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hukON T-AMORPHOUS ASSOCIATION SCHEMESAbstra
t. A s
heme is 
alled T-amorphous if it is antisymmet-ri
 and any tournament obtained by an appropriate merging of its
lasses is doubly regular. The goal of this paper is to study basi
properties of this 
lass of s
hemes.Dedi
ated to the memory of Sergei Evdokimov
§1. Introdu
tionLet X := (
;R = {Ri}di=0) be an asso
iation s
heme with d 
lasses.It is not assumed that that X is 
ommutative. Most of notation used inthis paper follow the book [1℄. As usual i 7→ i′ is a transposition map,that is Ri′ = R⊤i . For a subset I ⊆ [0; d℄ we set I ′ := {i′ | i ∈ I}. Thestru
ture 
onstants and the valen
ies of a s
heme X are denoted by pkijand vi, respe
tively. The adja
en
y matrix of Ri is denoted by Ai. Givena �eld F , a linear span of the adja
en
y matri
es Ai, denoted by F [R℄, isa subalgebra of the full matrix algebra M
(F ). It is 
alled the adja
en
y(or Bose{Mesner) algebra of X over F . An algebrai
 isomorphism betweentwo s
hemes X = (
;R = {Ri}di=0)) and X

′ = (
′;R′ = {R′i}di=0)) is abije
tion ' : [0; d℄ → [0; d℄ whi
h preserves the stru
ture 
onstants, that ispk'i'j' = pkij holds for ea
h triple i; j; k of indi
es. Noti
e that algebrai
 iso-morphisms 
oin
ide with pseudo-isomorphisms [7℄, BM-isomorphisms [8℄and weak-equivalen
es [14℄. An algebrai
 isomorphism of a s
heme to itselfis 
alled an algebrai
 automorphism of the s
heme.A partition P = {Pi | i = 0; : : : ; d′} of the index set [0; d℄ into non-emptysubsets is 
alled admissible [6℄ if P0 = {0}, and for ea
h i; 1 ≤ i ≤ d′there exists j ∈ [0; d′℄ su
h that P′i = Pj . Given an admissible partition
P = {Pi | i = 0; : : : ; d′}, we denote by R=P a partition of 
2 with d′
lasses RPi := ⋃j∈Pi Rj ; 0 ≤ i ≤ d′. We say that P gives rise to an asso-
iation s
heme if a pair (
;R=P) is an asso
iation s
heme. In this 
asethe s
heme (
;R=P) is 
alled a fusion of (
;R). Following [6℄ we 
all aKey words and phrases: assosiation s
heme, adja
en
y algebra, fusion.98



ON T-AMORPHOUS ASSOCIATION SCHEMES 99s
heme amorphous if (
;R=P) is an asso
iation s
heme for any admis-sible partition P of [0; d℄. It should be noted that the original de�nitiongiven in [6℄ dealt only with 
ommutative s
hemes. But it was shown byMa [10℄ that being amorphous implies 
ommutativity. Symmetri
 amor-phous s
hemes known as amorphi
 were 
lassi�ed up to algebrai
 isomor-phism by Gol'fand, Ivanov and Klin and in [9℄. Amorphous asso
iations
hemes with at least three symmetrized 
lasses were 
lassi�ed (up to al-gebrai
 isomorphism) by Ito, Munemasa and Yamada. Re
ently J. Ma
lassi�ed amorphous s
hemes with two symmetrized 
lasses [10℄, up toalgebrai
 isomorphism.A s
heme is 
alled anti-symmetri
 (skew-symmetri
 in [10℄) if i′ 6= i forea
h i 6= 0. An anti-symmetri
 s
heme with two 
lasses is equivalent toa doubly regular tournament. The parameters of a doubly regular tourna-ment are uniquely determined by its order (the number of verti
es of atournament). A ne
essary 
ondition for an existen
e of an anti-symmetri
s
heme on v points is v ≡ 3(mod 4). Given an anti-symmetri
 s
heme(
;R) with d 
lasses, we say that a subset I ⊂ [1; d℄ is a ′-transversal if Iinterse
ts ea
h pair {j; j′}; j ∈ [1; d℄ by one element. In what follows wenumber the relations of R in a way that the set [1; d=2℄ is a ′-transver-sal. Every ′-transversal I gives rise to an admissible partition with three
lasses {0}; I; I ′. We say that an anti-symmetri
 s
heme is T-amorpho-us if partition {0}; I; I ′ gives rise to an anti-symmetri
 s
heme for ea
h
′-transversal I . Of 
ourse, every amorphous anti-symmetri
 s
heme wouldbe an example of a T-amorphous s
heme. Unfortunately, as was shownby Ma [10℄, they do not exist. Thus, one 
ould ask whether T-amorphouss
hemes exist at all. Fortunately, the answer is aÆrmative. Re
ently Fengand Xiang [11℄ built an in�nite series of T-amorphous 
y
lotomi
 s
hemes.The purpose of this note is to study the properties of this 
lass of s
hemes.

§2. Some basi
 fa
ts about T-amorphous s
hemesFirst, we �x some notation. For the rest of the paper X = (
;R) willstand for an anti-symmetri
 s
heme with d = 2e 
lasses. It is also assumedthat [1; e℄ is a ′-transversal. We start with the following 
hara
terizationof anti-symmetri
 s
hemes [15℄.Proposition 2.1. A s
heme (
;R) is anti-symmetri
 if and only if it isodd, that is all its valen
ies and |
| are odd numbers.As a dire
t 
onsequen
e we obtain the following



100 M. E. MUZYCHUKCorollary 2.2. If X is T-amorphous, then e is odd.Proof. The statement follows from the equailty
|
| = 1 + e∑i=1 2vi ≡ 2e+ 1(mod 4)and the 
ongruen
e |
| ≡ 3(mod 4). �Now, we 
an easily show that a T-amorphous s
heme with e > 1 
annotbe amorphous1. Indeed, if an anti-symmeti
 s
heme is amorphous, then itssymmetrization is an amorphi
 s
heme with e ≥ 3 
lasses. Therefore, thenumber v of s
heme points is a square, 
ontradi
ting v ≡ 3(mod 4).The main result of this se
tion is the following 
hara
terization of anti-symmetri
 T-amorphous s
hemes.Theorem 2.3. An anti-symmetri
 s
heme (
;R = {Ri}2ei=0) is T-amor-phous if and only if

∀i 6=j XiXj = −XjXi and e∑i=1 X2i = −|
|I
 + J
; (1)where Xi := Ai −Ai′ ; 1 ≤ i ≤ e.To prove this statement we re
all a well-known 
hara
terization of dou-bly regular tournaments.Proposition 2.4. A regular tournament (
; R) is doubly regular if andonly if (A−A⊤)2 = −|
|I
 + J
, where A is the adja
en
y matrix of R.Proof of Theorem 2.3. It follows from Proposition 2.4 that the s
heme
X is T-amorphous i� for any fun
tion " : [1; e℄ → {±1} the matrix X" :=e∑i=1 "(i)Xi satis�es the equation X2" = −|
|I
 + J
. We may assume thate ≥ 3.Pi
k an arbitrary pair of indi
es i 6= j ∈ [1; e℄ and set Y1 = Xi,Y2 = Xj , Y3 = ∑k 6=i;jXk. Then (Y1 + Y2 + Y3)2 = −|
|I
 + J
 and(−Y1 + Y2 + Y3)2 = −|
|I
 + J
, implying Y1 ? Y2 + Y1 ? Y3 = 0, where1This argument was found by Misha Klin.



ON T-AMORPHOUS ASSOCIATION SCHEMES 101A ?B := AB +BA. Permutting the indi
es 1; 2; 3 we obtain the followingsystem of matrix equations




Y1 ? Y2 + Y1 ? Y3 = 0;Y1 ? Y2 + Y2 ? Y3 = 0;Y2 ? Y3 + Y1 ? Y3 = 0:Solving the system, we obtain Y1 ? Y2 = 0; Y1 ? Y3 = 0; Y2 ? Y3 = 0. Thus,XiXj +XjXi = 0. The rest follows easily. �

§3. Non-
ommutative 
ase.The main goal of this se
tion is to show that a T-amorphous s
hemeshould be 
ommutative. With this end, we study irredu
ible 
omplex rep-resentations of the adja
en
y algebra A := C[R℄. We write A+ and A−for subspa
es of A 
onsisting of symmetri
 and skew-symmetri
 matri
es,respe
tively. We also abbreviate v := |
|, J := J
; I := I
.Let E0 = v−1J;E1; : : : ; Er be a 
omplete set of minimal 
entral idempo-tents of A. It is well-known that a two-sided ideal Ai := EiA is isomorphi
(as an algebra) to the full matrix algebraMni(C). This isomorphism yieldsan irredu
ible 
omplex representation of A whi
h will be denoted by �i.We denote by ni the dimension of �i. The multipli
ity of �i in the de-
omposition of the standard module C
 will be denoted by mi. Sin
e thes
heme is odd, all multipli
ities mi; 0 ≤ i ≤ r, are odd integers. Noti
e that�i : A →Mni(C) is a C-algebra epimorphism su
h that �i(Ei) = Ini . A
-
ording to [4℄ we may assume that �i(X∗) = �i(X)∗ for ea
h X ∈ A(here and later on X∗ := X⊤ is the Hermitian 
onjugate of a matrix X).Noti
e that as a matrix of M
(C), ea
h Ei is Hermitian, that is E∗i =Ei. A 
omplex matrix Ei = E⊤i is also a minimal 
entral idempotent of A.Thus, E⊤i = Ei′ for some i′. Noti
e that the mapping i 7→ i′ is an involutionand 0′ = 0. The representation �i′ 
orresponding to Ei′ is equivalent toX 7→ �i(X⊤)⊤.In order to pro
eed further, we introdu
e additional notation. We writeX̃ for the 2n×2n real matrix whi
h is obtained from n×n 
omplex matrixX by repla
ing a 
omplex number Xij = a + b�; � = √
−1, by the 2 × 2-matrix ( a b

−b a ). Noti
e that the mapping X 7→ X̃ is an R-algebramonomorphism between the algebrasMn(C) andM2n(R), and X̃∗ = X̃⊤.The following result of J. Putter (Theorem 1, [13℄) plays a 
entral rolein this se
tion.



102 M. E. MUZYCHUKTheorem 3.1. Let X1; : : : ; Xq be a set of n×n skew symmetri
, pairwiseanti
ommuting (that is XiXj = −XjXi for i 6= j) non-zero real matri
es.Then q ≤ n− 1.Proposition 3.2. If i′ 6= i, then ni = 1. If ni = 1 and i 6= 0, then i′ 6= i.Proof. First we prove a general fa
t that �i(A−) = �i(A) (and, there-fore, �i(A−) = Mni(C)). Sin
e �i maps EiA onto Mni(C) bije
tively, itsuÆ
es to show that EiA = EiA−. Let Y ∈ EiA be an arbitrary ma-trix. Then Y = Y Ei implies Y ⊤ = Y ⊤Ei′ . Together with EiEi′ = 0 we
on
lude that Ei(Y − Y ⊤) = EiY − EiY ⊤Ei′ = EiY = Y:Thus, EiA = EiA−. Sin
e the matri
es X1; : : : ; Xe form a basis of A−,the matri
es EiXj ; j = 1; : : : ; e, span EiA. Therefore, the matri
es Yj :=�i(Xj); j = 1; : : : ; e, span Mni(C). In parti
ular, the number of non-zeromatri
es among Yj 's is at least n2i . Sin
e X∗j = −Xj , we 
on
lude thatY ∗j = −Yj . Also, the matri
es Yj are pairwise anti-
ommuting. Now, thematri
es Ỹj ; j = 1; : : : ; e, form a set of 2ni × 2ni real skew symmetri
matri
es whi
h anti-
ommute pairwise. By Theorem 3.1 the number ofnon-zero matri
es among Ỹj is at most 2ni−1. On the other hand, amongthese matri
es at least n2i matri
es are non-zero. Thus, n2i ≤ 2ni − 1implying ni = 1.Next, assume that ni = 1; i 6= 0. Then �i is one-dimensional and, there-fore, �i′(Aj) = �i(A⊤j )⊤ = �i(A⊤j ). If i′ = i, then �i(Aj) = �i′(Aj) =�i(A⊤j ) implying that �i(Xj) = 0 for ea
h j = 1; : : : ; e. But it followsfrom (1) that ∑j �i(Xj)2 = −v. A 
ontradi
tion. Thus i′ 6= i. �Finally, we 
onsider the remaining 
ase i′ = i, that is E⊤i = Ei =Ei. In this 
ase A⊤i = Ai and the mapping X 7→ X⊤ is an order twoanti-automorphism of Ai. Sin
e Ai is isomorphi
 to Mni(C), the abovemapping yields an order two anti-automorphism of Mni(C). Ea
h anti-automorphism of the full matrix algebra has a form A 7→ S−1A⊤S whereS is either symmetri
 or a skew-symmetri
 matrix [2℄. Thus, �i(X⊤) =S−1�i(X)⊤S.If S is symmetri
, then there exists a unitary matrix U and diagonal realmatrixD with Dii > 0 su
h that S = UDU⊤ (Lemma 4.4.4 [5℄). Repla
ing�i(X) by √DU∗�i(X)U√D−1 we obtain an equivalent representationwhi
h satis�es �i(X⊤) = �i(X)⊤ and �i(X∗) = �i(X)∗ for ea
h X ∈ A.



ON T-AMORPHOUS ASSOCIATION SCHEMES 103In parti
ular, �i(Aj) is a real matrix for ea
h j ∈ [0; 2e℄ (that is �i isirredu
ible over R). In this 
ase �i is 
alled a real representation.If S is skew symmetri
, then ni is even and there exists a unitary matrixU su
h that S = UV U⊤ where V is a dire
t sum of ni=2 matri
es of theform ( 0 z`
−z` 0) ; z` ∈ C, ` = 1; : : : ; ni=2 [5, Se
tion 4.4, Problem 26℄.Therefore, there exists an orthonormal basis of Cni su
h that in the newbasis �i(X⊤) = V −1�i(X)⊤V . In this 
ase we 
all �i a representation ofa symple
ti
 type.Proposition 3.3. If �i is real, then ni = 2. There exists a unique j ∈

{1; : : : ; e} with �i(Xj) 6= 0. Moreover, �i(Xj) = ( 0 �
−� 0), where � =

±√v.Proof. It follows from X⊤j = −Xj that �i(Xj)⊤ = −�i(Xj). Thus,�i(Xj); j = 1; : : : ; e are skew symmetri
, real and pairwise anti
ommutingmatri
es of order ni. By Theorem 3.1 the number of non-zero matri
esamong them is at most ni − 1.Sin
e Xj 's form a basis of A−, the number of non-zero matri
es among�i(Xj) is at least dim(�i(A−)). It follows from �i(X⊤) = �i(X)⊤ that�i(A−) 
oin
ides with the subspa
e of skew symmetri
 matri
es ofMni(C).Therefore dim(�i(A−)) = (ni− 1)ni=2 implying (ni− 1)ni=2 ≤ ni. Hen
eni ≤ 2. By Proposition 3.2 ni ≥ 2. Therefore ni = 2.The subspa
e of skew symmetri
 matri
es of M2(C) is one dimensionaland is spanned by ( 0 1
−1 0). Sin
e �i(Xj)'s are anti
ommuting, we 
on-
lude that �i(Xj) is non-zero for at most one matrix Xj . The rest of thestatement follows from the equality e∑j=1X2j = −vI
 + J
. �Proposition 3.4. If �i is symple
ti
, then ni = 2. There exists at mostthree indi
es j ∈ [1; e℄ su
h that �i(Xj) 6= 0. If there are exa
tly threeindi
es a; b; 
 ∈ [1; e℄ with non-zero images �i(Xj); j ∈ {a; b; 
}, then, upto a 
onjugation by a unitary matrix, the matri
es �i(Xa);�i(Xb);�i(X
)have the form

(��a 00 −��a) ; ( 0 �b
−�b 0) ; ( 0 ��
��
 0 ) ;where �a; �b; �
 are real numbers satisfying �2a + �2b + �2
 = v.



104 M. E. MUZYCHUKProof. A

ording to [14℄ the dimension of �i(A−) is ni(ni+1)=2. There-fore, among the matri
es Yj := �i(Xj); j = 1; : : : ; e there are at leastni(ni + 1)=2 non-zero matri
es. Sin
e these matri
es are skew Hermitianand pairwise anti-
ommute, the matri
es Ỹj are pairwise anti-
ommutingskew-symmetri
 real matri
es of order 2ni. By Theorem 3.1 the numberof non-zero matri
es among Ỹj , 1 ≤ j ≤ e, is at most 2ni − 1. Thus,ni(ni + 1)=2 ≤ 2ni − 1 =⇒ ni ≤ 2. Sin
e ni is even, we 
onl
ude thatni = 2. Thus V = ( 0 z
−z 0) for some z ∈ C and�i(X⊤) = V −1�i(X)⊤V = T−1�i(X)⊤T where T = ( 0 1

−1 0) :It follows from the above arguments that the number of non-zero ma-tri
es among Yj ; j ∈ [1; e℄, is at most three. Next, assume that there areexa
tly three non-zero matri
es Ya; Yb; Y
 with distin
t a; b; 
 ∈ [1; e℄. Itfollows from X⊤j = X∗j = −Xj that T−1Y ⊤j T = Y ∗j = −Yj . Now a dire
t
omputation shows that ea
h of the matri
es Ya; Yb; Y
 has a formYj = ( �rj zj
−zj −�rj) ; where rj ∈ R; zj ∈ C and j ∈ {a; b; 
}:The 
hara
teristi
 polynomial of Yj is x2 + r2j + |zj |2. Sin
e Yj 6= 0, thenumber r2j + |zj |2 is a positive real. Therefore, the eigenvalues of Yj are

±��j , where �j = √r2j + |zj |2. Sin
e ea
h of the matri
es is skew Hermitian,it has an orthonormal eigenbasis. Therefore, there exists a unitary matrixU su
h that U∗YaU = (��a 00 −��a). The matri
es U∗YbU;U∗Y
U areskew Hermitian matri
es with zero tra
e. Hen
eU∗YbU = ( �sb wb
−wb −�sb) ; U∗Y
U = ( �s
 w


−w
 −�s
) ;where sb; s
 ∈ R; wb; w
 ∈ C:The 
onditions YaYb = −YbYa; YaY
 = −Y
Ya imply sb = s
 = 0. Conju-gating by a unitary matrix D := (e�!b 00 1) with !b = arg(wb) we obtain
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es(UD)∗Ya(UD) = (��a 00 −��a) ;(UD)∗Yb(UD) = ( 0 �b
−�b 0) ;(UD)∗Y
(UD) = ( 0 u
−u 0) :Now the 
ondition YbY
 = −Y
Yb implies that u is an imaginary number.Thus (UD)∗Y
(UD) = ( 0 ��
��
 0 ). The 
ondition �2a+ �2b + �2
 = v followsfrom e∑j=1X2j = −vI
 + J
. �Noti
e that the matri
es des
ribed in the above proposition with �a =�b = �
 = 1 generate a quaternion group of order 8. For this reason we 
allthese type of representations of quaternion type.It follows from Propositions 3.2, 3.3, and 3.4 that the set of all non-prin
ipal irredu
ible representations of A splits into three parts(1) one-dimensional non-real representations �1;�1′ ; : : : ;�k;�k′ ;(2) two-dimensional real representations �2k+1; : : : ;�2k+`;(3) two-dimensional non-real representations of quaternion type�2k+`+1; : : :�2k+`+m.For the representation of the �rst type we have �i(X⊤) = �i′(X)⊤,X ∈ A. For the representation of the se
ond type �i(X⊤) = �i(X)⊤,and for the representations of the third type �i(X⊤) = T−1�i(X)⊤T ,where T = ( 0 1

−1 0).As a 
omplex algebra A is isomorphi
 to the dire
t sum
C2k+1 ⊕M2(C)`+m:Counting the dimension ofA in two ways we obtain 1+2k+4`+4m= 1+2e,implying that k+2`+2m = e. The anti-automorphism ⊤ a
ts on the dire
tsum C2k+1 ⊕M2(C)`+m as follows:(1) it inter
hanges the 
oordinates i and i′ for 1 ≤ i ≤ k;(2) it a
ts as a transposition on the �rst ` summands M2(C);(3) it a
ts as X 7→ T−1X⊤T on the last m summands M2(C).



106 M. E. MUZYCHUKAlso, ⊤ a
ts trivially on the zero-indexed summand (whi
h 
orrespondsto �0).The dimension of ⊤-invariant subspa
e of A 
ounted in two ways yieldsus the equality 1+e = 1+k+3`+m. Comparing this with e = k+2`+2mwe 
on
lude that ` = m.Proposition 3.5. For ea
h j ∈ {1; : : : ; e} there exists a unique r(j) ∈
{1; : : : ; k; 2k+ 1; : : : ; 2k+ 2`} su
h that �r(j)(Xj) 6= 0.The fun
tion r hasthe following properties(1) r is surje
tive;(2) for ea
h i ∈ {1; : : : ; k; 2k + 1; : : : ; 2k + 2`} one has

|r−1(i)| = { 1; i ≤ 2k + `;3; i > 2k + `;(3) for ea
h i ∈ {1; : : : ; k; 2k + 1; : : : ; 2k + 2`} one has
∑j∈r−1(i)�i(Xj)2 = −vIni :Proof. De�ne a bipartite graph � between the sets D := {1; : : : ; k; 2k +1; : : : ; 2k + 2`} and E := {1; ::; e} by 
onne
ting i ∈ D and j ∈ E i��i(Xj) 6= 0. Sin
e the interse
tion of ker(�i); i ∈ D ∪ {0} is trivial, forea
h j ∈ E there exists at least one i ∈ D ∪ {0} with �i(Xj) 6= 0. Sin
e�0(Xj) = 0, one has i 6= 0. Thus, ea
h j ∈ E is 
onne
ted with at leastone element of D. Therefore, � has at least |E| = e distin
t edges.It follows from e∑j=1X2j = −vI+J that e∑j=1�i(Xj)2 = −vIni . Therefore,for ea
h i ∈ D there exists at least one j ∈ E with �i(Xj) 6= 0. In otherwords, ea
h vertex i ∈ D has at least one neighbour in E.Sin
e Xj 's are anti-
ommuting, if �i is one-dimensional there is at mostone j ∈ E with �i(Xj) 6= 0. Hen
e, |�(i)| = 1 for i ∈ {1; : : : ; k} ⊆ D.If �i is 2-dimensional and real, then by Proposition 3.3 there existsat most one j ∈ E with �i(Xj) 6= 0. Therefore, |�(i)| = 1 for ea
h i ∈

{2k + 1; : : : ; 2k + `} ⊂ D.If �i is 2-dimesional of quaternion type, then by Proposition 3.4 wehave |�(i)| ≤ 3. Thus,k + `+ 3` ≥ ∑i∈D |�(i)| = |E(�)| = ∑j∈E |�(j)| ≥ |E| = e = k + 4`:



ON T-AMORPHOUS ASSOCIATION SCHEMES 107Thus, we obtain that |E(�)| = e and |�(i)| = 3 for ea
h i ∈ {2k + ` +1; : : : ; 2k+2`} ⊂ D. This means that ea
h j ∈ E is 
onne
ted with exa
tlyone i ∈ D. Thus, we obtain a fun
tion r : E → D su
h that i ∈ D is
onne
ted with j ∈ E i� i = r(j).Part (3) is an immediate 
onsequen
e of e∑j=1X2j = −vI + J . �Now we are ready to prove the main result of this se
tionTheorem 3.6. A T-amorphi
 s
heme should be 
ommutative.Proof. Assume, towards a 
ontradi
tion, that the s
heme is non-
ommu-tative, that is ` ≥ 1. Then A has at least one two-dimensional non-realrepresentation of quaternion type, say �q . Let Eq denote the minimal
entral idempotent 
orreponding to �q . Sin
e �q(X⊤) = T−1�q(X)⊤T ,we 
on
lude that �q(X) is a s
alar matrix whenever X is symmetri
. ByProposition 3.5 r−1(q) = {a; b; 
} for pairwise distin
t indi
es a; b; 
. ByProposition 3.4 we may assume that�q(Xa) = (�a� 00 −�a�) ; �q(Xb) = ( 0 �b
−�b 0) ;�q(X
) = ( 0 ��
��
 0 )for some �a; �b; �
 ∈ R. Squaring these matri
es we obtain�q(X2a) = (

−�2a 00 −�2a) ; �q(X2b ) = (
−�2b 00 −�2b) ;�q(X2
 ) = (

−�2
 00 −�2
) :Sin
e �p(Xa) = �p(Xb) = �p(X
) = �p(Eq) = 0 for ea
h p 6= q,we obtain X2a = −�2aEq ; X2b = −�2bEq ; X2
 = −�2
Eq :Taking tra
es we obtain
−2vav = −2mq�2a; −2vbv = −2mq�2b ; −2v
v = −2mq�2
 ;implying that �a = ±

√vavmq ; �b = ±
√vbvmq ; �
 = ±

√v
vmq :



108 M. E. MUZYCHUKIt follows from �q(Xa)�q(Xb) = �a�b�
 �q(X
) that XaXb = �a�b�
 X
. Sin
eXa; Xb; X
 are {0; 1;−1}matri
es, the number �a�b�
 is an integer. It followsfrom �2a�2b�2
 = vavbvmqv
that �a�b�
 is an odd integer. We 
an 
on
lude that XiXj ≡ Xk(mod 2).Finally, 
onsider the produ
t �q(Aa + Aa′)�q(Xb). Sin
e Aa + Aa′ issymmetri
, we 
on
lude that �q(Aa+Aa′) is a s
alar matrix �I2 for some�. Therefore,�q((Aa +Aa′)Xb) = �q(Aa +Aa′)�q(Xb) = ��q(Xb):Sin
e �p(Xb) = 0 for ea
h p 6= q, we 
on
lude (Aa + Aa′)Xb = �Xb.Clearly, � is an integer. It follows from Xa ≡ (Aa + Aa′)(mod 2) thatXaXb ≡ �Xb(mod 2). Therefore, X
 ≡ �Xb(mod 2), 
ontrary to the fa
tthat Xa; Xb; X
 are linearly independent over any �eld. �

§4. Commutative 
ase.Here it is assumed that the s
heme is 
ommutative. In this 
ase (1)reads as follows
∀i 6=j XiXj = 0 and e∑i=1X2i = −vI + J: (2)In the 
ommutative 
ase the set of primitive idempotents has the followingform E0; E1; E1′ ; : : : ; Ee; Ee′ , where E⊤i = Ei′ ; i = 1; : : : ; e. Noti
e that inthis 
ase the dire
t sum A = A++A− is a Z2-graded de
omposition, thatis

A+A+ ⊆ A+; A+A− ⊆ A−; A−A− ⊆ A+:In this se
tion we use the following abbreviationsA+i := Ai +Ai′ ; A−i := Ai −Ai′ ; E+i := Ei + Ei′ ; E−i := Ei − Ei′ :Noti
e that the matri
es A0; A+1 ; : : : ; A+e (E0; E+1 ; : : : ; E+e ) form the �rst(resp. the se
ond) standard basis of A+ whi
h is the BM-algebra of a sym-metrized s
heme R+. The 
hara
ter table and the stru
ture 
onstants of
A+ are denoted by P+ and +pkij . Also, ea
h of the sets {A−i }i∈[1;e℄ and
{E−i }i∈[1;e℄ is a basis of A−. It follows from Proposition 3.5 that the map-ping r : [1; e℄ → [1; e℄ is a bije
tion. Renumbering idempotents we 
analways assume that r(i) = i; i ∈ [1; e℄. Thus, for ea
h i the matrix A−i is



ON T-AMORPHOUS ASSOCIATION SCHEMES 109proportional to E−i , that is A−i = �iE−i for some �i ∈ C. It follows frome∑i=1(A−i )2 = −vI + J that
−vI + J = e∑i=1 �2i (E−i )2 = e∑i=1 �2i (Ei +Ei′ )=⇒ −v e∑i=1(Ei +Ei′) = e∑i=1 �2i (Ei +Ei′ ):Therefore, �i = ±�√v. Ex
hanging Ei with Ei′ , if ne
essary, we 
an alwaysassume that A−i = �√vE−i for i = 1; : : : ; e. As a dire
t 
onsequense of thisfa
t we obtain the following statement.Proposition 4.1. Let P and Q be the �rst and the se
ond eigenmatri
es ofthe s
heme (
; R). Then for any pair of indi
es i 6= j ∈ [1; e℄ the following
onditions hold(1) Pji = Pj′i = Pji′ = Pj′i′ = 12P+ji ;(2) {Pii = Pi′i′ = P+ii+�√v2 ;Pii′ = Pi′i = P+ii−�√v2 ;(3) AiA−j = PjiA−j and Pji = pjij − pjij′ ;(4) A+i A−i = P+ii A−i and P+ii = piii − pii′i′ is odd;(5) Qij = Qi′j = Qij′ = Qi′j′ = pijj′ − pij′j′ ;(6) Qii = Qi′i′ = Pii′ ; Qi′i = Qii′ = Pii.Proof. Substra
ting Ai′ = viE0+ e∑j=1(Pji′Ej+Pj′i′Ej′) from Ai = viE0+e∑j=1(PjiEj + Pj′iEj′ ) we obtain that Pji = Pji′ ; Pj′i′ = Pj′i for i 6= j andPii−Pii′ = Pi′i−Pi′i′ = �√v . Combining this with Pji = Pj′i′ ; Pij′ = Pi′jand P+ji = Pji + Pji′ ; P+ii = Pii + Pii′ we obtain parts (1){(2) of thestatement.Part (3). It follows from A−j = �√vE−j that AiA−j = Ai�√v(Ej −Ej′) = �√v(PjiEi−Pj′iEj′ ). By part (1) Pji = Pj′i. Thus, AiA−j = PjiA−j .Counting the 
oeÆ
ients of Aj in both sides of AiA−j = PjiA−j , we obtainthat Pji = pjij − pjij′ .



110 M. E. MUZYCHUKPart (4). It follows from E+i A−i = A−i thatA+i A−i = A+i (E+i A−i ) = (A+i E+i )A−i = P+ii E+i A−i = P+ii A−i :Thus, A2i − A2i′ = P+ii (Ai −Ai′ ). Comparing the 
oeÆ
ients of Ai in bothsides, we 
on
lude that P+ii = piii−pii′i′ . Rewriting A2i −A2i′ = P+ii (Ai−Ai′)as A2i − P+ii Ai = A2i′ − P+ii Ai′ , we obtain (A2i − P+ii Ai)⊤ = A2i − P+ii Ai.Therefore, A2i −P+ii Ai = e∑j=1 �jA+j for some integers �j . The valen
y of theright-hand side part is an even number. Therefore, v2i − P+ii vi is an eveninteger. Sin
e vi is odd, we 
on
lude that P+ii is odd.Parts (5) and (6) follow from the well-known relations Qij=mj =Pji=vi. �Let �i; i ∈ [1; e℄, denote a permutation of the set {0}∪[1; e℄∪[1′; e′℄ whi
hinter
hanges i and i′ and leaves the rest of the elements �xed (that is �i isa transposition (i i′)). It follows from parts (1){(2) of Proposition 4.1 thatPuv = Pu�i v�i holds for any pair u; v ∈ {0} ∪ [1; e℄ ∪ [1′e′℄. Therefore, �i isan algebrai
 automorphism of A. The transpositions �i; i ∈ [1; e℄, generatean elementary abelian 2-group T of order 2e. This group a
ts regularly onthe set of all rank 3 antisymmetri
 fusions of X.Proposition 4.2. mi = vi for ea
h i ∈ [1; e℄.Proof. Squaring the equality Ai −Ai′ = �√v(Ei − Ei′) we obtainA2i − 2AiAi′ +A2i′ = −v(Ei +Ei′):Now by taking the tra
es of both sides we obtain the result. �It follows from the previous statement that the entries P+ij are even ifi 6= j and odd otherwise.Proposition 4.3. If i 6= j, then P+ij+P+ji ≡ 2(mod 4) and pjii ≡ 0(mod 2).Proof. LetM denote the diagonal matrix of size e su
h thatMii= mi= vi.Sin
e the prin
ipal part P+0 is 
ongruent to Ie modulo two, we 
an writeP+0 = Ie + 2P1 for some integer matrix P1. The 
hara
ter table P+ ofthe s
heme R+ has the form ( 1 2 · 1M1⊤ Ie + 2P1), where 1 is the all-one rowve
tor of length e. Let us write the orthogonality relations for P+ in thematrix form( 1 12M1⊤ Ie + 2P⊤1 ) (1 00 2M)( 1 2 · 1M1⊤ Ie + 2P1) = v(1 00 2M) :



ON T-AMORPHOUS ASSOCIATION SCHEMES 111Comparing the entries of both sides in the position (2; 2), we obtain that4 ·MJeM + 2 ·M + 4 ·MP1 + 4 · P⊤1 M + 8 · P⊤1 MP1 = 2v ·M;or, equivalently,MJeM +MP1 + P⊤1 M + 2 · P⊤1 MP1 = v − 12 ·M:Sin
e v−12 is an odd integer and M ≡ Ie(mod 2), we obtainJe + P1 + P⊤1 ≡ Ie(mod 2):This yields us the �rst 
ongruen
e of the statement.A

ording to the well-known formula we havevjvpjii = v2i vj + e∑s=1(P 2siPsj′ + P 2s′iPs′j′ )ms:If s 6= i; j, then by Proposition 4.1 Psj′ = Ps′j′ implying thatvjvpjii ≡ v2i vj + (P 2iiPij′ + P 2i′iPi′j′)mi + (P 2jiPjj′ + P 2j′iPjj′ )mj(mod 2):Sin
e the numbers mi = vi;mj = vj , v are odd and Pij′ = Pi′j′ ; Pji = Pji′ ,we obtain pjii ≡ 1 + (P 2ii + P 2i′i)Pij + P 2ji(Pjj′ + Pjj′ )(mod 2):By part (2) of Proposition 4.1, P 2ii+P 2ii′ = (P+ii )2−v2 , Pjj+Pjj′ = P+jj . Sin
eP+ii , P+jj are odd and v ≡ 3(mod 4), the numbers P 2ii + P 2ii′ = (P+ii )2−v2 ,Pjj + Pjj′ = P+jj are odd. Therefore,pjii ≡ 1 + Pij + P 2ji(mod 2) ≡ 1 + Pij + Pji(mod 2):Together with Pij = P+ij2 ; Pji = P+ji2 and P+ij +P+ji ≡ 2(mod 4) we 
on
ludethat Pij + Pji is an odd number. This yields us pjii ≡ 0(mod 2). �Corollary 4.4. The mapping A+i 7→ E+i is not a duality of R+.Proof. A mapping A+i 7→ E+i is a duality if and only if P+ijvj = P+jivi holdsfor any pair of indi
es. But for i 6= j both entries P+ij ; P+ji are even numberswhose sum is 
ongruent to 2 modulo 4. Sin
e vi and vj are odd numbers,this implies that the highest 2-powers whi
h divide P+ijvj ,P+jivi are distin
t fori 6= j. �



112 M. E. MUZYCHUKCorollary 4.5. If v ≡ 7(mod 8) then A2i ≡ Ai(mod 2) for ea
h i ∈ [1; e℄.If v ≡ 3(mod 8) then A2i ≡ Ai′ (mod 2) for ea
h i ∈ [1; e℄.Proof. Pi
k an arbitrary j ∈ [1; e℄; j 6= i. By Proposition 4.3, pjii is even.Sin
e pj′ii = pj�ji�j i�j = pjii, we obtain that pj′ii ≡ 0(mod 2). Therefore, A2i ≡piiiAi + pi′iiAi′(mod 2). This also implies that v2i ≡ piiivi + pi′iivi′(mod 2).Sin
e vi is odd, we 
on
lude that piii + pi′ii ≡ 1(mod 2). Thus, for anyi ∈ [1; e℄ either A2i ≡ Ai(mod 2) or A2i ≡ Ai′(mod 2).The matrix A := A1 + · · ·+ Ae is the matrix of a doubly regular tour-nament of order v. Therefore, A2 = v−34 A + v+14 A⊤. If v ≡ 7(mod 8),then A2 ≡ A(mod 2) implying that e∑i=1A2i ≡
e∑i=1Ai(mod 2). Thus, A2i ≡Ai(mod 2) for ea
h i ∈ [1; e℄. The 
ase of v ≡ 3(mod 8) is 
onsideredsimilarly. �

§5. Fusions in X and X
+Let P = {P1; : : : ;Pf} be a partition of [1; e℄ with f non-empty 
lasses.Let D be an e×f matrix de�ned as follows: Dij = 1 if i ∈ Pj and Dij = 0,otherwise. We de�ne the dual partition P⊥ of [1; e℄ by putting i; j ∈ [1; e℄at the same 
lass i� the i-th and j-th rows of the matrix P+0 D are equal.It is well-known that P gives rise to a fusion s
heme i� |P⊥| = |P|, thatis P and P⊥ have the same number of 
lasses. Sin
e P+0 ≡ Ie(mod 2),we obtain (P+0 D) ≡ D(mod 2). Therefore, P⊥ is a re�nement of P. Thisimmediately implies the followingProposition 5.1. A partition P gives rise to a fusion s
heme i� P

⊥ = P.Every partition P = {P1; : : : ;Pf} of [1; e℄ determines a partition P′ :=
{P′1; : : : ;P′f} of [1′; e′℄. The union P∪P′ is an admissible partition of [1; e℄∪[1′; e′℄.Proposition 5.2. A partition P of [1; e℄ gives rise to a fusion of R+ i�the partition P∪P′ gives rise to a fusion of R. If R=(P∪P′) is a s
heme,then it is T-amorphous.Proof. If P ∪ P′ determines a fusion s
heme of R, then this s
heme isanti-symmetri
 and its symmetrization is a fusion of R+ determined by P.Conversly, assume that P = {P1; : : : ;Pf} is a partition of [1; e℄ whi
hdetermines a fusion s
heme of R. Sin
e P⊥ = P, the sets {A0}∪{A+

Pk}fk=1and {E0} ∪ {E+
Pk}fk=1 form the �rst and the se
ond standard bases of
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heme R+=P. Let B denote the linear span of the matri-
es A0; APk ; AP′k ; k ∈ [1; f ℄. It suÆ
es to show that the linear spans
〈A0; {APk ; AP′k}k∈[1;f ℄〉 and 〈E0; {EPk ; EP′k}k∈[1;f ℄〉 are equal. It followsfrom APk = 12 (A+

Pk +A−
Pk) ; AP′k = 12 (A+

Pk −A−
Pk)and EPk = 12 (E+

Pk +E−
Pk) ; EP′k = 12 (E+

Pk − E−
Pk) ;that

〈A0; {APk ; AP′k}k∈[1;f ℄〉 = 〈A0; {A+
Pk ; A−

Pk}k∈[1;f ℄〉and
〈E0; {EPk ; EP′k}k∈[1;f ℄〉 = 〈E0; {E+

Pk ; E−
Pk}k∈[1;f ℄〉:Now the 
laim follows from

〈A0; {A+
Pk}k∈[1;f ℄〉 = 〈E0; {E+

Pk}k∈[1;f ℄〉and A−
Pk = �√vE−

Pk ; k = 1; : : : ; f: �If Q is a partition of [1; e℄ ∪ [1′; e′℄ whi
h determines a fusion, then itssymmetrization Q+ := {(Q∪Q′)∩[1; e℄ |Q ∈ Q} determines a fusion ofR+.This gives us a homomorphism whi
h maps the latti
e of fusion s
hemesof R into the one of R+. It turns out that the latti
e of fusions of R maybe re
onstru
ted from the latti
e of fusions of R+.Proposition 5.3. Let P = {P1; : : : ;Pf} be a partition of [1; e℄ whi
hdetermines a fusion s
heme of R+. Then any admissible partition Q of[1; e℄ ∪ [1′; e′℄ with Q+ = P determines a fusion of R.Proof. Let Q be an admissible partition of [1; e℄∪[1′; e′℄ with g ≥ 0 pairs ofanti-symmetri
 
lasses, that is Q = {Q1; : : : ;Qg ;Q′1; : : : ;Q′g;Qg+1; : : : ;Qf}.It follows from Q+ = P that (after renumbering) Q
+i = Pi; i = 1; : : : ; f .For any algebrai
 automorphism � ∈ T a partition Q� is also admissible.Moreover, Q determines a fusion of R i� Q� does. Sin
e there always exists� ∈ T with g⋃i=1Q�i ⊆ [1; e℄, we may assume, without loosing generality, thatg⋃i=1Qi ⊆ [1; e℄. In this 
ase Qi = Pi; i = 1; : : : ; g, and Qj = Pj ∪ P′j ; j =g+1; : : : ; f . By Proposition 5.2 the partition P∪P′ determines a fusion of
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R. Therefore, a 
oarsening of P ∪ P′ by any subgroup S ≤ T determinesa fusion of R. Now it remains to noti
e that Q is a 
oarsening of P ∪ P′with respe
t to a subgroup generated by the elements �i := ∏j∈Pi �j ; i =g + 1; : : : ; f . �Corollary 5.4. If a partition P of [1; e℄ determines a fusion of R+, then
|P| is odd. In parti
ular, both R and R+ are primitive s
hemes.Proof. By Proposition 5.2 P ∪ P′ determines a fusion of R whi
h is T-amorphous. By Corollary 2.2 |P| is an odd number. Sin
e R+ is a sym-metrization of R, they are primitive or imprimitive simultaneously. Sin
eimprimitive s
hemes always have a fusion with two 
lasses, we 
on
ludethat R is primitive. �Proposition 5.5. √v+12 < vi for ea
h i 6= 0 .Proof. Sin
e R is a primitive s
heme, the eigenvalues Pij satisfy the in-equality |Pij | < vj . Taking i = j we obtain |Pii|2 < v2i . By Proposition 4.1we obtain (P+ii )2 + v < 4v2i . The rest follows from P+ii ≡ 1(mod 2). �Question. It follows from Proposition 5.5 that d < 2√v. Does thereexist an in�nite series of T-amorphous s
hemes with d > �(√v), where a
onstant � is independent of v.

§6. Cy
lotomi
 T-amorphous s
hemes.The main goal of this se
tion is to give ne
essary and suÆ
ient 
on-ditions for a 
y
lotomi
 s
heme to be T-amorphous. Let Fq; q = pf , bea �nite �eld and d be a divisor of q − 1. For a generator g ∈ F∗q wede�ne the d-th 
y
lotomi
 
lasses as follows Ci := 〈gd〉gi, where i =0; 1; : : : ; d− 1. The basi
 relations of the 
y
lotomi
 s
heme are R0 := IFqand Ri+1 := {(x; y) ∈ F2q |x − y ∈ Ci}; i = 0; 1; : : : ; d − 1. One of theimportant properties of 
y
lotomi
 s
hemes is that a 
y
li
 permutationi 7→ i+ 1(mod d) is an algebrai
 automorphism of the s
heme. Let us 
alla s
heme X = (
;R = {R0; R1; : : : ; Rd}) pseudo-
y
lotomi
 if it admits a
y
li
 group H of algebrai
 automorphisms whi
h a
ts regularly on the set
{1; : : : ; d}. Sin
e H is transitive on [1; d℄, the s
heme X is either symmetri
or anti-symmetri
. In the latter 
ase d is even and the following statementholds



ON T-AMORPHOUS ASSOCIATION SCHEMES 115Proposition 6.1. Let X be antisymmetri
. Then iz = i′ where z ∈ H isa unique element of order 2.Proof. Let z ∈ H be a unique element whi
h maps 1 to 1′, that is 1z = 1′.Sin
e (i′)h = (ih)′ holds for ea
h h ∈ H and i ∈ [1; d℄, we obtain that iz = i′holds for ea
h i ∈ [1; d℄. This implies that z2 = 1. �A

ording to [7℄ the groupH a
ts regularly on the set of primitive idem-potents E1; : : : ; Ed. For ea
h irredu
ible 
hara
ter � ∈ Irr(H) we de�ne theeigenspa
e A� of H as follows A� := {A ∈ A |Ag = �(g)A}. Noti
e that
A� is one-dimensional if � is non-prin
ipal and two-dimensional if � = 1H(the prin
ipal 
hara
ter of H). The subspa
e A1H is a BM-algebra of atrivial s
heme with the standard bases {I; J− I}. An algebra A is a dire
tsum of the subspa
es A�; � ∈ Irr(H). Sin
e H is a group of algebrai
 au-tomorphisms, the de
omposition A = ⊕�∈Irr(H)A� is a grading of A withrespe
t to both multipli
ations · and ◦ , that is

A� · A ⊆ A� ;
A� ◦ A ⊆ A� : (3)For ea
h i ∈ [1; d℄ and � ∈ Irr(H) we set Ai;� := ∑h∈H �(h−1)Aih andEi;� := ∑h∈H �(h−1)Eih . A dire
t 
he
k shows that for ea
h h ∈ H one has(Ai;�)h = Aih;� = �(h)Ai;�;(Ei;�)h = Eih;� = �(h)Ei;�: (4)If � 6= 1H , then both Ei;� and Aj;� span A�. Therefore, they are propor-tional, that is Aj;� = �Ei;� for some 
omplex number �. Changing j andi leads to a multipli
ation of � by a 
omplex d-th root of unity. In a 
y-
lotomi
 s
heme this 
oeÆ
ient (under 
ertain 
hoi
e of i and j) is knownas Gauss sum. For this reason we denote this 
oeÆ
ient as G(�; i; j) and
all it Gauss sum as well. Thus,Ai;� = G(�; i; j)Ej;�: (5)Theorem 6.2. Let X be an antisymmeti
 pseudo-
y
lotomi
 s
heme withd = 2e 
lasses, e odd, and with H = 〈h0〉; h0 = (1; : : : ; e; 1′; : : : ; e′). Then

X is T-amorphous i� there exists j ∈ [1; e℄∪ [1′; e′℄ and " ∈ {±1} su
h thatfor any 
hara
ter � ∈ Irr(H) of even order G(�; 1; j) = "�√v.



116 M. E. MUZYCHUKProof. Ne
essity. In this 
ase A1 − A1′ = �√v(Ej − Ej′ ) for some j ∈[1; e℄ ∪ [1′; e′℄. Therefore, for ea
h h ∈ H one hasA1h −A(1h)′ = �√v(Ejh − E(jh)′) ⇐⇒ A1h −A1zh = �√v(Ejh − Ejhz );where z := he0:Next, let � ∈ Irr(H) be a 
hara
ter of even order. Then �(z) = −1 andA1;� = ∑h∈H �(h)A1h = ∑h∈O �(h)(A1h −A1hz )= �√v ∑h∈O �(h)(Ejh − Ejhz ) = �√vEj;�;where O is a unique subgroup of H of order e.SuÆ
ien
y. Let � ∈ Irr(H) be a 
hara
ter of even order. Then A1;� ="�√vEj;� or, equivalently,
∑h∈O �(h)(A1h −A1hz ) = "�√v ∑h∈O �(h)(Ejh − Ejhz )

⇐⇒
∑h∈O�(h)(A1h −A(1h)′) = "�√v ∑h∈O �(h)(Ejh − E(jh)′):Sin
e the restri
tion map � 7→ �O is a bije
tion between irredu
ible H-
ha-ra
ters of even order and Irr(O), we 
on
lude that the equality

∑h∈O (h)(Aih −A(ih)′) = "�√v ∑h∈O (h)(Ejh − E(jh)′)holds for ea
h  ∈ Irr(O). Sin
e the matrix ( (h)) ∈Irr(O);h∈O is invertible,we obtain that Aih − A(ih)′ = "�√v(Ejh − E(jh)′) holds for ea
h h ∈ O.Now the 
laim follows from the fa
t that {ih}h∈O is an ′-transversal. �Corollary 6.3. Let X be a 
y
lotomi
 s
heme with d = 2e; e odd, 
lassesover a �nite �eld Fq; q = pf . Assume that q ≡ 3(mod 4). Then X isT-amorphous if and only if there exists " ∈ {±1} su
h that G(�) = "�√qholds for all multipli
ative 
hara
ters � of F∗q of order 2e1; e1 | e.Proof. The Gauss sum of the 
y
lotomi
 s
heme G(�) 
oin
ides withG(�; 1; 1). SuÆ
ien
y follows dire
tly from Theorem 6.2. Thus, we have toprove ne
essity. First, we show that g
d(d; p− 1) = 2. Consider the fusion
X

′ of X with respe
t to the subgroup of H of index g
d(d; p − 1). This isan anti-symmetri
 fusion with d0 := g
d(d; p − 1) 
lasses. Thus, X
′ is a
y
lotomi
 T-amorphous s
heme with d0 = 2e0 
lasses. By Theorem 6.2



ON T-AMORPHOUS ASSOCIATION SCHEMES 117there exists j ∈ [1; d0℄ and " ∈ {±1} su
h that G(�; 1; j) = "�√q for ea
hmultipli
ative 
hara
ter of order d0. Sin
e G(�) = G(�; 1; 1) and G(�; 1; j)di�ers by a fa
tor whi
h is a 
omplex d0-th root of unity, we 
on
lude thatG(�)=√q is a 
omplex root of unity. By [12℄ for ea
h a ∈ [0; d0−1℄ 
oprimeto d0 one has m−1∑i=0 (pia)d0 = md0=2 = me0, where2 m = ordd0(p) and xd0is the remainder of x modulo d0. Sin
e d0 divides p − 1, we obtain that(pia)d0 = a for ea
h a ∈ [0; d0−1℄. Therefore, a = e0 for ea
h a ∈ [0; d0−1℄
oprime to d0. It follows that Z∗d0 = {e0} and thus d0 = 2.Let � denote an algebrai
 automorphism of X indu
ed by the Frobeniusautomorphism of the �eld. Sin
e g
d(d; p−1) = 2, the Frobenius automor-phism �xes only two 
y
lotomi
 
lasses C0 and Ce. Therefore, in its a
tionon the �rst (se
ond) standard basis of X the automorphism � �xes onlytwo elements A1 and A1′ = Ae (E1 and E1′ = Ee respe
tively).By Theorem 6.2 there exist " ∈ {±1} and j ∈ [1; d℄ su
h thatG(�; 1; j) ="�√q for ea
h 
hara
ter � of F∗q of order 2e1 | d. We have to show that j = 1.It follows from the proof of Theorem 6.2 that A1 − A1′ = "�√v(Ej −Ej′) Applying � to both sides we 
on
lude that j� = j. Therefore, j ∈
{1; e}. If j = e, then A1;� = G(�; 1; e)Ee;� = "�√qEe;� = "�√qE1z;� ="�√q�(z)E1;� = −"�√qE1;� implying G(�; 1; 1) = −"�√v. �As a dire
t 
onsequen
e of Davenport{Hasse Theorem we obtain thefollowingCorollary 6.4. If a 
y
lotomi
 s
heme over a �eld Fq with d 
lasses isT-amorphous, then for any odd m a d-
lass 
y
lotomi
 s
heme over Fqmis also T-amorphous.Another 
orollary follows immediately from the proof of Corollary 6.3.Corollary 6.5. If a 
y
lotomi
 s
heme over Fq with d 
lasses is T-amor-phous, then g
d(p− 1; d) = 2.This fa
t implies that the number d of 
lasses in a T-amorphous 
y
lo-tomi
 s
heme is at least 14. Indeed, if d < 14, then d = 6; 10. Sin
e ordd(p)is odd and Z∗6;Z∗10 are 2-groups, we 
on
lude that in any of these two 
asesp ≡ 1(mod d) whi
h 
ontradi
ts Corollary 6.5. Cy
lotomi
 T-amorphouss
hemes with 14 
lasses do exist { the smallest example found by Feng andXiang has 14 
lasses over 113 points.2Here the sum is in Z.



118 M. E. MUZYCHUKProblem. Find a 
ritetion for a 
y
lotomi
 s
heme to be T-amorphousin terms of p; f and d (without Gauss sums) like it is done for amorphi

y
lotomi
 s
hemes.
§7. T-amorphous s
hemes with 6 
lassesBy Corollary 2.2 a minimal number of 
lasses of a T-amorphous s
hemeis 6. An example of su
h a s
heme o

urs when one fuses 
lasses of a
y
lotomi
 s
heme with 14 
lasses on 113 points (see [11℄) by the Frobeniusautomorphism. In this se
tion we make an attempt to �nd the 
hara
tertable of su
h a s
heme. Let X = (
; {R0; R1; R2; R3; R1′ ; R2′ ; R3′}) be aT-amorphous s
heme. As before,A0; A1; A2; A3; A1′ ; A2′ ; A3′ and E0; E1; E2; E3; E1′ ; E2′ ; E3′stand for the �rst and the se
ond standard bases of the BM-algebra A of

X, respe
tively. The elements of the standard bases are numbered in su
ha way that Ai−Ai′ = �√v(Ei−Ei′) holds for i = 1; 2; 3. The symmetrizeds
heme X
+ has three 
lasses R+i = Ri ∪ Ri′ ; i = 1; 2; 3, and its standardbases are A0; A+1 ; A+2 ; A+3 , E0; E+1 ; E+2 ; E+3 . Its valen
ies and multipli
itiesare m+i = v+i = 2vi; i = 1; 2; 3. Following Hanaki [3℄ we 
all a symmetri
s
heme a B-s
heme if there exists an ordering (
alled a B-ordering) ofits standard bases su
h that vi = mi. There are two natural 
lasses ofB-s
hemes { those whi
h are (formally) self-dual and pseudo
y
li
 s
hemes.But these 
lasses do not exhaust all possible examples of B-s
hemes. Arjana�Zitnik pointed out that there exists a feasible parameter set of a diameterthree distan
e regular graph whose s
heme is a B-s
heme. So, it seemsreasonable to 
onsider this 
lass of s
hemes in general.7.1. B-s
hemes. We start with the followingProposition 7.1. Let X be a B-s
heme with three 
lasses with B-orderingA0; A1; A2; A3 and E0; E1; E2; E3 of its standard bases. Let C be its 
o-sine matrix. Then either C is symmetri
 (and the mapping Ei 7→ Ai is aduality) or there exist real numbers a; t su
h thata2v + t2v1v2v3 = (a− 2)2 (6)
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

1 1 1 11 −a(v2+v3)+22v1 a+v3t2 a−v2t21 a−v3t2 −a(v1+v3)+22v2 a+v1t21 a+v2t2 a−v1t2 −a(v1+v2)+22v3 
 : (7)Proof. By orthogonality relations for the �rst row and 
olumn we have1 + v1C11 + v2C12 + v3C13 = 0;1 + v1C11 + v2C21 + v3C31 = 0 (8)and 1 + v1C211 + v2C212 + v3C213 = vv1 ;1 + v1C211 + v2C221 + v3C231 = vv1 : (9)Therefore, v2(C12 − C21) = v3(C31 − C13);v2(C212 − C221) = v3(C231 − C213) (10)implying that either C12 = C21; C13 = C31 or C12 + C21 = C13 + C31.Writing similar relations for the se
ond and the third row/
olumn we 
on-
lude that either C is symmetri
 or Cij + Cji is 
onstant. Let us denotethis 
onstant by a. ThenC12 + C21 = C13 + C31 = C23 + C32 = a:It follows from v2(C12 − C21) = v3(C31 − C13);v1(C12 − C21) = v3(C23 − C32);v2(C23 − C32) = v1(C31 − C13)that C12 − C21v3 = C23 − C32v1 = C31 − C13v2 :Denoting this 
ommon value by t we obtain thatC12 − C21 = v3t; C12 + C21 = a;C23 − C32 = v1t; C23 + C32 = a;C31 − C13 = v2t; C31 + C13 = a;



120 M. E. MUZYCHUKimplying C12 = a+ v3t2 ; C21 = a− v3t2 ;C23 = a+ v1t2 ; C32 = a− v1t2 ;C31 = a+ v2t2 ; C13 = a− v2t2 :Adding the equations in (8) we obtain 2+2v1C11+a(v2+v3) = 0. Therefore,C11 = −a(v2+v3)+22v1 . Analogously, C22 = −a(v1+v3)+22v1 , C33 = −a(v1+v2)+22v3 .Thus, the 
osine matrix has the following formC = 


1 1 1 11 −a(v2+v3)+22v1 a+v3t2 a−v2t21 a−v3t2 −a(v1+v3)+22v2 a+v1t21 a+v2t2 a−v1t2 −a(v1+v2)+22v3 
 :Substituting the above expressions for C1i into (9) we obtain equation (6).

�Corollary 7.2. A B-s
heme with three 
lasses is self-dual if and only if Cis symmetri
 or at least two of the valen
ies v1; v2; v3 are equal.Proof. Assume that C is non-symmetri
. If the s
heme is self-dual, thenthe duality permutation  on 1; 2; 3 is non-identi
al. W.l.o.g.  (1) 6= 1.Then v (1) = m (1) = v1.Now, assume that some of vi's are equal, say v1 = v2. Then  = (12) isa duality permutation. �Proposition 7.3. Let F be the de
omposition �eld of X. If F 6= Q, thenGal(F=Q) ∼= Z3 and X is pseudo
y
li
.Proof. The Galois group Gal(F=Q) a
ts faithfully on the set of primitiveidempotents E1; E2; E3 of the s
heme. Assume that Gal(F=Q) 
ontains anautomorphism � whi
h a
ts on E1; E2; E3 as a transposition, say E�1 =E2; E�2 = E1; E�3 = E3. This implies that(a− v2t2 )� = a+ v1t2 ; (a+ v1t2 )� = a− v2t2 :Together with v1 = v2 we obtain that a ∈ Q. From E�3 = E3 it follows thatC�31 = C31, or, equivalently, (a+v2t2 )� = a+v2t2 . Hen
e t ∈ Q and F = Q. A
ontradi
tion.



ON T-AMORPHOUS ASSOCIATION SCHEMES 121Thus, the group Gal(F=Q) is either trivial or a
ts regularly on E1, E2,E3. In the latter 
ase the s
heme is pseudo
y
li
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