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DOUBLE COSETS OF STABILIZERS OF TOTALLY
ISOTROPIC SUBSPACES IN A SPECIAL UNITARY
GROUP 1

ABSTRACT. Let D be a division algebra with a fixed involution and
let V' be the corresponding unitary space over D with T-condition
(see [2]). For a pair of totally isotropic subspaces u,v <V we con-
sider the double cosets P,vyP, of their stabilizers P,,P, in I' =
SU(V). We give a description of cosets P,yP, in the terms of the
intersection distance di,(u,y(v)) and the Witt index of u + v(v).

INTRODUCTION

In [8], the notion of a linear Kleiman group was introduced: a linear
group G < GL(V) is called a Kleiman group, if for any pairs of lin-
ear subspaces u,v < V there is an element g € G such that the sub-
spaces u,g(v) are in “general position” (that is, either dimu N g(v) = 0
or dimwv N g(v) = dimu 4+ dimv — dim V'). The “mutual position” of sub-
spaces u, g(u) is defined by one non-negative integer which can be taken
equal to dimu N g(v) or dim(u + g(v)), or equal to the “intersection dis-
tance” dip(u, g(v)) = max{dimu, dim g(v)} — dim« N g(v) (the last notion
was used in [8]) and the general position corresponds to the case where
the intersection distance di,(u, g(v)) achieves the possible maximum. The
mutual position of subspaces u, g(v) is defined uniquely by the correspond-
ing double coset P,gP, of GL(V) where P,, P, are the stabilizers of u,v
in GL(V'). This is a general position if the double coset P,gP, is Zariski
open in GL where 15,“ P, are stabilizers of u,v in the algebraic group GL.

It would be interesting to extend the investigation of the “Kleiman
property” to the cases when G < T is a subgroup of a classical group T.
This seems to be a difficult task. Here we consider a step in this direction.
Namely, let V' be a linear space over a division algebra D with an involu-
tion and assume that a hermitian or skew-hermitian form corresponding
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to this involution is defined on V. Further, let T' = U(V) or T' = SU(V)
and let O,, O, be I'-orbits of linear subspaces of u,v. Then the group T’
acts naturally on O, x O, (namely, y(u',v") = (y(u'),(v')) and there is
a one-to-one correspondence of I'-orbits of this action and double cosets
P,yP, of the group T where P,, P, are stabilizers of u,v (respectively).
Namely, pairs (u, g1(v)), (u,g2(v)) belong to the same orbit if and only if
g1, g2 belong to the same double coset P,vP,. Hence the description of a
double coset P,yP, can be obtained by means of geometrical characteri-
sation of the pair u,7y(v). However, in general this is a difficult question
and here we restrict ourselves to the case where u, v are totally isotropic
subspaces. In this case we have a finite number of double cosets P,vP,. If
I' is the whole unitary group then it is not difficult to see that every such
coset P,vP, is defined uniquely by the dimension and the Witt index of
the space u + v(v) (see Comment 7.1). However, there is a special interest
to consider the group I' = SU(V') because for every simple algebraic group
T of type An, B, Chp, D, which is defined over a field K there is a linear
representation of I such that ['(K) = I = SU(V) where V is an appropri-
ate hermitian or skew-hermitian form over an appropriate division algebra
D which contains K in the center.

Here we give the description of double cosets P,vyP, in the case I' =
SU(V) (under the restriction that the hermitian form on V' is a T-form
(see [2]). This description (Theorem 1) is the same as for the whole unitary
group except if D = K is a field with trivial involution, the corresponding
hermitian form is a symmetric bilinear form which is completely split over
K, dimV = 2n and SU(V) = SO»,(K). We also give the description of
double cosets P,yP, in this special case (Theorem 2). Note that the T-
condition in this case demands charK # 2. However, it is possible to avoid
this restriction (see Comment 7.3).

Notations. The algebraic closure of a field K is denoted by K.
X =Y denotes an isomorphism of the algebraic structures X and Y.
E,, is the identity matrix of size m x m.
0, is the zero matrix of size r x s.

§1. PRELIMINARIES

Let K be a field and let F'/K be a separable extension of degree < 2.
Further, let D be a division algebra over the center F' of index ¢ and
with a fixed anti-automorphism z — z* which is trivial on K (here we
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admit the case D = K when * is trivial and the case D = F ). We fix a
natural embedding

i:D — M.(F)
which is induced by maps D — F @p D ~ M.(F).

Let V be a linear space over D of dimension d with a non-degenerate
hermitian or skew-hermitian form h = (, ) with respect to the involution
* (here we also consider symmetric or skew-symmetric forms over K as
hermitian or skew-hermitian forms with D = F' = K). We will refer to any
linear space over D with the form h (not necessary non-degenerate) as an
h-space.

The dimension of a maximal totally isotropic subspace of V' (Witt index)
will be denoted by n. We assume below n > 1.

The group of isometries of V will be denoted by U(D, h) (unitary group).

Subspaces of V.

Let L,U < V be linear subspaces and let LNU = {0}. Suppose (L,U) =
0. Then we will denote the sum L + U by the symbol LLU. For a linear
subspace U < V we write U+ :={l €V | (I,U) =0}.

For a linear subspace U < V we have

U =radU_LU"

where radU = {u € U | (u,U) = 0} is the radical of U and U’ is a
non-degenerate h-space ([2, IX, §1]). A maximal totally isotropic space U
of V' will be denoted by Up. The codimension of Uy in U will be denoted
by I(U).

H-hyperbolic planes and h-quasi-hyperbolic spaces.

An h-hyperbolic plane U < V here will be a plane which has a basis
consisting of two isotropic vectors e, f such that (e, f) = 1. We denote
such a plane by the symbol H,. The subspace

U~ HQS = HQLHQL - LHQ

s—times

will be called an h-hyperbolic space and the space U of the form
U=rad U L HQS

will be called an h-quasi-hyperbolic space.
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h-forms with the T -condition.

Below we assume that the form h on V satisfies the T-condition ([2, IX,
§4)):

For every z € V there is an element « € D such that a + ea* = h(z, x),
where € = 1 if h is hermitian and € = —1 if h is skew-hermitian form. In
particular, the T-condition holds if h is skew-hermitian or charK # 2.

This condition gives the following properties of h-spaces ([2, IX, §4]):

hl. Witt decomposition. For every subspace U < V there is a decom-

position
U=rad UL(U, +U’) LAy

where U,,U” are totally isotropic spaces, U, + U’ ~ Hy, for some s > 0,
and Ay is an anisotropic subspace of U. In particular, V = (V, + V?) LAy
where V,, V? are maximal totally isotropic subspaces of V' (below we fix a
pair V,, V" and their bases V, = (eq,...,e,),V? = (fi,..., fn) such that
(ei, f5) = 6ij)-

h2. Witt Theorem. Every h-isometry f : Uy — U, of subspaces Uy, Us <
V' can be extended to an h-isometry F': V' — V (that is, Fly, = f).

Reduced norm. For a matrix X € M, (D) the determinant of the ca x ca-

matrix i*(X) € Mg, (F) is called the reduced norm of X and we denote it
by Nrd X; note that Nrd X € F' (see [9])). Then

SLo(D) ¥ {X € My(D) | Nrd X = 1}.

(Note that the symbol SL,(D) is used sometimes for the kernel of the
Dieudonné determinant det : GL,(D) — D*/[D*, D*] (see [1])) which in
general does not coincide with the kernel of the map Nrd : GL,(D) — F)).)

Classical algebraic groups.

Let I' be a simple algebraic group which is defined over a field K. Below
we identify the group T’ with I'(K). Below we consider the classical groups
T (that are of the type A,,, By, Cp, D,,) such that

I :=I(K)=SU(D,h) (1.1)
where SU(D, h) is the corresponding special unitary group SU(D,h) =
U(D,h) N SLy4(D). Every algebraic group T' of type By, Cy, D, which is
defined over K is a group (up to the center) which satisfies the condi-

tion (1.1). Moreover, in these cases, F' = K. The same is true for group of
outer type of type A,, but here deg F/K = 2 (see [9]).
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However, we will use the assumptions h1, h2 which definitely holds if
charK # 2.

We write

L' =U(D,h).
We will subdivide all possibilities for the groups I':
General Case. Including all cases except the

Special Case. K = D and h is a completely split symmetric form over
K,d=2n,and I' = SO(V) = SOy, (K).

Orbits of totally isotropic subspaces.

The set of all totally isotropic subspaces of V' of dimension &k will be
denoted by Zj. Note that the set Z is a single I'-orbit except in the Special
Case when k =n = 1 dim V (see Proposition 3.1 below). In this case there
is a basis e;, fi,i = 1,...,n such that (e;, f;) = 6; ;. Let

Vrj_:%:<ela---7en>v Vn_:<€1""’en_1’fn>'

Then V1,V are maximal totally isotropic spaces which belongs to dif-
ferent I'-orbits of Z,,, denoted respectively by Z.*, 7.

n »n

§2. SOME PROPERTIES OF THE REDUCED NORM

In this chapter we collect some technical results for the reduced norm
of elements of unitary groups. We will use here the notion of pseudo-
reflections in unitary spaces.

Pseudo-reflections in h-spaces. Let e € V' be an anisotropic vector and
let L. = De be the corresponding line and L} be the orthogonal comple-
ment. Further, let a = (e, e) and let « € D* be an element such that

aaa* = a.
Then we can define a linear transformation o of V' by the formula
r if zelLt
o(z) = : <’
ae if x=e.

Then o € U(D, h). We call such a unitary transformation — a pseudo-reflec-
tion (in [7]) it is called a quasi-symmetry). The unitary group U(D,h) is
generated by pseudo-reflections except for the cases U(D, h) = Sp,,,, (K),
Uz (Fy) ([6, T1, §3]; [7]).
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Lemma 2.1. Let e € V be an anisotropic vector in V and let o € U(D, h)
be the pseudo-reflection such that o(e) = ae. Further, let U be a sub-
space which is isomorphic to a hyperbolic space Ho. Then there exists an
anisotropic vector ¢’ € U and a pseudo-reflection T € U(D, h) that corre-
sponds to the e’ such that T(e') = ae’.

Proof. Let ej,es be two isotropic vectors in U such that (ej,e2) = 1.
Since the h-space V satisfies the T-condition we have (e,e) = A + e\* for
some A € D and € = £1. Put ¢ = Ae; + e>. Then

(€',e) = (Ner + ez, Ner +e2) = A+ e = (e,e).

Then a(e’,e’)a* = (e/,€’) and there is a pseudo-reflection 7 € U(D, h)
such that 7(e’) = ae’. O

Reduced norm of elements of unitary spaces.

We have the following properties of the reduced norm of an element
g € U(D,h):

nl. Nrdg(Nrd g)* = 1.

(Indeed, if X, is a matrix of g in some basis and X ; is the dual matrix,
that is, X, X = Ey4 then X = SX;7S~! for some S € GLq(D) ([2, IX,
§1, n. 10]). Hence Nrd g(Nrd g)* = 1.)

n2. if F=K=D then Nrdg=+£Il.

(Note (Nrdg))? =1if F = K.)

n3.if F=K#D then Nrdg=1.

(Indeed, if K = F # D then for every pseudo-reflection 7 € U(D, h)
such that 7(e) = ae for an anisotropic vector e we have a = AM*A~! for
some A € D* ([7, Theorem 3]) and therefore

Nrd7 = Nrda = (Nrd \)*(Nrd A) ™! = 1.

Since the group U(D,h) is generated by pseudo-reflections (except the
group Sp,, (K) where every element has the reduced norm = 1 and the
group Uz(Fy) where F' # K) we have Nrd g = 1 for every g € U(D, h)).

Some transformations of hyperbolic planes.

Lemma 2.2. Let D # K and let V = (e, f) ~ Hy. Then there exists an
element v € U(D, h) with Nrdy = 1 which is presented by the matriz (in

the basis e, f)
0 u
= (0 1)
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for some p,v € F*.

Proof. If h is a skew symmetric form we may take 4 = 1, = —1. Then
Nrd~y = deti*(M,) = 1. Suppose h is a symmetric form and the index ¢
of the division algebra D is even. Then we may take p = v = 1 and we
have Nrdy = det i*(M,) = (det M,)°¢ = (—1)¢ = 1. Suppose c is odd. We
may assume F' # K (because of n3) and charK # 2. Then there is an
element 8 € F* such that 3* = —3. Now take u = B,v = —3~!. Then
Nrdy = deti*(My) = (det M,)° =1°=1. O

Lemma 2.3. Let o = Nrdg for some g € U(D,h). Further, let U <V
and

Hy = U = (e1, fi) = (e2, f2), (ei, fi) =1, (ei,es) = (fi, fi) =0
for i =1,2. Then there exits an element T € U(D,h) such that
a.Nrdr=a7!;
b. 7(U) =U, 7(Ut)=U"* and 7(z) =z for every z € U~L.
If, in addition, D # K then T satisfies also the condition
C. T(Del) = D€2, T(Dfl) = Df2

Proof. Suppose there exist elements 71,7, € U(D, h) such that 7 satisfies
a, b and 7 satisfies b, ¢ and a with a = 1. Then the element 7 = 77y
satisfies a, b, ¢ (indeed, we may take e; := 71 (e1), f1 := 11 (f1)).

Let us prove the existence of 7. We may assume a # 1 (otherwise we
may take 71 = 1). Then U(D,h) # Sp,,(K). Also, if U(D,h) = Us(Fy)
the conditions a, b obviously hold. Thus we may assume that the group
U(D, h) is generated by pseudo-reflections. Hence

a =Nrdg =Nrdg;Nrd gz ---Nrd gs

where g1,...,9s € U(D,h) are pseudo-reflections. Let I1,...,ls € V be
anisotropic vectors corresponding to the reflections ¢1,...,¢gs and g;(l;) =
Bil; where 1 # f; € D and let a; = Nrdg;. Lemma 2.1 implies that
there are anisotropic vectors fi,..., fs € U and the corresponding pseudo-
reflections hy, ..., hs € U(D,h) such that h;(f;) = B;lfi. Obviously, the
element 7 = hyhs --- hs € U(D, h) satisfies a, b.

Let us prove the existence of 7.

Suppose Df; = Dfs and De; # Dey. Then ex = Aje; + Ao fi; where
A1, A2 € D*. Put A = )\fl/\g. Consider the linear transformation 7 that is
defined by the following formulas

To(e1) = e+ Af1 = Afle2, T2(f1) = f1, m(x) =z for every z € U+t.
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These formulas show that 7 € U(D,h) and the element 7 satisfies the
conditions b, ¢ and a with o = 1.

Suppose De; = D f>. Consider v € SU(D, h) such that vy(z) = « for ev-
ery € U+ and the restriction v on U satisfies the condition of Lemma 2.2.
Then

v(De1) = Dfi, ~v(Dfi) = Dey.
Now take instead of the basis ey, fi the basis e] = y(e1) = ufi, f| =
v(f1) = ver where 3,6 € D*. We may assume De| # Des (otherwise we
may take 7o = ). Then Df] = De; = Dfs and we are in the previous
case. We may find as above an element 74 that satisfies the conditions b,
c (for pairs e}, f{ and es, fo) and a with & = 1. Then 7 = 747 satisfies
the conditions b, ¢ and a with o = 1.

Suppose Dey # D fy # Dfy1. Then fo = 1eq +& fi for some &1, & € D*.
Put £ =& '¢,. Then we have the unitary transformation 7’

T/(el) = el,Tl(fl) = fz_lf2 =¢ey + f1 and Nrdr' = 1.

Now we may take f; := f;lfg instead of f;. Then we are in the case

D(f1) = D(f2)- -

§3. T-ORBITS OF H-QUASI-HYPERBOLIC SPACES

In this chapter we consider some properties of I'-orbits of h-quasi-
hyperbolic subspaces of V' which we will use below to describe the I'-orbits
of pairs of totally isotropic subspaces (u,v) € Z; X Zj.

Put

Vim,q := {U is an h-quasi-hyperbolic subspace of V' | I (U) =g,
dimU = m + ¢}.

Note if U is an h-quasi-hyperbolic space then the numbers dim U, I(U)
define the space U up to an isomorphism from the group I' (see h2). Hence
Vm,q is a single I'-orbit. Moreover,

Proposition 3.1. The set Vy, 4 is a single I'-orbit, except, when in the
Special Case we have m =n = %dim V,q = 0. In the latter case there are
two different T-orbits T,V and T, .
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Proof. Let U,U’ € V,, g and let g € T be an element such that g(U) = U’.
Let a = Nrd g. We may assume « # 1 (otherwise there is nothing to prove).

Suppose U is not a totally isotropic space. Since U is a h-quasi-hyper-
bolic space we have U = U; 1Us where U; is a hyperbolic plane. Also,
V = U, LU{- and Uy < Uit. Lemma 2.3 a, b implies that there is an
element 7 € T such that

7(U)=U and Nrdr =a"'.
Then ¢’ = gr € T and ¢'(U) =U".

Now we may assume U < V is a totally isotropic subspace. If U is not
a maximal totally isotropic space then there is a hyperbolic plane Hy < V
such that Ho N U = {0} and H> < U*. Then the arguments which are
used above show then ¢'(U) = U’ for some ¢’ € T.

Assume U is a maximally isotropic subspace of V. We have U = L1 DI
for some [ € U and L < U and dim L = n — 1. There exists an element
v € T such that v(L) < U’ ( we see above that non-maximal totally
isotropic subspaces of the same dimension are in the same [-orbit). If
(1) € U’ than v(U) = U’ (because, dim U’ = dim U = n). Hence we may
assume f = y(I) ¢ U’. Thus there is a vector e € U’ \ (L) such that
(e, f) =~ Hy and (e, f) = 1. Now we have

V= (e,f)Lle ) v(L) < (e, ) (£,v(L))=~(U), (e,y(L)=U" (3.1)
Let D # K. Then Lemma 2.3 a, b, ¢ implies that there is an element
7 € I such that

Nrdr=1, 7(De)=Df, 7(Df)=De, 7(x)=z for every z€ (e, f)L. (3.2)
From (3.1) and (3.2) we get ¢/ =7y € I’ and ¢'(U) = U".

Suppose K = D, and (e, f) is a symplectic space. Then we obviously
have an element 7 € T’ which satisfies conditions (3.2) and therefore we
will get the element ¢’ € T" such that ¢/(U) =U’.

Suppose K = D, and V is an orthogonal space (then charK # 2 because
of T-condition). Hence Nrd(T) = {£1} (see n2) and therefore o = —1. If
we are not in the Special Case then there exists an anisotropic vector
[ € U+ and the reflection p,p(l) = —I. Then p(U) = U,Nrdp = —1 and
g =gp el , g (U)=U" Now assume that we are in the Special Case.
Then there are exactly two [-orbits of maximal totally isotropic subspaces
of V, namely, Z,V, Z,~ ([4, VIII, §13]). O

nirn
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Proposition 3.2. Assume we are in the Special Case and let v,u € I,.

Further, let

sign (v, u) = (—1)dn(v:w)

Then
veIT & ue s,

Proof. We may assume v = V,,,u = ¢g(V;,) or u = ¢g(V,,") for some g € T.
Let P,, P, be the stabilizers of V,,, V,;~ respectively. Then P,, P, are the
standard parabolic subgroups with respect to the maximal torus of I which
is diagonizable in the basis e;, f; (see [5]). The group T is decomposed into
disjoint double cosets of the form P,wP, ( resp. P,wP, ) where w runs
through some subset of the Weyl group W.

Let g € P,wP, (or g € P,wP, ) for some w € W. Since sign(v,u) =
sign(y(v),y(u)) for every v € T' we may assume v = w(V,) (or u =
w(V,7)). The number of e; such that w(e;) = f; is even (this can be
checked by consideration of actions of elementary reflections w,). Hence
the number di, Vs, w(V,,)) is even and din (V,, w(V, ")) is odd. O

§4: I'-ORBITS OF SUMS OF TOTALLY ISOTROPIC SUBSPACES
Sums of totally isotropic spaces.

Lemma 4.1. Let Uy,Us be totally isotropic subspaces of V.. Then U =
Uy, + Us is h-quasi-hyperbolic.

Proof. For the case I(U) = 0 the statement is trivial. Now let I(U) > 0.
Then there exist vectors Iy € Uj,lo € Us such that (I1,ls) # 0. Then
(I1,12) = H» is an h-hyperbolic plane. Further,

Uy =UiaL{li), Us=Us1L{l2)
for some U; 2 < U1,Us,; < Us. Hence
U= {(l1,l5)L({U12+Usp1).

Now our statement can be proved by the induction on I(U). O

Lemma 4.2. Let Uy, U, be totally isotropic subspaces of V and U = Uy +
Us. Further, let Uy + Uj and Uy + UY be two mazimal totally isotropic
spaces of U where U}, U} < Us. Then

Ui+ U, =U, +UY.
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Proof. Let [ € U}). We have (I,z) = 0 for every « € Uy (because U; +

4+ is an isotropic space) and for every z € Uj, (because U; < Us and
I € Uy). Hence (I,z) = 0 for every z € Uy + Uj. Since Uy + Uj is a
maximal totally isotropic subspace of U we have [ € Uy + U} and therefore
Uy + UY C Uy + Uj. The latter inclusion obviously implies the equality
Uy + U = Uy +UY. O

Lemma 4.3. Let Uy, U, be totally isotropic subspaces of V.. Then
U=U; +U, :U?J_(UlﬁU2)J_U3J_ (U11+U21)
—_——
h-hyperbolic space

where
UY < Uy, U3 <Us, and

UL L(Uy NUR) LUL LU} is a mazimal totally isotropic subspace of U,
Ul <U, U<V, dimU} =dimUy =q=1I(U), and
(UL +Uy) is a mazimal h-hyperbolic subspace of U.
Proof. Since U is an h-quasi-hyperbolic space (Lemma 4.1) we have
U =radU_LH,,

where Hy, is a maximal h-hyperbolic subspace of dimension 2¢. Since
Uy, U, are totally isotropic spaces and U = U; + Us we may assume

Hy, = (Ul +Uy) forsome Ui <Uy, Uy <Us.

Obviously, (U; NU2) <radU. Let | =1y +I> € radU where l; € U; and
lo € Uy. Then ly,ly € radU. (Indeed, if I; ¢ radU then there is a vector
I'=11+1, € U wherel] € Uy and I} € U, and (I1,I") # 0. Hence
(I1,13) # 0 and therefore (,15) # 0. It is a contradiction with the choice of
[.) Thus we may chose the complement of (U; N Us) in rad U in the form
UY LU for some U < Uy, U < Us. O

Spaces vg.
Let (u,v) € I; x Z,. For g € T" define

vy =u+ g(v).

Since v, u are totally split spaces the space v, is h-quasi-hyperbolic (Lem-
ma 4.1).
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Proposition 4.4. Let g1, 9> € T. Further, let vy, = 0(vy,) for someo € T.
Then there exists an element g € T’ such that

g(u) =u, g(g2(v)) = g1(v).
If, in addition, we are in the General Case we may find such an element
gel.

Proof. Lemma 4.3 implies that for i = 1,2 we have

vpe = L (N gi(0)) Lgs(0)° L(u} + gi(v)") (4.1)

i

where
u <u, gi(v)° <gi(v), wfLl(ungi(v))Lgi(v)° =radwv,,

and

uf <u, gi(w)' <gi(v), dimu; = dimg;(v)" = I(v,,)

and (u} + g;(v)') is a maximal hyperbolic subspace in v,,. Since v, =
o(vg,) the dimensions of all components of (4.1) for i = 1 equal corre-
sponding components for ¢ = 2. Then there is an isomorphism v,, — v,
of h-spaces such that each component of (4.1) for ¢ = 2 maps isomorphi-
cally to the corresponding component of (4.1) for i = 1. Hence there is an
element g € T such that

gwd) =ul, gung(v)) =ung(v), g(g2(v)°) =),

g(uz) =uj, g(g2(v)") = g1 (v)"

(see h2) and therefore

gu) =u, g(g2(v)) = g1(v), 9g(vg,) = vy,. (4.2)

Let Nrd g = a € Nrd(T). We may assume « # 1 (otherwise it is nothing
to prove).

Let D = K. Then @ = —1. Sine we are in General Case there is an

anisotropic vector e which is orthogonal to v,, and the reflection 7 €
T,7(e) = —1. Hence g := 7g € I and the element g satisfies (4.2).

Let D # K. Suppose ¢(vy,) # 0. Then there exist vectors e € u, f €
g1(v) such that (e, f) = Hs and vy, = (e, f)L(U1 + Us) for some U;,Us <
V and (e,U;) = u, (f,Us) = g1(v). Lemma 2.3 implies that there is
an element 7 € T such that NrdT = a~!, 7(De) = De, 7(Df)
Df, 7(z) =z for every z € Uy + Us. Then 7(u) = u,7(g1(v)) = g1(v)
and therefore the element g := 7g € I satisfies (4.2).
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Let D # K. Suppose ¢(vg,) = 0. Then we may take e € w and f € V
such that (e, f) ~ Hy and vy, = DelU where U < (Df)*. Now we may
use the same arguments as above. O

Now we consider the equality o(v,,) = vy, in the Special Case. Accord-
ing to Lemma 4.2 in the space vy, = u + ¢;(v) there exists the unique
maximal totally isotropic subspace of vy, which contains u. We denote this
subspace as vy, . Since o (vy,) = vy, we have dim vy, = dim vy, .

In the Proposition below we preserve the notation of Proposition 4.4.

Proposition 4.5. Suppose we are in the Special Case and o(vg,) = vg,
for some o € T'. Suppose that one of the following conditions holds:

i. dimu = n;

ii. dim vy, < n;

iii. dimv}, = n and sign(vy, ,vy,) = 1.

Then there exists an element g € T such that g(u) = u and g(g2(v)) =
91(v).

Proof. According to Proposition 4.4 there exits an element g € T such
that g(u) = u and g(g2(v)) = ¢1(v). We may assume Nrdg = —1 (other-
wise there is nothing to prove).

i. We may assume v = V,F =V, = (ej,...,ey). Since Nrdg = —1
we have ¢ = g’oc where ¢’ € T and ¢ € T is an involution such that
o(e;) = e;,o(fi) = fi for every i < n and o(en) = fn,0(fn) = en. We
have o(V,;F) = V7. Then g(u) = g(V,J) = ¢'(V,;) € Z,, and therefore
the element g cannot belong to the stabilizer of u = V,I in T. This is a
contradiction with the choice of g. Hence g € I in this case.

ii. In this case we may find an h-hyperbolic plane Ho < V which is
orthogonal to vy, . Then there is a reflection p € T which corresponds to
an anisotropic vector e € H>. The reflection p acts trivially on v,, . Hence
v = pg is an appropriate element of T'.

iii. We may assume vy, = V,\'. Since g(u) = u and g(vy,) = vy, we have
g(vy,) = vy, (see Lemma 4.2). Since sign(vy,,v;,) = 1 the spaces vy, vy,
are in the same D-orbit (Proposition 3.2). But elements of T' which have
reduced norm —1 change I'-orbits of maximal totally isotropic spaces ( as
we have seen in the proof of i.). Hence the assumption Nrd g = —1 leads
us to a contradiction. Thus, v = g € T is an appropriate element. O
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u

Proposition 4.6. If dimv}, = n and sign(vy,,v;,) = —1 then the pairs

(u, g1(v)) and (u,g2(v)) are in different T-orbits.
Proof. Suppose g(u) = u, g(g2(v)) = g1(v) for some g € I". Then g(vj,,)

vy, and therefore sign(vy ,vy,) =1 (see the proof of Proposition 4.5, iii.).
([

§5. THEOREM 1 (THE GENERAL CASE)

Here we consider the General Case. Below V' is an h-space of index
n which satisfies the conditions h1l, h2 (we preserve the notations and
assumptions of the previous chapter for K, F, D, %, V, h,T', I}, T;).

For a given pair of integers 0 < k <[ < n we define the set

Now let v € Tj,u < Z; where k <[ and let P,, P, be the stabilizers of v, u
inT.

Theorem 1. The double cosets P,yP, can be enumerated as follows:
1) I'= U(p,q)Equ Pu')/pqpv;

ii) g € PuypgPy & din(g(v),u) =l—k+p+q and I(u+g(v))=q.
Proof.
Lemma 5.1.
91,92 € PyyP, & vy, = 0(vg,) for some o€l
Proof. Let g1,92 € P,YP,. Then vy, = vp, = p1(Vy), Vg, = Upyy = P2(v+)

for some p1,p> € P,. Hence v,, = p1p2_1(v92).

Now let vy, = o (v, ) for some o € I'. Then g(u) =u, ¢(g2(v)) = g1 (v)
for some g € I' (Proposition 4.4). Thus, the pairs (u, g1(v)) and (u, g2(v))
are in the same I'-orbit and therefore g, g> are in the same double coset
P,yP, (recall, that there is a one-to-one correspondence between double
cosets PyyP, and T-orbits of pairs (u’,v") where v’ = g1 (u),v" = g2(v) for
some ¢,g2 € ['; (see [8]). d

Remark 5.2. The proof of Lemma 5.1 implies that the implication
91,92 € PyyP, = vy, = 0(vg,) for some o€l
of Lemma 5.1 also holds in the Special Case. The implication

91,92 € PyyP, <= vy, = 0(vg,) for some o€l
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holds in the Special Case if and only if vy, , v, satisfies one of the conditions
of Proposition 4.5 (see Propositions 4.5, 4.6).

Let ¢ € P,yP, and let v, = u + g(v). Then Proposition 3.1 and
Lemma 5.1 imply that the double coset g € P,vP, is defined uniquely
by m + ¢ = dimv, and ¢ = I(v,). The dimension of a maximal isotropic
subspace of v, is equal to m and this dimension > [ = dim u. Put

p=m—1.
Then
l+p+q¢g=dimu, <l +k
and, therefore, p + ¢ < k. Hence the pair (m, ¢) is uniquely defined by the
pair (p, q) of non-negative integers such that p+ g < k. Thus we may mark
Y = 7pq. Moreover,
din(u, g(v)) = dimvy, — min{dimu,dimv} =l+p+q¢—k=(1—k)+p+q.

Let us show that for every p < min{k,n — [} and p + ¢ < k there is a
double coset P,v,q P, which satisfies condition ii. We may decompose the
space u in the following way

o ’ /
U=u + Uy +Up_p g,
dimu, =¢, dimu' =1—-k+p, dimu, , ,=k—-p—q

' <V such

Since ¢ < k < I < n we may find a totally isotropic space v,

that dim v, = ¢ and
Uy + v, = Hoy,
and v; is orthogonal to u’, uj, _ - Further, one can find a totally isotropic
space v, < V' such that dimwv, = p and v, is orthogonal to u +v;. Now we
have
u+v' =u+v, 4+,
o / / / !’ / / / /
=u tup_, ,+v,tv,tu, =u tug, o, +u, v, (5.1)
—_————— —_———— ——
=v’ rad(u+v’) Hsq

Since v’ is a totally isotropic space of the dimension k there exists an
element g € I such that g(v) = v'. Then (5.1) implies that the space v, =

u+ g(v) satisfies the condition dimwv, =1+ p+gq, I(vy) = ¢ and therefore
g € Pyvyp Py for some element vy,, € I' which satisfies the condition ii. O
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§6. THEOREM 2. THE SPECIAL CASE

We preserve the notation of the previous chapter. Note that since our
proof is based on the general assumption of having a T-form, we make here
the following restriction charK # 2 (however, there is a different approach
for the cases of split groups which allows us to avoid this restriction; see
Comment 7.3).

Theorem 2. LetI' = SO(V') = SO, (K) be a split orthogonal group of the
dimension 2n. The double cosets P,yP, can be numerated in the following
way:

il) If 0 <n —1 < k then

r:< U Pwpqpv>u< U Pw;_lqp,,>.

ogpsn—I, g<k+Hl—n
0<g<k—p

i2) If k <n—1 then

T= (J Pyl
0<psk,
0<q<k—p

i3) If l=n,k < n then
=) Puy,P.

q<k

id) If k=1=n then

r= U0<q=2m<n Pyv4Py if sign(v,u) =1,
= U1<q=2m+1<n Py Py if sign(v,u) = —1.

iil) g € PyypgPo, p#n—1 < din(gv),u) =l —k+p+q and I(u+
g(v)) = q, g € Pyyn—i ¢Py < din(9(v),u) =n—k +q and I(u +
g(v)) =q, and vy € I}, g € Py, ; ,Po & din(g9(v),u) =n—k+
q and I(u+g(v))=q, and vy €T, .

ii2) g € PyypgPy < din(g(v),u) =l—k+p+q and I(u+g(v)) =q.

ii3) g € PyygPy & din(g(v),u) =n—k+q and I(u+g(v))=q.

ii4) g € PuygPy & din(9(v),u) = ¢ = I(u+g(v)).

Proof.
il) Let 0 < n—1 < k. Let vy, = v+ ¢1(v),vy, = u + g2(v) where
91,92 € P,yP,. Then vy, = o(v,,) for some o € I' (see Remark 5.2). Then



102 N. GORDEEV, U. REHMANN

we have g(u) = u, g(g2(v)) = g1 (v) for some g € T' (Proposition 4.4). Hence
din(u, 91(v)) = din(u, 92(v)),  I(vg,) = I(vg,) = ¢ (6.1)

for some non-negative integer ¢q. Also,

dimvy, =dimvg, =l+p (6.2)

for some non-negative integer ¢q. The equalities (6.1), (6.2) imply

p<n—l, q<k-p, din(u,01(v)) = din(u,92(v)) =l-k+p+gq. (6.3)
Suppose

dimvg, =1+ p <n. (6.4)
Then the parameters p, ¢ determine the double coset P,yP, uniquely, that
is, if
din(u,9(v)) =l —k+p+q I(vy) =q

for some g € T then ¢ € P,yP, (Proposition 3.1, Proposition 4.5, Re-
mark 5.2). Hence we may put v = 7p,-

For every p,q which satisfies the conditions p < n —1, ¢ <k — p one
can find a totally isotropic subspace v’ such that dimv’ = k, di, (u,v’) =
Il—k+p+q,I(u+v) = q (see the proof of Theorem 1.) Since n —1 > 0
we have k < [ < n and therefore there exists an element g € I" such that
g(v) = v' (Proposition 3.1). Thus, for every pair p,q which satisfies the
conditions p < n — [, ¢q < k — p there is the corresponding double coset
PuvpgPo.

Suppose

dimvy, =1+p=n. (6.5)
Hence p = n — [. We may assume

u=(e1,...,e1),vy, =V, =(er,...,en), vy
:<617"'7en7f17"'7fq>7 l7q<n

and put ¥ = yp_; 4. Let ¢ € T’ be an element such that di,(u,g(v)) =
l—k+p+q,I(vy) =q. Then

g € Puyn—1 ¢Py < sign(vg,,vy) =1
(see Remark 5.2). If sign(vy,,v;) = —1 and g € P,wP, for some w € T
we put w = v, ;. Note if din(u,9'(v)) =l —k+p+gq, I(vy) = ¢ for
some g’ € I' and sign(vy,,vy,) = —1 then sign(vy,vy,) = 1 and therefore

g’ € Pu’)/nfl qPU.
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The same arguments as above show that double cosets P,vyp—i Py,
Pyy,_Poexistforevery g<k—p=k—(n—1)=k+1l-n.

i2) Let k < n —[. Then for elements g1, g2 € P,yP, which satisfy (6.3)
we also have the inequality (6.4) (because p < k < n —1[) and therefore we
may use the arguments above for the case (6.4).

i3) Let [ =n,k <n.Let g € P,yP, and vy = u+g(v). Then u = vy and
therefore p = dimv; — dimu = 0. Propositions 3.1, 4.5 and Remark 5.2
imply that the double coset P,vyP, is determined uniquely by the one
parameter ¢ = dim I(v,). Thus we may put v = +,. Note that for every
¢ < konecanfind g € T" such that I(v,) = ¢ (the same argument as above).
Hence we may numerate double cosets P,7v,P, by the set of non-negative

integers ¢ < k. Also, in this case

I(vg) = ¢, din(u,9(v)) =n—k+q. (6.6)

i4) Let I = k = n. We may assume
u=/{er,...,en) =V,.

Then in the same way as above one can see that the double cosets P,vP,
can be numerated by one non-integer number ¢ < n. However, the space
v may belong to the different T'-orbits. For g € I’ we have sign(u, g(v)) =
(—1)%in(vw) (see Proposition 3.2) and therefore

2m < n if sign(v,u) =1,

6.7
2m+1<n if sign(v,u)) = —1. (6.7)

din(u, g(v)) = q = {

Also, we can get every appropriate 0 < ¢ = 2m < n (resp. 1 < ¢ =
2m + 1) (indeed, one can take u = V, and v = VT =V, orv =V~ =
(e1,...,en—1, fn) and g € T such that

g(U) = <f17"'7f2mae2m+1;---;en>;

or g(v) = (fi,---, fom>€2m41,---€n—1, fn)-

ii. 1-4) follows from the definitions of the numeration and (6.3), (6.6),
and (6.7). O
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§7. SOME COMMENTS

7.1. Case of Unitary group. If we change the group I' from SU(V) to
U(V), the difference between the General Case and the Special Case will
disappear (in the Special Case we would have T' = 05, (K)) and Theorem
1 holds for this T' (the proof here is much easier: we can use the same
arguments, based on Witt’s theorem).

7.2 Adherence of double cosets. Here we did not touch the question of
adherence of double cosets lsuypqﬁv where ISU,IS,, are the corresponding
parabolic subgroups of [ such that ISv(K )= P,, ISU(K ) = P,. We consider
this question in the next paper.

7.3. Split Case. Let T = SO, Sp be a split algebraic group over a field K.
Then we may describe the decomposition of I' = UP,yP, using the lan-
guage of root systems. The choice of representatives of double cosets can be
obtained by the theory of double cosets of parabolic subgroups of Cheval-
ley groups (see [5], Chapter 2.7). This method does not depend on the
characteristic of the field K. Hence we can avoid the restriction for the
Special Case. However, here we do not write down this proof and give only
the interpretation of representatives of double cosets as elements of the
corresponding Weyl group.

Example. Special Case. Let
V:%+Vb :HQn = <617---:€n:f17---7fn>

(see Ch1). Then T = SO(V) = I'(K) where I' is the simple algebraic group
of type D, over a field K which is split over K (here we assume that
[ is considered as a linear group in V' and the basis e1,...,en, f1,.-+, fn
corresponds to weight vectors of the weights €1, ..., €,, —€,,...,—€;1 in the
notations of [3].) Let W be the Weyl group of I'. For an element w € W
we may correspond an element w € T' (see [5]), in particular, for the roots

a:eifej,ﬂzei-l-ej

we may identify the correspondend reflections w,,wg with the operators
e, ws € SO(V) which are defined in the following way

wa(eT):wB(er):er wa(fr):wﬁ(fr):fr if r #1,7,
wa(ei):eja ﬂ}a(ej) = €4, ’U}g(el) :fja wa(fj):eia
Do (f3)

wo(fi) = fi,  walfy) = fi, ws(fi) =ej, wale;) = fi.
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We may assume u = (e, ..., e;). For the simplicity of notations we also as-
sume v = (e1,...,e) if k <n.If k =1 =n we may take v = (e1,...ep) =
Vb orv={e1,...en_1, fn) =V, . Then we may chose the representatives

of double cosets P,yP, among elements of the form .
1) Let 0 <n—1< k.

Put
a1 = €1 — € 41,2 = €2 — €[42,...,Qp = € — €]4p,
Pk =€k — €ny- oy bg—k+1 = €k—g+1 — €n,
Vp =€+ €nyev vy llg—k+1 = €Eg—gt1 T €En,

Wpg = Way Way * - Wa, (wuk w‘/k)(w#k—lwl’k—l) e (wﬂqu+1w1/qu+1) ew.

Then

W (’U): <ep+17"'7ek7qael+1a"'7el+p7f(k—q+1)7"'fk> 1fp+1<k*(b
r (€415 -+ s €lpy f(h—gr1)s- - fr) ifp+1>k—gq,

and therefore
din (U, pg(v)) =1l =k +p+q, I(u+p () =q. (7.1)

Ifp=n—Ilput (" =€ —€,,(T =€ +¢, and

n—lg =W Wni 4

W =We-We+, W
Then
Wy (V)
:{<en_l+1, €k gy €1y Ents s Fhegi1)s - fi) HEn—l+1<k—q,
(€141, sen—1, frs fih—qir)s -+ o) ifn—Il+1>k—q.
and therefore
din(u, Wpe(v)) =n —k+q, I(u+wpy(v)) =q. (7.2)

Now Theorem 2 (il)) can be written in the form

I =S0(V) = ( U Puu';quU) U ( U Pu,_, qu>

ogpsn—lI, g<k+Hl—n
0<g<k—p

where wyy,w, ,; , satisfies (7.1), (7.2) (Theorem 2 (iil)).

n—I
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2) Let k < n—1. Then p < k < n—[.Then we only have representatives
of the form w,, (Theorem 2.(i2)):

r= U Py, P,
0<p<k,0<g<k—p

where ), satisfy (7.1), (7.2) (Theorem 2 (ii2)).
3) Let I = n,k < n then p = 0 and we may put w, = wp,. Hence
(Theorem 1(i3))

r:Um%a
gk
and din (u, wg(v)) =1 —k + ¢, I(u+ wy(v)) = ¢ (Theorem 1(i3)).
4) Let k =1=mn. Let 2m < n < 2m + 1. Put
,1/1 = €1 — 62,//2 = €3 — 64,---7//m = €2m—1 — €2m,
1/{ =€ +e2,l/§ :€3+€4,...,I/;n:€2m_1+62m.
For ¢ = 2m or ¢ = 2m + 1 we put
th] =Wy, Wy, * Wy, Wy,, -
Ifv=V"t wehave 0 < ¢ =2m < n and
w;('l)) = <f1;f2,---;f2m—laf2m7€2m+17---7€n>-
Ifo=V, ={(e1,...,en_1,f) wehave 1 <¢=2m+ 1< n and
UJ;(U) = <f17f27"'7f2m717f2m762m+1;---7en>-
Thus, (Theorem 2 (i4))
= Uogq:2m<n Py Py if sign(v,u) = 1,
I'=Ui¢jmomricn Puwy Py if sign(v,u) = —1.

and
din(u, g (v)) =n —q, I(u+1iy(v)) =q
(Theorem 2(ii4)).
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