
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 455, 2017 Ç.M. E. MuzyhukON T-AMORPHOUS ASSOCIATION SCHEMESAbstrat. A sheme is alled T-amorphous if it is antisymmet-ri and any tournament obtained by an appropriate merging of itslasses is doubly regular. The goal of this paper is to study basiproperties of this lass of shemes.Dediated to the memory of Sergei Evdokimov
§1. IntrodutionLet X := (
;R = {Ri}di=0) be an assoiation sheme with d lasses.It is not assumed that that X is ommutative. Most of notation used inthis paper follow the book [1℄. As usual i 7→ i′ is a transposition map,that is Ri′ = R⊤i . For a subset I ⊆ [0; d℄ we set I ′ := {i′ | i ∈ I}. Thestruture onstants and the valenies of a sheme X are denoted by pkijand vi, respetively. The adjaeny matrix of Ri is denoted by Ai. Givena �eld F , a linear span of the adjaeny matries Ai, denoted by F [R℄, isa subalgebra of the full matrix algebra M
(F ). It is alled the adjaeny(or Bose{Mesner) algebra of X over F . An algebrai isomorphism betweentwo shemes X = (
;R = {Ri}di=0)) and X

′ = (
′;R′ = {R′i}di=0)) is abijetion ' : [0; d℄ → [0; d℄ whih preserves the struture onstants, that ispk'i'j' = pkij holds for eah triple i; j; k of indies. Notie that algebrai iso-morphisms oinide with pseudo-isomorphisms [7℄, BM-isomorphisms [8℄and weak-equivalenes [14℄. An algebrai isomorphism of a sheme to itselfis alled an algebrai automorphism of the sheme.A partition P = {Pi | i = 0; : : : ; d′} of the index set [0; d℄ into non-emptysubsets is alled admissible [6℄ if P0 = {0}, and for eah i; 1 ≤ i ≤ d′there exists j ∈ [0; d′℄ suh that P′i = Pj . Given an admissible partition
P = {Pi | i = 0; : : : ; d′}, we denote by R=P a partition of 
2 with d′lasses RPi := ⋃j∈Pi Rj ; 0 ≤ i ≤ d′. We say that P gives rise to an asso-iation sheme if a pair (
;R=P) is an assoiation sheme. In this asethe sheme (
;R=P) is alled a fusion of (
;R). Following [6℄ we all aKey words and phrases: assosiation sheme, adjaeny algebra, fusion.98



ON T-AMORPHOUS ASSOCIATION SCHEMES 99sheme amorphous if (
;R=P) is an assoiation sheme for any admis-sible partition P of [0; d℄. It should be noted that the original de�nitiongiven in [6℄ dealt only with ommutative shemes. But it was shown byMa [10℄ that being amorphous implies ommutativity. Symmetri amor-phous shemes known as amorphi were lassi�ed up to algebrai isomor-phism by Gol'fand, Ivanov and Klin and in [9℄. Amorphous assoiationshemes with at least three symmetrized lasses were lassi�ed (up to al-gebrai isomorphism) by Ito, Munemasa and Yamada. Reently J. Malassi�ed amorphous shemes with two symmetrized lasses [10℄, up toalgebrai isomorphism.A sheme is alled anti-symmetri (skew-symmetri in [10℄) if i′ 6= i foreah i 6= 0. An anti-symmetri sheme with two lasses is equivalent toa doubly regular tournament. The parameters of a doubly regular tourna-ment are uniquely determined by its order (the number of verties of atournament). A neessary ondition for an existene of an anti-symmetrisheme on v points is v ≡ 3(mod 4). Given an anti-symmetri sheme(
;R) with d lasses, we say that a subset I ⊂ [1; d℄ is a ′-transversal if Iintersets eah pair {j; j′}; j ∈ [1; d℄ by one element. In what follows wenumber the relations of R in a way that the set [1; d=2℄ is a ′-transver-sal. Every ′-transversal I gives rise to an admissible partition with threelasses {0}; I; I ′. We say that an anti-symmetri sheme is T-amorpho-us if partition {0}; I; I ′ gives rise to an anti-symmetri sheme for eah
′-transversal I . Of ourse, every amorphous anti-symmetri sheme wouldbe an example of a T-amorphous sheme. Unfortunately, as was shownby Ma [10℄, they do not exist. Thus, one ould ask whether T-amorphousshemes exist at all. Fortunately, the answer is aÆrmative. Reently Fengand Xiang [11℄ built an in�nite series of T-amorphous ylotomi shemes.The purpose of this note is to study the properties of this lass of shemes.

§2. Some basi fats about T-amorphous shemesFirst, we �x some notation. For the rest of the paper X = (
;R) willstand for an anti-symmetri sheme with d = 2e lasses. It is also assumedthat [1; e℄ is a ′-transversal. We start with the following haraterizationof anti-symmetri shemes [15℄.Proposition 2.1. A sheme (
;R) is anti-symmetri if and only if it isodd, that is all its valenies and |
| are odd numbers.As a diret onsequene we obtain the following



100 M. E. MUZYCHUKCorollary 2.2. If X is T-amorphous, then e is odd.Proof. The statement follows from the equailty
|
| = 1 + e∑i=1 2vi ≡ 2e+ 1(mod 4)and the ongruene |
| ≡ 3(mod 4). �Now, we an easily show that a T-amorphous sheme with e > 1 annotbe amorphous1. Indeed, if an anti-symmeti sheme is amorphous, then itssymmetrization is an amorphi sheme with e ≥ 3 lasses. Therefore, thenumber v of sheme points is a square, ontraditing v ≡ 3(mod 4).The main result of this setion is the following haraterization of anti-symmetri T-amorphous shemes.Theorem 2.3. An anti-symmetri sheme (
;R = {Ri}2ei=0) is T-amor-phous if and only if

∀i 6=j XiXj = −XjXi and e∑i=1 X2i = −|
|I
 + J
; (1)where Xi := Ai −Ai′ ; 1 ≤ i ≤ e.To prove this statement we reall a well-known haraterization of dou-bly regular tournaments.Proposition 2.4. A regular tournament (
; R) is doubly regular if andonly if (A−A⊤)2 = −|
|I
 + J
, where A is the adjaeny matrix of R.Proof of Theorem 2.3. It follows from Proposition 2.4 that the sheme
X is T-amorphous i� for any funtion " : [1; e℄ → {±1} the matrix X" :=e∑i=1 "(i)Xi satis�es the equation X2" = −|
|I
 + J
. We may assume thate ≥ 3.Pik an arbitrary pair of indies i 6= j ∈ [1; e℄ and set Y1 = Xi,Y2 = Xj , Y3 = ∑k 6=i;jXk. Then (Y1 + Y2 + Y3)2 = −|
|I
 + J
 and(−Y1 + Y2 + Y3)2 = −|
|I
 + J
, implying Y1 ? Y2 + Y1 ? Y3 = 0, where1This argument was found by Misha Klin.



ON T-AMORPHOUS ASSOCIATION SCHEMES 101A ?B := AB +BA. Permutting the indies 1; 2; 3 we obtain the followingsystem of matrix equations




Y1 ? Y2 + Y1 ? Y3 = 0;Y1 ? Y2 + Y2 ? Y3 = 0;Y2 ? Y3 + Y1 ? Y3 = 0:Solving the system, we obtain Y1 ? Y2 = 0; Y1 ? Y3 = 0; Y2 ? Y3 = 0. Thus,XiXj +XjXi = 0. The rest follows easily. �

§3. Non-ommutative ase.The main goal of this setion is to show that a T-amorphous shemeshould be ommutative. With this end, we study irreduible omplex rep-resentations of the adjaeny algebra A := C[R℄. We write A+ and A−for subspaes of A onsisting of symmetri and skew-symmetri matries,respetively. We also abbreviate v := |
|, J := J
; I := I
.Let E0 = v−1J;E1; : : : ; Er be a omplete set of minimal entral idempo-tents of A. It is well-known that a two-sided ideal Ai := EiA is isomorphi(as an algebra) to the full matrix algebraMni(C). This isomorphism yieldsan irreduible omplex representation of A whih will be denoted by �i.We denote by ni the dimension of �i. The multipliity of �i in the de-omposition of the standard module C
 will be denoted by mi. Sine thesheme is odd, all multipliities mi; 0 ≤ i ≤ r, are odd integers. Notie that�i : A →Mni(C) is a C-algebra epimorphism suh that �i(Ei) = Ini . A-ording to [4℄ we may assume that �i(X∗) = �i(X)∗ for eah X ∈ A(here and later on X∗ := X⊤ is the Hermitian onjugate of a matrix X).Notie that as a matrix of M
(C), eah Ei is Hermitian, that is E∗i =Ei. A omplex matrix Ei = E⊤i is also a minimal entral idempotent of A.Thus, E⊤i = Ei′ for some i′. Notie that the mapping i 7→ i′ is an involutionand 0′ = 0. The representation �i′ orresponding to Ei′ is equivalent toX 7→ �i(X⊤)⊤.In order to proeed further, we introdue additional notation. We writeX̃ for the 2n×2n real matrix whih is obtained from n×n omplex matrixX by replaing a omplex number Xij = a + b�; � = √
−1, by the 2 × 2-matrix ( a b

−b a ). Notie that the mapping X 7→ X̃ is an R-algebramonomorphism between the algebrasMn(C) andM2n(R), and X̃∗ = X̃⊤.The following result of J. Putter (Theorem 1, [13℄) plays a entral rolein this setion.



102 M. E. MUZYCHUKTheorem 3.1. Let X1; : : : ; Xq be a set of n×n skew symmetri, pairwiseantiommuting (that is XiXj = −XjXi for i 6= j) non-zero real matries.Then q ≤ n− 1.Proposition 3.2. If i′ 6= i, then ni = 1. If ni = 1 and i 6= 0, then i′ 6= i.Proof. First we prove a general fat that �i(A−) = �i(A) (and, there-fore, �i(A−) = Mni(C)). Sine �i maps EiA onto Mni(C) bijetively, itsuÆes to show that EiA = EiA−. Let Y ∈ EiA be an arbitrary ma-trix. Then Y = Y Ei implies Y ⊤ = Y ⊤Ei′ . Together with EiEi′ = 0 weonlude that Ei(Y − Y ⊤) = EiY − EiY ⊤Ei′ = EiY = Y:Thus, EiA = EiA−. Sine the matries X1; : : : ; Xe form a basis of A−,the matries EiXj ; j = 1; : : : ; e, span EiA. Therefore, the matries Yj :=�i(Xj); j = 1; : : : ; e, span Mni(C). In partiular, the number of non-zeromatries among Yj 's is at least n2i . Sine X∗j = −Xj , we onlude thatY ∗j = −Yj . Also, the matries Yj are pairwise anti-ommuting. Now, thematries Ỹj ; j = 1; : : : ; e, form a set of 2ni × 2ni real skew symmetrimatries whih anti-ommute pairwise. By Theorem 3.1 the number ofnon-zero matries among Ỹj is at most 2ni−1. On the other hand, amongthese matries at least n2i matries are non-zero. Thus, n2i ≤ 2ni − 1implying ni = 1.Next, assume that ni = 1; i 6= 0. Then �i is one-dimensional and, there-fore, �i′(Aj) = �i(A⊤j )⊤ = �i(A⊤j ). If i′ = i, then �i(Aj) = �i′(Aj) =�i(A⊤j ) implying that �i(Xj) = 0 for eah j = 1; : : : ; e. But it followsfrom (1) that ∑j �i(Xj)2 = −v. A ontradition. Thus i′ 6= i. �Finally, we onsider the remaining ase i′ = i, that is E⊤i = Ei =Ei. In this ase A⊤i = Ai and the mapping X 7→ X⊤ is an order twoanti-automorphism of Ai. Sine Ai is isomorphi to Mni(C), the abovemapping yields an order two anti-automorphism of Mni(C). Eah anti-automorphism of the full matrix algebra has a form A 7→ S−1A⊤S whereS is either symmetri or a skew-symmetri matrix [2℄. Thus, �i(X⊤) =S−1�i(X)⊤S.If S is symmetri, then there exists a unitary matrix U and diagonal realmatrixD with Dii > 0 suh that S = UDU⊤ (Lemma 4.4.4 [5℄). Replaing�i(X) by √DU∗�i(X)U√D−1 we obtain an equivalent representationwhih satis�es �i(X⊤) = �i(X)⊤ and �i(X∗) = �i(X)∗ for eah X ∈ A.



ON T-AMORPHOUS ASSOCIATION SCHEMES 103In partiular, �i(Aj) is a real matrix for eah j ∈ [0; 2e℄ (that is �i isirreduible over R). In this ase �i is alled a real representation.If S is skew symmetri, then ni is even and there exists a unitary matrixU suh that S = UV U⊤ where V is a diret sum of ni=2 matries of theform ( 0 z`
−z` 0) ; z` ∈ C, ` = 1; : : : ; ni=2 [5, Setion 4.4, Problem 26℄.Therefore, there exists an orthonormal basis of Cni suh that in the newbasis �i(X⊤) = V −1�i(X)⊤V . In this ase we all �i a representation ofa sympleti type.Proposition 3.3. If �i is real, then ni = 2. There exists a unique j ∈

{1; : : : ; e} with �i(Xj) 6= 0. Moreover, �i(Xj) = ( 0 �
−� 0), where � =

±√v.Proof. It follows from X⊤j = −Xj that �i(Xj)⊤ = −�i(Xj). Thus,�i(Xj); j = 1; : : : ; e are skew symmetri, real and pairwise antiommutingmatries of order ni. By Theorem 3.1 the number of non-zero matriesamong them is at most ni − 1.Sine Xj 's form a basis of A−, the number of non-zero matries among�i(Xj) is at least dim(�i(A−)). It follows from �i(X⊤) = �i(X)⊤ that�i(A−) oinides with the subspae of skew symmetri matries ofMni(C).Therefore dim(�i(A−)) = (ni− 1)ni=2 implying (ni− 1)ni=2 ≤ ni. Heneni ≤ 2. By Proposition 3.2 ni ≥ 2. Therefore ni = 2.The subspae of skew symmetri matries of M2(C) is one dimensionaland is spanned by ( 0 1
−1 0). Sine �i(Xj)'s are antiommuting, we on-lude that �i(Xj) is non-zero for at most one matrix Xj . The rest of thestatement follows from the equality e∑j=1X2j = −vI
 + J
. �Proposition 3.4. If �i is sympleti, then ni = 2. There exists at mostthree indies j ∈ [1; e℄ suh that �i(Xj) 6= 0. If there are exatly threeindies a; b;  ∈ [1; e℄ with non-zero images �i(Xj); j ∈ {a; b; }, then, upto a onjugation by a unitary matrix, the matries �i(Xa);�i(Xb);�i(X)have the form

(��a 00 −��a) ; ( 0 �b
−�b 0) ; ( 0 ���� 0 ) ;where �a; �b; � are real numbers satisfying �2a + �2b + �2 = v.



104 M. E. MUZYCHUKProof. Aording to [14℄ the dimension of �i(A−) is ni(ni+1)=2. There-fore, among the matries Yj := �i(Xj); j = 1; : : : ; e there are at leastni(ni + 1)=2 non-zero matries. Sine these matries are skew Hermitianand pairwise anti-ommute, the matries Ỹj are pairwise anti-ommutingskew-symmetri real matries of order 2ni. By Theorem 3.1 the numberof non-zero matries among Ỹj , 1 ≤ j ≤ e, is at most 2ni − 1. Thus,ni(ni + 1)=2 ≤ 2ni − 1 =⇒ ni ≤ 2. Sine ni is even, we onlude thatni = 2. Thus V = ( 0 z
−z 0) for some z ∈ C and�i(X⊤) = V −1�i(X)⊤V = T−1�i(X)⊤T where T = ( 0 1

−1 0) :It follows from the above arguments that the number of non-zero ma-tries among Yj ; j ∈ [1; e℄, is at most three. Next, assume that there areexatly three non-zero matries Ya; Yb; Y with distint a; b;  ∈ [1; e℄. Itfollows from X⊤j = X∗j = −Xj that T−1Y ⊤j T = Y ∗j = −Yj . Now a diretomputation shows that eah of the matries Ya; Yb; Y has a formYj = ( �rj zj
−zj −�rj) ; where rj ∈ R; zj ∈ C and j ∈ {a; b; }:The harateristi polynomial of Yj is x2 + r2j + |zj |2. Sine Yj 6= 0, thenumber r2j + |zj |2 is a positive real. Therefore, the eigenvalues of Yj are

±��j , where �j = √r2j + |zj |2. Sine eah of the matries is skew Hermitian,it has an orthonormal eigenbasis. Therefore, there exists a unitary matrixU suh that U∗YaU = (��a 00 −��a). The matries U∗YbU;U∗YU areskew Hermitian matries with zero trae. HeneU∗YbU = ( �sb wb
−wb −�sb) ; U∗YU = ( �s w

−w −�s) ;where sb; s ∈ R; wb; w ∈ C:The onditions YaYb = −YbYa; YaY = −YYa imply sb = s = 0. Conju-gating by a unitary matrix D := (e�!b 00 1) with !b = arg(wb) we obtain



ON T-AMORPHOUS ASSOCIATION SCHEMES 105the following triple of matries(UD)∗Ya(UD) = (��a 00 −��a) ;(UD)∗Yb(UD) = ( 0 �b
−�b 0) ;(UD)∗Y(UD) = ( 0 u
−u 0) :Now the ondition YbY = −YYb implies that u is an imaginary number.Thus (UD)∗Y(UD) = ( 0 ���� 0 ). The ondition �2a+ �2b + �2 = v followsfrom e∑j=1X2j = −vI
 + J
. �Notie that the matries desribed in the above proposition with �a =�b = � = 1 generate a quaternion group of order 8. For this reason we allthese type of representations of quaternion type.It follows from Propositions 3.2, 3.3, and 3.4 that the set of all non-prinipal irreduible representations of A splits into three parts(1) one-dimensional non-real representations �1;�1′ ; : : : ;�k;�k′ ;(2) two-dimensional real representations �2k+1; : : : ;�2k+`;(3) two-dimensional non-real representations of quaternion type�2k+`+1; : : :�2k+`+m.For the representation of the �rst type we have �i(X⊤) = �i′(X)⊤,X ∈ A. For the representation of the seond type �i(X⊤) = �i(X)⊤,and for the representations of the third type �i(X⊤) = T−1�i(X)⊤T ,where T = ( 0 1

−1 0).As a omplex algebra A is isomorphi to the diret sum
C2k+1 ⊕M2(C)`+m:Counting the dimension ofA in two ways we obtain 1+2k+4`+4m= 1+2e,implying that k+2`+2m = e. The anti-automorphism ⊤ ats on the diretsum C2k+1 ⊕M2(C)`+m as follows:(1) it interhanges the oordinates i and i′ for 1 ≤ i ≤ k;(2) it ats as a transposition on the �rst ` summands M2(C);(3) it ats as X 7→ T−1X⊤T on the last m summands M2(C).



106 M. E. MUZYCHUKAlso, ⊤ ats trivially on the zero-indexed summand (whih orrespondsto �0).The dimension of ⊤-invariant subspae of A ounted in two ways yieldsus the equality 1+e = 1+k+3`+m. Comparing this with e = k+2`+2mwe onlude that ` = m.Proposition 3.5. For eah j ∈ {1; : : : ; e} there exists a unique r(j) ∈
{1; : : : ; k; 2k+ 1; : : : ; 2k+ 2`} suh that �r(j)(Xj) 6= 0.The funtion r hasthe following properties(1) r is surjetive;(2) for eah i ∈ {1; : : : ; k; 2k + 1; : : : ; 2k + 2`} one has

|r−1(i)| = { 1; i ≤ 2k + `;3; i > 2k + `;(3) for eah i ∈ {1; : : : ; k; 2k + 1; : : : ; 2k + 2`} one has
∑j∈r−1(i)�i(Xj)2 = −vIni :Proof. De�ne a bipartite graph � between the sets D := {1; : : : ; k; 2k +1; : : : ; 2k + 2`} and E := {1; ::; e} by onneting i ∈ D and j ∈ E i��i(Xj) 6= 0. Sine the intersetion of ker(�i); i ∈ D ∪ {0} is trivial, foreah j ∈ E there exists at least one i ∈ D ∪ {0} with �i(Xj) 6= 0. Sine�0(Xj) = 0, one has i 6= 0. Thus, eah j ∈ E is onneted with at leastone element of D. Therefore, � has at least |E| = e distint edges.It follows from e∑j=1X2j = −vI+J that e∑j=1�i(Xj)2 = −vIni . Therefore,for eah i ∈ D there exists at least one j ∈ E with �i(Xj) 6= 0. In otherwords, eah vertex i ∈ D has at least one neighbour in E.Sine Xj 's are anti-ommuting, if �i is one-dimensional there is at mostone j ∈ E with �i(Xj) 6= 0. Hene, |�(i)| = 1 for i ∈ {1; : : : ; k} ⊆ D.If �i is 2-dimensional and real, then by Proposition 3.3 there existsat most one j ∈ E with �i(Xj) 6= 0. Therefore, |�(i)| = 1 for eah i ∈

{2k + 1; : : : ; 2k + `} ⊂ D.If �i is 2-dimesional of quaternion type, then by Proposition 3.4 wehave |�(i)| ≤ 3. Thus,k + `+ 3` ≥ ∑i∈D |�(i)| = |E(�)| = ∑j∈E |�(j)| ≥ |E| = e = k + 4`:



ON T-AMORPHOUS ASSOCIATION SCHEMES 107Thus, we obtain that |E(�)| = e and |�(i)| = 3 for eah i ∈ {2k + ` +1; : : : ; 2k+2`} ⊂ D. This means that eah j ∈ E is onneted with exatlyone i ∈ D. Thus, we obtain a funtion r : E → D suh that i ∈ D isonneted with j ∈ E i� i = r(j).Part (3) is an immediate onsequene of e∑j=1X2j = −vI + J . �Now we are ready to prove the main result of this setionTheorem 3.6. A T-amorphi sheme should be ommutative.Proof. Assume, towards a ontradition, that the sheme is non-ommu-tative, that is ` ≥ 1. Then A has at least one two-dimensional non-realrepresentation of quaternion type, say �q . Let Eq denote the minimalentral idempotent orreponding to �q . Sine �q(X⊤) = T−1�q(X)⊤T ,we onlude that �q(X) is a salar matrix whenever X is symmetri. ByProposition 3.5 r−1(q) = {a; b; } for pairwise distint indies a; b; . ByProposition 3.4 we may assume that�q(Xa) = (�a� 00 −�a�) ; �q(Xb) = ( 0 �b
−�b 0) ;�q(X) = ( 0 ���� 0 )for some �a; �b; � ∈ R. Squaring these matries we obtain�q(X2a) = (

−�2a 00 −�2a) ; �q(X2b ) = (
−�2b 00 −�2b) ;�q(X2 ) = (

−�2 00 −�2) :Sine �p(Xa) = �p(Xb) = �p(X) = �p(Eq) = 0 for eah p 6= q,we obtain X2a = −�2aEq ; X2b = −�2bEq ; X2 = −�2Eq :Taking traes we obtain
−2vav = −2mq�2a; −2vbv = −2mq�2b ; −2vv = −2mq�2 ;implying that �a = ±

√vavmq ; �b = ±
√vbvmq ; � = ±

√vvmq :



108 M. E. MUZYCHUKIt follows from �q(Xa)�q(Xb) = �a�b� �q(X) that XaXb = �a�b� X. SineXa; Xb; X are {0; 1;−1}matries, the number �a�b� is an integer. It followsfrom �2a�2b�2 = vavbvmqvthat �a�b� is an odd integer. We an onlude that XiXj ≡ Xk(mod 2).Finally, onsider the produt �q(Aa + Aa′)�q(Xb). Sine Aa + Aa′ issymmetri, we onlude that �q(Aa+Aa′) is a salar matrix �I2 for some�. Therefore,�q((Aa +Aa′)Xb) = �q(Aa +Aa′)�q(Xb) = ��q(Xb):Sine �p(Xb) = 0 for eah p 6= q, we onlude (Aa + Aa′)Xb = �Xb.Clearly, � is an integer. It follows from Xa ≡ (Aa + Aa′)(mod 2) thatXaXb ≡ �Xb(mod 2). Therefore, X ≡ �Xb(mod 2), ontrary to the fatthat Xa; Xb; X are linearly independent over any �eld. �

§4. Commutative ase.Here it is assumed that the sheme is ommutative. In this ase (1)reads as follows
∀i 6=j XiXj = 0 and e∑i=1X2i = −vI + J: (2)In the ommutative ase the set of primitive idempotents has the followingform E0; E1; E1′ ; : : : ; Ee; Ee′ , where E⊤i = Ei′ ; i = 1; : : : ; e. Notie that inthis ase the diret sum A = A++A− is a Z2-graded deomposition, thatis

A+A+ ⊆ A+; A+A− ⊆ A−; A−A− ⊆ A+:In this setion we use the following abbreviationsA+i := Ai +Ai′ ; A−i := Ai −Ai′ ; E+i := Ei + Ei′ ; E−i := Ei − Ei′ :Notie that the matries A0; A+1 ; : : : ; A+e (E0; E+1 ; : : : ; E+e ) form the �rst(resp. the seond) standard basis of A+ whih is the BM-algebra of a sym-metrized sheme R+. The harater table and the struture onstants of
A+ are denoted by P+ and +pkij . Also, eah of the sets {A−i }i∈[1;e℄ and
{E−i }i∈[1;e℄ is a basis of A−. It follows from Proposition 3.5 that the map-ping r : [1; e℄ → [1; e℄ is a bijetion. Renumbering idempotents we analways assume that r(i) = i; i ∈ [1; e℄. Thus, for eah i the matrix A−i is



ON T-AMORPHOUS ASSOCIATION SCHEMES 109proportional to E−i , that is A−i = �iE−i for some �i ∈ C. It follows frome∑i=1(A−i )2 = −vI + J that
−vI + J = e∑i=1 �2i (E−i )2 = e∑i=1 �2i (Ei +Ei′ )=⇒ −v e∑i=1(Ei +Ei′) = e∑i=1 �2i (Ei +Ei′ ):Therefore, �i = ±�√v. Exhanging Ei with Ei′ , if neessary, we an alwaysassume that A−i = �√vE−i for i = 1; : : : ; e. As a diret onsequense of thisfat we obtain the following statement.Proposition 4.1. Let P and Q be the �rst and the seond eigenmatries ofthe sheme (
; R). Then for any pair of indies i 6= j ∈ [1; e℄ the followingonditions hold(1) Pji = Pj′i = Pji′ = Pj′i′ = 12P+ji ;(2) {Pii = Pi′i′ = P+ii+�√v2 ;Pii′ = Pi′i = P+ii−�√v2 ;(3) AiA−j = PjiA−j and Pji = pjij − pjij′ ;(4) A+i A−i = P+ii A−i and P+ii = piii − pii′i′ is odd;(5) Qij = Qi′j = Qij′ = Qi′j′ = pijj′ − pij′j′ ;(6) Qii = Qi′i′ = Pii′ ; Qi′i = Qii′ = Pii.Proof. Substrating Ai′ = viE0+ e∑j=1(Pji′Ej+Pj′i′Ej′) from Ai = viE0+e∑j=1(PjiEj + Pj′iEj′ ) we obtain that Pji = Pji′ ; Pj′i′ = Pj′i for i 6= j andPii−Pii′ = Pi′i−Pi′i′ = �√v . Combining this with Pji = Pj′i′ ; Pij′ = Pi′jand P+ji = Pji + Pji′ ; P+ii = Pii + Pii′ we obtain parts (1){(2) of thestatement.Part (3). It follows from A−j = �√vE−j that AiA−j = Ai�√v(Ej −Ej′) = �√v(PjiEi−Pj′iEj′ ). By part (1) Pji = Pj′i. Thus, AiA−j = PjiA−j .Counting the oeÆients of Aj in both sides of AiA−j = PjiA−j , we obtainthat Pji = pjij − pjij′ .



110 M. E. MUZYCHUKPart (4). It follows from E+i A−i = A−i thatA+i A−i = A+i (E+i A−i ) = (A+i E+i )A−i = P+ii E+i A−i = P+ii A−i :Thus, A2i − A2i′ = P+ii (Ai −Ai′ ). Comparing the oeÆients of Ai in bothsides, we onlude that P+ii = piii−pii′i′ . Rewriting A2i −A2i′ = P+ii (Ai−Ai′)as A2i − P+ii Ai = A2i′ − P+ii Ai′ , we obtain (A2i − P+ii Ai)⊤ = A2i − P+ii Ai.Therefore, A2i −P+ii Ai = e∑j=1 �jA+j for some integers �j . The valeny of theright-hand side part is an even number. Therefore, v2i − P+ii vi is an eveninteger. Sine vi is odd, we onlude that P+ii is odd.Parts (5) and (6) follow from the well-known relations Qij=mj =Pji=vi. �Let �i; i ∈ [1; e℄, denote a permutation of the set {0}∪[1; e℄∪[1′; e′℄ whihinterhanges i and i′ and leaves the rest of the elements �xed (that is �i isa transposition (i i′)). It follows from parts (1){(2) of Proposition 4.1 thatPuv = Pu�i v�i holds for any pair u; v ∈ {0} ∪ [1; e℄ ∪ [1′e′℄. Therefore, �i isan algebrai automorphism of A. The transpositions �i; i ∈ [1; e℄, generatean elementary abelian 2-group T of order 2e. This group ats regularly onthe set of all rank 3 antisymmetri fusions of X.Proposition 4.2. mi = vi for eah i ∈ [1; e℄.Proof. Squaring the equality Ai −Ai′ = �√v(Ei − Ei′) we obtainA2i − 2AiAi′ +A2i′ = −v(Ei +Ei′):Now by taking the traes of both sides we obtain the result. �It follows from the previous statement that the entries P+ij are even ifi 6= j and odd otherwise.Proposition 4.3. If i 6= j, then P+ij+P+ji ≡ 2(mod 4) and pjii ≡ 0(mod 2).Proof. LetM denote the diagonal matrix of size e suh thatMii= mi= vi.Sine the prinipal part P+0 is ongruent to Ie modulo two, we an writeP+0 = Ie + 2P1 for some integer matrix P1. The harater table P+ ofthe sheme R+ has the form ( 1 2 · 1M1⊤ Ie + 2P1), where 1 is the all-one rowvetor of length e. Let us write the orthogonality relations for P+ in thematrix form( 1 12M1⊤ Ie + 2P⊤1 ) (1 00 2M)( 1 2 · 1M1⊤ Ie + 2P1) = v(1 00 2M) :



ON T-AMORPHOUS ASSOCIATION SCHEMES 111Comparing the entries of both sides in the position (2; 2), we obtain that4 ·MJeM + 2 ·M + 4 ·MP1 + 4 · P⊤1 M + 8 · P⊤1 MP1 = 2v ·M;or, equivalently,MJeM +MP1 + P⊤1 M + 2 · P⊤1 MP1 = v − 12 ·M:Sine v−12 is an odd integer and M ≡ Ie(mod 2), we obtainJe + P1 + P⊤1 ≡ Ie(mod 2):This yields us the �rst ongruene of the statement.Aording to the well-known formula we havevjvpjii = v2i vj + e∑s=1(P 2siPsj′ + P 2s′iPs′j′ )ms:If s 6= i; j, then by Proposition 4.1 Psj′ = Ps′j′ implying thatvjvpjii ≡ v2i vj + (P 2iiPij′ + P 2i′iPi′j′)mi + (P 2jiPjj′ + P 2j′iPjj′ )mj(mod 2):Sine the numbers mi = vi;mj = vj , v are odd and Pij′ = Pi′j′ ; Pji = Pji′ ,we obtain pjii ≡ 1 + (P 2ii + P 2i′i)Pij + P 2ji(Pjj′ + Pjj′ )(mod 2):By part (2) of Proposition 4.1, P 2ii+P 2ii′ = (P+ii )2−v2 , Pjj+Pjj′ = P+jj . SineP+ii , P+jj are odd and v ≡ 3(mod 4), the numbers P 2ii + P 2ii′ = (P+ii )2−v2 ,Pjj + Pjj′ = P+jj are odd. Therefore,pjii ≡ 1 + Pij + P 2ji(mod 2) ≡ 1 + Pij + Pji(mod 2):Together with Pij = P+ij2 ; Pji = P+ji2 and P+ij +P+ji ≡ 2(mod 4) we onludethat Pij + Pji is an odd number. This yields us pjii ≡ 0(mod 2). �Corollary 4.4. The mapping A+i 7→ E+i is not a duality of R+.Proof. A mapping A+i 7→ E+i is a duality if and only if P+ijvj = P+jivi holdsfor any pair of indies. But for i 6= j both entries P+ij ; P+ji are even numberswhose sum is ongruent to 2 modulo 4. Sine vi and vj are odd numbers,this implies that the highest 2-powers whih divide P+ijvj ,P+jivi are distint fori 6= j. �



112 M. E. MUZYCHUKCorollary 4.5. If v ≡ 7(mod 8) then A2i ≡ Ai(mod 2) for eah i ∈ [1; e℄.If v ≡ 3(mod 8) then A2i ≡ Ai′ (mod 2) for eah i ∈ [1; e℄.Proof. Pik an arbitrary j ∈ [1; e℄; j 6= i. By Proposition 4.3, pjii is even.Sine pj′ii = pj�ji�j i�j = pjii, we obtain that pj′ii ≡ 0(mod 2). Therefore, A2i ≡piiiAi + pi′iiAi′(mod 2). This also implies that v2i ≡ piiivi + pi′iivi′(mod 2).Sine vi is odd, we onlude that piii + pi′ii ≡ 1(mod 2). Thus, for anyi ∈ [1; e℄ either A2i ≡ Ai(mod 2) or A2i ≡ Ai′(mod 2).The matrix A := A1 + · · ·+ Ae is the matrix of a doubly regular tour-nament of order v. Therefore, A2 = v−34 A + v+14 A⊤. If v ≡ 7(mod 8),then A2 ≡ A(mod 2) implying that e∑i=1A2i ≡
e∑i=1Ai(mod 2). Thus, A2i ≡Ai(mod 2) for eah i ∈ [1; e℄. The ase of v ≡ 3(mod 8) is onsideredsimilarly. �

§5. Fusions in X and X
+Let P = {P1; : : : ;Pf} be a partition of [1; e℄ with f non-empty lasses.Let D be an e×f matrix de�ned as follows: Dij = 1 if i ∈ Pj and Dij = 0,otherwise. We de�ne the dual partition P⊥ of [1; e℄ by putting i; j ∈ [1; e℄at the same lass i� the i-th and j-th rows of the matrix P+0 D are equal.It is well-known that P gives rise to a fusion sheme i� |P⊥| = |P|, thatis P and P⊥ have the same number of lasses. Sine P+0 ≡ Ie(mod 2),we obtain (P+0 D) ≡ D(mod 2). Therefore, P⊥ is a re�nement of P. Thisimmediately implies the followingProposition 5.1. A partition P gives rise to a fusion sheme i� P

⊥ = P.Every partition P = {P1; : : : ;Pf} of [1; e℄ determines a partition P′ :=
{P′1; : : : ;P′f} of [1′; e′℄. The union P∪P′ is an admissible partition of [1; e℄∪[1′; e′℄.Proposition 5.2. A partition P of [1; e℄ gives rise to a fusion of R+ i�the partition P∪P′ gives rise to a fusion of R. If R=(P∪P′) is a sheme,then it is T-amorphous.Proof. If P ∪ P′ determines a fusion sheme of R, then this sheme isanti-symmetri and its symmetrization is a fusion of R+ determined by P.Conversly, assume that P = {P1; : : : ;Pf} is a partition of [1; e℄ whihdetermines a fusion sheme of R. Sine P⊥ = P, the sets {A0}∪{A+

Pk}fk=1and {E0} ∪ {E+
Pk}fk=1 form the �rst and the seond standard bases of



ON T-AMORPHOUS ASSOCIATION SCHEMES 113the fusion sheme R+=P. Let B denote the linear span of the matri-es A0; APk ; AP′k ; k ∈ [1; f ℄. It suÆes to show that the linear spans
〈A0; {APk ; AP′k}k∈[1;f ℄〉 and 〈E0; {EPk ; EP′k}k∈[1;f ℄〉 are equal. It followsfrom APk = 12 (A+

Pk +A−
Pk) ; AP′k = 12 (A+

Pk −A−
Pk)and EPk = 12 (E+

Pk +E−
Pk) ; EP′k = 12 (E+

Pk − E−
Pk) ;that

〈A0; {APk ; AP′k}k∈[1;f ℄〉 = 〈A0; {A+
Pk ; A−

Pk}k∈[1;f ℄〉and
〈E0; {EPk ; EP′k}k∈[1;f ℄〉 = 〈E0; {E+

Pk ; E−
Pk}k∈[1;f ℄〉:Now the laim follows from

〈A0; {A+
Pk}k∈[1;f ℄〉 = 〈E0; {E+

Pk}k∈[1;f ℄〉and A−
Pk = �√vE−

Pk ; k = 1; : : : ; f: �If Q is a partition of [1; e℄ ∪ [1′; e′℄ whih determines a fusion, then itssymmetrization Q+ := {(Q∪Q′)∩[1; e℄ |Q ∈ Q} determines a fusion ofR+.This gives us a homomorphism whih maps the lattie of fusion shemesof R into the one of R+. It turns out that the lattie of fusions of R maybe reonstruted from the lattie of fusions of R+.Proposition 5.3. Let P = {P1; : : : ;Pf} be a partition of [1; e℄ whihdetermines a fusion sheme of R+. Then any admissible partition Q of[1; e℄ ∪ [1′; e′℄ with Q+ = P determines a fusion of R.Proof. Let Q be an admissible partition of [1; e℄∪[1′; e′℄ with g ≥ 0 pairs ofanti-symmetri lasses, that is Q = {Q1; : : : ;Qg ;Q′1; : : : ;Q′g;Qg+1; : : : ;Qf}.It follows from Q+ = P that (after renumbering) Q
+i = Pi; i = 1; : : : ; f .For any algebrai automorphism � ∈ T a partition Q� is also admissible.Moreover, Q determines a fusion of R i� Q� does. Sine there always exists� ∈ T with g⋃i=1Q�i ⊆ [1; e℄, we may assume, without loosing generality, thatg⋃i=1Qi ⊆ [1; e℄. In this ase Qi = Pi; i = 1; : : : ; g, and Qj = Pj ∪ P′j ; j =g+1; : : : ; f . By Proposition 5.2 the partition P∪P′ determines a fusion of
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R. Therefore, a oarsening of P ∪ P′ by any subgroup S ≤ T determinesa fusion of R. Now it remains to notie that Q is a oarsening of P ∪ P′with respet to a subgroup generated by the elements �i := ∏j∈Pi �j ; i =g + 1; : : : ; f . �Corollary 5.4. If a partition P of [1; e℄ determines a fusion of R+, then
|P| is odd. In partiular, both R and R+ are primitive shemes.Proof. By Proposition 5.2 P ∪ P′ determines a fusion of R whih is T-amorphous. By Corollary 2.2 |P| is an odd number. Sine R+ is a sym-metrization of R, they are primitive or imprimitive simultaneously. Sineimprimitive shemes always have a fusion with two lasses, we onludethat R is primitive. �Proposition 5.5. √v+12 < vi for eah i 6= 0 .Proof. Sine R is a primitive sheme, the eigenvalues Pij satisfy the in-equality |Pij | < vj . Taking i = j we obtain |Pii|2 < v2i . By Proposition 4.1we obtain (P+ii )2 + v < 4v2i . The rest follows from P+ii ≡ 1(mod 2). �Question. It follows from Proposition 5.5 that d < 2√v. Does thereexist an in�nite series of T-amorphous shemes with d > �(√v), where aonstant � is independent of v.

§6. Cylotomi T-amorphous shemes.The main goal of this setion is to give neessary and suÆient on-ditions for a ylotomi sheme to be T-amorphous. Let Fq; q = pf , bea �nite �eld and d be a divisor of q − 1. For a generator g ∈ F∗q wede�ne the d-th ylotomi lasses as follows Ci := 〈gd〉gi, where i =0; 1; : : : ; d− 1. The basi relations of the ylotomi sheme are R0 := IFqand Ri+1 := {(x; y) ∈ F2q |x − y ∈ Ci}; i = 0; 1; : : : ; d − 1. One of theimportant properties of ylotomi shemes is that a yli permutationi 7→ i+ 1(mod d) is an algebrai automorphism of the sheme. Let us alla sheme X = (
;R = {R0; R1; : : : ; Rd}) pseudo-ylotomi if it admits ayli group H of algebrai automorphisms whih ats regularly on the set
{1; : : : ; d}. Sine H is transitive on [1; d℄, the sheme X is either symmetrior anti-symmetri. In the latter ase d is even and the following statementholds



ON T-AMORPHOUS ASSOCIATION SCHEMES 115Proposition 6.1. Let X be antisymmetri. Then iz = i′ where z ∈ H isa unique element of order 2.Proof. Let z ∈ H be a unique element whih maps 1 to 1′, that is 1z = 1′.Sine (i′)h = (ih)′ holds for eah h ∈ H and i ∈ [1; d℄, we obtain that iz = i′holds for eah i ∈ [1; d℄. This implies that z2 = 1. �Aording to [7℄ the groupH ats regularly on the set of primitive idem-potents E1; : : : ; Ed. For eah irreduible harater � ∈ Irr(H) we de�ne theeigenspae A� of H as follows A� := {A ∈ A |Ag = �(g)A}. Notie that
A� is one-dimensional if � is non-prinipal and two-dimensional if � = 1H(the prinipal harater of H). The subspae A1H is a BM-algebra of atrivial sheme with the standard bases {I; J− I}. An algebra A is a diretsum of the subspaes A�; � ∈ Irr(H). Sine H is a group of algebrai au-tomorphisms, the deomposition A = ⊕�∈Irr(H)A� is a grading of A withrespet to both multipliations · and ◦ , that is

A� · A ⊆ A� ;
A� ◦ A ⊆ A� : (3)For eah i ∈ [1; d℄ and � ∈ Irr(H) we set Ai;� := ∑h∈H �(h−1)Aih andEi;� := ∑h∈H �(h−1)Eih . A diret hek shows that for eah h ∈ H one has(Ai;�)h = Aih;� = �(h)Ai;�;(Ei;�)h = Eih;� = �(h)Ei;�: (4)If � 6= 1H , then both Ei;� and Aj;� span A�. Therefore, they are propor-tional, that is Aj;� = �Ei;� for some omplex number �. Changing j andi leads to a multipliation of � by a omplex d-th root of unity. In a y-lotomi sheme this oeÆient (under ertain hoie of i and j) is knownas Gauss sum. For this reason we denote this oeÆient as G(�; i; j) andall it Gauss sum as well. Thus,Ai;� = G(�; i; j)Ej;�: (5)Theorem 6.2. Let X be an antisymmeti pseudo-ylotomi sheme withd = 2e lasses, e odd, and with H = 〈h0〉; h0 = (1; : : : ; e; 1′; : : : ; e′). Then

X is T-amorphous i� there exists j ∈ [1; e℄∪ [1′; e′℄ and " ∈ {±1} suh thatfor any harater � ∈ Irr(H) of even order G(�; 1; j) = "�√v.



116 M. E. MUZYCHUKProof. Neessity. In this ase A1 − A1′ = �√v(Ej − Ej′ ) for some j ∈[1; e℄ ∪ [1′; e′℄. Therefore, for eah h ∈ H one hasA1h −A(1h)′ = �√v(Ejh − E(jh)′) ⇐⇒ A1h −A1zh = �√v(Ejh − Ejhz );where z := he0:Next, let � ∈ Irr(H) be a harater of even order. Then �(z) = −1 andA1;� = ∑h∈H �(h)A1h = ∑h∈O �(h)(A1h −A1hz )= �√v ∑h∈O �(h)(Ejh − Ejhz ) = �√vEj;�;where O is a unique subgroup of H of order e.SuÆieny. Let � ∈ Irr(H) be a harater of even order. Then A1;� ="�√vEj;� or, equivalently,
∑h∈O �(h)(A1h −A1hz ) = "�√v ∑h∈O �(h)(Ejh − Ejhz )

⇐⇒
∑h∈O�(h)(A1h −A(1h)′) = "�√v ∑h∈O �(h)(Ejh − E(jh)′):Sine the restrition map � 7→ �O is a bijetion between irreduible H-ha-raters of even order and Irr(O), we onlude that the equality

∑h∈O (h)(Aih −A(ih)′) = "�√v ∑h∈O (h)(Ejh − E(jh)′)holds for eah  ∈ Irr(O). Sine the matrix ( (h)) ∈Irr(O);h∈O is invertible,we obtain that Aih − A(ih)′ = "�√v(Ejh − E(jh)′) holds for eah h ∈ O.Now the laim follows from the fat that {ih}h∈O is an ′-transversal. �Corollary 6.3. Let X be a ylotomi sheme with d = 2e; e odd, lassesover a �nite �eld Fq; q = pf . Assume that q ≡ 3(mod 4). Then X isT-amorphous if and only if there exists " ∈ {±1} suh that G(�) = "�√qholds for all multipliative haraters � of F∗q of order 2e1; e1 | e.Proof. The Gauss sum of the ylotomi sheme G(�) oinides withG(�; 1; 1). SuÆieny follows diretly from Theorem 6.2. Thus, we have toprove neessity. First, we show that gd(d; p− 1) = 2. Consider the fusion
X

′ of X with respet to the subgroup of H of index gd(d; p − 1). This isan anti-symmetri fusion with d0 := gd(d; p − 1) lasses. Thus, X
′ is aylotomi T-amorphous sheme with d0 = 2e0 lasses. By Theorem 6.2



ON T-AMORPHOUS ASSOCIATION SCHEMES 117there exists j ∈ [1; d0℄ and " ∈ {±1} suh that G(�; 1; j) = "�√q for eahmultipliative harater of order d0. Sine G(�) = G(�; 1; 1) and G(�; 1; j)di�ers by a fator whih is a omplex d0-th root of unity, we onlude thatG(�)=√q is a omplex root of unity. By [12℄ for eah a ∈ [0; d0−1℄ oprimeto d0 one has m−1∑i=0 (pia)d0 = md0=2 = me0, where2 m = ordd0(p) and xd0is the remainder of x modulo d0. Sine d0 divides p − 1, we obtain that(pia)d0 = a for eah a ∈ [0; d0−1℄. Therefore, a = e0 for eah a ∈ [0; d0−1℄oprime to d0. It follows that Z∗d0 = {e0} and thus d0 = 2.Let � denote an algebrai automorphism of X indued by the Frobeniusautomorphism of the �eld. Sine gd(d; p−1) = 2, the Frobenius automor-phism �xes only two ylotomi lasses C0 and Ce. Therefore, in its ationon the �rst (seond) standard basis of X the automorphism � �xes onlytwo elements A1 and A1′ = Ae (E1 and E1′ = Ee respetively).By Theorem 6.2 there exist " ∈ {±1} and j ∈ [1; d℄ suh thatG(�; 1; j) ="�√q for eah harater � of F∗q of order 2e1 | d. We have to show that j = 1.It follows from the proof of Theorem 6.2 that A1 − A1′ = "�√v(Ej −Ej′) Applying � to both sides we onlude that j� = j. Therefore, j ∈
{1; e}. If j = e, then A1;� = G(�; 1; e)Ee;� = "�√qEe;� = "�√qE1z;� ="�√q�(z)E1;� = −"�√qE1;� implying G(�; 1; 1) = −"�√v. �As a diret onsequene of Davenport{Hasse Theorem we obtain thefollowingCorollary 6.4. If a ylotomi sheme over a �eld Fq with d lasses isT-amorphous, then for any odd m a d-lass ylotomi sheme over Fqmis also T-amorphous.Another orollary follows immediately from the proof of Corollary 6.3.Corollary 6.5. If a ylotomi sheme over Fq with d lasses is T-amor-phous, then gd(p− 1; d) = 2.This fat implies that the number d of lasses in a T-amorphous ylo-tomi sheme is at least 14. Indeed, if d < 14, then d = 6; 10. Sine ordd(p)is odd and Z∗6;Z∗10 are 2-groups, we onlude that in any of these two asesp ≡ 1(mod d) whih ontradits Corollary 6.5. Cylotomi T-amorphousshemes with 14 lasses do exist { the smallest example found by Feng andXiang has 14 lasses over 113 points.2Here the sum is in Z.



118 M. E. MUZYCHUKProblem. Find a ritetion for a ylotomi sheme to be T-amorphousin terms of p; f and d (without Gauss sums) like it is done for amorphiylotomi shemes.
§7. T-amorphous shemes with 6 lassesBy Corollary 2.2 a minimal number of lasses of a T-amorphous shemeis 6. An example of suh a sheme ours when one fuses lasses of aylotomi sheme with 14 lasses on 113 points (see [11℄) by the Frobeniusautomorphism. In this setion we make an attempt to �nd the haratertable of suh a sheme. Let X = (
; {R0; R1; R2; R3; R1′ ; R2′ ; R3′}) be aT-amorphous sheme. As before,A0; A1; A2; A3; A1′ ; A2′ ; A3′ and E0; E1; E2; E3; E1′ ; E2′ ; E3′stand for the �rst and the seond standard bases of the BM-algebra A of

X, respetively. The elements of the standard bases are numbered in suha way that Ai−Ai′ = �√v(Ei−Ei′) holds for i = 1; 2; 3. The symmetrizedsheme X
+ has three lasses R+i = Ri ∪ Ri′ ; i = 1; 2; 3, and its standardbases are A0; A+1 ; A+2 ; A+3 , E0; E+1 ; E+2 ; E+3 . Its valenies and multipliitiesare m+i = v+i = 2vi; i = 1; 2; 3. Following Hanaki [3℄ we all a symmetrisheme a B-sheme if there exists an ordering (alled a B-ordering) ofits standard bases suh that vi = mi. There are two natural lasses ofB-shemes { those whih are (formally) self-dual and pseudoyli shemes.But these lasses do not exhaust all possible examples of B-shemes. Arjana�Zitnik pointed out that there exists a feasible parameter set of a diameterthree distane regular graph whose sheme is a B-sheme. So, it seemsreasonable to onsider this lass of shemes in general.7.1. B-shemes. We start with the followingProposition 7.1. Let X be a B-sheme with three lasses with B-orderingA0; A1; A2; A3 and E0; E1; E2; E3 of its standard bases. Let C be its o-sine matrix. Then either C is symmetri (and the mapping Ei 7→ Ai is aduality) or there exist real numbers a; t suh thata2v + t2v1v2v3 = (a− 2)2 (6)
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1 1 1 11 −a(v2+v3)+22v1 a+v3t2 a−v2t21 a−v3t2 −a(v1+v3)+22v2 a+v1t21 a+v2t2 a−v1t2 −a(v1+v2)+22v3 
 : (7)Proof. By orthogonality relations for the �rst row and olumn we have1 + v1C11 + v2C12 + v3C13 = 0;1 + v1C11 + v2C21 + v3C31 = 0 (8)and 1 + v1C211 + v2C212 + v3C213 = vv1 ;1 + v1C211 + v2C221 + v3C231 = vv1 : (9)Therefore, v2(C12 − C21) = v3(C31 − C13);v2(C212 − C221) = v3(C231 − C213) (10)implying that either C12 = C21; C13 = C31 or C12 + C21 = C13 + C31.Writing similar relations for the seond and the third row/olumn we on-lude that either C is symmetri or Cij + Cji is onstant. Let us denotethis onstant by a. ThenC12 + C21 = C13 + C31 = C23 + C32 = a:It follows from v2(C12 − C21) = v3(C31 − C13);v1(C12 − C21) = v3(C23 − C32);v2(C23 − C32) = v1(C31 − C13)that C12 − C21v3 = C23 − C32v1 = C31 − C13v2 :Denoting this ommon value by t we obtain thatC12 − C21 = v3t; C12 + C21 = a;C23 − C32 = v1t; C23 + C32 = a;C31 − C13 = v2t; C31 + C13 = a;



120 M. E. MUZYCHUKimplying C12 = a+ v3t2 ; C21 = a− v3t2 ;C23 = a+ v1t2 ; C32 = a− v1t2 ;C31 = a+ v2t2 ; C13 = a− v2t2 :Adding the equations in (8) we obtain 2+2v1C11+a(v2+v3) = 0. Therefore,C11 = −a(v2+v3)+22v1 . Analogously, C22 = −a(v1+v3)+22v1 , C33 = −a(v1+v2)+22v3 .Thus, the osine matrix has the following formC = 


1 1 1 11 −a(v2+v3)+22v1 a+v3t2 a−v2t21 a−v3t2 −a(v1+v3)+22v2 a+v1t21 a+v2t2 a−v1t2 −a(v1+v2)+22v3 
 :Substituting the above expressions for C1i into (9) we obtain equation (6).

�Corollary 7.2. A B-sheme with three lasses is self-dual if and only if Cis symmetri or at least two of the valenies v1; v2; v3 are equal.Proof. Assume that C is non-symmetri. If the sheme is self-dual, thenthe duality permutation  on 1; 2; 3 is non-idential. W.l.o.g.  (1) 6= 1.Then v (1) = m (1) = v1.Now, assume that some of vi's are equal, say v1 = v2. Then  = (12) isa duality permutation. �Proposition 7.3. Let F be the deomposition �eld of X. If F 6= Q, thenGal(F=Q) ∼= Z3 and X is pseudoyli.Proof. The Galois group Gal(F=Q) ats faithfully on the set of primitiveidempotents E1; E2; E3 of the sheme. Assume that Gal(F=Q) ontains anautomorphism � whih ats on E1; E2; E3 as a transposition, say E�1 =E2; E�2 = E1; E�3 = E3. This implies that(a− v2t2 )� = a+ v1t2 ; (a+ v1t2 )� = a− v2t2 :Together with v1 = v2 we obtain that a ∈ Q. From E�3 = E3 it follows thatC�31 = C31, or, equivalently, (a+v2t2 )� = a+v2t2 . Hene t ∈ Q and F = Q. Aontradition.
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