
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 452, 2016 Ç.N. Gordeev, U. RehmannDOUBLE COSETS OF STABILIZERS OF TOTALLYISOTROPIC SUBSPACES IN A SPECIAL UNITARYGROUP IAbstrat. Let D be a division algebra with a �xed involution andlet V be the orresponding unitary spae over D with T -ondition(see [2℄). For a pair of totally isotropi subspaes u; v 6 V we on-sider the double osets PuPv of their stabilizers Pu; Pv in � =SU(V ). We give a desription of osets PuPv in the terms of theintersetion distane din(u; (v)) and the Witt index of u+ (v).IntrodutionIn [8℄, the notion of a linear Kleiman group was introdued: a lineargroup G 6 GL(V ) is alled a Kleiman group, if for any pairs of lin-ear subspaes u; v 6 V there is an element g ∈ G suh that the sub-spaes u; g(v) are in \general position" (that is, either dimu ∩ g(v) = 0or dim v ∩ g(v) = dimu+ dim v − dimV ). The \mutual position" of sub-spaes u; g(u) is de�ned by one non-negative integer whih an be takenequal to dimu ∩ g(v) or dim(u + g(v)), or equal to the \intersetion dis-tane" din(u; g(v)) = max{dimu; dim g(v)}− dimu∩ g(v) (the last notionwas used in [8℄) and the general position orresponds to the ase wherethe intersetion distane din(u; g(v)) ahieves the possible maximum. Themutual position of subspaes u; g(v) is de�ned uniquely by the orrespond-ing double oset PugPv of GL(V ) where Pu; Pv are the stabilizers of u; vin GL(V ). This is a general position if the double oset P̃ugP̃v is Zariskiopen in GL where P̃u; P̃v are stabilizers of u; v in the algebrai group GL.It would be interesting to extend the investigation of the \Kleimanproperty" to the ases when G 6 � is a subgroup of a lassial group �.This seems to be a diÆult task. Here we onsider a step in this diretion.Namely, let V be a linear spae over a division algebra D with an involu-tion and assume that a hermitian or skew-hermitian form orrespondingKey words and phrases: lassial algebrai groups, double osets of losed subgroups,intersetion distane. 86



DOUBLE COSETS OF STABILIZERS. . . 87to this involution is de�ned on V . Further, let � = U(V ) or � = SU(V )and let Ou; Ov be �-orbits of linear subspaes of u; v. Then the group �ats naturally on Ou × Ov (namely, (u′; v′) = ((u′); (v′)) and there isa one-to-one orrespondene of �-orbits of this ation and double osetsPuPv of the group � where Pu; Pv are stabilizers of u; v (respetively).Namely, pairs (u; g1(v)); (u; g2(v)) belong to the same orbit if and only ifg1; g2 belong to the same double oset PuPv. Hene the desription of adouble oset PuPv an be obtained by means of geometrial harateri-sation of the pair u; (v). However, in general this is a diÆult questionand here we restrit ourselves to the ase where u; v are totally isotropisubspaes. In this ase we have a �nite number of double osets PuPv. If� is the whole unitary group then it is not diÆult to see that every suhoset PuPv is de�ned uniquely by the dimension and the Witt index ofthe spae u+ (v) (see Comment 7.1). However, there is a speial interestto onsider the group � = SU(V ) beause for every simple algebrai group�̃ of type An; Bn; Cn; Dn whih is de�ned over a �eld K there is a linearrepresentation of �̃ suh that �̃(K) = � = SU(V ) where V is an appropri-ate hermitian or skew-hermitian form over an appropriate division algebraD whih ontains K in the enter.Here we give the desription of double osets PuPv in the ase � =SU(V ) (under the restrition that the hermitian form on V is a T -form(see [2℄). This desription (Theorem 1) is the same as for the whole unitarygroup exept if D = K is a �eld with trivial involution, the orrespondinghermitian form is a symmetri bilinear form whih is ompletely split overK, dimV = 2n and SU(V ) = SO2n(K). We also give the desription ofdouble osets PuPv in this speial ase (Theorem 2). Note that the T -ondition in this ase demands harK 6= 2. However, it is possible to avoidthis restrition (see Comment 7.3).Notations. The algebrai losure of a �eld K is denoted by K.X ≈ Y denotes an isomorphism of the algebrai strutures X and Y .Em is the identity matrix of size m×m.0r×s is the zero matrix of size r × s.
§1. PreliminariesLet K be a �eld and let F=K be a separable extension of degree 6 2.Further, let D be a division algebra over the enter F of index  andwith a �xed anti-automorphism x → x? whih is trivial on K (here we



88 N. GORDEEV, U. REHMANNadmit the ase D = K when ? is trivial and the ase D = F ). We �x anatural embedding i : D → M(F )whih is indued by maps D → F ⊗F D ≈ M(F ).Let V be a linear spae over D of dimension d with a non-degeneratehermitian or skew-hermitian form h = ( ; ) with respet to the involution? (here we also onsider symmetri or skew-symmetri forms over K ashermitian or skew-hermitian forms with D = F = K). We will refer to anylinear spae over D with the form h (not neessary non-degenerate) as anh-spae.The dimension of a maximal totally isotropi subspae of V (Witt index)will be denoted by n. We assume below n > 1.The group of isometries of V will be denoted by U(D;h) (unitary group).Subspaes of V .Let L;U 6 V be linear subspaes and let L∩U = {0}. Suppose (L;U) =0. Then we will denote the sum L + U by the symbol L⊥U . For a linearsubspae U 6 V we write U⊥ := {l ∈ V | (l; U) = 0}.For a linear subspae U 6 V we haveU = radU⊥U \where radU = {u ∈ U | (u; U) = 0} is the radial of U and U \ is anon-degenerate h-spae ( [2, IX, §1℄). A maximal totally isotropi spae Uof V will be denoted by U0. The odimension of U0 in U will be denotedby I(U).H-hyperboli planes and h-quasi-hyperboli spaes.An h-hyperboli plane U 6 V here will be a plane whih has a basisonsisting of two isotropi vetors e; f suh that (e; f) = 1. We denotesuh a plane by the symbol H2. The subspaeU ≈ H2s = H2⊥H2⊥ · · ·⊥H2︸ ︷︷ ︸s−timeswill be alled an h-hyperboli spae and the spae U of the formU = rad U ⊥H2swill be alled an h-quasi-hyperboli spae.



DOUBLE COSETS OF STABILIZERS. . . 89h-forms with the T -ondition.Below we assume that the form h on V satis�es the T -ondition ( [2, IX,
§4℄):For every x ∈ V there is an element � ∈ D suh that �+ ��? = h(x; x),where � = 1 if h is hermitian and � = −1 if h is skew-hermitian form. Inpartiular, the T -ondition holds if h is skew-hermitian or harK 6= 2.This ondition gives the following properties of h-spaes ( [2, IX, §4℄):h1. Witt deomposition. For every subspae U 6 V there is a deom-position U = rad U⊥(U[ + U [)⊥AUwhere U[; U [ are totally isotropi spaes, U[ + U [ ≈ H2s for some s > 0,and AU is an anisotropi subspae of U . In partiular, V = (V[+V [)⊥AVwhere V[; V [ are maximal totally isotropi subspaes of V (below we �x apair V[; V [ and their bases V[ = 〈e1; : : : ; en〉; V [ = 〈f1; : : : ; fn〉 suh that(ei; fj) = Æij).h2.Witt Theorem. Every h-isometry f : U1 → U2 of subspaes U1; U2 6V an be extended to an h-isometry F : V → V (that is, F|U1 = f).Redued norm. For a matrix X ∈ Ma(D) the determinant of the a×a-matrix i∗(X) ∈ Ma(F ) is alled the redued norm of X and we denote itby NrdX ; note that NrdX ∈ F (see [9℄)). ThenSLa(D) def= {X ∈ Ma(D) | NrdX = 1}:(Note that the symbol SLa(D) is used sometimes for the kernel of theDieudonn�e determinant det : GLa(D) → D∗=[D∗; D∗℄ (see [1℄)) whih ingeneral does not oinide with the kernel of the map Nrd : GLa(D) → F ).)Classial algebrai groups.Let �̃ be a simple algebrai group whih is de�ned over a �eld K. Belowwe identify the group �̃ with �̃(K). Below we onsider the lassial groups�̃ (that are of the type An; Bn; Cn; Dn) suh that� := �̃(K) = SU(D;h) (1:1)where SU(D;h) is the orresponding speial unitary group SU(D;h) =U(D;h) ∩ SLd(D). Every algebrai group �̃ of type Bn; Cn; Dn whih isde�ned over K is a group (up to the enter) whih satis�es the ondi-tion (1.1). Moreover, in these ases, F = K. The same is true for group ofouter type of type An but here degF=K = 2 (see [9℄).



90 N. GORDEEV, U. REHMANNHowever, we will use the assumptions h1, h2 whih de�nitely holds ifharK 6= 2.We write �̂ = U(D;h):We will subdivide all possibilities for the groups �:General Case. Inluding all ases exept theSpeial Case. K = D and h is a ompletely split symmetri form overK, d = 2n, and � = SO(V ) = SO2n(K).Orbits of totally isotropi subspaes.The set of all totally isotropi subspaes of V of dimension k will bedenoted by Ik. Note that the set Ik is a single �-orbit exept in the SpeialCase when k = n = 12 dimV (see Proposition 3.1 below). In this ase thereis a basis ei; fi; i = 1; : : : ; n suh that (ei; fj) = Æi;j . LetV +n = V[ = 〈e1; : : : ; en〉; V −n = 〈e1; : : : ; en−1; fn〉:Then V +n ; V −n are maximal totally isotropi spaes whih belongs to dif-ferent �-orbits of In, denoted respetively by I+n ; I−n .
§2. Some properties of the redued normIn this hapter we ollet some tehnial results for the redued normof elements of unitary groups. We will use here the notion of pseudo-reetions in unitary spaes.Pseudo-reetions in h-spaes. Let e ∈ V be an anisotropi vetor andlet Le = De be the orresponding line and L⊥e be the orthogonal omple-ment. Further, let a = (e; e) and let � ∈ D∗ be an element suh that�a�? = a:Then we an de�ne a linear transformation � of V by the formula�(x) = {x if x ∈ L⊥e ;�e if x = e:Then � ∈ U(D;h). We all suh a unitary transformation { a pseudo-ree-tion (in [7℄) it is alled a quasi-symmetry). The unitary group U(D;h) isgenerated by pseudo-reetions exept for the ases U(D;h) = Sp2m(K);U2(F4) ([6, II, §3℄; [7℄).



DOUBLE COSETS OF STABILIZERS. . . 91Lemma 2.1. Let e ∈ V be an anisotropi vetor in V and let � ∈ U(D;h)be the pseudo-reetion suh that �(e) = �e. Further, let U be a sub-spae whih is isomorphi to a hyperboli spae H2. Then there exists ananisotropi vetor e′ ∈ U and a pseudo-reetion � ∈ U(D;h) that orre-sponds to the e′ suh that �(e′) = �e′.Proof. Let e1; e2 be two isotropi vetors in U suh that (e1; e2) = 1.Sine the h-spae V satis�es the T -ondition we have (e; e) = � + ��? forsome � ∈ D and � = ±1. Put e′ = �e1 + e2. Then(e′; e′) = (�e1 + e2; �e1 + e2) = �+ ��? = (e; e):Then �(e′; e′)�? = (e′; e′) and there is a pseudo-reetion � ∈ U(D;h)suh that �(e′) = �e′. �Redued norm of elements of unitary spaes.We have the following properties of the redued norm of an elementg ∈ U(D;h):n1: Nrd g(Nrd g)? = 1:(Indeed, if Xg is a matrix of g in some basis and X∗g is the dual matrix,that is, XgX∗g = Ed then X∗g = SX?Tg S−1 for some S ∈ GLd(D) ( [2, IX,
§1, n. 10℄). Hene Nrd g(Nrd g)? = 1.)n2: if F = K = D then Nrd g = ±1:(Note (Nrd g))2 = 1 if F = K.)n3: if F = K 6= D then Nrd g = 1:(Indeed, if K = F 6= D then for every pseudo-reetion � ∈ U(D;h)suh that �(e) = �e for an anisotropi vetor e we have � = �?�−1 forsome � ∈ D∗ ( [7, Theorem 3℄) and thereforeNrd � = Nrd� = (Nrd�)?(Nrd�)−1 = 1:Sine the group U(D;h) is generated by pseudo-reetions (exept thegroup Sp2n(K) where every element has the redued norm = 1 and thegroup U2(F4) where F 6= K) we have Nrd g = 1 for every g ∈ U(D;h)).Some transformations of hyperboli planes.Lemma 2.2. Let D 6= K and let V = 〈e; f〉 ≈ H2. Then there exists anelement  ∈ U(D;h) with Nrd  = 1 whih is presented by the matrix (inthe basis e; f) M = (0 �� 0)



92 N. GORDEEV, U. REHMANNfor some �; � ∈ F ∗.Proof. If h is a skew symmetri form we may take � = 1; � = −1. ThenNrd  = det i∗(M) = 1. Suppose h is a symmetri form and the index of the division algebra D is even. Then we may take � = � = 1 and wehave Nrd  = det i∗(M) = (detM) = (−1) = 1. Suppose  is odd. Wemay assume F 6= K (beause of n3) and harK 6= 2. Then there is anelement � ∈ F ∗ suh that �? = −�. Now take � = �; � = −�−1. ThenNrd  = det i∗(M) = (detM) = 1 = 1: �Lemma 2.3. Let � = Nrd g for some g ∈ U(D;h). Further, let U 6 VandH2 ≈ U = 〈e1; f1〉 = 〈e2; f2〉; (ei; fi) = 1; (ei; ei) = (fi; fi) = 0for i = 1; 2. Then there exits an element � ∈ U(D;h) suh thata. Nrd � = �−1;b. �(U) = U; �(U⊥) = U⊥ and �(x) = x for every x ∈ U⊥.If, in addition, D 6= K then � satis�es also the ondition. �(De1) = De2; �(Df1) = Df2.Proof. Suppose there exist elements �1; �2 ∈ U(D;h) suh that �1 satis�esa, b and �2 satis�es b,  and a with � = 1. Then the element � = �2�1satis�es a, b,  (indeed, we may take e1 := �1(e1); f1 := �1(f1)).Let us prove the existene of �1. We may assume � 6= 1 (otherwise wemay take �1 = 1). Then U(D;h) 6= Sp2n(K). Also, if U(D;h) = U2(F4)the onditions a, b obviously hold. Thus we may assume that the groupU(D;h) is generated by pseudo-reetions. Hene� = Nrd g = Nrd g1Nrd g2 · · ·Nrd gswhere g1; : : : ; gs ∈ U(D;h) are pseudo-reetions. Let l1; : : : ; ls ∈ V beanisotropi vetors orresponding to the reetions g1; : : : ; gs and gi(li) =�ili where 1 6= �i ∈ D and let �i = Nrd gi. Lemma 2.1 implies thatthere are anisotropi vetors f1; : : : ; fs ∈ U and the orresponding pseudo-reetions h1; : : : ; hs ∈ U(D;h) suh that hi(fi) = �−1i fi. Obviously, theelement �1 = h1h2 · · ·hs ∈ U(D;h) satis�es a, b.Let us prove the existene of �2.Suppose Df1 = Df2 and De1 6= De2. Then e2 = �1e1 + �2f1 where�1; �2 ∈ D∗. Put � = �−11 �2. Consider the linear transformation �2 that isde�ned by the following formulas�2(e1) = e1 + �f1 = �−11 e2; �2(f1) = f1; �2(x) = x for every x ∈ U⊥:



DOUBLE COSETS OF STABILIZERS. . . 93These formulas show that �2 ∈ U(D;h) and the element �2 satis�es theonditions b,  and a with � = 1.Suppose De1 = Df2. Consider  ∈ SU(D;h) suh that (x) = x for ev-ery x ∈ U⊥ and the restrition  on U satis�es the ondition of Lemma 2.2.Then (De1) = Df1; (Df1) = De1:Now take instead of the basis e1; f1 the basis e′1 = (e1) = �f1; f ′1 =(f1) = �e1 where �; Æ ∈ D∗. We may assume De′1 6= De2 (otherwise wemay take �2 = ). Then Df ′1 = De1 = Df2 and we are in the previousase. We may �nd as above an element � ′2 that satis�es the onditions b, (for pairs e′1; f ′1 and e2; f2) and a with � = 1. Then �2 = � ′2 satis�esthe onditions b,  and a with � = 1.Suppose De1 6= Df2 6= Df1. Then f2 = �1e1+�2f1 for some �1; �2 ∈ D∗.Put � = �−12 �1. Then we have the unitary transformation � ′:� ′(e1) = e1; � ′(f1) = �−12 f2 = �e1 + f1 and Nrd � ′ = 1:Now we may take f1 := �−12 f2 instead of f1. Then we are in the aseD(f1) = D(f2).
�

§3. �-orbits of h-quasi-hyperboli spaesIn this hapter we onsider some properties of �-orbits of h-quasi-hyperboli subspaes of V whih we will use below to desribe the �-orbitsof pairs of totally isotropi subspaes (u; v) ∈ Il × Ik.Put
Vm;q := {U is an h-quasi-hyperboli subspae of V | I (U) = q;dimU = m+ q}:Note if U is an h-quasi-hyperboli spae then the numbers dimU; I(U)de�ne the spae U up to an isomorphism from the group �̂ (see h2). Hene

Vm;q is a single �̂-orbit. Moreover,Proposition 3.1. The set Vm;q is a single �-orbit, exept, when in theSpeial Case we have m = n = 12 dimV; q = 0. In the latter ase there aretwo di�erent �-orbits I+n and I−n .



94 N. GORDEEV, U. REHMANNProof. Let U;U ′ ∈ Vm;q and let g ∈ �̂ be an element suh that g(U) = U ′.Let � = Nrd g. We may assume � 6= 1 (otherwise there is nothing to prove).Suppose U is not a totally isotropi spae. Sine U is a h-quasi-hyper-boli spae we have U = U1⊥U2 where U1 is a hyperboli plane. Also,V = U1⊥U⊥1 and U2 6 U⊥1 . Lemma 2.3 a, b implies that there is anelement � ∈ �̂ suh that�(U) = U and Nrd � = �−1:Then g′ = g� ∈ � and g′(U) = U ′.Now we may assume U 6 V is a totally isotropi subspae. If U is nota maximal totally isotropi spae then there is a hyperboli plane H2 6 Vsuh that H2 ∩ U = {0} and H2 6 U⊥. Then the arguments whih areused above show then g′(U) = U ′ for some g′ ∈ �.Assume U is a maximally isotropi subspae of V . We have U = L⊥Dlfor some l ∈ U and L 6 U and dimL = n − 1. There exists an element ∈ � suh that (L) 6 U ′ ( we see above that non-maximal totallyisotropi subspaes of the same dimension are in the same �-orbit). If(l) ∈ U ′ than (U) = U ′ (beause, dimU ′ = dimU = n). Hene we mayassume f = (l) =∈ U ′. Thus there is a vetor e ∈ U ′ \ (L) suh that
〈e; f〉 ≈ H2 and (e; f) = 1. Now we haveV = 〈e;f〉⊥〈e; f〉⊥; (L) 6 〈e; f〉⊥; 〈f; (L)〉=(U); 〈e; (L)〉=U ′: (3:1)Let D 6= K. Then Lemma 2.3 a, b,  implies that there is an element� ∈ �̂ suh thatNrd �=1; �(De)=Df; �(Df)=De; �(x)=x for every x∈〈e; f〉⊥: (3:2)From (3.1) and (3.2) we get g′ = � ∈ � and g′(U) = U ′.Suppose K = D, and 〈e; f〉 is a sympleti spae. Then we obviouslyhave an element � ∈ �̂ whih satis�es onditions (3.2) and therefore wewill get the element g′ ∈ � suh that g′(U) = U ′.SupposeK = D, and V is an orthogonal spae (then harK 6= 2 beauseof T -ondition). Hene Nrd(�̂) = {±1} (see n2) and therefore � = −1. Ifwe are not in the Speial Case then there exists an anisotropi vetorl ∈ U⊥ and the reetion �; �(l) = −l. Then �(U) = U;Nrd � = −1 andg′ = g� ∈ � , g′(U) = U ′. Now assume that we are in the Speial Case.Then there are exatly two �-orbits of maximal totally isotropi subspaesof V , namely, I+n ; I−n ( [4, VIII, §13℄). �



DOUBLE COSETS OF STABILIZERS. . . 95Proposition 3.2. Assume we are in the Speial Case and let v; u ∈ In.Further, let sign(v; u) = (−1)din(v;u):Then v ∈ I±n ⇔ u ∈ I±sign(v;u)n :Proof. We may assume v = Vn; u = g(Vn) or u = g(V −n ) for some g ∈ �.Let Pn; P−n be the stabilizers of Vn; V −n respetively. Then Pn; P−n are thestandard paraboli subgroups with respet to the maximal torus of � whihis diagonizable in the basis ei; fi (see [5℄). The group � is deomposed intodisjoint double osets of the form Pn _wPn ( resp. Pn _wP−n ) where w runsthrough some subset of the Weyl group W .Let g ∈ Pn _wPn (or g ∈ Pn _wP−n ) for some w ∈ W . Sine sign(v; u) =sign((v); (u)) for every  ∈ � we may assume u = _w(Vn) (or u =_w(V −n )). The number of ei suh that _w(ei) = fj is even (this an beheked by onsideration of ations of elementary reetions _w�). Henethe number din(Vn; _w(Vn)) is even and din(Vn; _w(V −n )) is odd. �

§4. �-orbits of sums of totally isotropi subspaesSums of totally isotropi spaes.Lemma 4.1. Let U1; U2 be totally isotropi subspaes of V . Then U =U1 + U2 is h-quasi-hyperboli.Proof. For the ase I(U) = 0 the statement is trivial. Now let I(U) > 0.Then there exist vetors l1 ∈ U1; l2 ∈ U2 suh that (l1; l2) 6= 0. Then
〈l1; l2〉 = H2 is an h-hyperboli plane. Further,U1 = U1;2⊥〈l1〉; U2 = U2;1⊥〈l2〉for some U1;2 6 U1; U2;1 6 U2. HeneU = 〈l1; l2〉⊥(U1;2 + U2;1):Now our statement an be proved by the indution on I(U). �Lemma 4.2. Let U1; U2 be totally isotropi subspaes of V and U = U1+U2. Further, let U1 + U ′2 and U1 + U ′′2 be two maximal totally isotropispaes of U where U ′2; U ′′2 6 U2. ThenU1 + U ′2 = U1 + U ′′2 :



96 N. GORDEEV, U. REHMANNProof. Let l ∈ U ′′2 . We have (l; x) = 0 for every x ∈ U1 (beause U1 +U ′′2 is an isotropi spae) and for every x ∈ U ′2 (beause U ′2 6 U2 andl ∈ U2). Hene (l; x) = 0 for every x ∈ U1 + U ′2. Sine U1 + U ′2 is amaximal totally isotropi subspae of U we have l ∈ U1+U ′2 and thereforeU1 + U ′′2 ⊂ U1 + U ′2. The latter inlusion obviously implies the equalityU1 + U ′2 = U1 + U ′′2 : �Lemma 4.3. Let U1; U2 be totally isotropi subspaes of V . ThenU = U1 + U2 = U01⊥(U1 ∩ U2)⊥U02⊥ (U11 + U12 )︸ ︷︷ ︸h-hyperboli spaewhere U01 6 U1; U02 6 U2; andU01⊥(U1 ∩ U2)⊥U02⊥U11 is a maximal totally isotropi subspae of U;U11 6 U1; U12 6 U2; dimU11 = dimU12 = q = I(U); and(U11 + U12 ) is a maximal h-hyperboli subspae of U:Proof. Sine U is an h-quasi-hyperboli spae (Lemma 4.1) we haveU = radU⊥H2qwhere H2q is a maximal h-hyperboli subspae of dimension 2q. SineU1; U2 are totally isotropi spaes and U = U1 + U2 we may assumeH2q = (U11 + U12 ) for some U11 6 U1; U12 6 U2:Obviously, (U1 ∩ U2) 6 radU . Let l = l1 + l2 ∈ radU where l1 ∈ U1 andl2 ∈ U2. Then l1; l2 ∈ radU . (Indeed, if l1 =∈ radU then there is a vetorl′ = l′1 + l′2 ∈ U; where l′1 ∈ U1 and l′2 ∈ U2 and (l1; l′) 6= 0. Hene(l1; l′2) 6= 0 and therefore (l; l′2) 6= 0. It is a ontradition with the hoie ofl.) Thus we may hose the omplement of (U1 ∩ U2) in radU in the formU01⊥U02 for some U01 6 U1; U02 6 U2. �Spaes vg .Let (u; v) ∈ Il × Ik. For g ∈ � de�nevg = u+ g(v):Sine v; u are totally split spaes the spae vg is h-quasi-hyperboli (Lem-ma 4.1).



DOUBLE COSETS OF STABILIZERS. . . 97Proposition 4.4. Let g1; g2 ∈ �. Further, let vg1 = �(vg2 ) for some � ∈ �.Then there exists an element g ∈ �̂ suh thatg(u) = u; g(g2(v)) = g1(v):If, in addition, we are in the General Case we may �nd suh an elementg ∈ �.Proof. Lemma 4.3 implies that for i = 1; 2 we havevgi = u0i⊥(u ∩ gi(v))⊥gi(v)0⊥(u1i + gi(v)1) (4:1)where u0i 6 u; gi(v)0 6 gi(v); u0i⊥(u ∩ gi(v))⊥gi(v)0 = rad vgiand u1i 6 u; gi(v)1 6 gi(v); dimu1i = dim gi(v)1 = I(vgi)and (u1i + gi(v)1) is a maximal hyperboli subspae in vgi . Sine vg1 =�(vg2) the dimensions of all omponents of (4.1) for i = 1 equal orre-sponding omponents for i = 2. Then there is an isomorphism vg2 → vg1of h-spaes suh that eah omponent of (4.1) for i = 2 maps isomorphi-ally to the orresponding omponent of (4.1) for i = 1. Hene there is anelement g ∈ �̂ suh thatg(u02) = u01; g(u ∩ g2(v)) = u ∩ g1(v); g(g2(v)0) = g1(v)0;g(u12) = u1i ; g(g2(v)1) = g1(v)1(see h2) and thereforeg(u) = u; g(g2(v)) = g1(v); g(vg2) = vg1 : (4:2)Let Nrd g = � ∈ Nrd(�̂). We may assume � 6= 1 (otherwise it is nothingto prove).Let D = K. Then � = −1. Sine we are in General Case there is ananisotropi vetor e whih is orthogonal to vg1 and the reetion � ∈�̂; �(e) = −1. Hene g := �g ∈ � and the element g satis�es (4.2).Let D 6= K. Suppose q(vg1) 6= 0. Then there exist vetors e ∈ u; f ∈g1(v) suh that 〈e; f〉 ≈ H2 and vg1 = 〈e; f〉⊥(U1 +U2) for some U1; U2 6V and 〈e; U1〉 = u; 〈f; U2〉 = g1(v). Lemma 2.3 implies that there isan element � ∈ �̂ suh that Nrd � = �−1; �(De) = De; �(Df) =Df; �(x) = x for every x ∈ U1 + U2. Then �(u) = u; �(g1(v)) = g1(v)and therefore the element g := �g ∈ � satis�es (4.2).



98 N. GORDEEV, U. REHMANNLet D 6= K. Suppose q(vg1 ) = 0. Then we may take e ∈ u and f ∈ Vsuh that 〈e; f〉 ≈ H2 and vg1 = De⊥U where U 6 (Df)⊥. Now we mayuse the same arguments as above. �Now we onsider the equality �(vg2 ) = vg1 in the Speial Case. Aord-ing to Lemma 4.2 in the spae vgi = u + gi(v) there exists the uniquemaximal totally isotropi subspae of vgi whih ontains u. We denote thissubspae as vugi . Sine �(vg2 ) = vg1 we have dim vug2 = dim vug1 .In the Proposition below we preserve the notation of Proposition 4.4.Proposition 4.5. Suppose we are in the Speial Case and �(vg2 ) = vg1for some � ∈ �. Suppose that one of the following onditions holds:i: dimu = n;ii: dim vugi < n;iii: dim vugi = n and sign(vug1 ; vug2) = 1.Then there exists an element g ∈ � suh that g(u) = u and g(g2(v)) =g1(v).Proof. Aording to Proposition 4.4 there exits an element g ∈ �̂ suhthat g(u) = u and g(g2(v)) = g1(v). We may assume Nrd g = −1 (other-wise there is nothing to prove).i: We may assume u = V +n = V[ = 〈e1; : : : ; en〉. Sine Nrd g = −1we have g = g′� where g′ ∈ � and � ∈ �̂ is an involution suh that�(ei) = ei; �(fi) = fi for every i < n and �(en) = fn; �(fn) = en. Wehave �(V +n ) = V −n . Then g(u) = g(V +n ) = g′(V −n ) ∈ I−n and thereforethe element g annot belong to the stabilizer of u = V +n in �̂. This is aontradition with the hoie of g. Hene g ∈ � in this ase.ii: In this ase we may �nd an h-hyperboli plane H2 6 V whih isorthogonal to vg1 . Then there is a reetion � ∈ �̂ whih orresponds toan anisotropi vetor e ∈ H2. The reetion � ats trivially on vg1 . Hene = �g is an appropriate element of �.iii:We may assume vug2 = V +n . Sine g(u) = u and g(vg2) = vg1 we haveg(vug2) = vug1 (see Lemma 4.2). Sine sign(vug1 ; vug2) = 1 the spaes vug1 ; vug2are in the same �-orbit (Proposition 3.2). But elements of �̂ whih haveredued norm −1 hange �-orbits of maximal totally isotropi spaes ( aswe have seen in the proof of i.). Hene the assumption Nrd g = −1 leadsus to a ontradition. Thus,  = g ∈ � is an appropriate element. �



DOUBLE COSETS OF STABILIZERS. . . 99Proposition 4.6. If dim vugi = n and sign(vug1 ; vug2 ) = −1 then the pairs(u; g1(v)) and (u; g2(v)) are in di�erent �-orbits.Proof. Suppose g(u) = u; g(g2(v)) = g1(v) for some g ∈ �. Then g(vug2) =vug1 and therefore sign(vug1 ; vug2) = 1 (see the proof of Proposition 4.5, iii:).
�

§5. Theorem 1 (The General Case)Here we onsider the General Case. Below V is an h-spae of indexn whih satis�es the onditions h1, h2 (we preserve the notations andassumptions of the previous hapter for K;F;D; ?; V; h;�; Ik; Il).For a given pair of integers 0 < k 6 l 6 n we de�ne the setXpq = {(p; q) | 0 6 p 6 min{k; n− l; }; 0 6 q 6 k − p}:Now let v ∈ Ik; u 6 Il where k 6 l and let Pv ; Pu be the stabilizers of v; uin �.Theorem 1. The double osets PuPv an be enumerated as follows:i) � = ⋃(p;q)∈Xpq PupqPv ;ii) g ∈ PupqPv ⇔ din(g(v); u) = l−k+p+ q and I(u+g(v)) = q.Proof.Lemma 5.1.g1; g2 ∈ PuPv ⇔ vg2 = �(vg1 ) for some � ∈ �:Proof. Let g1; g2 ∈ PuPv . Then vg1= vp1= p1(v); vg2 = vp2= p2(v)for some p1; p2 ∈ Pu. Hene vg1 = p1p−12 (vg2 ).Now let vg2 = �(vg1 ) for some � ∈ �: Then g(u) = u; g(g2(v)) = g1(v)for some g ∈ � (Proposition 4.4). Thus, the pairs (u; g1(v)) and (u; g2(v))are in the same �-orbit and therefore g1; g2 are in the same double osetPuPv (reall, that there is a one-to-one orrespondene between doubleosets PuPv and �-orbits of pairs (u′; v′) where u′ = g1(u); v′ = g2(v) forsome g1; g2 ∈ �; (see [8℄). �Remark 5.2. The proof of Lemma 5.1 implies that the impliationg1; g2 ∈ PuPv ⇒ vg2 = �(vg1 ) for some � ∈ �of Lemma 5.1 also holds in the Speial Case. The impliationg1; g2 ∈ PuPv ⇐ vg2 = �(vg1 ) for some � ∈ �



100 N. GORDEEV, U. REHMANNholds in the Speial Case if and only if vg1 ; vg2 satis�es one of the onditionsof Proposition 4.5 (see Propositions 4.5, 4.6).Let g ∈ PuPv and let vg = u + g(v). Then Proposition 3.1 andLemma 5.1 imply that the double oset g ∈ PuPv is de�ned uniquelyby m + q = dim vg and q = I(vg). The dimension of a maximal isotropisubspae of vg is equal to m and this dimension > l = dimu. Putp = m− l:Then l+ p+ q = dim vg 6 l + kand, therefore, p+ q 6 k. Hene the pair (m; q) is uniquely de�ned by thepair (p; q) of non-negative integers suh that p+q 6 k. Thus we may mark = pq . Moreover,din(u; g(v)) = dim vg −min{dimu; dim v} = l+ p+ q− k = (l− k)+ p+ q:Let us show that for every p 6 min{k; n− l} and p + q 6 k there is adouble oset PupqPv whih satis�es ondition ii. We may deompose thespae u in the following wayu = u′ + u′q + u′k−p−q ;dim u′q = q; dim u′ = l − k + p; dimu′k−p−q = k − p− q:Sine q 6 k 6 l 6 n we may �nd a totally isotropi spae v′q 6 V suhthat dim v′q = q and u′q + v′q = H2qand v′q is orthogonal to u′; u′k−p−q . Further, one an �nd a totally isotropispae v′p 6 V suh that dim v′p = p and v′p is orthogonal to u+ v′q. Now wehaveu+ v′ = u+ v′q + v′p= u′ + u′k−p−q + v′p + v′q︸ ︷︷ ︸:=v′

+u′q = u′ + u′k−p−q + v′p︸ ︷︷ ︸rad(u+v′) +u′q + v′q︸ ︷︷ ︸H2q : (5.1)Sine v′ is a totally isotropi spae of the dimension k there exists anelement g ∈ � suh that g(v) = v′. Then (5.1) implies that the spae vg =u+ g(v) satis�es the ondition dim vg = l+ p+ q; I(vg) = q and thereforeg ∈ PupqPv for some element pq ∈ � whih satis�es the ondition ii. �



DOUBLE COSETS OF STABILIZERS. . . 101
§6. Theorem 2. The Speial CaseWe preserve the notation of the previous hapter. Note that sine ourproof is based on the general assumption of having a T -form, we make herethe following restrition harK 6= 2 (however, there is a di�erent approahfor the ases of split groups whih allows us to avoid this restrition; seeComment 7.3).Theorem 2. Let � = SO(V ) = SO2n(K) be a split orthogonal group of thedimension 2n. The double osets PuPv an be numerated in the followingway:i1) If 0 < n− l 6 k then� = ( ⋃06p6n−l;06q6k−p PupqPv) ∪

( ⋃q6k+l−nPu−n−l qPv):i2) If k < n− l then � = ⋃06p6k;06q6k−pPupqPv :i3) If l = n; k < n then � = ⋃q6k PuqPv :i4) If k = l = n then
{� = ⋃06q=2m6n PuqPv if sign(v; u) = 1;� = ⋃16q=2m+16n PuqPv if sign(v; u) = −1:ii1) g ∈ PupqPv, p 6= n − l ⇔ din(g(v); u) = l − k + p + q and I(u +g(v)) = q; g ∈ Pun−l qPv ⇔ din(g(v); u) = n − k + q and I(u +g(v)) = q; and vug ∈ I+n , g ∈ Pu−n−l qPv ⇔ din(g(v); u) = n− k+q and I(u+ g(v)) = q; and vug ∈ I−n :ii2) g ∈ PupqPv ⇔ din(g(v); u) = l−k+p+ q and I(u+g(v)) = q:ii3) g ∈ PuqPv ⇔ din(g(v); u) = n− k + q and I(u+ g(v)) = q:ii4) g ∈ PuqPv ⇔ din(g(v); u) = q = I(u+ g(v)):Proof.i1) Let 0 < n − l 6 k. Let vg1 = u + g1(v); vg2 = u + g2(v) whereg1; g2 ∈ PuPv . Then vg1 = �(vg2 ) for some � ∈ � (see Remark 5.2). Then



102 N. GORDEEV, U. REHMANNwe have g(u) = u; g(g2(v)) = g1(v) for some g ∈ �̂ (Proposition 4.4). Henedin(u; g1(v)) = din(u; g2(v)); I(vg1 ) = I(vg2) = q (6:1)for some non-negative integer q. Also,dim vug1 = dim vug2 = l+ p (6:2)for some non-negative integer q. The equalities (6.1), (6.2) implyp 6 n− l; q 6 k−p; din(u; g1(v)) = din(u; g2(v)) = l−k+p+q: (6:3)Suppose dim vugi = l+ p < n: (6:4)Then the parameters p; q determine the double oset PuPv uniquely, thatis, if din(u; g(v)) = l − k + p+ q; I(vg) = qfor some g ∈ � then g ∈ PuPv (Proposition 3.1, Proposition 4.5, Re-mark 5.2). Hene we may put  = pq .For every p; q whih satis�es the onditions p 6 n − l; q 6 k − p onean �nd a totally isotropi subspae v′ suh that dim v′ = k; din(u; v′) =l − k + p + q; I(u+ v′) = q (see the proof of Theorem 1.) Sine n− l > 0we have k 6 l < n and therefore there exists an element g ∈ � suh thatg(v) = v′ (Proposition 3.1). Thus, for every pair p; q whih satis�es theonditions p 6 n − l; q 6 k − p there is the orresponding double osetPupqPv .Suppose dim vugi = l+ p = n: (6:5)Hene p = n− l. We may assumeu = 〈e1; : : : ; el〉; vug1 = V[ = 〈e1; : : : ; en〉; vg1= 〈e1; : : : ; en; f1; : : : ; fq〉; l; q < nand put  = n−l q. Let g ∈ � be an element suh that din(u; g(v)) =l− k + p+ q; I(vg) = q. Theng ∈ Pun−l qPv ⇔ sign(vug1 ; vug ) = 1(see Remark 5.2). If sign(vug1 ; vug ) = −1 and g ∈ Pu!Pv for some ! ∈ �we put ! = −n−l q . Note if din(u; g′(v)) = l − k + p + q; I(vg′) = q forsome g′ ∈ � and sign(vug1 ; vug′ ) = −1 then sign(vug ; vug′ ) = 1 and thereforeg′ ∈ Pun−l qPv .



DOUBLE COSETS OF STABILIZERS. . . 103The same arguments as above show that double osets Pun−l qPv ;Pu−n−l qPv exist for every q 6 k − p = k − (n− l) = k + l − n.i2) Let k < n− l. Then for elements g1; g2 ∈ PuPv whih satisfy (6.3)we also have the inequality (6.4) (beause p 6 k < n− l) and therefore wemay use the arguments above for the ase (6.4).i3) Let l = n; k < n. Let g ∈ PuPv and vg = u+g(v). Then u = vug andtherefore p = dim vug − dimu = 0. Propositions 3.1, 4.5 and Remark 5.2imply that the double oset PuPv is determined uniquely by the oneparameter q = dim I(vg). Thus we may put  = q . Note that for everyq 6 k one an �nd g ∈ � suh that I(vg) = q (the same argument as above).Hene we may numerate double osets PuqPv by the set of non-negativeintegers q 6 k. Also, in this aseI(vg) = q; din(u; g(v)) = n− k + q: (6:6)i4) Let l = k = n. We may assumeu = 〈e1; : : : ; en〉 = V[:Then in the same way as above one an see that the double osets PuPvan be numerated by one non-integer number q 6 n. However, the spaev may belong to the di�erent �-orbits. For g ∈ � we have sign(u; g(v)) =(−1)din(v;u) (see Proposition 3.2) and thereforedin(u; g(v)) = q = {2m 6 n if sign(v; u) = 1;2m+ 1 6 n if sign(v; u)) = −1: (6:7)Also, we an get every appropriate 0 6 q = 2m 6 n (resp. 1 6 q =2m + 1) (indeed, one an take u = V[ and v = V + = V[ or v = V − =
〈e1; : : : ; en−1; fn〉 and g ∈ � suh thatg(v) = 〈f1; : : : ; f2m; e2m+1; : : : ; en〉;or g(v) = 〈f1; : : : ; f2m; e2m+1; : : : en−1; fn〉:ii. 1{4) follows from the de�nitions of the numeration and (6.3), (6.6),and (6.7). �



104 N. GORDEEV, U. REHMANN
§7. Some omments7.1. Case of Unitary group. If we hange the group � from SU(V ) toU(V ), the di�erene between the General Case and the Speial Case willdisappear (in the Speial Case we would have � = O2n(K)) and Theorem1 holds for this � (the proof here is muh easier: we an use the samearguments, based on Witt's theorem).7.2 Adherene of double osets. Here we did not touh the question ofadherene of double osets P̃upqP̃v where P̃u; P̃v are the orrespondingparaboli subgroups of �̃ suh that P̃v(K) = Pv; P̃u(K) = Pu. We onsiderthis question in the next paper.7.3. Split Case. Let �̃ = SO; Sp be a split algebrai group over a �eldK.Then we may desribe the deomposition of � = ∪PuPv using the lan-guage of root systems. The hoie of representatives of double osets an beobtained by the theory of double osets of paraboli subgroups of Cheval-ley groups (see [5℄, Chapter 2.7). This method does not depend on theharateristi of the �eld K. Hene we an avoid the restrition for theSpeial Case. However, here we do not write down this proof and give onlythe interpretation of representatives of double osets as elements of theorresponding Weyl group.Example. Speial Case. LetV = V[ + V [ = H2n = 〈e1; : : : ; en; f1; : : : ; fn〉(see Ch1). Then � = SO(V ) = �̃(K) where �̃ is the simple algebrai groupof type Dn over a �eld K whih is split over K (here we assume that�̃ is onsidered as a linear group in V and the basis e1; : : : ; en; f1; : : : ; fnorresponds to weight vetors of the weights �1; : : : ; �n;−�n; : : : ;−�1 in thenotations of [3℄.) Let W be the Weyl group of �. For an element w ∈ Wwe may orrespond an element _w ∈ � (see [5℄), in partiular, for the roots� = �i − �j ; � = �i + �jwe may identify the orrespondend reetions w�; w� with the operators_w�; _w� ∈ SO(V ) whih are de�ned in the following way_w�(er) = _w�(er) = er _w�(fr) = _w�(fr) = fr if r 6= i; j;_w�(ei) = ej ; _w�(ej) = ei; _w�(ei) = fj ; _w�(fj) = ei;_w�(fi) = fj ; _w�(fj) = fi; _w�(fi) = ej ; _w�(ej) = fi:



DOUBLE COSETS OF STABILIZERS. . . 105We may assume u = 〈e1; : : : ; el〉. For the simpliity of notations we also as-sume v = 〈e1; : : : ; ek〉 if k < n. If k = l = n we may take v = 〈e1; : : : en〉 =V +n or v = 〈e1; : : : en−1; fn〉 = V −n . Then we may hose the representativesof double osets PuPv among elements of the form _w.1) Let 0 < n− l 6 k.Put �1 = �1 − �l+1; �2 = �2 − �l+2; : : : ; �p = �l − �l+p;�k = �k − �n; : : : ; �q−k+1 = �k−q+1 − �n;�k = �k + �n; : : : ; �q−k+1 = �k−q+1 + �n;wpq = w�1w�2 · · ·w�p(w�kw�k )(w�k−1w�k−1 ) · · · (w�k−q+1w�k−q+1 ) ∈ W:Then_wpq(v)={
〈ep+1; : : : ; ek−q ; el+1; : : : ; el+p; f(k−q+1); : : : fk〉 if p+ 16k−q;
〈el+1; : : : ; el+p; f(k−q+1); : : : fk〉 if p+ 1>k−q;and thereforedin(u; _wpq(v)) = l− k + p+ q; I(u+ _wpq(v)) = q: (7:1)If p = n− l put �− = �1 − �n; �+ = �1 + �n andw− = w�−w�+ ; w−n−l q = w−wn−l qThen_w−pq(v)={

〈en−l+1; : : : ; ek−q; el+1; : : : ; en−1; fn; f(k−q+1); : : : ; fk〉 if n−l+16k−q;
〈el+1; : : : ; en−1; fn; f(k−q+1); : : : ; fk〉 if n−l+1>k−q:and thereforedin(u; _wpq(v)) = n− k + q; I(u+ _wpq(v)) = q: (7:2)Now Theorem 2 (i1)) an be written in the form� = SO(V ) = ( ⋃06p6n−l;06q6k−p Pu _wpqPv) ∪

( ⋃q6k+l−nPu _w−n−l; qPv)where _wpq ; _w−n−l; q satis�es (7.1), (7.2) (Theorem 2 (ii1)).



106 N. GORDEEV, U. REHMANN2) Let k < n− l. Then p 6 k < n− l.Then we only have representativesof the form _wpq (Theorem 2.(i2)):� = ⋃06p6k;06q6k−p Pu _wpqPv ;where _wpq satisfy (7.1), (7.2) (Theorem 2 (ii2)).3) Let l = n; k < n then p = 0 and we may put _wq = _wpq . Hene(Theorem 1(i3)) � = ⋃q6k Pu _wqPvand din(u; _wq(v)) = l − k + q; I(u+ _wq(v)) = q (Theorem 1(i3)).4) Let k = l = n. Let 2m 6 n 6 2m+ 1. Put�′1 = �1 − �2; �′2 = �3 − �4; : : : ; �′m = �2m−1 − �2m;�′1 = �1 + �2; �′2 = �3 + �4; : : : ; �′m = �2m−1 + �2m:For q = 2m or q = 2m+ 1 we putw′q = w�1w�1 · · ·w�mw�m :If v = V + we have 0 < q = 2m 6 n and_w′q(v) = 〈f1; f2; : : : ; f2m−1; f2m; e2m+1; : : : ; en〉:If v = V −n = 〈e1; : : : ; en−1; f〉 we have 1 < q = 2m+ 1 6 n and_w′q(v) = 〈f1; f2; : : : ; f2m−1; f2m; e2m+1; : : : ; en〉:Thus, (Theorem 2 (i4))
{� = ⋃06q=2m6n Pu _w′qPv if sign(v; u) = 1;� = ⋃16q=2m+16n Pu _w′qPv if sign(v; u) = −1:and din(u; _w′q(v)) = n− q; I(u+ _w′q(v)) = q(Theorem 2(ii4)). AknowledgmentsMost of this work was done during the visits of the �rst author to theDepartment of Mathematis of the Bielefeld University. The �rst namedauthor gratefully aknowledges the support by the Department of Mathe-matis of the Bielefeld University, the Ministry of Siene and Eduationof Russian Federation and and by the grants RFFI 14-01-00820.
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