the subgroup of Aut(T') leaving each relation of T' fixed (as a set). This
implies that if T is a Cayley graph over G, then the coherent configuration
WL(T) is a Cayley scheme over G. Since any coherent configuration X’ can
be considered as a color graph, we extend our notation to write WL(X, T").
Concerning the following statement, we refer to [14, Theorem 2.4].

Theorem 2.1. Let S and S’ be m-sets of binary relations on an n-
element set. Then given a bijection ¢ : S — §’', one can check in time
mn©WY) whether or not there exists an algebraic isomorphism ¢ : WL(S) —
WL(S’) such that ¢|s =1p. Moreover, if ¢ does exist, then it can be found
within the same time.

§3. ALMOST SIMPLE GROUPS

In this section, we collect several known facts on finite almost simple
groups and deduce some auxiliary results to be used throughout the paper.

Lemma 3.1. Let G be an almost simple group of order n. Then
(i) |G/L| < logn, where L = Soc(G),
(ii) |Reg(K,G)| = n°WM for every K < Sym(G) containing G as a
normal regular subgroup.

Proof. From the description of the automorphism groups of simple groups
(see, e.g., [4, Introduction]), it follows that | Aut(L)/L| < log|L|. There-
fore, statement (i) is a consequence of the inclusions L < G < Aut(G) <
Aut(L). The inclusions also imply that | Aut(G)| < nlogn. Since the cen-
tralizer of G in Sym(G) is of order n [16, Exercise 4.5’], we have

K| < [Nsym(@)(@)] < |Csym(e) (G)] - | Aut(G)| < n* logn.
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On the other hand, the group G is 3-generated [5]. Thus, the number of
regular subgroups of K isomorphic to G is at most (%) and statement (ii)
follows. U

In the following statement, we use the classification of regular almost
simple subgroups of a primitive group [11, Theorem 1.4].

Lemma 3.2. Let G be an almost simple group and G* < K < Sym(G).
Suppose that K is primitive. Then one of the following holds:
() K > Alt(@),
(ii) G = Soc(G) and K < D(2,G),
(iii) G = Sym(5) and K = Spg(2) is 2-transitive.

Proof. Without loss of generality, we assume that neither K > Alt(G),
nor G = Soc(G) and K < D(2,G). Then by aforementioned classification,
exactly one of the following pairs (G, Soc(K)) occurs:
(a) (Alt(p? — 2), Alt(p? + 1)), where p = 3 (mod 4) is prime,
(b) (Sym(p — 2), Alt(p)) or (Sym(p — 2), Alt(p + 1)), where p > 7 is
prime,
(c) the twelve pairs in the table below.

No. G Soc(K) No. G Soc(K)
1 | Alt(5) | L2(59) 7 | Sym(5) | QF(2)
2 | Alt(7) | Als(11) 8 | Sym(5) | Sps(2)
3| Alt(7) | Alt(12) 9 | L2(16).4 | Sps(4)
4 | Sym(5) | Alt(9) 10 | Lo(16).4 | QF (4)
5 | Sym(5) | Sps(4) 11 | L3(4).2 Mos
6 | Sym(3) | Sps(2) 12 | L3(4)2 | Ma

The assumption G* < K, in particular, implies that |G|? < |K|. By
straightforward check this excludes cases (a) with p > 3, (b) with p > 7,
and cases 11 and 12 from the table. Similarly, the remaining cases in (a)
and (b) as well as cases 1-4, and 9 are impossible because |G|?> must divide
|K|.

In cases 5, 6, 7, and 10 from the table, we check the maximal subgroups
of K and show that none of them includes the subgroup isomorphic to
G*. Indeed, in cases 5 and 6 none of the maximal subgroups contains
Alt(5) x Alt(5) [2, Tables 8.14, 8.28, 8.29]. In case 10, information from [11,
Table 2] shows that K is an extension of QF (4) by a field automorphism.
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This group contains the only (up-to conjugation) maximal subgroup with
section isomorphic to Ly (16) x Ly(16) [2, Table 8.50], but the order of this
subgroup is less than |G*|. In case 7, we make use of [11, Table 2] to see
that K = QF (2). Again this group includes up to conjugation the only
maximal subgroup M with section isomorphic to Alt(5) x Alt(5) (see [2,
Table 8.50]). However, |M| = |G*| but M ~ D(2, Alt(5)) is not isomorphic
to G* ~ Sym(5) x Sym(5).

This leaves us with case 8 of the table where Soc(K) = Spg(2) = K and
we arrive at case (iii) of the conclusion of the lemma. O

§4. THE STRUCTURE OF AUTOMORPHISM GROUPS: THE
PRINCIPAL SECTION

4.1. Preliminaries. Let G be a finite group. The automorphism group of
every central Cayley graph over G contains a subgroup G* (see Notation).
In this section, we establish some basic facts on the permutation groups
K satisfying the following condition:

G* < K < Sym(G), (6)

where G is an almost simple group. We use concept of the generalized
wreath product of permutation groups introduced and studied in [8].
Namely, a transitive group K is the generalized wreath product if it has
two imprimitivity systems £ and 4 such that every block of £ is contained
in a block of Y and

Ke= [] (Ko)™.

Xed

The generalized wreath product is said to be trivial if either £ consists
of singletons or 4 = {2}. When £ = 4, the group K is permutation
isomorphic to the wreath product KX { K* in imprimitive action, where
X el

Theorem 4.1. Let G be an almost simple group, and let K be a 2-closed
group satisfying condition (6). Then one of the following statements holds:
(i) K =Sym(G) or G* 4 K,
(ii) K is a nontrivial generalized wreath product.

The proof of Theorem 4.1 is given in the end of Section 6.
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4.2. The minimal block. Let K satisfy condition (6) and X be the
K-block containing the identity of G. Since K is a permutation group on
G that contains Giignt, the block X is a subgroup of G [16, Theorem 24.12].
Taking into account that Gleg also lies in K, we conclude that X is normal.
Denote by L the intersection of all non-singleton K-blocks containing the
identity of the group G. Then L is a K-block and we call it the minimal
block of K.

Lemma 4.2. Let K satisfy condition (6) and L the minimal block of K.
Then L is normal subgroup of G including Soc(G). In particular, L is an
almost simple group such that Soc(L) = Soc(G).

Proof. According to the above remark, every K-block containing the iden-
tity of G is a normal subgroup of G. If the block is not a singleton, then
this normal subgroup is nontrivial and hence contains Soc(G), because
the group G is almost simple. Thus, the minimal block L being the in-
tersection of nontrivial normal subgroups of G is a normal subgroup and
contains Soc(G). O

Denote by £ the imprimitivity system containing L. Obviously,
Orb(L*,G) = £.

Recall that according to the definition, K¢ is a normal subgroup of K
leaving each block of £ fixed (as a set), and given X € £, the group
(L*)* < Sym(X) is induced by right multiplications of L.

Lemma 4.3. For any X € £, the group (K¢)X is primitive and contains
(L)X

Proof. The normality of L in G implies that the orbits of the action
of L* on G coincide with the L-cosets. It follows that the permutation
group induced by this action is contained in K¢. This proves the second
statement. To prove the first statement, in view of the transitivity of K,
we may assume that X = L.

Assume on the contrary that the group K’ = (K¢)¥ is not primitive.
Then there exists a minimal non-singleton K’-block L’ < L. Taking into
account that K’ < K, we conclude that L” = (L')* is a also K’-block
for every k € K [16, Proposition 6.2]. The imprimitivity system £’ of the
group K’ that contains L’ coincides with the imprimitivity system con-
taining L”, for otherwise by the minimality of L’ and Lemma 4.2 applied
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for the group K’, one can choose the block L” so that
1=L'NnL" 2Soc(L) =Soc(G) 21,

a contradiction. Thus, £ is an imprimitivity system of the group K.
Consequently, L’ is a non-singleton K-block strictly contained in L, which
is impossible by the definition of L. O

4.3. The wreath decomposition of K¢. For every two sets X, X' € £,
we write X ~ X’ if the restriction epimorphisms

(Ko)¥ X — (Ke)* and  (Ko)*X — (Keo)¥ (7)

are isomorphisms. In particular, the groups (K¢)X and (K¢)X' are iso-
morphic. It is easily seen that ~ is an equivalence relation on £. This
relation is K-invariant, because K¢ is a normal subgroup of K. Denote by
U the union of L-cosets belonging to the class of ~ that contains L. Then
U is obviously a K-block and hence is a normal subgroup of G. Thus,

LAU <d@.

The imprimitivity system of the group K that contains the block U is
denoted by iI. We say that U/L is the principal K-section of G, and $ and
£ are the associated partitions.

Theorem 4.4. Let G be an almost simple group, K a 2-closed group
satisfying condition (6), and U, £ are the partitions associated with the
principal K-section. Then the coherent configuration Inv(Kg¢) is the direct
sum of the coherent configurations Inv(K¢)y, where Y € L. In particular,

K2 = H (KE)Ya (8)
Yeu
i.e., K is generalized wreath product.
Proof. The subgroup K¢ of 2-closed group K is 2-closed too (see Sub-
section 2.2). Therefore, equality (8) follows from the first statement of the
theorem, because the automorphism group of the direct sum equals the

direct product of the summands (see Subsection 2.3). To prove the first
statement, it suffices to verify that given X, X’ € Orb(K¢, G),

XAX = XxX €Orb(Kg X xX'). (9)

To this end, we note that the group (KE)XUX' is the subdirect product
of the transitive constituents M = (K¢)¥ and M’ = (K¢)X . Therefore,
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there exist uniquely determined normal subgroups H and H’ of M and
M, respectively, and a group isomorphism ¢ : M/H — M’/H' such that

(Keo)XYX" = {(k,k') € M x M': o(k) = k'}. (10)

Now if X 4 X'  then at least one of the epimorphisms (7) is not an
isomorphism. Therefore, one of the groups H and H', say H, is nontriv-
ial. It follows that H being a normal subgroup of the primitive group M
(Lemma 4.3) acts transitively on X. By (10), this implies that (K¢)¥XYX’
contains the subgroup H x 1. Thus,

(:L‘,:L‘/)HX1 = X x {x/}

for all 2/ € X’ and hence the group (K¢)XYX' is transitive on the set
X x X', O

§5. THE NORMALIZER OF Soc(G)* IN Sym(G)

The goal of this section is to prove the following theorem that shows
(as we will see) that the case U = G is very similar to the case where the
group K is primitive.

Theorem 5.1. Let G be an almost simple group, S = Soc(G), and N =
NSym(G)(S*)' Then
N = D(2,G). (11)

Clearly, N is a proper subgroup of Sym(G) and condition (6) is satisfied
for K = N. In particular, the minimal block of N coincides with S.

Lemma 5.2. In the above notation, Csym(a)(S*) = 1.

Proof. Set C' = Cgypy()(S*). Then obviously, C' = Cn(S*). Since N is
transitive and C' is normal in N, the orbits of C form an imprimitivity
system of N. Denote by X the block of this system that contains the
identity of G. We may assume that the block X is not a singleton, for
otherwise C' = 1 and we are done. Then S C X, because S is the minimal
N-block. Since C is transitive on X and S is a block of CX, there exists
¢ € C such that S¢ = S and ¢° # 1. However, the latter is impossible,
because ¢ centralizes the subgroups Sier; and Srigh- O

Proof of Theorem 5.1. By Lemma 5.2, there exists a monomorphism
from N = Nsym(g)(S*) to Aut(S*). Since the latter is isomorphic to
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the wreath product W = Aut(S) ! Sym(2), this monomorphism induces
a monomorphism

p:N—-W.

Clearly, ¢ can be chosen so that the subgroups Siery and Srighe of the
group N go to the subgroup Inn(S) x 1 of the group A = Aut(S) x 1 and
to the subgroup 1 x Inn(S) of the group B = 1 x Aut(.S), respectively. Set

Wy, =im(p) and Wy =im(p)N (A x B).

Then since the index of A x B in W equals 2 and W} is not contained in
A x B, we conclude that

Wy - Wo| = 2. (12)
Note that the centralizer of the group ¢(Sright) < B in the group Wy
is contained in A, because the group B is almost simple with the socle
©(Srignt). Since the group Giesy < N centralizes Syighe, this proves the first
of the two following inclusions (the second one can be proved in a similar
way):

©(Grert) <A and  p(Ghigny) < B.

The first inclusion implies that ©(Gesr) < Wo N A. The reverse inclusion

follows from the fact that the centralizer of Glegr in Sym(G) is equal to
Ghignt [16, Proposition 4.3]. Thus, we obtain the equalities:

(Glesy) =WoNA  and @(Gright) =WyNB. (13)

This immediately implies that ¢(Gie,) and ¢(Gright) are normal in W.
This group has trivial center and hence can be identified with a sub-
group of the direct product of the groups A’ = Aut(¢(Glery)) and B’ =
Aut(¢(Gright)) (isomorphic to Aut(G)). It follows that

Wo =Wo/o(G*) <A x B,

where 4' = A’ /¢ (Gleri) and B =B /#(Gright)- Moreover in view of for-
mulas (13), the group Wy intersects each of the groups A and B’ trivially.
Therefore,

[Wol = | Aut(G)/G]. (14)
Now, the inclusion ¢(Aut(G)) < Wy and formula (14) show that Wy =

¢(Hol(@)). Formula (12) yields that |N : Hol(G)| = 2. Since the permuta-
tion o : g +— g~ ! lies in N, formula (11) holds. O
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§6. SYMMETRIC AND NORMAL TYPES OF THE AUTOMORPHISM
GROUP

Let G be an almost simple group, K be a 2-closed group satisfying
condition (6), and U/L the principal K-section of G. Then the group L
is almost simple (Lemma 4.2) and K% is primitive (Lemma 4.3). We say
that K is of symmetric type if either K* > Alt(L), or G = Sym(5) and
K = Spg(2) is 2-transitive; if L = Soc(L) and K¥ < D(2, L), the group K
is said to be of normal type. The following statement is a straightforward
consequence of Lemma 3.2 and the above definitions.

Proposition 6.1. Let G be an almost simple group, and let K < Sym(G)
be a 2-closed group containing G*. Then K is of symmetric or normal

type.

Let us study a group of symmetric and normal types in detail. As the
following statement shows, any group of symmetric type is, in fact, the
wreath product in imprimitive action. In what follows, { and £ are the
partitions associated with the principal K-section of G.

Theorem 6.2. Let K be a group of symmetric type. Then
£=4 and (K¢)* =Sym(L).

In particular, K is permutation isomorphic to the wreath product Sym(L)?
K* in imprimitive action.
Proof. Let X, X’ € £ and X ~ X’. We claim that there exists a bijection
f: X — X/, for which

sy € Orb(Ke, X x X'), (15)
where sy = {(a,af) : @ € X} is the graph of f. Indeed, consider the group
M = (Kg¢)XYX' Since X ~ X', the group M acts faithfully on X and X'.
As the group K is of symmetric type, each of these actions is 2-transitive.
However, M has a unique faithful 2-transitive representation of degree
d = | X|: this is obvious if M > Alt(d) and follows from the classification of
2-transitive groups if M = Spg(2) (see, e.g., [3, Table 7.4]). Consequently,
among 2d point stabilizers Mg, § € X U X', there are exactly d distinct,
and also Mg # M., whenever 8 and +y are distinct points in X . Therefore,
for every @ € X there is the only o/ € X’ such that

My =My = Moz7a’-

Thus, the required bijection f takes a to o'.
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To prove that £ = i, assume on the contrary that U contains a block
X € £ other than L. Denote by f : L — X the bijection defined in the
above claim for X = L and X’ = X. Then by the assumption, the element
f(1), where 1 is the identity of the group G, does not belong to L. The
binary relation s; is invariant with respect to the group K¢ > L* and
hence for all x € L,

(z, f()z) = (L, f(1))" = (z, f(z)) = (1, F(1)" = (z,2f(1)),
where z,. and x; are the permutations of L* induced by the right and
left multiplication by x. This implies that the element f(1) € X C U
centralizes L. However, this is impossible, because f(1) # 1 and the group
U is almost simple.

Let us prove the second equality. The 2-closedness of K implies that K¢
is 2-closed. Furthermore, in view of the 2-transitivity of the group (Kg)¥
its the 2-closure equals Sym(X). By Theorem 4.4 and equality £ = 4, this
implies that

Ke=(Ko)® = (J[ (Ke))® = [T (Ke))® = [] Sym(X).
Xes Xes Xes
Thus, (K¢)* = Sym(X) for all X € £ and we are done. O

Theorem 6.2 shows that in the case of symmetric type, the group KV =
Sym(U) is the largest possible. In the normal type case, the group KU is
quite small. More exactly, the following statement holds.

Theorem 6.3. Let K be a group of normal type. Then KY < D(2,U).

Proof. By the hypothesis of the theorem, L = Soc(L) and K* < D(2, L).
By Lemma 4.2, the first equality implies that L = Soc(G) and hence

L = Soc(U). (16)

The second inclusion implies that (L*)X is a characteristic subgroup of
the group (K¢)¥X for all X € £. By the definition of U, this implies that
(L*)Y is a characteristic subgroup of the group (K¢)V. However, the latter
group is normal in K'Y. Thus,

(LY < KV,
It follows that KU is contained in the normalizer of (L*)V in Sym(U).

However, this normalizer is contained in D(2,U) by Theorem 5.1 applied
for G = U with taking into account equality (16). O
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Proof of Theorem 4.1. Let U/L be the principal K-section of the
group G. By Proposition 6.1, the group K is of symmetric or normal type.
Suppose first that U = G. Then statement (i) of Theorem 4.1 holds. In-
deed, if K is of symmetric type, then K = Sym(G) (Theorem 6.2), whereas
if K is of normal type, then K < D(2,G) (Theorem 6.3) and the required
statement follows from the fact that G* is normal in D(2, ). Finally, if
U < G, then statement (ii) of Theorem 4.1 holds by Theorem 4.4. d

Proof of Theorem 1.3. First, assume that the group K = Aut(T) is a
nontrivial generalized wreath product. Note that S = Soc(G) is a unique
proper normal subgroup in G and |G/S| = 2. Therefore the generalized
wreath product must be a usual one and the group K is permutation
isomorphic to the wreath product M ! Cs in imprimitive action for some
group M < Sym(S). It follows that G'\ S is an orbit of the point stabilizer
K, where « is the identity of G. Since X C G'\ S is a union of some orbits
of K,, we conclude that X = G\ S, a contradiction.

The group K is 2-closed as the automorphism group of a graph. The
normality of X implies that K satisfies condition (6) with G = Sym(m)
for m > 5. Finally, K is not a nontrivial generalized wreath product by
above, and K # Sym(G), because the graph I' is neither complete nor
empty. Thus, by Theorem 4.1, the group G* is normal in K and

G* < K <D(2,G),

hence K = G* or K = D(2,@), because |D(2,G) : G*| = 2. However,
since X is a normal subset of a symmetric group, we have X = X1,
so the graph T' has the automorphism ¢ : g — ¢!, ¢ € G. Thus, K =
(G*,0) = D(2,G), as required. O

§7. FINDING THE PRINCIPAL SECTION IN A CAYLEY SCHEME

7.1. The main result. Let X be a central Cayley scheme over an almost
simple group G. Then the group K = Aut(X) is 2-closed and satisfies con-
dition (6). Therefore, K is of symmetric or normal type by Proposition 6.1.
In this section, we develop an algorithmic technique to determine (with no
K in hand) which of these cases occurs for the scheme X. The main result
here is Theorem 7.1 below which immediately follows from Corollaries 7.3
and 7.5 proved in Subsections 7.2 and 7.3, respectively.
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Theorem 7.1. Given a central Cayley scheme X over an almost simple
group G of order n, one can determine the type of K = Aut(X) and find
the principal K -section of G in time poly(n).

7.2. The case of symmetric type. For a group H < (G, denote by $
and WL(X, $) the partition of G into the right H-cosets and the Cayley
scheme WL(X,T) with T' = {1x : X € 9}, respectively. Recall that 7Tx
is the trivial coherent configuration on X. Denote by Hg the set of groups
H such that Soc(G) < H < G and

WL(X,9) = B Tx. (17)

Lemma 7.2. In the above notation, the following statements hold:

(i) if the group K is of symmetric type, then the set Hy is nonempty
and the minimal block L of K is the largest (by inclusion) element
of Ho,

(il) K is of symmetric type if and only if Ho contains S = Soc(G).

Proof. To prove statement (i), assume that the group K is of symmetric
type. Set 1 and £ to be the partitions associated with the principal K-
section of G. Then by Theorem 6.2, we have £ = il and Inv(KX) = Tx
for all X € £. By Theorem 4.4, this implies that

IHV(K,Q) = XBEHETX- (18)

The minimality of the direct sum implies that WL(X, £) = Inv(K¢), which
proves formula (17) for H = L and $ = £, in particular, Hy is nonempty.
If L is not the largest element of Hy, then there exists H € Hy such that
H\ L # 2. It follows that

K > Sym(H) x ide\m,

where idg\ g is the identity subgroup of Sym(G \ H). Hence there is a
permutation k € K that moves the identity of G to H \ L and leaves all
non-identity elements of L fixed. But this is impossible, because L is a
K-block.

To prove the necessity for statement (ii), let K be of symmetric type.
Then formula (18) holds. Therefore, if & is the partition of G into the
cosets of S, then & refines £ and hence

WL(X,8) = WL(WL(X,£),6) = 8 WL(Tx,6x) = B Tx,
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where Gx is the partition of X induced by &. Consequently, S € Hp.
Conversely, assume on the contrary that K is of normal type. Then KU <
D(2,U) by Theorem 6.3. Therefore K° < Hol(S). On the other hand,
since S € Hyp, we have Sym(S) = K < Hol(S), a contradiction. O

From statement (i) of Lemma 3.1, it follows that the number of groups
H < G containing Soc(G) is at most logn, where n is the order of G; in
particular, |Ho| < logn. Moreover, for each H, the coherent configuration
WL(X, $) can be efficiently found by the WL-algorithm and condition (17)
can be verified by checking at most |5’)|2 < n? basis relations. Therefore,
the set Hp can be found in time poly(n). By statement (ii) of Lemma 7.2,
this is enough to test efficiently whether or not K is of symmetric type, and
if it so, then to find the minimal block L = U of the group K (statement (i)
of the same lemma).

Corollary 7.3. Given a central Cayley scheme X over an almost simple
group G of order n, one can test in time poly(n) whether the group Aut(X)
is of symmetric type, and (if so) find the principal section of Aut(X) within
the same time.

7.3. The case of normal type. In view of Corollary 7.3 and Proposi-
tion 6.1, one can efficiently test whether the automorphism group K of a
central Cayley scheme X is of normal type. Denote by H; the set of all
groups H such that Soc(G) < H < G and

H* xidevy < K, (19)

where the left-hand side denotes the subgroup of Sym(G) that leaves each
point of G\ H fixed and coincides with H* on H.

Lemma 7.4. Suppose that the group K is of normal type and U/L is the
principal K -section of G. Then L = Soc(G), the set H; is nonempty, and
U is the smallest element of H.

Proof. Lemma 3.2 yields that L = Soc(G). From Theorem 4.4, it is easily
follows that U € H;. Assume on the contrary that the group U is not the
smallest in H;. Then there is a group V € H; such that LU NV < U.
Take a non-identity element w € UNV and denote by &y (respectively, ky )
the permutation on G acting on U (respectively, V') by right multiplication
by w and acting trivially outside U (respectively, V). Then ky, ky € K,
the permutation
k= kyky!
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is not identity on U, and U* = U and kY™ =idy~y . Clearly, kU be-
longs to KV, and hence to D(2,U) because K is of normal type. However,
as is easily seen, the identity element is the only element of D(2,U) that
leaves all points of L < U NV fixed, a contradiction. O

Again from statement (i) of Lemma 3.1 it follows that the number of
groups H such that Soc(G) < H < G is at most logn, and so is |H;|. For
every H and each k € H* x idg\ g one can efficiently test whether k is an
automorphism of X'. Thus, Lemma 7.4 immediately implies the following
statement.

Corollary 7.5. Given a central Cayley scheme X over an almost simple
group G of order n, one can test in time poly(n) whether the group Aut(X)
is of normal type, and (if so) find the principal section of Aut(X) within
the same time.

§8. A MAJORANT FOR THE COSET OF ISOMORPHISMS

Throughout this section, we assume that X" is a central Cayley scheme
over an almost simple group G and K = Aut(X). The principal K-section
of G and the associated partitions are denoted by U/L and i and £,
respectively. The equivalence relations corresponding to the partitions 44
and £, are denoted by eg and eg. Let ¢ be an algebraic isomorphism from
X onto a Cayley scheme X’ over an almost simple group G’. Assume that

pley) =eyw and pleg) =egr, (20)
where in what follows, the group K’, the principal section U’/L’, the par-

titions Y’ and £, and the equivalence relations ey and eg: are defined for
the scheme X’ in a similar way.

Lemma 8.1. In the above notation, || = || and |£| = |&'|. Moreover,
the groups K and K’ either both of symmetric type, or both of normal type.

Proof. The first statement follows from assumption (20). To prove the
second one, we note that by Lemma 7.2 the group K is of symmetric type
if and only if the scheme X is isomorphic to the wreath product 7y ),
where ) is the quotient of X modulo the equivalence relation eq. Since
algebraic isomorphisms respect wreath products, we are done. O

For all Y € Y and Y’ € U/, the algebraic isomorphism ¢ induces an
algebraic isomorphism
Yy,y’ - Xy — Xll//,
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that takes a relation sy to the relation s, for all basis relations s C ey of
the scheme X, where s’ = p(s). It follows that if X’ = X and ¢ is trivial,
then @y,y is trivial for all Y € 4.

For each YV € 4l set

) Sym(Y) if K is of symmetric type,
Y T\ D@, UY) N Aut(Xy) otherwise,

where, for brevity, UY denotes the restriction of the permutation group
Utight, to the set Y. Note that the form of the group Dy does not depend
on Y € 4, and Dy contains KY for all Y (Theorems 6.2 and 6.3). Fur-
thermore, if Z € 4, then any permutation of G* taking Y to Z induces a
permutation isomorphism from the group Dy onto the group Dz.

Lemma 8.2. (Dy)f = Dy for all Y € Y and all f € Iso(X, X', ).

Proof. Without loss of generality, we may assume that both K and K’
are of normal types (Lemma 8.1). Let Y € l and f € Iso(X, X', p). Then
in view of (20),

Aut(Xy ) = Aut(Ay), (21)

where Y’ = Y/, Thus, it suffices to verify that D(2,V)f = D(2,V’), where
V =UY and V' = (U’)Y". However, by the definition of {, we have V = Ug
for suitable g € G and

D(2,V) = D(2,U%),

where g, : U — V is the bijection induced by right multiplication by g. A
similar statement holds for V’, U’, and a suitable bijection (g’),. Therefore,
without loss of generality, we may assume that Y = U and Y/ = U’.

Recall that U is an almost simple group with Soc(U) = L, and also
U* < KY. Therefore, Soc(KY) = L*. The same is true with K, U, and L,
replaced by K/, U’, and L', respectively. Taking into account that f takes
KUY to (K')U', we conclude that

(L = (.

This implies that f takes the normalizer of the group L* < Sym(U) to the
normalizer of the group (L')* < Sym(U’). However by Theorem 5.1, these
normalizers are equal to D(2,U) and D(2,U’). Thus, f takes the first of
these groups to the second, and we are done. O
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Definition 8.3. Denote by C,(X,X’) the set of all bijections f : G — G’
taking Y to W' and satisfying the following conditions for every Y € il :

Y €ls0(Xy, X oy ys) and (Dy)! = Dyr. (22)

Let us find the explicit form of the set C = Cy,(X,X’) when X = &
and ¢ = id. In this case, C is obviously a subgroup of Sym(G) preserving
the partition 4. Condition (22) means that f¥ belongs to the intersection
of Aut(Xy) and the normalizer of Dy in Sym(Y") for all f € Cy. This
proves the first of the equalities

H Dy =Cy and C% =Sym({);

Yeu
the second equality follows from the fact that any ¢ € G induces the
permutation isomorphism from Dy onto Dy that induces ¢y ys. Thus,
the group C' is permutation isomorphic to the wreath product Dy Sym(4l)
(in imprimitive action). For arbitrary X’ and ¢, an for each f € C,,(X, X'),
we obviously have

Co(X,X') = Cia(X, X) f. (23)

Thus if the set Cy,(X,X”) is not empty, then it can be given by a gen-
erator set of the group C' = Ciq(X,X) and the bijection f. In the sense
of the following statement, the set C, (X, X”) can be called a majorant of
Iso(X, X, p).

Theorem 8.4. Iso(X, X', ) C C,(X,X’). Moreover, the set Cy,(X,X")
can be found in time poly(n).

Proof. The first statement immediately follows from Lemma 8.2. To prove
the second one, it suffices to find the set

CU = {fO € ISOIP(XUNXI/]/) : (DU)‘fO = DU’},
where 1 = ¢y . Indeed, if this set is empty, then obviously so is the
majorant C, (X, X’). On the other hand, if fy € Cj, then to construct the

majorant given by formula (23) it suffices to find Dy and the bijection f
defined as follows:

fY = (gY)ilf[)gg/’a Ye ua

where Y +— Y’ is an arbitrary bijection from i onto ' taking U to U’,
and the bijections gy : U — Y and ¢}, : U' — Y’ are induced by the right
multiplications by the elements g € G and ¢’ € G’ such that Y = Ug and
Y' =U'yg.
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To find the sets Dy and Cj, assume first that K is of symmetric type
(recall that this can efficiently checked by Theorem 7.1). Then the coherent
configurations Ay, and AY;, are trivial. Thus, Dy = Sym(U) and for any
bijection fo : U — U,

Co = Sym(U) fo.

Let now K be of normal type. Then Dy < D(2,U) and Dy» < D(2,U").
In particular, Dy = D(2,U) N Aut(Xy) can be found in time poly(n).
Furthermore, every element f, € Cy takes Dy to Dy (Lemma 8.2), and
induces a permutation group isomorphism from Usigh onto a group

V' € Reg(Dy:,U’).

By statement (ii) of Lemma 3.1, the set Reg(Dy»,U’) is of cardinality at
most [U’|¢ < n® for some constant ¢ > 0, and all its elements can be found
by exhaustive search of all 3-generated subgroups of the group Dy . Since
for a fixed V', there are at most | Aut(V’)| < n® distinct elements fo € Cy
taking Usigns to V', one can test in time poly(n), whether the set Cy is not
empty and (if so) find it in the form

Co = Dy fo
with arbitrary fo € Cy. O

§9. PROOF OF THEOREM 1.1

9.1. Reduction to Cayley schemes. Let I' be a central Cayley graph
over an almost simple group G, {e; : i € I'} the set of color classes of T', and
K = Aut(T). The principal K-section of G and the associated partitions
are denoted by U/L and { and £, respectively. Set

X = WL(T, {eg, ec}),

where ey and eg are the equivalence relations corresponding to the parti-
tions 4 and £. For other central Cayley graphs I'', we use similar notation,
e.g., G’ and K’ denote the underlying group and the automorphism group
of TV, respectively.

Lemma 9.1. Given central Cayley graphs T' and TV over almost simple
groups G and G', respectively, one can construct in time poly(n) the Cayley
schemes X and X' over the same underlying groups and check whether
there exists a (unique) algebraic isomorphism ¢ : X — X' such that

ole;) =€, foralliel and oley) = e, pleg) =egr,  (24)
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and (if so) find ¢ within the same time. Moreover, K = Aut(X), K' =
Aut(X'), and also

Iso(T',T") = Iso(X, X', ). (25)

Proof. By Theorem 7.1, the principal sections and hence the equivalence
relations ey, eg and eyr, egr can be found in time poly(n). Therefore the
first part of the statement immediately follows from Theorem 2.1. To prove
the second one, we observe that every f € Iso(T',I”) takes the group K
to the group K’. By the definition of the minimal block (Subsection 4.2)
this implies that f takes eg to eg and hence takes ey to eg:. Thus, the
isomorphism f induces . This means that f € Iso(X,X”’, ) and hence
the left-hand side of (25) is contained in the right-hand side. Since the
reverse inclusion is obvious, equality (25) is completely proved. Next, if
IV =T, then ¢ = id and equality (25) shows that K = Aut(X). Similarly,
K’ = Aut(X’). O

9.2. Determining the coset of isomorphisms. Denote by 7 the ca-
nonical epimorphism from G onto G = G/L = £. Then 7 induces a map
taking the set S of basis relations of the Cayley scheme X over G to the set
S of basis relations of the quotient Cayley scheme X over G. In particular,
7 takes SY to S_. Set T to be the Cayley graph over G with color classes
m(e;), i € I. For any set C' of the bijections f : G — G’ taking ey to ey
and eg to eg/, we denote by C the set of bijections f : G — G induced
by feC.

Theorem 9.2. Let " and I be central Cayley graphs over almost simple
groups G and G', respectively. Assume that the algebraic isomorphism ¢
from Theorem 9.1 does exist. Then

Iso(I', IV) = 7' (C N B), (26)

where B = Iso(T, fl), C = C,(X,X"), and the right-hand side consists of
all f € C for which f € B.

Proof. To prove that the left-hand side of (26) is contained in the right-
hand side, let f € Iso(T',T"). Then the uniqueness of the principal sections
implies that

(eu)f = ey and (eg)f = €egs.
Therefore, the isomorphism f induces the algebraic isomorphism ¢. By
Theorem 8.4, this implies that f € C'. Consequently, the induced bijection
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F:G — G belongs to the set C. Since obviously f € B, we conclude that
f belongs to the right-hand side of (26), as required.

Conversely, let f belong to the right-hand side of (26). By formula (25)
in Lemma 9.1, it suffices to verify that f induces ¢. To this end, let s € S.
Assume first that s C eg. Then s equals the union of sy, Y € 4. Therefore
since f € C, conditions (22) are satisfied for all Y and hence

= (U ) = U = ey lor) = ols).
Yeu Yeu Yeu

Now assume that s is outside the equivalence relation eg. Let us prove
that

s= |J xxv ad = ) XxX'xV, (27)
X,Yee, X' vies,
(X,Y)€s (X',Y")es

where 3 = 7(s) and 3 = 7'(s). Since (ey)f = ey, the relation s/ is
outside the equivalence relation eg:. Therefore, it suffices to verify the
first equality of (27); denote the right-hand side of this equality by t.
Clearly, s C t. Conversely, let (X,Y) € ¢t for some (X,Y) € 5. Since s
is outside ey, we conclude that X x Y is a basis relation of the coherent
configuration Inv(K ) (Theorem 4.4). Since Inv(K,) > X, it follows that
this basis relation is contained in a basis relation of X which equals s,
because (X,Y) € 5. Therefore, t C s. This completes the proof of (27)
implying s = 77 (3) and s/ = (7/)~1(5).

On the other hand, the graph isomorphism f € BN C induces an alge-
braic isomorphism % : X — X' that coincides with the restriction of the
algebraic isomorphism ¢ modulo eg. Thus,

p(s) = o(r' () = (7)'(@E) = () (E®) = («)'F) =5,
as required. O

9.3. The algorithm. In the algorithm below, the input is given by two
central Cayley graphs I and T over almost simple groups G and G’, respec-
tively. It is assumed that these groups are presented by the multiplication
tables. The output consists of the set Iso(T',I"), which is either empty or
equals the set Aut(T")f for some f € Iso(T',I”). Here, the group Aut(T") is
presented by a generating set.
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Central Cayley graph isomorphism test

Step 1. Find the principal sections of the automorphism groups of the
(central Cayley) schemes WL(T') and WL(T") (Theorem 7.1); denote by 4,
£ and Y, £ the associated partitions of G and G’, respectively.

Step 2. Find the schemes X = WL(T', {eg,ec}) and X' = WL(IV, {ey,
eg'}) and the algebraic isomorphism ¢ satisfying condition (24); if ¢ does
not exist, output Iso(l', IV) = @.

Step 3. Find the set C = C, (X, X’) (Theorem 8.4).

Step 4. Using the graph isomorphism and coset intersection algorithms
from [1], find the set B = Iso(T,T") and then the set B’ = BN C.
Step 5. Output Iso(I',I) = 7= 1(B’). O

To complete the proof of Theorem 1.1, we show that the above algo-
rithm correctly finds the set Iso(I',T”) in time poly(n). Note that every
graph isomorphism f € Iso(T',I”) induces an algebraic isomorphism ¢ sat-
isfying condition (24). Therefore, the output at Step 2 is correct. Thus, the
correctness of the output at Step 5 and hence of the algorithm immediately
follows from Theorem 9.2.

To estimate the running time, we note that all the steps except for Step 4
run in polynomial time (Theorem 7.1, Lemma 9.1, and Theorem 8.4). Fur-
thermore, the graph isomorphism and coset intersection algorithms from
[1] are applied at Step 4 to graphs with m = |£] vertices and to the cosets
contained in Sym(m), respectively. Each of these algorithms runs in time
at most exp((log m)°y/m). Since m < logn, the complexity of this step
does not exceed

exp((log m)°/m) < exp((loglog n)*(logn)'/?) < exp(logn) < n

for sufficiently large n and a suitable constant ¢ > 0. Thus, the running
time of the algorithm is polynomial in n, as required. O
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