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ON T-AMORPHOUS ASSOCIATION SCHEMES

ABSTRACT. A scheme is called T-amorphous if it is antisymmet-
ric and any tournament obtained by an appropriate merging of its
classes is doubly regular. The goal of this paper is to study basic
properties of this class of schemes.

Dedicated to the memory of Sergei Evdokimov

§1. INTRODUCTION

Let X := (Q,R = {R;}L,) be an association scheme with d classes.
It is not assumed that that X is commutative. Most of notation used in
this paper follow the book [1]. As usual i — 4’ is a transposition map,
that is Ry = R, . For a subset I C [0,d] we set I' := {i’|i € I}. The
structure constants and the valencies of a scheme X are denoted by pfj
and v;, respectively. The adjacency matrix of R; is denoted by A;. Given
a field F, a linear span of the adjacency matrices A;, denoted by F[R], is
a subalgebra of the full matrix algebra Mo (F). It is called the adjacency
(or Bose—Mesner) algebra of X over F. An algebraic isomorphism between
two schemes X = (Q,R = {R;}1 ) and X' = (V,R' = {R/}{,)) is a
bijection ¢ : [0,d] — [0, d] which preserves the structure constants, that is
pf:jg, = pfj holds for each triple i, j, k of indices. Notice that algebraic iso-
morphisms coincide with pseudo-isomorphisms [7], BM-isomorphisms [§]
and weak-equivalences [14]. An algebraic isomorphism of a scheme to itself
is called an algebraic automorphism of the scheme.

A partition P = {P; |i =0,...,d'} of the index set [0, d] into non-empty
subsets is called admissible [6] if Py = {0}, and for each 7,1 < i < d
there exists j € [0,d'] such that P; = P;. Given an admissible partition
P = {P;]i = 0,...,d'}, we denote by R/P a partition of Q2 with d’
classes Rp, :== |J R;,0 < i < d'. We say that P gives rise to an asso-

JjEP;
ciation scheme if a pair (Q,R/P) is an association scheme. In this case
the scheme (2, R/P) is called a fusion of (2, R). Following [6] we call a
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scheme amorphous if (2, R/P) is an association scheme for any admis-
sible partition P of [0,d]. It should be noted that the original definition
given in [6] dealt only with commutative schemes. But it was shown by
Ma [10] that being amorphous implies commutativity. Symmetric amor-
phous schemes known as amorphic were classified up to algebraic isomor-
phism by Gol’fand, Ivanov and Klin and in [9]. Amorphous association
schemes with at least three symmetrized classes were classified (up to al-
gebraic isomorphism) by Ito, Munemasa and Yamada. Recently J. Ma
classified amorphous schemes with two symmetrized classes [10], up to
algebraic isomorphism.

A scheme is called anti-symmetric (skew-symmetric in [10]) if ¢’ # i for
each i # 0. An anti-symmetric scheme with two classes is equivalent to
a doubly regular tournament. The parameters of a doubly regular tourna-
ment are uniquely determined by its order (the number of vertices of a
tournament). A necessary condition for an existence of an anti-symmetric
scheme on v points is v = 3(mod 4). Given an anti-symmetric scheme
(Q,R) with d classes, we say that a subset I C [1,d] is a '-transversal if T
intersects each pair {j,7'},7 € [1,d] by one element. In what follows we
number the relations of R in a way that the set [1,d/2] is a '-transver-
sal. Every '-transversal I gives rise to an admissible partition with three
classes {0},I,I’. We say that an anti-symmetric scheme is T-amorpho-
us if partition {0}, 1, gives rise to an anti-symmetric scheme for each
_transversal I. Of course, every amorphous anti-symmetric scheme would
be an example of a T-amorphous scheme. Unfortunately, as was shown
by Ma [10], they do not exist. Thus, one could ask whether T-amorphous
schemes exist at all. Fortunately, the answer is affirmative. Recently Feng
and Xiang [11] built an infinite series of T-amorphous cyclotomic schemes.
The purpose of this note is to study the properties of this class of schemes.

§2. SOME BASIC FACTS ABOUT T-AMORPHOUS SCHEMES

First, we fix some notation. For the rest of the paper X = (2, R) will
stand for an anti-symmetric scheme with d = 2e classes. It is also assumed
that [1,e] is a '-transversal. We start with the following characterization
of anti-symmetric schemes [15].

Proposition 2.1. A scheme (Q,R) is anti-symmetric if and only if it is
odd, that is all its valencies and |Q| are odd numbers.

As a direct consequence we obtain the following
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Corollary 2.2. If X is T-amorphous, then e is odd.

Proof. The statement follows from the equailty

e
Q] =1+ ) 20; = 2e + 1(mod 4)

i=1

and the congruence || = 3(mod 4). O

Now, we can easily show that a T-amorphous scheme with e > 1 cannot
be amorphous'. Indeed, if an anti-symmetic scheme is amorphous, then its
symmetrization is an amorphic scheme with e > 3 classes. Therefore, the
number v of scheme points is a square, contradicting v = 3(mod 4).

The main result of this section is the following characterization of anti-
symmetric T-amorphous schemes.

Theorem 2.3. An anti-symmetric scheme (Q, R = {R;}?¢,) is T-amor-
phous if and only if

Vigj XiXj = —X;Xi and Y X? = —|Q|Io + Jo, (1)

i=1
where X; .= A; — Ay, 1 <i<e.

To prove this statement we recall a well-known characterization of dou-
bly regular tournaments.

Proposition 2.4. A regular tournament (2, R) is doubly regular if and
only if (A— AT)2 = —|Q|Iq + Jo, where A is the adjacency matriz of R.

Proof of Theorem 2.3. It follows from Proposition 2.4 that the scheme
X is T-amorphous iff for any function ¢ : [1,e¢] — {£1} the matrix X, :=

>" e(i)X; satisfies the equation X2 = —|Q|Iq + Jo. We may assume that
i=1
e > 3.
Pick an arbitrary pair of indices i # j € [l,e] and set YV} = Xj,
Y = X;, Y3 = Z Xj. Then (Y1 + Yy + Y3)2 = —|Q|IQ + Jo and
ki,
(-1 + Yy +Y3)2 = —|Q|Iq + Jo, implying Y; x Y5 + Y] x Y3 = 0, where

LThis argument was found by Misha Klin.
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Ax B := AB + BA. Permutting the indices 1, 2,3 we obtain the following
system of matrix equations

YixYVo+YixYs = 0
YixYVo+YexYs = 0
YoxY3+Yi Yz = 0.

Solving the system, we obtain Y7 xY> = 0,Y; x Y3 = 0,Y5 x Y3 = 0. Thus,
X;X; 4+ X;X; = 0. The rest follows easily. O

§3. NON-COMMUTATIVE CASE.

The main goal of this section is to show that a T-amorphous scheme
should be commutative. With this end, we study irreducible complex rep-
resentations of the adjacency algebra A := C[R]. We write A, and A_
for subspaces of A consisting of symmetric and skew-symmetric matrices,
respectively. We also abbreviate v := ||, J := Jq, I := Iq.

Let Ey = v~ 'J,Ei,..., E, be a complete set of minimal central idempo-
tents of A. It is well-known that a two-sided ideal A; := E;A is isomorphic
(as an algebra) to the full matrix algebra M, (C). This isomorphism yields
an irreducible complex representation of A which will be denoted by A;.
We denote by n; the dimension of A;. The multiplicity of A; in the de-
composition of the standard module C® will be denoted by m;. Since the
scheme is odd, all multiplicities m;,0 <4 < r, are odd integers. Notice that
A; : A— M,,(C) is a C-algebra epimorphism such that A;(E;) = I,;. Ac-
cording to [4] we may assume that A;(X*) = A;(X)* for each X € A
(here and later on X*:= X is the Hermitian conjugate of a matrix X).

Notice that as a matrix of Mq(C), each E; is Hermitian, that is E =
E;. A complex matrix E; = E; is also a minimal central idempotent of A.
Thus, E,” = E; for some i’. Notice that the mapping i — 4’ is an involution
and 0’ = 0. The representation A; corresponding to Ej; is equivalent to
X — Az (XT)T.

_In order to proceed further, we introduce additional notation. We write
X for the 2n x 2n real matrix which is obtained from n x n complex matrix
X by replacing a complex number X;; = a + bt,t = V=1, by the 2 x 2-

matrix < _ab Z > Notice that the mapping X — X is an R-algebra

monomorphism between the algebras M, (C) and Ms,(R), and X* = X 7.
The following result of J. Putter (Theorem 1, [13]) plays a central role
in this section.
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Theorem 3.1. Let X1,..., X, be a set of n x n skew symmetric, pairwise
anticommuting (that is X;X; = —X;X; for i # j) non-zero real matrices.
Then q <n—1.

Proposition 3.2. Ifi’ #1i, thenn; = 1. If n; =1 and i # 0, then i’ #i.

Proof. First we prove a general fact that A;(A_) = A;(A) (and, there-
fore, A;(A_) = My, (C)). Since A; maps E;A onto M, (C) bijectively, it
suffices to show that E; A4 = E;A_. Let Y € E; A be an arbitrary ma-
trix. Then Y = YE; implies YT = YT E;. Together with F;E; = 0 we
conclude that

E(Y-Y")=EY -EY'"E, =EY =Y.

Thus, E; A = E; A_. Since the matrices Xq,..., X, form a basis of A_,
the matrices F;X;,j = 1,...,¢e, span E;A. Therefore, the matrices Y; :=
Ai(Xj),5 =1,...,e, span M,,(C). In particular, the number of non-zero
matrices among Y;’s is at least n?. Since X7 = —Xj, we conclude that
Y} = =Y. Also, the matrices Y; are pairwise anti-commuting. Now, the

matrices )7]-,]' =1,...,e, form a set of 2n; x 2n; real skew symmetric
matrices which anti-commute pairwise. By Theorem 3.1 the number of
non-zero matrices among Y; is at most 2n; — 1. On the other hand, among
these matrices at least n? matrices are non-zero. Thus, n? < 2n; — 1
implying n; = 1.

Next, assume that n; = 1,7 # 0. Then A; is one-dimensional and, there-
fore, AZI(AJ) = AZ(A;F)T = AZ(A;F) If 7:’ = i, then AZ(A]) = AZ/(A]) =
Ai(A;-r) implying that A;(X;) = 0 for each j = 1,...,e. But it follows
from (1) that Y A;(X;)? = —v. A contradiction. Thus i’ # i. O

J

Finally, we consider the remaining case i’ = i, that is E,;] = E; =
E;. In this case A] = A; and the mapping X — X' is an order two
anti-automorphism of A;. Since A; is isomorphic to My, (C), the above
mapping yields an order two anti-automorphism of M,,(C). Each anti-
automorphism of the full matrix algebra has a form A — S~'ATS where
S is either symmetric or a skew-symmetric matrix [2]. Thus, A;(X ") =
STIA;(X)TS.

If S is symmetric, then there exists a unitary matrix U and diagonal real
matrix D with D;; > 0 such that S = UDU " (Lemma 4.4.4 [5]). Replacing

A;(X) by \/5U>'FAZ~(X)U\/571 we obtain an equivalent representation
which satisfies A;(X ) = A;(X) T and A;(X*) = A;(X)* for each X € A.
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In particular, A;(A4;) is a real matrix for each j € [0,2¢] (that is A; is
irreducible over R). In this case A; is called a real representation.

If S is skew symmetric, then n; is even and there exists a unitary matrix
U such that S = UVUT where V is a direct sum of n;/2 matrices of the
form ( OZ %f) 2z € C, 0 =1,...,n;/2 [5, Section 4.4, Problem 26).

—2z¢

Therefore, there exists an orthonormal basis of C™ such that in the new
basis A;(XT) = V71A;(X)TV. In this case we call A; a representation of
a symplectic type.

Proposition 3.3. If A; is real, then n; = 2. There exists a unique j €

{1,...,e} with A;(X;) # 0. Moreover, A;(X;) = (0/\ ())‘), where A =
+4/v.

Proof. It follows from XjT = —X; that A;(X;)T = —A;(X;). Thus,
Ai(Xj),7 =1,...,e are skew symmetric, real and pairwise anticommuting

matrices of order n;. By Theorem 3.1 the number of non-zero matrices
among them is at most n; — 1.

Since X;’s form a basis of A_, the number of non-zero matrices among
A;(X;) is at least dim(A;(A_)). It follows from A;(XT) = A;(X) T that
A;(A_) coincides with the subspace of skew symmetric matrices of M, (C).
Therefore dim(A;(A-)) = (n; — 1)n;/2 implying (n; — 1)n;/2 < n;. Hence
n; < 2. By Proposition 3.2 n; > 2. Therefore n; = 2.

The subspace of skew symmetric matrices of M5(C) is one dimensional

0 1

and is spanned by ) Since A;(X;)’s are anticommuting, we con-

-1 0
clude that A;(X;) is non-zero for at most one matrix X;. The rest of the
statement, follows from the equality Y X7 = —vlg + Jo. O
i=1

Proposition 3.4. If A; is symplectic, then n; = 2. There exists at most
three indices j € [1,e] such that A;(X;) # 0. If there are exactly three
indices a,b,c € [1,e] with non-zero images A;(X;),j € {a,b,c}, then, up
to a conjugation by a unitary matriz, the matrices A;(Xa), Ai(Xs), Ai(X,)
have the form

19, 0 0 6 0 b,
0 —,)> \—-6, 0)> \ub. 0)°

where 04, 0y,0. are real numbers satisfying 62 + 67 + 62 = v.
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Proof. According to [14] the dimension of A;(A_) is n;(n; +1)/2. There-
fore, among the matrices Y; := A;(X;),j = 1,...,e there are at least
n;(n; + 1)/2 non-zero matrices. Since these matrices are skew Hermitian
and pairwise anti-commute, the matrices )7] are pairwise anti-commuting
skew-symmetric real matrices of order 2n;. By Theorem 3.1 the number
of non-zero matrices among }7j, 1 < j < e is at most 2n; — 1. Thus,
ni(n; +1)/2 < 2n; — 1 = n; < 2. Since n; is even, we conlcude that

ni:2.ThusV:<0

g) for some z € C and

AXT) =VIAX)TV =T7'Ay(X)'T where T = ( 01 é) )

It follows from the above arguments that the number of non-zero ma-
trices among Yj;,j € [1,e], is at most three. Next, assume that there are
exactly three non-zero matrices Y,,Ys, Y, with distinct a,b,c € [1,e]. It
follows from XjT = X; = —Xj that TlejTT =Y = —Y;. Now a direct
computation shows that each of the matrices Y,, Y3, Y, has a form

Y; = (eri ZL]T‘) , where r; €R,z; € C and j € {a,b,c}.
j J

The characteristic polynomial of Yj is % + 77 + |2;|*. Since Y; # 0, the

number 77 + |z;|* is a positive real. Therefore, the eigenvalues of Y; are

+10;, where 8; =  /r7 + |2;|?. Since each of the matrices is skew Hermitian,

it has an orthonormal eigenbasis. Therefore, there exists a unitary matrix

U such that U*Y,U = (Lga ?9 > The matrices U*Y,U,U*Y.U are
—tWa

skew Hermitian matrices with zero trace. Hence

U*)/I)U:<L8b wb>, U*}/CU:<LSC wc>,

—wp —LSp —wW, —LSe

where s3,s5. € R,  wp,w, € C.

The conditions Y, Y, = —Y,Y,,Y, Y, = —Y.Y, imply s = s, = 0. Conju-
ewr 0

gating by a unitary matrix D := < 0 1

> with wy, = arg(wp) we obtain
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the following triple of matrices

woyvwn = (g ).

0
woynwn) =(5 %),

(UD)*Y,.(UD) = (_Oﬂ g) .

Now the condition Y;Y, = —Y.Y, implies that u is an imaginary number.

Thus (UD)*Y.(UD) = (Lg Lgc). The condition 62 + 637 + 62 = v follows
e

from > X]2 = —vlg + Jq. O
J

=1

Notice that the matrices described in the above proposition with 6, =
0y = 0. = 1 generate a quaternion group of order 8. For this reason we call
these type of representations of quaternion type.

It follows from Propositions 3.2, 3.3, and 3.4 that the set of all non-
principal irreducible representations of A splits into three parts

(1) one-dimensional non-real representations Aq, Ay, ..., Ay, Aps;

(2) two-dimensional real representations Aggyq, ..., Aogiys;

(3) two-dimensional non-real representations of quaternion type

Aopyoqiy- - Dogrotm.
For the representation of the first type we have A;(XT) = Ay (X)T,
X € A. For the representation of the second type A;(X ) = A;(X)
and for the representations of the third type A;(XT) = T1A;(X)TT,
0 1
where T' = 1 o)
As a complex algebra A is isomorphic to the direct sum

(C2k+1 D Mg ((C)H-m .

Counting the dimension of A in two ways we obtain 14+2k+4¢+4m = 1+2e,

implying that k+2¢+2m = e. The anti-automorphism " acts on the direct
sum C2¢+1 @ M, (C)+™ as follows:

(1) it interchanges the coordinates ¢ and i’ for 1 <1 < k;
(2) it acts as a transposition on the first £ summands M5(C);
(3) it acts as X — T1X T on the last m summands M, (C).
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Also, T acts trivially on the zero-indexed summand (which corresponds
to Ao)

The dimension of "-invariant subspace of A counted in two ways yields
us the equality 14+e = 14+ k+ 3¢+ m. Comparing this with e = k+ 2+ 2m
we conclude that £ = m.

Proposition 3.5. For each j € {1,...,e} there exists a unique r(j) €
{1,...,k, 2k +1,...,2k + 20} such that A,(;(X;) # 0.The function r has
the following properties

(1) r is surjective;
(2) for eachie {1,...,k,2k+1,...,2k + 2{} one has

RPN B
T 03, i>2k+ 4

(3) for eachie {1,...,k,2k+1,...,2k + 2{} one has

Z Al(XJ)2 = *'UIni-

jer=1(q)

Proof. Define a bipartite graph I between the sets D := {1,...,k,2k +
1,...,2k + 2¢} and E := {1,..,e} by connecting i € D and j € E iff
A;(X;) # 0. Since the intersection of ker(A;),i € D U {0} is trivial, for
each j € E there exists at least one ¢ € D U {0} with A;(X;) # 0. Since
Ag(X;) =0, one has i # 0. Thus, each j € E is connected with at least
one element of D. Therefore, I' has at least |E| = e distinct edges.

It follows from 21 X? = —vl +.J that 21 Ai(X;)? = —vl,,. Therefore,
i= j=

for each i € D there exists at least one j € E with A;(X;) # 0. In other

words, each vertex i € D has at least one neighbour in E.

Since X’s are anti-commuting, if A; is one-dimensional there is at most
one j € E with A;(X;) # 0. Hence, |T'(i)| =1 fori € {1,...,k} C D.

If A; is 2-dimensional and real, then by Proposition 3.3 there exists
at most one j € E with A;(X;) # 0. Therefore, |['(i)] = 1 for each i €
{2k+1,...,2k+ ¢} C D.

If A; is 2-dimesional of quaternion type, then by Proposition 3.4 we
have |I'(4)| < 3. Thus,

k+0+30> 3 [T(0)| = |ED) = YD) > |E| = e =k +4L.
ieD jEE
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Thus, we obtain that |E(T')| = e and |I'(¢)| = 3 for each ¢ € {2k + ¢ +
1,...,2k+2¢} C D. This means that each j € F is connected with exactly
one ¢ € D. Thus, we obtain a function r : E — D such that i € D is
connected with j € E iff i = r(j).

e
Part (3) is an immediate consequence of Y X7 = —vl +J. O
j=1

Now we are ready to prove the main result of this section
Theorem 3.6. A T-amorphic scheme should be commutative.

Proof. Assume, towards a contradiction, that the scheme is non-commu-
tative, that is £ > 1. Then A has at least one two-dimensional non-real
representation of quaternion type, say A,. Let E, denote the minimal
central idempotent correponding to A,. Since Ay (X T) = T71A,(X)'T,
we conclude that A,(X) is a scalar matrix whenever X is symmetric. By
Proposition 3.5 r~1(q) = {a,b,c} for pairwise distinct indices a,b,c. By
Proposition 3.4 we may assume that

0.t 0 0o @
- (5 ). - (4, %)

0 b,
AQ(XC) = (LOC 0 )

for some 6,,60,0. € R. Squaring these matrices we obtain
-6 0 -6 0
LA a 2\ __ b
AQ(Xa) - < 0 _03) ) Aq(Xb) - < 0 _0?) )

2 0
AQ(XE) = < 0 _93) :
Since A, (X,) = Ap(Xp) = Ap(Xe) = Ap(E,) = 0 for each p # g,
we obtain
X2 =-0°E,, X; =—-0;E,, X! =-0E,.
Taking traces we obtain
—20,0 = —2m 02, —2upv = —2m,0;, —2v.v = —2m,02,

implying that

0, ==+
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It follows from A, (X,)A,(X;) = 2 A, (X,) that X, X, = 8% X,.. Since

Xa, Xp, X, are {0, 1, —1} matrices, the number 949 ig an integer. It follows

fe
from
0207  vaupv
02 myu.
that 9;?” is an odd integer. We can conclude that X;X; = Xj(mod 2).

Finally, consider the product A,(A, + Aa)Ay(Xp). Since A, + Ay is
symmetric, we conclude that A, (Aq + Ay) is a scalar matrix Al for some
A. Therefore,

Aq((Aa + Aa) Xp) = Ag(Aa + Aa) Ay (Xp) = AAG(X3).
Since Ap(Xp) = 0 for each p # ¢, we conclude (4, + 45)Xp = AX,.
Clearly, A is an integer. It follows from X, = (4, + Ay )(mod 2) that

XoXp = AXp(mod 2). Therefore, X, = AX,(mod 2), contrary to the fact
that X,, Xy, X, are linearly independent over any field. O

§4. COMMUTATIVE CASE.

Here it is assumed that the scheme is commutative. In this case (1)
reads as follows

Vigj XiX; =0 and Y X7 =-—vl+J. (2)
i=1
In the commutative case the set of primitive idempotents has the following
form Ey, E1,Eyr, ..., E., E., where E;' = Ey,i =1,...,e. Notice that in
this case the direct sum A = A, + A_ is a Z»-graded decomposition, that
is
AtAL CAL, ALALCA, ALA_CAL

In this section we use the following abbreviations

Aj_ = Ai+Ai/, Az_ = AifAi/, Ej_ =F;+FE;, E; .= FE; — E;.

K3

Notice that the matrices Ao, AT, ..., AT (Eo,E;,...,E}) form the first
(resp. the second) standard basis of A, which is the BM-algebra of a sym-
metrized scheme R*. The character table and the structure constants of
AT are denoted by P* and Efj Also, each of the sets {A; }ic1,) and
{E; }icpn,e is a basis of A_. It follows from Proposition 3.5 that the map-
ping 7 : [1,e] — [1,e€] is a bijection. Renumbering idempotents we can
always assume that r(i) = i, € [1,e]. Thus, for each ¢ the matrix A; is
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proportional to E; , that is A; = A\;E; for some \; € C. It follows from
S (A7)? = —vl + J that

i=1

—ol +J =Y N(E)’=>_ X(Ei+Ey)
i=1

i=1

= —v Z(EZ + Ei/) = Z )\f(El + Ei/).
i=1 i=1
Therefore, \; = +1/v. Exchanging F; with E;, if necessary, we can always

assume that A; = /vE; fori =1,...,e. As a direct consequense of this
fact we obtain the following statement.

Proposition 4.1. Let P and Q be the first and the second eigenmatrices of
the scheme (Q, R). Then for any pair of indices i # j € [1, €] the following
conditions hold
(1) Pj; = Pj; = Pjy = Pjry = %P;;
P =P, = Pi+uv/v
(2) (23 () +EL . )
Py =Py = P“f\[;
3) AlAJ_ = P]zAJ_ and Pji = pgj‘* pgj‘/ s
4) AT A; = PLAT and P = pi, — pl, is odd;
)
)

ot

Qij = Qirj = Qijy = Qujr =Dy — Pirjrs

(
(
(
(6) Qii = Qirir = P, Qiri = Qiyr = Pi;.

6

Proof. Substracting Ay = v;Eg+ Z (Pji/ Ej +Pj/i/Ej/) from A; = v; Eq+
j=1

Z (PjiEj + Pj/iEj/) we obtain that Pj; = Pjy, Pjry = Py for i # j and

Jj=1

Pii - Pii/ = Pi’i - Pi’i/ = L\/E . Combining this with Pji = Pj/i/, Pij/ = Pi/j

and PJT’ZT = Pj; + Pji/,P;i' = P;; + P;; we obtain parts (1)—(2) of the

statement.

PART (3). It follows from A; = 1 /vE; that A;A7 = Auu(E; —
Ej/) = L\/E(PjiEi—leiEjl). By part (1) Pji = Pj’i- Thus, AzAJ_ = P]lA]_
Counting the coeflicients of A; in both sides of AiA; = PjiA;, we obtain
that Pji = pgj —pgj,_
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PART (4). It follows from E;"A; = A7 that
ATA = AT (B AY) = (ATEDN A7 = PYE] A = PRAT.

(3
Thus, A? — A2 = P (A; — Ay). Comparing the coefficients of A4; in both
sides, we conclude that P} = pi, —p!, . Rewriting A? — A% = P;I (4;— Ay)
as A2 — PFA; = A% — Pt A, we obtain (A2 — PFA;))T = A? — P A,
e

Therefore, A? — P;Ai = 231 /\jA;." for some integers A;j. The valency of the
j:

right-hand side part is an even number. Therefore, v? — P;fv; is an even
integer. Since v; is odd, we conclude that P;.' is odd.

PARTS (5) AND (6) follow from the well-known relations Q;;/m; =
Pji/vi - Il

Let 73,1 € [1, €], denote a permutation of the set {0}U[1, e]U[1’, ¢'] which
interchanges ¢ and i’ and leaves the rest of the elements fixed (that is 7; is
a transposition (i4')). It follows from parts (1)—(2) of Proposition 4.1 that
P, = Pyriy= holds for any pair u,v € {0} U[1,e] U[1’¢’]. Therefore, 7; is
an algebraic automorphism of 4. The transpositions 7;,7 € [1, e], generate
an elementary abelian 2-group 7T of order 2¢. This group acts regularly on
the set of all rank 3 antisymmetric fusions of X.

Proposition 4.2. m; = v; for each i € [1,¢€].
Proof. Squaring the equality 4; — Ay = 1v/v(E; — E;) we obtain
A? 24,4y + A2 = —v(E; + Ey).
Now by taking the traces of both sides we obtain the result. O

It follows from the previous statement that the entries Pg are even if
i # j and odd otherwise.

Proposition 4.3. Ifi # j, then P + P} = 2(mod 4) and p; = 0(mod 2).
Proof. Let M denote the diagonal matrix of size e such that M;;= m;= v;.

Since the principal part P; is congruent to I, modulo two, we can write
PgL = I, + 2P, for some integer matrix P;. The character table P of

1 2-1M

+
the scheme R™ has the form <1T I +2P,
vector of length e. Let us write the orthogonality relations for P* in the

matrix form

1 1 1 0 1 2.1M\ _ (1 0
oM1T I.+2r7 ) \o 2m)\1T I.4+2P ) T "\0 2Mm )"

>, where 1 is the all-one row
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Comparing the entries of both sides in the position (2,2), we obtain that
4 -MJ.M+2-M+4-MP, +4-P/ M +8-PMP, =2v- M,

or, equivalently,

1
MJeM+MP1+P1T1\4+2-Pf1\4131:”2 - M.

is an odd integer and M = I.(mod 2), we obtain

Jo4+ P+ P = I.(mod 2).

v—1

Since %5

This yields us the first congruence of the statement.
According to the well-known formula we have

e
vjupl; = viv; + Z(Pfist/ + P2, Py )ms.
s=1

If s #4,j, then by Proposition 4.1 Psj» = Py implying that

vjopl = viv; + (P Pijr + PiiPyjo)mi + (P};Pjje + P Pjjr)mj(mod 2).
Since the numbers m; = v;, m; = v;, v are odd and Pjj» = Py, Pj; = Pjy,
we obtain

pl = 1+ (P + P3,)P; + PjQi(ij' + Pjjr)(mod 2).

+ 27’[} .
By part (2) of Proposition 4.1, P2+ P7, = %, Pj;+Pjj = Pj*]'-. Since
2
P, P are odd and v = 3(mod 4), the numbers P, + P, = w,
Pj; + Py = PJT’JT are odd. Therefore,

pzz =1+ P+ P]?i(mod 2)=1+ P + Pji(mod 2).

+
ji

"
Together with P;; = %, P;; = P2 and P;; +Pg = 2(mod 4) we conclude

that Pj; + Pj; is an odd number. This yields us p{l = 0(mod 2). O

Corollary 4.4. The mapping A;L — E;L is not a duality of RT.

. . I .. Pt P
Proof. A mapping Aj' — Ej' is a duality if and only if v;]’ = - holds
for any pair of indices. But for i # j both entries P;, Pf; are even numbers
whose sum is congruent to 2 modulo 4. Since v; and v; are odd numbers,
+ pt

. . . .., Pt pt L
this implies that the highest 2-powers which divide v—]],v# are distinct for

i # . O
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Corollary 4.5. If v = 7(mod 8) then A? = A;(mod 2) for each i € [1,e].
If v = 3(mod 8) then A? = A;(mod 2) for each i € [1,e].

Proof. Ple an arbltrary j€lel,j#i. By Proposition 4.3, p“ is even.
= pJ,, we obtain that p/; = 0(mod 2) Therefore, A? =
Pl A; + pi; Ay (mod 2). This also implies that v? = piv; + phvy (mod 2).
Since v; is odd, we conclude that pi; + p%; = 1(mod 2). Thus, for any
i € [1,¢] either A? = 4;(mod 2) or A7 = Ay (mod 2).

The matrix A := A; +--- + A, is the matrix of a doubly regular tour-
nament of order v. Therefore, 4> = 724 + AT If v = 7(mod 8),

then 42 = A(mod 2) implying that Z A? = Z A;(mod 2). Thus, A? =

Since p“ =pl

AR

A;(mod 2) for each ¢ € [1,e]. The case of v = 3(mod 8) is considered
similarly. 0O

§5. FUSIONS IN X AND X™T

Let P = {P1,...,P;} be a partition of [1,e] with f non-empty classes.
Let D be an e x f matrix defined as follows: D;; = 1if¢ € P; and D;; =0,
otherwise. We define the dual partition P+ of [1,e] by putting i,j € [1, €]
at the same class iff the i-th and j-th rows of the matrix p0+ D are equal.
It is well-known that P gives rise to a fusion scheme iff |P+| = |P|, that
is P and P+ have the same number of classes. Since Py” = I.(mod 2),
we obtain (P;f D) = D(mod 2). Therefore, P+ is a refinement of P. This
immediately implies the following

Proposition 5.1. A partition P gives rise to a fusion scheme iff P+ = P.
Every partition P = {P1,...,P,} of [1,e] determines a partition P’ :=

{P1s---, P4} of [, €']. The union PUP’ is an admissible partition of [1, e]U

[V, e].

Proposition 5.2. A partition P of [1,e] gives rise to a fusion of R* iff

the partition PUP’ gives rise to a fusion of R. If R/(PUDP’) is a scheme,
then it is T-amorphous.

Proof. If P U P’ determines a fusion scheme of R, then this scheme is
anti-symmetric and its symmetrization is a fusion of R* determined by P.

Conversly, assume that P = {Py,...,P;} is a partition of [1,e] which
determines a fusion scheme of R. Since P+ = P, the sets {Ag} U {A}?k }izl

and {Ep} U {E$k}£:1 form the first and the second standard bases of



ON T-AMORPHOUS ASSOCIATION SCHEMES 113

the fusion scheme RT/P. Let B denote the linear span of the matri-
ces Ao, Ap,, Ap,k € [, f]. It suffices to show that the linear spans
(Ao, {Ap,, Ao }ren,p) and (Eo,{E»,, Ep }ren ) are equal. It follows

from

1 _ 1 _
Ap, = S (45, +45,) Agy = £ (45, - 43)
and ) )
that
(Ao, { Ay, Ay Yren, ) = (Ao, {45, AF Yren, )
and

(Eo, { B\, Ep, Yrep,s1) = (Bo, {Eg,, By, bren,f)-
Now the claim follows from

(Ao, {43, rer.n) = (Bo, {E$, brep,n)

and
Ay =wEg Jk=1,...,f. O

If Q is a partition of [1,e] U [1,e’] which determines a fusion, then its
symmetrization QT := {(QUQ')N[1,e] | Q € Q} determines a fusion of R*.
This gives us a homomorphism which maps the lattice of fusion schemes
of R into the one of R*. It turns out that the lattice of fusions of R may
be reconstructed from the lattice of fusions of R*.

Proposition 5.3. Let P = {P1,...,Ps} be a partition of [1,e] which
determines a fusion scheme of R™. Then any admissible partition Q of
[1,e]U[1, €] with QF = P determines a fusion of R.
Proof. Let Q be an admissible partition of [1, e]U[1’, '] with g > 0 pairs of
anti-symmetric classes, that is Q = {Qy,...,9,,91,...,9,Qy41,...,97}.
It follows from QF = P that (after renumbering) Qf = P;,i=1,..., f.
For any algebraic automorphism 7 € T' a partition Q7 is also admissible.
Moreover, Q determines a fusion of R iff Q7 does. Since there always exists

g
7€ T with |J Q7 C[1,e], we may assume, without loosing generality, that
i=1

g
'U1Qi C [1,€]. In this case Q; = P;,i = 1,...,9, and Q; = P; UP,,j =
P

gi+ 1,..., f. By Proposition 5.2 the partition PUJP’ determines a fusion of



114 M. E. MUZYCHUK

R. Therefore, a coarsening of P U P’ by any subgroup S < T determines
a fusion of R. Now it remains to notice that Q is a coarsening of P U P’

with respect to a subgroup generated by the elements o; := [ 75,0 =
JEP;
g+1,...,f. O

Corollary 5.4. If a partition P of [1,e] determines a fusion of R, then
|P| is odd. In particular, both R and R* are primitive schemes.

Proof. By Proposition 5.2 P U P’ determines a fusion of R which is T-
amorphous. By Corollary 2.2 |P| is an odd number. Since R* is a sym-
metrization of R, they are primitive or imprimitive simultaneously. Since
imprimitive schemes always have a fusion with two classes, we conclude
that R is primitive. O

Proposition 5.5. —”’2"'1 < w; for each i #0 .

Proof. Since R is a primitive scheme, the eigenvalues P;; satisfy the in-
equality |P;;| < v;. Taking i = j we obtain |P;|? < v?. By Proposition 4.1
we obtain (P;)? + v < 4v2. The rest follows from P;} = 1(mod 2). O

Question. It follows from Proposition 5.5 that d < 2,/v. Does there
exist an infinite series of T-amorphous schemes with d > a(y/v), where a
constant « is independent of v.

§6. CycLoToMIC T-AMORPHOUS SCHEMES.

The main goal of this section is to give necessary and sufficient con-
ditions for a cyclotomic scheme to be T-amorphous. Let F,,q = p’/, be
a finite field and d be a divisor of ¢ — 1. For a generator g € F; we
define the d-th cyclotomic classes as follows C; := (g%)g’, where i =
0,1,...,d — 1. The basic relations of the cyclotomic scheme are Ry := Iy,
and Riyy := {(z,y) € Fi|z —y € Ci},i = 0,1,...,d — 1. One of the
important properties of cyclotomic schemes is that a cyclic permutation
i+ 1+ 1(mod d) is an algebraic automorphism of the scheme. Let us call
a scheme X = (Q, R = {Ry, R1,...,Ra}) pseudo-cyclotomic if it admits a
cyclic group H of algebraic automorphisms which acts regularly on the set
{1,...,d}. Since H is transitive on [1, d], the scheme X is either symmetric
or anti-symmetric. In the latter case d is even and the following statement
holds
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Proposition 6.1. Let X be antisymmetric. Then i* =i’ where z € H is
a unique element of order 2.

Proof. Let z € H be a unique element which maps 1 to 1/, that is 17 = 1.
Since ()" = (i*)’ holds for each h € H and i € [1,d], we obtain that i* = i’
holds for each i € [1,d]. This implies that 22 = 1. O

According to [7] the group H acts regularly on the set of primitive idem-
potents Ey, ..., E4. For each irreducible character x € Irr(H) we define the
eigenspace A, of H as follows A, := {A € A| A9 = x(g)A}. Notice that
A, is one-dimensional if x is non-principal and two-dimensional if x = 1y
(the principal character of H). The subspace A, is a BM-algebra of a
trivial scheme with the standard bases {I, J —I'}. An algebra A is a direct
sum of the subspaces A,,x € lrr(H). Since H is a group of algebraic au-
tomorphisms, the decomposition A = ®X6|rr(H) A, is a grading of A with
respect to both multiplications - and o, that is

Ax 'Aw - -Axw:

Ao dy € A )
For each i € [1,d] and x € Irr(H) we set A;, = > x(h™')A4Am and
heH
Eiy = > x(h™')Ej. A direct check shows that for each h € H one has
heH
(Ai,x)h = Aih,x = X(h)Ai,X7 (4)
(Bin)" = Epn, = x(h)E; .

If x # 1, then both E;, and A, , span A,. Therefore, they are propor-
tional, that is A;, = AE;, for some complex number A. Changing j and
i leads to a multiplication of A by a complex d-th root of unity. In a cy-
clotomic scheme this coefficient (under certain choice of 7 and j) is known
as Gauss sum. For this reason we denote this coefficient as G(x,%,j) and
call it Gauss sum as well. Thus,

Az}X = G(Xaiaj)Ej7X' (5)

Theorem 6.2. Let X be an antisymmetic pseudo-cyclotomic scheme with
d = 2e classes, e odd, and with H = (ho),ho = (1,...,e,1',...,€¢'). Then
X is T-amorphous iff there exists j € [1,e]U[l’,€'] and e € {£1} such that
for any character x € lre(H) of even order G(x,1,7) = et\/v.
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Proof. Necessity. In this case 41 — Ay, = 1\/v(E; — Ej/) for some j €
[1,e]U[l',€']. Therefore, for each h € H one has

Alh — A(lh)/ = L\/E(Ejh - E(jh)/) — Alh - Alzh = L\/E(Ejh — Ejh;),
where z:= hg.

Next, let x € Irr(H) be a character of even order. Then x(z) = —1 and

Ay = Z x(h)Apn = Z xX(h)(Apr — Ajpn:)

heH heO
=1/ Y X(h)(Ejn — Ejn-) = /By,
heO

where O is a unique subgroup of H of order e.

Sufficiency. Let x € Irr(H) be a character of even order. Then A , =
ei/vEj ,, or, equivalently,

> x() (A = Aps) = /v Y x(h)(Ejn — Ejn-)

heO heO
= Y X(W)(Apn — Aany) =ev/v > x(B)(Epn — Eny).
heO heO

Since the restriction map x — Xo is a bijection between irreducible H-cha-
racters of even order and Irr(O), we conclude that the equality

D () (A — Ainy) = er/v > () (Ejn — E(ny)

heO heO
holds for each ¢ € Irr(O). Since the matrix (1(h))yeir(0),neo is invertible,
we obtain that A; — Agny = et/v(Ejn — Ejny/) holds for each h € O.
Now the claim follows from the fact that {i"},co is an '-transversal. [

Corollary 6.3. Let X be a cyclotomic scheme with d = 2e,e odd, classes
over a finite field F,,q = p’. Assume that ¢ = 3(mod 4). Then X is
T-amorphous if and only if there exists € € {£1} such that G(x) = e1/q
holds for all multiplicative characters x of F; of order 2e1,e1 | e.

Proof. The Gauss sum of the cyclotomic scheme G(x) coincides with
G(x, 1,1). Sufficiency follows directly from Theorem 6.2. Thus, we have to
prove necessity. First, we show that gcd(d, p — 1) = 2. Consider the fusion
X’ of X with respect to the subgroup of H of index ged(d,p — 1). This is
an anti-symmetric fusion with dy := ged(d,p — 1) classes. Thus, X’ is a
cyclotomic T-amorphous scheme with dy = 2ey classes. By Theorem 6.2
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there exists j € [1,dp] and € € {£1} such that G(x,1,j) = /g for each

multiplicative character of order dy. Since G(x) = G(x,1,1) and G(x, 1,7)

differs by a factor which is a complex dy-th root of unity, we conclude that

G(x)/+/4 is a complex root of unity. By [12] for each a € [0, dp — 1] coprime
m—1

to dp one has > (p'a)q, = mdy/2 = meg, where?> m = ordg,(p) and x4,
i=0

is the remainder of z modulo dy. Since dy divides p — 1, we obtain that

(pla)q, = a for each a € [0, dy — 1]. Therefore, a = eq for each a € [0, dy —1]

coprime to do. It follows that Zj = {eo} and thus dy = 2.

Let 7 denote an algebraic automorphism of X induced by the Frobenius
automorphism of the field. Since ged(d, p— 1) = 2, the Frobenius automor-
phism fixes only two cyclotomic classes Cy and Ce. Therefore, in its action
on the first (second) standard basis of X the automorphism 7 fixes only
two elements A; and Ay = A, (E;, and E;, = E, respectively).

By Theorem 6.2 there exist € € {1} and j € [1,d] such that G(x, 1,7) =
g1,/q for each character x of F; of order 2e; | d. We have to show that j = 1.
It follows from the proof of Theorem 6.2 that A; — Ay = en/v(E; —
E;/) Applying 7 to both sides we conclude that j™ = j. Therefore, j €
{Le}. If j = e, then A1, = G(x,1,e)E,y = et\/qE, y = ct\/qE= =
e1/qx(2) B,y = —e1/qE1,, implying G(x,1,1) = —e1/v. O

As a direct consequence of Davenport—Hasse Theorem we obtain the
following

Corollary 6.4. If a cyclotomic scheme over a field F, with d classes is
T-amorphous, then for any odd m a d-class cyclotomic scheme over Fym
s also T-amorphous.

Another corollary follows immediately from the proof of Corollary 6.3.

Corollary 6.5. If a cyclotomic scheme over F, with d classes is T-amor-
phous, then ged(p —1,d) = 2.

This fact implies that the number d of classes in a T-amorphous cyclo-
tomic scheme is at least 14. Indeed, if d < 14, then d = 6, 10. Since ord,(p)
is odd and Zg, Z7, are 2-groups, we conclude that in any of these two cases
p = 1(mod d) which contradicts Corollary 6.5. Cyclotomic T-amorphous
schemes with 14 classes do exist — the smallest example found by Feng and
Xiang has 14 classes over 113 points.

2Here the sum is in Z.
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Problem. Find a critetion for a cyclotomic scheme to be T-amorphous
in terms of p, f and d (without Gauss sums) like it is done for amorphic
cyclotomic schemes.

§7. T-AMORPHOUS SCHEMES WITH 6 CLASSES

By Corollary 2.2 a minimal number of classes of a T-amorphous scheme
is 6. An example of such a scheme occurs when one fuses classes of a
cyclotomic scheme with 14 classes on 112 points (see [11]) by the Frobenius
automorphism. In this section we make an attempt to find the character
table of such a scheme. Let X = (2, {Ryo, R1, R2, R3, R1/, Ro/, R3/}) be a
T-amorphous scheme. As before,

A07A17A27A37A1’7A2’7A3/ and E07E17E27E37E1/7E2/7E3/

stand for the first and the second standard bases of the BM-algebra A of
X, respectively. The elements of the standard bases are numbered in such
a way that A; — Ay = 1/v(E; — Ey) holds for i = 1,2, 3. The symmetrized
scheme X% has three classes R;L = R, UR;,i = 1,2,3, and its standard
bases are Ay, A], AS, A;‘, Eo, E} ES, E;' Its valencies and multiplicities
are m;” = v = 2v;,i = 1,2,3. Following Hanaki [3] we call a symmetric
scheme a B-scheme if there exists an ordering (called a B-ordering) of
its standard bases such that v; = m;. There are two natural classes of

B-schemes — those which are (formally) self-dual and pseudocyclic schemes.
But these classes do not exhaust all possible examples of B-schemes. Arjana
Zitnik pointed out that there exists a feasible parameter set of a diameter
three distance regular graph whose scheme is a B-scheme. So, it seems
reasonable to consider this class of schemes in general.

7.1. B-schemes. We start with the following
Proposition 7.1. Let X be a B-scheme with three classes with B-ordering
Ag, A1, Az, A3 and Egy, Ey, Es, E3 of its standard bases. Let C be its co-

sine matriz. Then either C' is symmetric (and the mapping E; — A; is a
duality) or there exist real numbers a,t such that

a’v + t*v1vvs = (a — 2)? (6)
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and
1 1 1 1
1 — a(ve+vs)+2 atvst a—uvat
C _ 2v1 2 2 7
11 a—wvst _a(vitvz)+2 atvit . ( )
2 2vao 2
1 atuot a—vit _a(vifvz)42
2 2 2v3

Proof. By orthogonality relations for the first row and column we have
1+ 1)1011 + 1)2012 + 1)3013 = 0; (8)
1401011 +v2021 +v303 =0

and
v
14010} + 0208y +v3Cly = o
h 9)
2 2 2 v
1 + vlCH + 1)2021 + 1)3031 = U_
1
Therefore,

U2(012 - 021) = U3(031 - 013);
U2 (0122 - 0221) = U3 (03%1 - 0123)
implying that either 012 = 021,013 = 031 or 012 + 021 = 013 + 031.
Writing similar relations for the second and the third row/column we con-

clude that either C' is symmetric or C;; + Cj; is constant. Let us denote
this constant by a. Then

Ci2 +C51 =Ci3+ C31 = Caz + Csr = a.

(10)

It follows from
v2(C12 — Ca1) = v3(C31 — C13),
U1 (012 - 021) = 03(023 - 032),
U2 (023 - 032) =1 (031 - 013)

that
Cia —Ca Caz — O3 _ C31 — Cis
U3 (%1 U2 ’
Denoting this common value by ¢ we obtain that
Cia — Co1 = vst, Cia + (o1 =a,
Ch3 — O3z = v1t, Cr3 + Cs2 = a,

C31 — Ci3 = vat, Cs1 + Ci3 =a,
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implying
a + vst a — vst
Cz="5 Gr="5
a+ vt a— vt
Caz = 5 U3z = 5
a + vl a — vt
C31 = 5 Ci3 = >
Adding the equations in (8) we obtain 2+2v, C11 +a(ve4wv3) = 0. Therefore,
Ci = 77[1(”2;;’13”2. Analogously, Coy = —7“(”1;}”13”2, Cs3 = *7[1(”1;;;2”2.
Thus, the cosine matrix has the following form
1 1 1 1
1 — a(va+vs)+2 atuvst a—wvat
C = 2v1 2 2
- 1 a—21)3t _ a(v1;v3)+2 a+2v1t
1 a+vat afvvft _a(vitv2)+2
2 2 2u3

Substituting the above expressions for Cy; into (9) we obtain equation (6).
O

Corollary 7.2. A B-scheme with three classes is self-dual if and only if C
is symmetric or at least two of the valencies vy, vs,v3 are equal.

Proof. Assume that C is non-symmetric. If the scheme is self-dual, then
the duality permutation ¢ on 1,2, 3 is non-identical. W.l.o.g. (1) # 1.
Then vy1) = mya) = v1.

Now, assume that some of v;’s are equal, say v; = vy. Then ¢ = (12) is
a duality permutation. O

Proposition 7.3. Let F' be the decomposition field of X. If F' # Q, then
Gal(F/Q) = Z3 and X is pseudocyclic.

Proof. The Galois group Gal(F/Q) acts faithfully on the set of primitive
idempotents Fy, Eo, E3 of the scheme. Assume that Gal(F/Q) contains an
automorphism ¢ which acts on Ej, E», E3 as a transposition, say EY =
E», E§ = Ey, E{ = Ej. This implies that

a — vot J_a-l-vlt a+ vyt J_afvgt
2 h 2 2 n 2

Together with v; = v, we obtain that a € Q. From EJ = Ejs it follows that
(3, = Cs1, or, equivalently, (%ﬂzt)g = ot%! Hencet € Qand F =Q. A
contradiction.
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Thus, the group Gal(F/Q) is either trivial or acts regularly on E;, Es,

E3. In the latter case the scheme is pseudocyclic. O
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