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t. In this arti
le we establish an analog of the Quillen{Suslin's lo
al-global prin
iple for the elementary subgroup of thegeneral quadrati
 group and the general Hermitian group. We showthat unstable K1-groups of general Hermitian groups over module�nite rings are nilpotent-by-abelian. This generalizes earlier resultsof A. Bak, R. Hazrat, and N. Vavilov.Dedi
ated to the memory of late Professor Amit Roy
§1. Introdu
tionThe vigorous study of general linear groups and more generally algebrai
K-theory was stimulated in mid-sixties by the desire to solve Serre's prob-lem on proje
tive modules (
f. Fais
eaux Alg�ebriques Coherents, 1955).This prominent problem in 
ommutative algebra asks whether �nitely gen-erated proje
tive modules over a polynomial ring over a �eld are free. Thebeautiful book Serre's problem on proje
tive modules by T. Y. Lam givesa 
omprehensive a

ount of the mathemati
s surrounding Serre's prob-lem and its solution. Later we see analogs of Serre's Problem for mod-ules with forms and for other 
lassi
al groups in the work of H. Bass,A. Suslin, L. N. Vaserstein, V. I. Kopeiko, R. Parimala and others in[11, 26, 28, 29, 37, 38℄. In this 
urrent paper, we are interested in the 
on-text of modules with forms in 
ertain problems related to Serre's Problem,viz. normality of the elementary subgroup of the full automorphism group,Suslin's lo
al-global prin
iple for 
lassi
al-like groups, stabilization for K1-fun
tors of 
lassi
al-like groups, and the stru
ture of unstable K1-groupsof 
lassi
al-like groups.DiÆ
ulties one has in handling the quadrati
 version of Serre's Problemin 
hara
teristi
 2 were �rst noted by Bass in [11℄. In fa
t, in many 
asesit was diÆ
ult to handle 
lassi
al groups over �elds of 
hara
teristi
 2,Key words and phrases: bilinear forms, quadrati
 forms.5



6 R. BASUrather than 
lassi
al groups over �elds of 
har 6= 2. (For details see [19℄).In 1969, A. Bak resolved this problem by introdu
ing form rings and formparameter. He introdu
ed the general quadrati
 group or Bak's unitarygroup, whi
h 
overs many di�erent types of 
lassi
al-like groups. We alsosee some results in this dire
tion in the work of Klein, Mikhalev, Vasersteinet al. in [24, 25, 43℄. The 
on
ept of form parameter also appears in thework of K. M
Crimmon, and plays an important role in his 
lassi�
ationtheory of Jordan algebras (
f. [27℄), for details see ( [22, footnote pg. 190℄)and [23℄. In his seminal work \K-theory of forms", Bak has establishedanalog of many problems related to Serre's problem in a very expli
it andrigorous manner. But, Bak's de�nition of the general quadrati
 group doesnot in
lude many other types of 
lassi
al-like groups, viz. odd dimensionalorthogonal groups, ex
eptional groups of types E6, E7, E8 et
. In 2000,G. Tang, in his Ph.D thesis, established analog of many results for thegeneral Hermitian groups. Very re
ently, in 2005, Vi
tor Petrov using Bak's
on
ept of doubly parametrized form parameter has resolved this problemby introdu
ing odd unitary groups, whi
h also in
ludes Bak's unitary andgeneral Hermitian groups; 
f. [30℄. Also, he has established many analogousresults for his group.In 1976, D. Quillen 
ame up with a lo
alization method whi
h wasone of the main ingredients for the proof of Serre's problem (now widelyknown as Quillen{Suslin Theorem). Shortly after the original proof Suslinintrodu
ed the following matrix theoreti
 version of Quillen's lo
al-globalprin
iple.Suslin's Lo
al-Global Prin
iple: Let R be a 
ommutative ring withidentity, X a variable and �(X) ∈ GL(n;R[X ℄) with �(0) = In, n > 3. If�m(X) ∈ E(n;Rm[X ℄) for every maximal ideal m ∈ Max(R), then �(X) ∈E(n;R[X ℄).Soon after he gave the K1-analog of Serre's problem, whi
h says,for a polynomial ring in r variables over a �eld K elementary subgroupof GL(n;R), n > 3, 
oin
ides with the spe
ial linear group. i.e.,E(n;K[X1; : : : ; Xr℄) = SL(n;K[X1; : : : ; Xr℄):In 
onne
tion with this theorem he proved the normality of the elementarysubgroup E(n;A) in the general linear group GL(n;A), over a module �nitering A, for n > 3; (
f. [41℄). Later analogous results for the symple
ti
 andorthogonal groups were proven by Suslin and Kopeiko in [35℄ and [37℄ andby Fu An Li in [16℄, and for arbitrary Chevalley groups by Abe (
f. [1℄) in



LOCAL-GLOBAL PRINCIPLE 7the lo
al 
ase, and by Taddei (
f. [40℄) in general. Later we see a simplerand more general treatment in works of Ambily, Bak, Hazrat, Petrov, Rao,Stavrova, Stepanov, Suzuki, Vavilov, and others.We see generalization of the above lo
al-global prin
iple for the sym-ple
ti
 group in [26℄, and for the orthogonal group in [37℄. The normalityof the general quadrati
 groups is known from the work of A. Bak andN. Vavilov, 
f. [8℄. In [39℄, G. Tang has proved the normality property forthe general Hermitian groups. In [12℄, we have shown that the question ofnormality of the elementary subgroup of the general linear group, symple
-ti
 and orthogonal groups, is equivalent to the above lo
al-global prin
iple,where the base ring is asso
iative with identity and �nite over its 
enter. Inthat arti
le above three 
lassi
al groups were treated uniformly. Motivatedby the work of A. Bak, R. G. Swan, L. N. Vaserstein and others, in [6℄, theauthor with A. Bak and R. A. Rao has established an analog of Suslin'slo
al-global prin
iple for the transve
tion subgroup of the automorphismgroup of proje
tive, symple
ti
 and orthogonal modules of global rank atleast 1 and lo
al rank at least 3, under the assumption that the proje
tivemodule has 
onstant lo
al rank and that the symple
ti
 and orthogonalmodules are lo
ally an orthogonal sum of a 
onstant number of hyperboli
planes. In this arti
le we have proved the equivalen
e of the lo
al-globalprin
iple with the normality property. Sin
e normality holds in the above
ases, this establishes that the lo
al global prin
iple also holds. In fa
t, fol-lowing Suslin{Vaserstein's method we establish an analogous lo
al-globalprin
iple for the general quadrati
 and general Hermitian groups.We treat these two groups uniformly and give expli
it proofs of thoseresults. We have over
ome many te
hni
al diÆ
ulties whi
h 
ome in theHermitian 
ase due to the elements a1; : : : ; ar (with respe
t to these ele-ments we de�ne the Hermitian groups). We assume a1 = 0. The rigorousstudy of the general Hermitian groups 
an be found in [39℄. In [8℄, we getan ex
ellent survey on this area in a joint work of A. Bak and N. Vav-ilov. We refer to [20℄ for an alternative approa
h to lo
alization, [21℄ fora general overview, and to [14℄ for relative 
ases. Also, for 
ommutativerings with identity Quillen{Suslin's lo
al-global prin
iple is in the work ofV. Petrov and A. Stavrova (
f. [31℄), whi
h 
overs, in parti
ular, 
lassi
algroups of Witt index > 2 or > 3, depending on the type.In [12℄, it has been shown that the normality 
riterion of the elementarysubgroup of the general linear group is equivalent to the above lo
al-globalprin
iple. In this paper we establish the analogous lo
al-global prin
iple



8 R. BASUfor the general quadrati
 and Hermitian group, and prove an equivalen
e.More pre
isely, we prove (§6, Theorem 6.7, and §7, Theorem 7.10)Theorem 1 (Lo
al-Global Prin
iple). Let k be a 
ommutative ringwith identity and R an asso
iative k-algebra su
h that R is �nite as a leftk-module. If �(X) ∈ G(2n;R[X ℄;�[X ℄), �(0) = In and�m(X) ∈ E(2n;Rm[X ℄;�m[X ℄)for every maximal ideal m ∈ Max(k), then�(X) ∈ E(2n;R[X ℄;�[X ℄):Theorem 2. Let k be a 
ommutative ring with identity and R an asso-
iative k-algebra su
h that R is �nite as a left k-module. Then for size atleast 6 in the quadrati
 
ase and at least 2(r + 3) in the Hermitian 
ase:(Normality of the elementary subgroup)
≡(Lo
al-Global Prin
iple)To give a 
omplete pi
ture about the K1-fun
tors we shall shortly dis-
uss the progress in the stabilization problem for K1-fun
tors. The studyof this problem �rst appeared in the work of Bass{Milnor{Serre, and thenwe see it in the work by A. Bak, M. Stein, L. N. Vaserstein, and othersfor the symple
ti
, orthogonal and general quadrati
 groups. For details
f. [2, 36, 42{44℄. In 1998, R. A. Rao, and W. van der Kallen studied thisproblem for the linear groups over an aÆne algebra in [32℄. The result set-tled for the general quadrati
 and the general Hermitian groups by A. Bak,G. Tang and V. Petrov in [5℄ and [4℄. The result by Bak{Petrov{Tang hasbeen improved by Sergei Sin
huk, (
f. [34℄). It has been observed that overa regular aÆne algebra Vaserstein's bounds for the stabilization 
an beimproved for the transve
tion subgroup of the full automorphism groupof proje
tive, and symple
ti
 modules. But they 
annot be improved forthe orthogonal 
ase in general. For details 
f. [33℄. We refer to the re
entbreakthrough result by J. Fasel, R. A. Rao, and R. G. Swan ([15, Corol-lary 7.7℄). A very re
ent result of Weibo Yu gives a similar bound for theodd unitary groups, (
f. [46℄). In this paper we don't prove any new resultin this dire
tion.Though the study of stability for K1-fun
tors started in mid-sixties,initially the stru
ture of K1-group below the level of stable range was notmu
h studied. In 1991, A. Bak showed that the group GL(n;R)=E(n;R)



LOCAL-GLOBAL PRINCIPLE 9is nilpotent-by-abelian for n > 3; (
f. [3℄). In [17℄, R. Hazrat proved thesimilar result for the general quadrati
 groups over module �nite rings.The paper of Hazrat and Vavilov [18℄ redoes this for ordinary 
lassi
alChevalley groups (that is types A, C, and D) and then extends it furtherto the ex
eptional Chevalley groups (that is types E, F, and G). Theyhave shown the following: Let � be a redu
ed irredu
ible root system ofrank > 2 and R be a 
ommutative ring su
h that its Bass{Serre dimensionÆ(R) is �nite. Then for any Chevalley group G(�; R) of type � over R thequotient G(�; R)=E(�; R) is nilpotent-by-abelian. In parti
ular, K1(�; R)is nilpotent of 
lass at most Æ(R)+1. They use the lo
alization-
ompletionmethod of A. Bak in [3℄. In [6℄, the author with Bak and Rao gave a uniformproof for the transve
tion subgroup of the full automorphism group ofproje
tive, symple
ti
 and orthogonal modules of global rank at least 1and lo
al rank at least 3. Our method of proof shows that for 
lassi
algroups the lo
alization part suÆ
es. Re
ently, in (
f. [7℄) Bak, Vavilov andHazrat proved the relative 
ase for the unitary and Chevalley groups. But,to my best knowledge, so far there is no de�nite result for the generalHermitian groups. I observe that using the above lo
al-global prin
iple,arguing as in [6℄, it follows that the unstable K1 of general Hermitiangroup is nilpotent-by-abelian. We follow the line of Theorem 4.1 in [6℄.More pre
isely, we prove (Theorem 8.1)Theorem 3. For the general Hermitian group of large size over a 
om-mutative ring R with identity, the quotient groupSH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar)is nilpotent for n > r + 3.We 
on
lude with a brief des
ription of the organization of the rest ofthe paper. Se
tion 1 of the paper serves as an introdu
tion. In Se
tion 2 were
all the notion of form rings, in Se
tion 3 we dis
uss general quadrati
groups over form rings and their elementary subgroups, in Se
tion 4 weintrodu
e general Hermitian groups and their elementary subgroups, Se
-tion 5 provides preliminary results regarding the groups above, in Se
tion 6we establish the lo
al-global prin
iple for the elementary subgroup of thegeneral quadrati
 and general Hermitian group, and in Se
tion 7 we proveequivalen
e of normality of the elementary subgroup and the lo
al-globalprin
iple for the elementary subgroup. Finally, Se
tion 8 
ulminates with



10 R. BASUthe proof of the nilpotent by abelian stru
ture of non-stable K1 of thegeneral Hermitian group.
§2. Form RingsDe�nition. Let us �rst re
all the 
on
ept of �-quadrati
 forms introdu
edby A. Bak in his Ph.D. thesis (
f. [2℄) in order to over
ome the diÆ
ultiesthat arise for the 
hara
teristi
 2 
ases.Let R be an (not ne
essarily 
ommutative) asso
iative ring with identity,and with involution − : R → R, a 7→ a. Let � ∈ C(R) = 
enter of R be anelement with the property �� = 1. We de�ne additive subgroups of R�max = {a ∈ R | a = −�a} & �min = {a− �a | a ∈ R}:One 
he
ks that �max and �min are 
losed under the 
onjugation oper-ation a 7→ xax for any x ∈ R. A �-form parameter on R is an additivesubgroup � of R su
h that �min ⊆ � ⊆ �max, and x�x ⊆ � for all x ∈ R.A pair (R;�) is 
alled a form ring.Examples:(1) �min = 0 ⇔ � = 1, and involution is trivial. In parti
ular, � =0 ⇔ � = 1, involution is trivial, and R is 
ommutative.(2) If R is a 
ommutative integral domain, and involution is trivial,then �2 = 1 ⇔ � = ±1. If � = 1 and 
harR 6= 2, then �max = 0,and so 0 is the only form parameter. If � = −1 and 
harR 6= 2,then � 
ontains 2R, and 
losed under multipli
ation by squares. IfR is a �eld, then we get � = R. If R is a Z, then we get � = 2Z and

Z. If 
harR = 2, then R2 is a subring of R, and � = R2-submodulesof R.(3) The ring of n× n matri
es (M(n;R);�n) is a form ring.Remark. An earlier version of �-form parameter due to K. M
Crimmonplays an important role in his 
lassi�
ation theory of Jordan algebras. Hede�ned it for the wider 
lass of alternative rings (not just asso
iative rings),but for asso
iative rings it is a spe
ial 
ase of Bak's 
on
ept. (For details,
f. N. Ja
obson; Le
tures on Quadrati
 Jordan Algebras, TIFR, Bombay1969). The ex
ellent work of Hazrat{Vavilov in [19℄ is a very good sour
eto understand the histori
al motivation behind the 
on
ept of form rings.And, an ex
ellent sour
e to understand the theory of form rings is thebook [22℄ by A. J. Hahn and O. T. O'Meara.
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§3. General Quadrati
 GroupLet V be a right R-module and GL(V ) the group of all R-linear au-tomorphisms of V . A map f : V × V → R is 
alled sesqulinear form iff(u + v; z + w) = f(u; z) + f(u;w) + f(v; z) + f(v; w) and f(ua; vb) =af(u; v)b for all u; v ∈ V , a; b ∈ R. We de�ne �-quadrati
 form q on V ,and asso
iated �-Hermitian form and as follows:q : V → R=�; given by q(v) = f(v; v) + �; andh : V × V → R; given by h(u; v) = f(u; v) + �f(v; u):A Quadrati
 Module over (R;�) is a triple (V; h; q).De�nition. \Bak's Unitary Groups" or \The Unitary Group of a Qua-drati
 Module" or \General Quadrati
 Group" GQ(V; q; h) is de�ned asfollows:GQ(V; q; h) = {� ∈ GL(V ) | h(�u; �v) = h(u; v); q(�v) = q(v)}:Examples: Traditional Classi
al Groups(1) By taking � = �max = R, � = −1, and trivial involution we getthe symple
ti
 group GQ(2n;R;�) = Sp(2n;R).(2) By taking � = �min = 0, � = 1, trivial involution we get thequadrati
 or the orthogonal group GQ(2n;R;�) = O(2n;R).(3) For the general linear group, let Ro be the ring opposite to R, andRe = R ⊕ Ro. De�ne involution as follows: (x; yo) 7→ (y; xo). Let� = (1; 1o) and � = {(x;−xo) | x ∈ R}. Then identifyGQ(2n;Re;�) = {(g; g−1) | g ∈ GL(n;R)}with GL(n;R).Free Case: Let V be a free right R-module of rank 2n with orderedbasis e1; e2; : : : ; en; e−n; : : : ; e−2; e−1. Consider the sesqulinear form f :V ×V −→ R, de�ned by f(u; v) = u1v−1+ · · ·+unv−n. Let h be Hermitianform, and q be the �-quadrati
 form de�ned by f . So, we haveh(u; v) = u1v−1 + · · ·+ unv−n + �u−nvn + · · ·+ �u−1v1;q(u) = � + u1u−1 + · · ·+ unu−n:Using this basis we 
an identify GQ(V; h;q) with a subgroup of GL(2n;R)of rank 2n. We denote this subgroup by GQ(2n;R;�).



12 R. BASUBy �xing a basis e1; e2; : : : ; en; e−1; e−2; : : : ; e−n, we de�ne the form n = ( 0 �InIn 0 ) :Hen
e, GQ(2n;R;�) = {� ∈ GL(2n;R;�) |� n� =  n}:For � = (� �
 Æ) ∈ GL(2n;R;�), one 
an show that � ∈ GQ(2n;R;�)(�; �; 
; Æ are n × n blo
k matri
es) if and only if 
�; Æ� ∈ �. For moredetails see ( [2, 3.1 and 3.4℄).A typi
al element in GQ(2n;R;�) is denoted by a 2n × 2n matrix(� �
 Æ), where �; �; 
; Æ are n× n blo
k matri
es.There is a standard embedding, GQ(2n;R;�)→ GQ(2n+2; R;�), givenby
(� �
 Æ) 7→




� 0 � 00 1 0 0
 0 Æ 00 0 0 1
alled the stabilization map. This allows us to identify GQ(2n;R;�) witha subgroup in GQ(2n+ 2; R;�).Elementary Quadrati
 Matri
es: Let � be the permutation, de�nedby �(i) = n+ i for i = 1; : : : ; n. Let eij be the matrix with 1 in the ij-thposition and 0's elsewhere. For a ∈ R, and 1 6 i; j 6 n, we de�neq"ij(a) = I2n + aeij − ae�(j)�(i) for i 6= j;qrij(a) = {I2n + aei�(j) − �aej�(i) for i 6= j;I2n + ae�(i)j for i = j;qlij(a) = {I2n + ae�(i)j − �ae�(j)i for i 6= j;I2n + ae�(i)j for i = j:(Note that for the se
ond and third type of elementary matri
es, if i = j,then we get a = −�a, and hen
e it for
es that a ∈ �max(R). One 
he
ksthat these above matri
es belong to GQ(2n;R;�); 
f. [2℄.)n-th Elementary Quadrati
 Group EQ(2n;R;�): The subgroupgenerated by q"ij(a), qrij(a) and qlij(a), for a ∈ R and 1 6 i; j 6 n.



LOCAL-GLOBAL PRINCIPLE 13It is 
lear that the stabilization map takes generators of EQ(2n;R;�)to the generators of EQ(2(n+ 1); R;�).Commutator Relations: There are standard formulas for the 
om-mutators between quadrati
 elementary matri
es. For details we refer [2,Lemma 3.16℄, and [17, §2℄. In later se
tions we shall repeatedly use thoserelations.
§4. Hermitian GroupWe assume that � is a �-form parameter on R. For a matrixM = (mij)over R we de�ne M = (mij)t. For a1; : : : ; ar ∈ � and n > r letA1 = 



a1 0 0 · · · 00 a2 0 · · · 0
· · · · · · · · · · · · · · ·0 · · · 0 ar−1 00 · · · 0 0 ar


= [a1; : : : ; ar℄denote the diagonal matrix whose ii-th diagonal 
oeÆ
ient is ai. Let A =A1 ⊥ In−r. We de�ne the forms hn = (A �InIn 0 ) ;  qn = ( 0 �InIn 0 ) :De�nition: General Hermitian Group of the elements a1; : : : ; ar isde�ned as follows: GH(2n;R; a1; : : : ; ar;�): The group generated by theall non-singular 2n× 2n matri
es

{� ∈ GL(2n;R) |� hn� =  hn}:As before, there is an obvious embeddingGH(2n;R; a1; : : : ; ar;�) ,→ GH(2n+ 2; R; a1; : : : ; ar;�):To de�ne elementary Hermitian matri
es, we need to 
onsider theset C = {(x1; : : : ; xr)t ∈ (Rr)t | r∑i=1xiaixi ∈ �min(R)} for a1; : : : ; ar asabove. In order to over
ome the te
hni
al diÆ
ulties 
aused by the el-ements a1; : : : ; ar, we shall �nely partition a typi
al matrix (� �
 Æ) of



14 R. BASUGH(2n;R; a1; : : : ; ar;�) into the form



�11 �12 �11 �12�21 �22 �21 �22
11 
12 Æ11 Æ12
21 
22 Æ21 Æ22where �11; �11; 
11; Æ11 are r × r matri
es, �12; �12; 
12; Æ12 are r × (n− r)matri
es, �21; �21; 
21; Æ21 are (n − r) × r matri
es, and �22; �22; 
22; Æ22are (n− r)× (n− r) matri
es. By ([39, Lemma 3.4℄),the 
olumns of �11 − Ir; �12; �11; �12; �11; �21; Æ11 − Ir; Æ21 ∈ C: (1)It is a straightforward 
he
k that the subgroup ofGH(2n;R; a1; : : : ; ar;�) 
onsisting of







Ir 0 0 00 �22 0 �220 0 Ir 00 
22 0 Æ22 ∈ GH(2n;R; a1; : : : ; ar)
∼= GH(2(n− r); R; a1; : : : ; ar;�):Elementary Hermitian Matri
es: The �rst three kinds of generatorsare taken for the most part from GQ(2(n−r); R;�), whi
h is embedded, asabove, as a subgroup of GH(2n;R) and the last two kinds are motivatedby the result (1) 
on
erning the 
olumn of a matrix in GH(2n;R). Fora ∈ R, we de�neh"ij(a) =I2n + aeij − ae�(j)�(i) for r + 1 6 i 6 n; 1 6 j 6 n; i 6= j;hrij(a) ={I2n + aei�(j) − �aej�(i) for r + 1 6 i; j 6 n; i 6= jI2n + aei�(j) for r + 1 6 i; j 6 n; i = j;hlij(a) ={I2n + ae�(i)j − �ae�(j)i for 1 6 i; j 6 n; i 6= jI2n + ae�(i)j for 1 6 i; j 6 n; i = j:(Note that for the se
ond and third type of elementary matri
es, if i = j,then we get a = −�a, and hen
e it for
es that a ∈ �max(R)). One 
he
ksthat the above matri
es belong to GH(2n;R; a1; : : : ; ar;�); 
f. [39℄.



LOCAL-GLOBAL PRINCIPLE 15For � = (x1; : : : ; xr)t ∈ C, let �f ∈ R be su
h that �f +��f = r∑i=1xiaixi.(The element �f is not unique in general). We de�nehmi(�) = 


Ir �12 0 00 In−r 0 00 −A1�12 Ir 00 
22 −�12 In−rfor � ∈ C and r + 1 6 i 6 n to be the 2n × 2n matrix, where �12 is ther×(n−r) matrix with � as its (i−r)th 
olumn and all other 
olumn's zero,and 
22 is the (n− r)× (n− r) matrix with �f in (i− r; i− r)th positionand 0's elsewhere. Let ek denote the 
olumn ve
tor of length (n−r) with 1in the kth position and 0's elsewhere, and et s denote a (n − r) × (n − r)matrix with 1 in the tsth position and 0's elsewhere.As above, we de�nehri(�) = 


Ir 0 0 �120 In−r −��12 �220 0 Ir −A1�120 0 0 In−r 
for � ∈ C and r + 1 6 i 6 n to be a 2n × 2n matrix, where �12 is ther × (n − r) matrix with � as its (i − r)th 
olumn and all other 
olumn'szero, and �22 is the (n − r) × (n − r) matrix with ��f in (i − r; i − r)thposition and 0's elsewhere.Note that if � = epq(a) is an elementary generator in GL(s;R), thenthe matrix (In−s ⊥ � ⊥ In−s ⊥ �−1) = h"ij(a). It has been shown in [39℄(§5) that ea
h of the above matri
es is in GH(2n;R; a1; : : : ; ar;�).De�nition: nth Elementary Hermitian Group of the elementsa1; : : : ; ar; EH(2n;R; a1; : : : ; ar;�): The group generated by h"ij(a),hrij(a), hlij(a), hmi(�) and hri(�), for a ∈ R, � ∈ C and 1 6 i; j 6 n.The stabilization map takes generators of EH(2n;R; a1; : : : ; ar;�) tothe generators of EH(2(n+ 1); R; a1; : : : ; ar;�).Commutator Relations: There are standard formulas for the 
om-mutators between quadrati
 elementary matri
es. For details we refer [39℄.
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§5. Preliminaries and NotationsBlanket Assumption:We always assume that 2n > 6 and n > r whiledealing with the Hermitian 
ase. We do not want to put any restri
tion onthe elements of C. Therefore we assume that ai ∈ �min(R) for i = 1; : : : ; r,as in that 
ase C = Rr. We always assume a1 = 0.Notation 5.1. In the sequel M(2n;R) will denote the set of all 2n ×2n matri
es. By G(2n;R;�) we shall denote either the quadrati
 groupGQ(2n;R;�) or the Hermitian group GH(2n;R; a1; : : : ; ar;�) of size 2n×2n. By S(2n;R;�) we shall denote respe
tive subgroups SQ(2n;R;�) orSH(2n;R; a1; : : : ; ar;�) with matri
es of determinant 1, in the 
ase when Rwill be 
ommutative. Then, by E(2n;R;�) we shall denote the 
orrespond-ing elementary subgroups EQ(2n;R;�) and EH(2n;R; a1; : : : ; ar;�). Totreat uniformly we denote the elementary generators of EQ(2n;R;�), andthe �rst three types of elementary generators of EH(2n;R;�) by #ij(?), forsome ? ∈ R. To express the last two types of generators of EH(2n;R;�)we shall use the notation #i(?), where ? is a 
olumn ve
tor of length rde�ned over the ring R, i.e., we will have two types of elementary gener-ators, namely #ij(ring element) and #i(
olumn ve
tor). Let �[X ℄ denotethe �-form parameter on R[X ℄ indu
ed from (R;�), i.e., �-form param-eter on R[X ℄ generated by �, i.e., the smallest form parameter on R[X ℄
ontaining �. Let �s denote the �-form parameter on Rs indu
ed from(R;�).For any 
olumn ve
tor v ∈ (R2n)t we de�ne the row ve
tors ṽq = vt qnand ṽh = vt hn.De�nition 5.2. We de�ne the map M : (R2n)t × (R2n)t → M(2n;R) andthe inner produ
t 〈 ; 〉 as follows:M(v; w) = v:w̃q − �w:ṽq ; when G(2n;R) = GQ(2n;R;�)= v:w̃h − �w:ṽh; when G(2n;R) = GH(2n;R; a1; : : : ; ar;�);

〈v; w〉 = ṽq :w; when G(2n;R) = GQ(2n;R;�)= ṽh:w; when G(2n;R) = GH(2n;R; a1; : : : ; ar;�):Note that the elementary generators of the both groups EQ(2n;R) andEH(2n;R) are of the form I2n + M(?1; ?2) for suitable 
hosen standardbasis ve
tors.We re
all the following well known fa
ts:



LOCAL-GLOBAL PRINCIPLE 17Lemma 5.3. (
f. [2,39℄) The group E(2n;R;�) is perfe
t for n > 3 in thequadrati
 
ase, and for n > r + 3 in the Hermitian 
ase, i.e.,[E(2n;R;�);E(2n;R;�)℄ = E(2n;R;�):Lemma 5.4. (Splitting property): For all elementary generators ofthe general quadrati
 group GQ(2n;R;�) and for the �rst three types el-ementary generators of the Hermitian group GH(2n;R; a1; : : : ; ar;�) wehave: #ij(x + y) = #ij(x)#ij(y)for all x; y ∈ R.For the last two types of elementary generators of Hermitian group wehave the following relation:hmi(�)hmi(�) = hmi(� + �)hlii(��f + ��f + �� �A1� − (� + �)f );hri(�)hri(�) = hri(� + �)hrii((� + �)f − �f − �f − ��A1�):Proof. See [2, pp. 43{44, Lemma 3.16℄ for the GQ(2n;R;�) and [39,Lemma 8.2℄ for the group GH(2n;R; a1; : : : ; ar;�). �Lemma 5.5. Let G be a group, and ai, bi ∈ G, for i = 1; : : : ; n. Then forri = i�j=1aj , we have n�i=1aibi = n�i=1ribir−1i n�i=1ai:Notation 5.6. By G(2n;R[X ℄;�[X ℄; (X)) we shall mean the group of allquadrati
 and Hermitian matri
es over R[X ℄ whi
h are In modulo (X).Lemma 5.7. The group G(2n;R[X ℄;�[X ℄; (X)) ∩ E(2n;R[X ℄;�[X ℄) isgenerated by the elements of the types "#ij(?1)"−1 and "#i(?2)"−1, where" ∈ E(2n;R;�), ?1 ∈ R[X ℄, ?2 ∈ ((R[X ℄)2n)t with both #ij(?1) and #i(?2)
ongruent to I2n modulo (X).We give a proof of this Lemma for the Hermitian group. The proof forthe quadrati
 
ase is similar, but easier.Proof of Lemma 5.7. Let a1(X); : : : ; ar(X) be r elements in the poly-nomial ring R[X ℄ with respe
t to whi
h we are 
onsidering the Hermitiangroup GH(2n;R[X ℄; a1(X); : : : ; ar(X);�[X ℄).Let �(X)∈EH(2n;R[X ℄; a1(X); : : : ; ar(X);�[X ℄) be su
h that �(X) is
ongruent to I2n modulo (X). Then we 
an write �(X) as a produ
t ofelements of the form #ij(?1), where ?1 is a polynomial in R[X ℄, and of theform #i(?2), where ?2 is a 
olumn ve
tor of length r de�ned over R[X ℄.



18 R. BASUWe write ea
h ?1 as a sum of a 
onstant term and a polynomial whi
h isidentity modulo (X). Hen
e by using the splitting property des
ribed inLemma 5.4 ea
h elementary generator #ij(?1) of �rst three type 
an bewritten as a produ
t of two su
h elementary generators with the left onede�ned on R and the right one de�ned on R[X ℄ whi
h is 
ongruent to I2nmodulo (X).For the last two types of elementary generators we write ea
h ve
tor?2 as a sum of a 
olumn ve
tor de�ned over the ring R and a 
olumnve
tor de�ned over R[X ℄ whi
h is 
ongruent to the zero ve
tor of length rmodulo (X). In this 
ase, as shown in Lemma 5.4, we get one extra terminvolving elementary generator of the form hlii or hrii. But that extraterm is one of the generator of �rst three types. And then we 
an splitthat term again as above. Therefore, �(X) 
an be expressed as a produ
tof following types of elementary generators:#ij(?1(0))#ij(X?1) with ?1 (0) ∈ R and #ij(X?1) = I2n modulo (X);#i(?2(0))#i(X?2) with ?2 (0) ∈ R and #i(X?2) = I2n modulo (X):Now result follows by using the identity des
ribed in Lemma 5.5. �

§6. Suslin's Lo
al-Global Prin
ipleIn his remarkable thesis (
f. [2℄) A. Bak showed that for a form ring(R;�) the elementary subgroup EQ(2n;R;�) is perfe
t for n > 3 andhen
e is a normal subgroup of GQ(2n;R;�). As we have noted earlier,this question is related to Suslin's lo
al-global prin
iple for the elemen-tary subgroup. In [39℄, G. Tang has shown that for n > r + 3 the ele-mentary Hermitian group EH(2n;R; a1; : : : ; ar;�) is a normal subgroupof GH(2n;R; a1; : : : ; ar;�). In this se
tion we dedu
e an analogous lo
al-global prin
iple for the elementary subgroup of the general quadrati
 andHermitian groups, when R is module �nite, i.e., �nite over its 
enter. Weuse this result in §8 to prove the nilpotent property of the unstable Her-mitian group KH1. Furthermore, we show that if R is �nite over its 
enter,then the normality of the elementary subgroup is equivalent to the lo
al-global prin
iple. This generalizes our result in [12℄.The following is the key Lemma, and it tells us the reason why we needto assume that the size of the matrix is at least 6. In [12℄, proof is given forthe general linear group. Arguing in similar manner by using identities of
ommutator laws result follows in the unitary and Hermitian 
ases. A listof 
ommutator laws for elementary generators is stated in ([2, pp. 43{44,



LOCAL-GLOBAL PRINCIPLE 19Lemma 3.16℄) for the unitary groups and in ([39, pp. 237{239, Lemma 8.2℄)for the Hermitian groups. For a dire
t proof we refer [30, Lemma 5℄.Lemma 6.1. Suppose # is an elementary generator of the general qua-drati
 (Hermitian) group G(2n;R[X ℄;�[X ℄), n > 3. Let # be 
ongruent toidentity modulo (X2m), for m > 0. Then, if we 
onjugate # with an ele-mentary generator of the general quadrati
 (Hermitian) group G(2n;R;�),we get the resulting matrix as a produ
t of elementary generators of generalquadrati
 (Hermitian) group G(2n;R[X ℄;�[X ℄), ea
h of whi
h is 
ongruentto identity modulo (Xm).Corollary 6.2. In Lemma 6.1 we 
an take # as a produ
t of elementarygenerators of the general quadrati
 (general Hermitian) groupG(2n;R[X ℄;�[X ℄):Lemma 6.3. Let (R;�) be a form ring and v ∈ E(2n;R;�)e2n. Letw ∈ R2n be a 
olumn ve
tor su
h that 〈v; w〉 = 0. Then I2n +M(v; w) ∈E(2n;R;�).Proof. Let v = "e2n, where " ∈ E(2n;R;�). Then it follows that I2n +M(v; w) = "(I2n + M(e2n; w1))"−1; where w1 = "−1w. Sin
e 〈e2n; w1〉 =
〈v; w〉 = 0, we get wt1 = (w11; : : : ; w1n−1; 0; w1n+1; : : : ; w1 2n). Therefore,as �� = �� = 1,I2n +M(v;w)=





�16j6n16i6n−1 " qlin(−�wn+1 i) q"jn(−�w1 j)ql−1nn(∗)"−1�16k6rr+16j6n16i6n−1"hlin(−�wn+1 i)h"jn(−�w1 j)hmn(−w1 k))hl−1nn(∗)"−1(in the quadrati
 and Hermitian 
ases respe
tively),where w1 n+k = (w1n+k; 0; : : : ; 0). Hen
e the result follows. �Note that the above impli
ation is true for any asso
iative ring withidentity. From now onwards we assume that R is �nite over its 
enterC(R). Let us re
allLemma 6.4. Let A be a Noetherian ring and s ∈ A. Then there ex-ists a natural number k su
h that the homomorphism G(A; skA; sk�) →G(As;�s) (indu
ed by lo
alization homomorphism A→ As) is inje
tive.



20 R. BASUFor the proof of the above lemma we refer ( [18, Lemma 5.1℄). Also,we re
all that any module �nite ring R is the dire
t limit of its �nitelygenerated subrings. Thus, one may assume that C(R) is Noetherian.Let (R;�) be a (module �nite) form ring with identity.Lemma 6.5. (Dilation Lemma) Let �(X) ∈ G(2n;R[X ℄;�[X ℄), with�(0) = I2n. If �s(X) ∈ E(2n;Rs[X ℄;�s[X ℄), for some non-nilpotent s ∈ R,then �(bX) ∈ E(2n;R[X ℄;�[X ℄), for b ∈ slC(R), and l ≫ 0.Remark 6.6. (In the above Lemma we a
tually mean there exists some�(X) ∈ E(2n;R[X ℄;�[X ℄) su
h that �(0) = I2n and �s(X) = �(bX).)Proof. Given that �s(X) ∈ E(2n;Rs[X ℄;�s[X ℄). Sin
e �(0) = I2n, us-ing Lemma 5.7 we 
an write �s(X) as a produ
t of the matri
es of theform "#ij(?1)"−1 and "#i(?2)"−1, where " ∈ E(2n;Rs;�s), ?1 ∈ Rs[X ℄,?2 ∈ ((Rs[X ℄)2n)t with both #ij(?1) and #i(?2) 
ongruent to I2n mod-ulo (X). Applying the homomorphism X 7→ XT d, where d ≫ 0, fromthe polynomial ring R[X ℄ to the polynomial ring R[X;T ℄, we look on�(XT d). Note that Rs[X;T ℄ ∼= (Rs[X ℄)[T ℄. As C(R) is Noetherian, it fol-lows from Lemma 6.4 and Corollary 6.2 that over the ring (Rs[X ℄)[T ℄ we
an write �s(XT d) as a produ
t of elementary generators of general qua-drati
 (Hermitian) group su
h that ea
h of those elementary generatorsis 
ongruent to identity modulo (T ). Let l be the maximum of the pow-ers o

urring in the denominators of those elementary generators. Again,as C(R) is Noetherian, by applying the homomorphism T 7→ smT , form > l, it follows from Lemma 6.4 that over the ring R[X;T ℄ we 
anwrite �s(XT d) as a produ
t of elementary generators of general quadrati
(Hermitian) group su
h that ea
h of those elementary generator is 
on-gruent to identity modulo (T ), for some b ∈ (sl)C(R), i.e., we get thereexists some �(X;T ) ∈ E(2n;R[X;T ℄;�[X;T ℄) su
h that �(0; 0) = I2n and�s(X;T ) = �(bXT d). Finally, the result follows by putting T = 1. �Theorem 6.7. (Lo
al-Global Prin
iple) If �(X) ∈ G(2n;R[X ℄;�[X ℄),�(0) = In and �m(X) ∈ E(2n;Rm[X ℄;�m[X ℄);for every maximal ideal m ∈ Max (C(R)), then�(X) ∈ E(2n;R[X ℄;�[X ℄):(Note that Rm denotes S−1R, where S = C(R) \ m).



LOCAL-GLOBAL PRINCIPLE 21Proof. Sin
e �m(X) ∈ E(2n;Rm[X ℄;�m[X ℄), for all m ∈ Max(C(R)), forea
h m there exists s ∈ C(R) \ m su
h that �s(X) ∈ E(2n;Rs[X ℄;�s[X ℄).Using Noetherian property we 
an 
onsider a �nite 
over of C(R), says1 + · · ·+ sr = 1. Let �(X;T ) = �s(X + T )�s(T )−1. Then�(X;T ) ∈ E(2n; (Rs[T ℄)[X ℄;�s[T ℄[X ℄)and �(0; T ) = In. By Dilation Lemma, applied with base ring R[T ℄, thereexists �(X) ∈ E(2n;R[X;T ℄;�[X;T ℄) su
h that�s(X) = �(bX; T ): (2)Sin
e for l ≫ 0, the ideal 〈sl1; : : : ; slr〉 = R, we 
hose b1; b2; : : : ; br ∈C(R), with bi ∈ (sl)C(R); l ≫ 0 su
h that (2) holds and b1+ · · ·+ br = 1.Then there exists �i(X) ∈ E(2n;R[X;T ℄;�[X;T ℄) su
h that �isi(X) =�(biX;T ). Therefore,r�i=1�i(X) ∈ E(2n;R[X;T ℄;�[X;T ℄):But,�s1···sr (X) = (r−1�i=1�s1:::ŝi:::sr (biX;T )|T=bi+1X+···+brX) �s1::::::sr−1 (brX; 0):Sin
e �(0) = In, and as a 
onsequen
e of the Lemma 6.4 it follows thatthe map E(R; skR; sk�) → E(Rs;�s) in inje
tive, we 
on
lude �(X) ∈E(2n;R[X ℄;�[X ℄). �

§7. Equivalen
e of Normality and Lo
al-GlobalPrin
ipleNext we are going to show that if k is a 
ommutative ring with iden-tity and R is an asso
iative k-algebra su
h that R is �nite as a left k-module, then the normality 
riterion of elementary subgroup is equivalentto Suslin's lo
al-global prin
iple for above two 
lassi
al groups. (Remark:One 
an also 
onsider R as a right k-algebra.)One of the 
ru
ial ingredients in the proof of the above theorem isthe following result whi
h states that the group E a
ts transitively onunimodular ve
tors. The pre
ise statement of the fa
t is the following:De�nition 7.1. A ve
tor (v1; : : : ; v2n) ∈ R2n is said to be unimodular ifthere exists another ve
tor (u1; : : : ; u2n) ∈ R2n su
h that 2n∑i=1 viui = 1.The set of all unimodular ve
tor in R2n is denoted by Um(2n;R).



22 R. BASUTheorem 7.2. Let R be a semilo
al ring (not ne
essarily 
ommutative)with involution and v = (v1; : : : ; v2n)t be a unimodular and isotropi
 ve
torin R2n. Then v ∈ E(2n;R)e2n for n > 2, i.e., E(2n;R) a
ts transitivelyon the set of isotropi
 ve
tors in Um(2n;R).Let us �rst re
all some known fa
ts before we give a proof of the theo-rem.De�nition 7.3. An asso
iative ring R is said to be semilo
al if R=rad(R)is Artinian semisimple.We re
all the following three lemmas.Lemma 7.4. (H. Bass) Let A be an asso
iative B-algebra su
h that A is�nite as a left B-module and B be a 
ommutative lo
al ring with identity.Then A is semilo
al.Proof. Sin
e B is lo
al, B=rad(B) is a division ring by de�nition. Thatimplies A=rad(A) is a �nite module over the division ring B=rad(B) andhen
e is a �nitely generated ve
tor spa
e. Thus A=rad(A) Artinian asB=rad(B) module and hen
e A=rad(A) Artinian as A=rad(A) module, soit is an Artinian ring.It is known that an artin ring is semisimple if its radi
al is trivial. ThusA=rad(A) is semisimple, as rad(A=rad(A)) = 0. Hen
e A=rad(A) Artiniansemisimple. Therefore, A is semilo
al by de�nition. �Lemma 7.5. (H. Bass) ([10, Lemma 4.3.26℄) Let R be a semilo
al ring(may not be 
ommutative), and let I be a left ideal of R. Let a in R besu
h that Ra+ I = R. Then the 
oset a + I = {a+ x |x ∈ I} 
ontains aunit of R.Proof. We give a proof due to R. G. Swan. We 
an fa
tor out the radi
aland assume that R is semisimple Artinian. Let I = (Ra∩I)⊕I ′. Repla
ingI by I ′ we 
an assume that R = Ra ⊕ I . Let f : R → Ra by r 7→ ra, forr ∈ R. Therefore, we get a split exa
t sequen
e0 −→ J −→ R f
−→ Ra −→ 0;for some ideal J in R whi
h gives us a map g : R → J su
h that R (f;g)

−→Ra⊕J is an isomorphism. Sin
e Ra⊕J ∼= R ∼= Ra⊕ I 
an
ellation (usingJordan{H�older or Krull{S
hmidt) shows that J ∼= I . If h : R ∼= J ∼= I ,then R (f;g)
−→ Ra ⊕ I ∼= R is an isomorphism sending 1 to (a; i) to a + i,where i = h(1). Hen
e it follows that a+ i is a unit. �



LOCAL-GLOBAL PRINCIPLE 23Lemma 7.6. Let R be a semisimple Artinian ring and I be a left idealof R. Let J = Ra+ I. Write J = Re, where e is an idempotent (possiblesin
e J is proje
tive. For detail 
f. [13, Theorem 4.2.7℄). Then there is anelement i ∈ I su
h that a+ i = ue, where u is a unit in R.Proof. Sin
e R = J +R(1− e) = Ra+ I +R(1− e), using Lemma 7.5 we
an �nd a unit u = a+ i+x(1− e) in R, for some x ∈ R. Sin
e a+ i ∈ Re,it follows that ue = a+ i. �Corollary 7.7. Let R be a semisimple Artinian ring and (a1; : : : ; an)tbe a 
olumn ve
tor over R, where n > 2. Let �Rai = Re, where e isan idempotent. Then there exists " ∈ En(R) su
h that "(a1; : : : ; an)t =(0; : : : ; 0; e)t.Proof. By Lemma 7.6 we 
an write ue = �n−1i=1 biai + an, where u is aunit. Therefore, applying an elementary transformation we 
an assumethat an = ue. Multiplying from the left by (In−2 ⊥ u ⊥ u−1) we 
an makean = e. Sin
e all ai are left multiple of e, further elementary transforma-tions redu
e our ve
tor to the required form. �The following observation will be needed to do the 
ase 2n = 4.Lemma 7.8. Let R be a semisimple Artinian ring and e be an idempotent.Let f = 1−e, and b be an element of R. If fRb ⊆ Re, then we have b ∈ Re.Proof. Sin
e R is a produ
t of simple rings, it will suÆ
e to do the 
asein whi
h R is simple. If e = 1, we are done. Otherwise RfR is a non-zerotwo sided ideal, and hen
e RfR = R. Sin
e Rb = RfRb ⊆ Re, we haveb ∈ Re. �Lemma 7.9. Let R be a semisimple Artinian ring and let − : R → R bea �-involution on R. Let (x y)t be a unimodular row of length 2n, where2n > 4, and x; y ∈ Rn. Then there exists an element " ∈ E(2n;R) su
hthat "(x y)t = (x′ y′)t, where x′1 is a unit in R.Proof. Let x = (x1; : : : ; xn)t and b = (y1; : : : ; yn)t. We 
laim that thereexists " ∈ E(2n;R) su
h that "(x y)t = (x′ y′), where x′ is a unit in R.Among all (x′ y′)t of this form, 
hoose one for whi
h the ideal I = �Rx′iis maximal. Repla
ing the original (x y)t by (x′ y′)t we 
an assume thatI = �Rxi is maximal among su
h ideals. Write I = Re, where e is anidempotent in R. By Corollary 7.7 we 
an �nd an element � ∈ En(R) su
hthat �x = (0; 0; : : : ; e)t. So we 
an modify x by elementary generators of



24 R. BASUthe form q"ij(?) or h"ij(?) and hen
e we assume that x = (0; 0; : : : ; e)t.We 
laim that yi ∈ Re for all i > 1.First we 
onsider the 
ase 2n > 6. Assume y1 =∈ I , but yi ∈ I for alli > 2. If we apply q"1n(1) in the quadrati
 
ase then this repla
es yn toyn − y1 but not 
hanges e and y1. On the other hand for the Hermitian
ase we do not have the generator q"1n(1). But if we apply hmn(1; : : : ; 1),then it 
hanges y2 but does not 
hanges e and b1. Therefore, in both the
ases we 
an therefore assume that some yi with i > 1 is not in I . (Herere
all that we have put no restri
tion on C, i.e., for us C = Rr). Applyqrii(1) with 2 6 i 6 n in the quadrati
 
ase. This 
hanges xi = 0 (fori > 1) to yi while xn = e is preserved. The ideal generated by the entriesof x now 
ontains Re+Ryi, whi
h is larger than I , a 
ontradi
tion, as I ismaximal. In the Hermitian 
ase if we apply suitable hri(1; : : : ; 1) then alsowe see that the ideal generated by the entries of x now 
ontains Re+Ryi,hen
e a 
ontradi
tion.If 2n = 4, we 
an argue as follows. Let f = 1− e. Let us assume thaty1 6= I as above. Then by Lemma 7.8 it will follow that we 
an �nd somes ∈ R su
h that fsy1 6= Re. First 
onsider the quadrati
 
ase. Applyingqr21(fs) repla
es x2 = e by 
 = e+ fsy1. As e
 = e, I = Re ⊂ R
. Also,f
 = fsy1 ∈ R
 but f
 =∈ I . Hen
e I ( R
, a 
ontradi
tion. We 
an getthe similar 
ontradi
tion for y2 by applying qr22(fs). In the Hermitian
ase, apply hr1(1) to get the 
ontradi
tion for y1. Now note that in thisr = 1 as we have assume r < n. Hen
e we 
an apply qr22(fs) to get the
ontradi
tion.Sin
e all yi lie in Re, the left ideal generated by the all entries of (x y)t isRe, but as this 
olumn ve
tor is unimodular, we get Re = R, and thereforee = 1. �Proof of Theorem 7.2. Let J be the Ja
obson radi
al of R. Sin
e theleft and the right Ja
obson radi
al are same, J is stable under the invo-lution whi
h therefore passes to R=J . Let " be as in Lemma 7.9 for theimage (x′ y′)t of (x y)t. By lifting " from R=J to R and applying it to(x y)t we redu
e to the 
ase where xn is a unit in R. Let � = xn ⊥ x−1n .Then applying (In−2 ⊥ � ⊥ In−2 ⊥ �−1) we 
an assume that xn = 1.Next applying �n−1i=1 qlni(−yi) and �n−1i=1 hlni(−yi) in the respe
tive 
aseswe get y1 = · · · = yn−1 = 0. As isotropi
 ve
tor remains isotropi
 underelementary quadrati
 (Hermitian) transformation, we have yn + �yn = 0,hen
e ql11(�yn) and hl11(�yn) are de�ned and applying it redu
es yn to0 in both the 
ases. Now we want to make xi = 0 for i = 1; : : : ; n. In the
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ase it 
an be done by applying �n−1i=1 h"in(−xi). Note that thistransformation does not a�e
t any yi's, as yi = 0. In the Hermitian 
asewe 
an make xr+1 = · · · = xn = 0 as before applying �n−1i=r+1q"in(−xi).To make x1 = · · · = xr = 0 we have to re
all that the set C = Rr, i.e.,there is no restri
tion on the set C. Hen
e hrn(−x1; : : : ;−xr) is de�nedand applying it we get x1 = · · · = xr = 0. Also note that other xi's andyi's remain un
hanged. Finally, applying hlnn(1) and then hrnn(−1) weget the required ve
tor (0; : : : ; 0; 1). This 
ompletes the proof. �Theorem 7.10. Let k be a 
ommutative ring with identity and R anasso
iative k-algebra su
h that R is �nite as a left k-module. Then thefollowing are equivalent for n > 3 in the quadrati
 
ase and n > r + 3 inthe Hermitian 
ase:(1) (Normality) E(2n;R;�) is a normal subgroup of G(2n;R;�).(2) (L-G Prin
iple) If �(X) ∈ G(2n;R[X ℄;�[X ℄), �(0) = In and�m(X) ∈ E(2n;Rm[X ℄;�m[X ℄)for every maximal ideal m ∈ Max(k), then�(X) ∈ E(2n;R[X ℄;�[X ℄):(Note that Rm denotes S−1R, where S = k \ m.)Proof. In Se
tion 6 we have proved Lemma 6.3 for any form ring withidentity and shown that the lo
al-global prin
iple is a 
onsequen
e ofLemma 6.3. So, the result is true in parti
ular if E(2n;R;�) is a normalsubgroup of G(2n;R;�).To prove the 
onverse we need R to be �nite as k-module, where k is a
ommutative ring with identity (i.e., a ring with trivial involution).Let � ∈ E(2n;R;�) and � ∈ G(2n;R;�). Then � 
an be expressed as aprodu
t of matri
es of the form #ij(ring element) and #i(
olumn ve
tor).Hen
e we 
an write ���−1 as a produ
t of the matri
es of the form (I2n+�M(?1; ?2)�−1), with 〈?1; ?2〉 = 0, where ?1 and ?2 are suitably 
hosenstandard basis ve
tors. Now let v = �?1. Then we 
an write ���−1 as aprodu
t of the matri
es of the form (I2n + �M(v; w)�−1), with 〈v; w〉 =0 for some row ve
tor w in R2n. We show that ea
h (I2n + M(v; w)) ∈E(2n;R;�).Let 
(X) = I2n+XM(v; w). Then 
(0) = I2n. By Lemma 7.4 it followsthat S−1R is a semilo
al ring, where S = k − m, m ∈ Max(k). Sin
e



26 R. BASUv ∈ Um(2n;R), using Theorem 7.2 we getv ∈ E(2n; S−1R;S−1�)e1;hen
e Xv ∈ E(2n; S−1R[X ℄; S−1�[X ℄)e1. Therefore, applying Lemma 6.3over S−1(A[X ℄;�[X ℄) it follows that
m(X) ∈ E(2n; S−1R[X ℄; S−1�[X ℄):Now applying Theorem 6.7, it follows that 
(X) ∈ E(2n;R[X ℄;�[X ℄).Finally, putting X = 1 we get the result. �

§8. Nilpotent property for K1 of Hermitian groupsWe devote this se
tion to dis
uss the study of nilpotent property ofunstable K1-groups. The literature in this dire
tion 
an be found in thework of A. Bak, N. Vavilov and R. Hazrat. Throughout this se
tion weassume R is a 
ommutative ring with identity, i.e., we are 
onsideringtrivial involution and n > r+3. Following is the statement of the theorem.Theorem 8.1. The quotient group SH(2n;R;a1;:::;ar)EH(2n;R;a1;:::;ar) is nilpotent for n >r + 3. The 
lass of nilpoten
y is at the most max (1; d + 3 − n), whered = dim (R).The proof follows by imitating the proof of Theorem 4.1 in [6℄.Lemma 8.2. Let I be an ideal 
ontained in the Ja
obson radi
al J(R) ofR, and � ∈ SH(2n;R;�), with � ≡ In modulo I. Then there exists � ∈EH(2n;R; a1;: : :; ar) su
h that ��= the diagonal matrix [d1; d2; : : : ; d2n℄,where ea
h di is a unit in R with di ≡ 1 modulo I, and � a produ
t ofelementary generators with ea
h 
ongruent to identity modulo I.Proof. The diagonal elements of � are units. Let � = (�ij), where di =�ii = 1 + sii with sii ∈ I ⊂ J(R), for i = 1; : : : ; 2n, and �ij ∈ I ⊂ J(R)for i 6= j. First we make all the (2n; j)th, and (i; 2n)th entries zero, fori = 2; : : : ; n, j = 2; : : : ; n. Then repeating the above pro
ess we 
an redu
ethe size of �. Sin
e we are 
onsidering trivial involution, we take� = n�j=1hlnj(−�2njd−1j )
× �n+r+16i62n−1n+16j6n+r hmi(−�jd−1j ) �r+16i6n−1n+r+16j62n−1h"in(��(n)�(i)d−1j );



LOCAL-GLOBAL PRINCIPLE 27where j = i− r and �j = (0; : : : ; 0; �2nj), and
 = �r+16j62n−1h"nj(ai−r(?)d−12n )r+16i62n−1 hrn(�);where at = 0 for t > r, and � = (�12nd−12n ; �22nd−12n ; : : : ; �n2nd−12n ). Thenthe last 
olumn and last row of 
�� be
ome (0; : : : ; 0; d2n)t, where d2n isa unit in R and d2n ≡ 1 modulo I. Repeating the pro
ess we 
an modify� to the required form. �Proposition 8.3. (
f. [30, Lemma 7℄) Let (R;�) be a 
ommutative formring, i.e., with trivial involution, and s be a non-nilpotent element in Rand a ∈ R. Then for l > 2
[#ij (as) ; SH(2n; slR)] ⊂ EH(2n;R):More generally,["; SH(2n; slR)℄ ⊂ EH(2n;R); for l ≫ 0 and " ∈ EH(2n;Rs):Proof of Theorem 8.1. Re
allLet G be a group. De�ne Z0 = G, Z1 = [G;G℄ and Zi = [G;Zi−1℄.Then G is said to be nilpotent if Zr = {e} for some r > 0, where e denotesthe identity element of G.Sin
e the map EH(2n;R; a1; : : : ; ar) → EH(2n;R=I; a1; : : : ; ar) is sur-je
tive we may and do assume that R is a redu
ed ring. Note that ifn > d + 3, then the group SH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar) =KH1(R; a1; : : : ; ar), whi
h is abelian and hen
e nilpotent. (For details see[4℄). So we 
onsider the 
ase n 6 d+ 3. Let us �rst �x a n. We prove thetheorem by indu
tion on d = dimR. LetG = SH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar):Let m = d+3− n and � = [�; 
℄, for some � ∈ G and 
 ∈ Zm−1. Clearly,the result is true for d = 0. Let �̃ be the pre-image of � under the mapSH(2n;R; a1; : : : ; ar) → SH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar):If R is redu
ed then arguing as Lemma 8.2 it follows that we 
an 
hoose anon-zero-divisor s in R su
h that �̃s ∈ EH(2n;Rs; a1; : : : ; ar).Consider G, where bar denote redu
tion modulo sl, for some l ≫ 0.By the indu
tion hypothesis 
 = {1} in SH(2n;R), where bar denote



28 R. BASUthe redu
tion modulo the subgroup EH(2n;R). Sin
e EH(2n;R) is a nor-mal subgroup of SH(2n;R), for n > r + 3, by modifying 
 we may as-sume that 
̃ ∈ SH(2n;R; slR; a1; : : : ; ar), where 
̃ is the pre-image of 
in SH(2n;R; a1; : : : ; ar). Now by Proposition 8.3 it follows that [�̃; 
̃℄ ∈EH(2n;R; a1; : : : ; ar). Hen
e � = {1} in G. �Remark 8.4. In ( [12, Theorem 3.1℄) it has been proved that the questionof normality of the elementary subgroup and the lo
al-global prin
ipleare equivalent for the elementary subgroups of the linear, symple
ti
 andorthogonal groups over an almost 
ommutative ring with identity. There isa gap in the proof of the statement (3) ⇒ (2) of Theorem 3.1 in [12℄ (for analmost 
ommutative ring). The fa
t that over a non-
ommutative semilo
alring the elementary subgroups of the 
lassi
al groups a
ts transitively onthe set of unimodular and isotropi
 (i.e., 〈 v; v〉 = 0) ve
tors of lengthn > 3 in the linear 
ase, and n = 2r > 6 in the non-linear 
ases has beenused in the proof, but it is not mentioned anywhere in the arti
le. Thiswas pointed by Professor R. G. Swan and he provided us a proof for theabove result.A
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