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LOCAL-GLOBAL PRINCIPLE FOR GENERAL
QUADRATIC AND GENERAL HERMITIAN GROUPS
AND THE NILPOTENCE OF KH;

ABSTRACT. In this article we establish an analog of the Quillen—
Suslin’s local-global principle for the elementary subgroup of the
general quadratic group and the general Hermitian group. We show
that unstable K;-groups of general Hermitian groups over module
finite rings are nilpotent-by-abelian. This generalizes earlier results
of A. Bak, R. Hazrat, and N. Vavilov.

Dedicated to the memory of late Professor Amit Roy

§1. INTRODUCTION

The vigorous study of general linear groups and more generally algebraic
K-theory was stimulated in mid-sixties by the desire to solve Serre’s prob-
lem on projective modules (¢f. Faisceaux Algébriques Coherents, 1955).
This prominent problem in commutative algebra asks whether finitely gen-
erated projective modules over a polynomial ring over a field are free. The
beautiful book Serre’s problem on projective modules by T. Y. Lam gives
a comprehensive account of the mathematics surrounding Serre’s prob-
lem and its solution. Later we see analogs of Serre’s Problem for mod-
ules with forms and for other classical groups in the work of H. Bass,
A. Suslin, L. N. Vaserstein, V. I. Kopeiko, R. Parimala and others in
[11,26,28,29,37,38]. In this current paper, we are interested in the con-
text of modules with forms in certain problems related to Serre’s Problem,
viz. normality of the elementary subgroup of the full automorphism group,
Suslin’s local-global principle for classical-like groups, stabilization for K-
functors of classical-like groups, and the structure of unstable K;-groups
of classical-like groups.

Difficulties one has in handling the quadratic version of Serre’s Problem
in characteristic 2 were first noted by Bass in [11]. In fact, in many cases
it was difficult to handle classical groups over fields of characteristic 2,
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rather than classical groups over fields of char # 2. (For details see [19]).
In 1969, A. Bak resolved this problem by introducing form rings and form
parameter. He introduced the general quadratic group or Bak’s unitary
group, which covers many different types of classical-like groups. We also
see some results in this direction in the work of Klein, Mikhalev, Vaserstein
et al. in [24,25,43]. The concept of form parameter also appears in the
work of K. McCrimmon, and plays an important role in his classification
theory of Jordan algebras (cf. [27]), for details see ( [22, footnote pg. 190])
and [23]. In his seminal work “K-theory of forms”, Bak has established
analog of many problems related to Serre’s problem in a very explicit and
rigorous manner. But, Bak’s definition of the general quadratic group does
not include many other types of classical-like groups, viz. odd dimensional
orthogonal groups, exceptional groups of types Eg, E7, Eg etc. In 2000,
G. Tang, in his Ph.D thesis, established analog of many results for the
general Hermitian groups. Very recently, in 2005, Victor Petrov using Bak’s
concept of doubly parametrized form parameter has resolved this problem
by introducing odd unitary groups, which also includes Bak’s unitary and
general Hermitian groups; c¢f. [30]. Also, he has established many analogous
results for his group.

In 1976, D. Quillen came up with a localization method which was
one of the main ingredients for the proof of Serre’s problem (now widely
known as Quillen—Suslin Theorem). Shortly after the original proof Suslin
introduced the following matrix theoretic version of Quillen’s local-global
principle.

Suslin’s Local-Global Principle: Let R be a commutative ring with
identity, X a variable and o(X) € GL(n, R[X]) with a(0) =1,, n > 3. If
am(X) € E(n, Ru[X]) for every mazimal ideal m € Max(R), then a(X) €
E(n, R[X]).

Soon after he gave the K;-analog of Serre’s problem, which says,

for a polynomial ring in r variables over a field K elementary subgroup
of GL(n, R), n > 3, coincides with the special linear group. i.e.,

E(n, K[X1,...,X,]) = SL(n, K[X1,..., X,).

In connection with this theorem he proved the normality of the elementary
subgroup E(n, A) in the general linear group GL(n, A), over a module finite
ring A, for n > 3; (¢f. [41]). Later analogous results for the symplectic and
orthogonal groups were proven by Suslin and Kopeiko in [35] and [37] and
by Fu An Li in [16], and for arbitrary Chevalley groups by Abe (cf. [1]) in
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the local case, and by Taddei (¢f. [40]) in general. Later we see a simpler
and more general treatment in works of Ambily, Bak, Hazrat, Petrov, Rao,
Stavrova, Stepanov, Suzuki, Vavilov, and others.

We see generalization of the above local-global principle for the sym-
plectic group in [26], and for the orthogonal group in [37]. The normality
of the general quadratic groups is known from the work of A. Bak and
N. Vavilov, ¢f. [8]. In [39], G. Tang has proved the normality property for
the general Hermitian groups. In [12], we have shown that the question of
normality of the elementary subgroup of the general linear group, symplec-
tic and orthogonal groups, is equivalent to the above local-global principle,
where the base ring is associative with identity and finite over its center. In
that article above three classical groups were treated uniformly. Motivated
by the work of A. Bak, R. G. Swan, L. N. Vaserstein and others, in [6], the
author with A. Bak and R. A. Rao has established an analog of Suslin’s
local-global principle for the transvection subgroup of the automorphism
group of projective, symplectic and orthogonal modules of global rank at
least 1 and local rank at least 3, under the assumption that the projective
module has constant local rank and that the symplectic and orthogonal
modules are locally an orthogonal sum of a constant number of hyperbolic
planes. In this article we have proved the equivalence of the local-global
principle with the normality property. Since normality holds in the above
cases, this establishes that the local global principle also holds. In fact, fol-
lowing Suslin—Vaserstein’s method we establish an analogous local-global
principle for the general quadratic and general Hermitian groups.

We treat these two groups uniformly and give explicit proofs of those
results. We have overcome many technical difficulties which come in the
Hermitian case due to the elements aq,...,a, (with respect to these ele-
ments we define the Hermitian groups). We assume a; = 0. The rigorous
study of the general Hermitian groups can be found in [39]. In [8], we get
an excellent survey on this area in a joint work of A. Bak and N. Vav-
ilov. We refer to [20] for an alternative approach to localization, [21] for
a general overview, and to [14] for relative cases. Also, for commutative
rings with identity Quillen—Suslin’s local-global principle is in the work of
V. Petrov and A. Stavrova (cf. [31]), which covers, in particular, classical
groups of Witt index > 2 or > 3, depending on the type.

In [12], it has been shown that the normality criterion of the elementary
subgroup of the general linear group is equivalent to the above local-global
principle. In this paper we establish the analogous local-global principle
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for the general quadratic and Hermitian group, and prove an equivalence.
More precisely, we prove (§6, Theorem 6.7, and §7, Theorem 7.10)

Theorem 1 (Local-Global Principle). Let k be a commutative ring
with identity and R an associative k-algebra such that R is finite as a left
k-module. If a(X) € G(2n, R[X], A[X]), a(0) =1, and

am(X) € E(2n, Ru[X], Am[X])
for every mazimal ideal m € Max(k), then
a(X) € E(2n, R[X], A[X]).

Theorem 2. Let k be a commutative ring with identity and R an asso-
ciative k-algebra such that R is finite as a left k-module. Then for size at
least 6 in the quadratic case and at least 2(r + 3) in the Hermitian case:

(Normality of the elementary subgroup)

(Local-Global Principle)

To give a complete picture about the K;-functors we shall shortly dis-
cuss the progress in the stabilization problem for K;-functors. The study
of this problem first appeared in the work of Bass—Milnor—Serre, and then
we see it in the work by A. Bak, M. Stein, L. N. Vaserstein, and others
for the symplectic, orthogonal and general quadratic groups. For details
cf. [2,36,42-44]. In 1998, R. A. Rao, and W. van der Kallen studied this
problem for the linear groups over an affine algebra in [32]. The result set-
tled for the general quadratic and the general Hermitian groups by A. Bak,
G. Tang and V. Petrov in [5] and [4]. The result by Bak-Petrov—Tang has
been improved by Sergei Sinchuk, (¢f. [34]). It has been observed that over
a regular affine algebra Vaserstein’s bounds for the stabilization can be
improved for the transvection subgroup of the full automorphism group
of projective, and symplectic modules. But they cannot be improved for
the orthogonal case in general. For details cf. [33]. We refer to the recent
breakthrough result by J. Fasel, R. A. Rao, and R. G. Swan ([15, Corol-
lary 7.7]). A very recent result of Weibo Yu gives a similar bound for the
odd unitary groups, (cf. [46]). In this paper we don’t prove any new result
in this direction.

Though the study of stability for Kj-functors started in mid-sixties,
initially the structure of K;-group below the level of stable range was not
much studied. In 1991, A. Bak showed that the group GL(n, R)/E(n, R)
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is nilpotent-by-abelian for n > 3; (¢f. [3]). In [17], R. Hazrat proved the
similar result for the general quadratic groups over module finite rings.
The paper of Hazrat and Vavilov [18] redoes this for ordinary classical
Chevalley groups (that is types A, C, and D) and then extends it further
to the exceptional Chevalley groups (that is types E, F, and G). They
have shown the following: Let ® be a reduced irreducible root system of
rank > 2 and R be a commutative ring such that its Bass—Serre dimension
0(R) is finite. Then for any Chevalley group G(®, R) of type ® over R the
quotient G(®, R)/E(®, R) is nilpotent-by-abelian. In particular, K; (®, R)
is nilpotent of class at most 6(R) + 1. They use the localization-completion
method of A. Bak in [3]. In [6], the author with Bak and Rao gave a uniform
proof for the transvection subgroup of the full automorphism group of
projective, symplectic and orthogonal modules of global rank at least 1
and local rank at least 3. Our method of proof shows that for classical
groups the localization part suffices. Recently, in (cf. [7]) Bak, Vavilov and
Hazrat proved the relative case for the unitary and Chevalley groups. But,
to my best knowledge, so far there is no definite result for the general
Hermitian groups. I observe that using the above local-global principle,
arguing as in [6], it follows that the unstable K; of general Hermitian
group is nilpotent-by-abelian. We follow the line of Theorem 4.1 in [6].
More precisely, we prove (Theorem 8.1)

Theorem 3. For the general Hermitian group of large size over a com-
mutative ring R with identity, the quotient group

SH(2n,R,ay,...,a,)/EH(2n,R,ay,...,a;)
is nilpotent for n > r + 3.

We conclude with a brief description of the organization of the rest of
the paper. Section 1 of the paper serves as an introduction. In Section 2 we
recall the notion of form rings, in Section 3 we discuss general quadratic
groups over form rings and their elementary subgroups, in Section 4 we
introduce general Hermitian groups and their elementary subgroups, Sec-
tion 5 provides preliminary results regarding the groups above, in Section 6
we establish the local-global principle for the elementary subgroup of the
general quadratic and general Hermitian group, and in Section 7 we prove
equivalence of normality of the elementary subgroup and the local-global
principle for the elementary subgroup. Finally, Section 8 culminates with
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the proof of the nilpotent by abelian structure of non-stable K; of the
general Hermitian group.

§2. ForM RINGS

Definition. Let us first recall the concept of A-quadratic forms introduced
by A. Bak in his Ph.D. thesis (cf. [2]) in order to overcome the difficulties
that arise for the characteristic 2 cases.

Let R be an (not necessarily commutative) associative ring with identity,
and with involution — : R — R, a+— @. Let A\ € C(R) = center of R be an
element with the property A\ = 1. We define additive subgroups of R

Amax ={a € Rla=—-Xa} & Anin={a—)\a|a€ R}.

One checks that Anmax and Anin are closed under the conjugation oper-
ation a — Tax for any x € R. A A\-form parameter on R is an additive
subgroup A of R such that Amin € A C Apax, and TAz C A for all x € R.
A pair (R, A) is called a form ring.

Examples:

(1) Amin = 0 & XA = 1, and involution is trivial. In particular, A =
0 & X =1, involution is trivial, and R is commutative.

(2) If R is a commutative integral domain, and involution is trivial,
then A2 =1 XA = +1. If A = 1 and charR # 2, then Apa, = 0,
and so 0 is the only form parameter. If A = —1 and charR # 2,
then A contains 2R, and closed under multiplication by squares. If
R is a field, then we get A = R. If Ris a Z, then we get A = 2Z and
Z.If charR = 2, then R? is a subring of R, and A = R2-submodules
of R.

(3) The ring of n x n matrices (M(n, R), A,) is a form ring.

Remark. An earlier version of A\-form parameter due to K. McCrimmon
plays an important role in his classification theory of Jordan algebras. He
defined it for the wider class of alternative rings (not just associative rings),
but for associative rings it is a special case of Bak’s concept. (For details,
c¢f- N. Jacobson; Lectures on Quadratic Jordan Algebras, TIFR, Bombay
1969). The excellent work of Hazrat—Vavilov in [19] is a very good source
to understand the historical motivation behind the concept of form rings.
And, an excellent source to understand the theory of form rings is the
book [22] by A. J. Hahn and O. T. O’Meara.
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§3. GENERAL QUADRATIC GROUP

Let V' be a right R-module and GL(V) the group of all R-linear au-
tomorphisms of V. A map f: V xV — R is called sesqulinear form if
flut v,z +w) = f(u,2) + Flu,w) + f(v,2) + fv,w) and f(ua,vb) =
af(u,v)b for all u,v € V, a,b € R. We define A-quadratic form q on V,
and associated A-Hermitian form and as follows:

q:V — R/A, givenby ¢(v)= f(v,v)+A, and

h:VxV —= R, givenby h(u,v)= f(u,v)+ Af(v,u).
A Quadratic Module over (R, A) is a triple (V, h, q).
Definition. “Bak’s Unitary Groups” or “The Unitary Group of a Qua-

dratic Module” or “General Quadratic Group” GQ(V,q,h) is defined as
follows:

GQ(V,q,h) = {a € GL(V) | h(au, av) = h(u,v), g(av) = q(v)}.

Examples: Traditional Classical Groups

(1) By taking A = Apax = R, A = —1, and trivial involution we get
the symplectic group GQ(2n, R, A) = Sp(2n, R).

(2) By taking A = Anin = 0, A = 1, trivial involution we get the
quadratic or the orthogonal group GQ(2n, R,A) = O(2n, R).

(3) For the general linear group, let R° be the ring opposite to R, and
R° = R & R°. Define involution as follows: (z,4°) — (y,z°). Let
A=(1,1°) and A = {(z, —2°) | © € R}. Then identify

GQ(2n,R°,A) = {(g9,97") |9 € GL(n,R)}

with GL(n, R).

Free Case: Let V be a free right R-module of rank 2n with ordered
basis ej,es,...,€p,6_n,.-.,€_2,e_1. Consider the sesqulinear form f :
V xV — R, defined by f(u,v) =Ujv_1+---+Upv_y. Let h be Hermitian
form, and ¢ be the A-quadratic form defined by f. So, we have

h(u,v) =Tv_1 + -+ Tpv_p + NU—_pvp + - - + ANU_101,

q(u) =A+wu_y + -+ Tpu_p.

Using this basis we can identify GQ(V, h,q) with a subgroup of GL(2n,R)
of rank 2n. We denote this subgroup by GQ(2n, R, A).
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By fixing a basis ey, es,...,ep,6_1,€_9,...,e_p, we define the form

0 AL,
Yn = <1n 0 > '
Hence, GQ(2n, R,A) = {0 € GL(2n, R, A) | 5¢pp0 = ¢y }.

For o = <: g) € GL(2n, R, A), one can show that o € GQ(2n, R, A)

(o, 3,7,0 are n x n block matrices) if and only if Fa, 63 € A. For more
details see ( [2, 3.1 and 3.4]).

A typical element in GQ(2n, R,A) is denoted by a 2n x 2n matrix
(i B), where a, 3,7,d are n x n block matrices.

)
There is a standard embedding, GQ(2n, R, A) — GQ(2n+2, R, A), given

by
a 0
a f 0 1
(7 5) Tl oo
0 0
called the stabilization map. This allows us to identify GQ(2n, R, A) with
a subgroup in GQ(2n + 2, R, A).

8 0
0 0
o 0
0 1

Elementary Quadratic Matrices: Let p be the permutation, defined
by p(i) =n+ifori =1,...,n. Let e;; be the matrix with 1 in the ij-th
position and 0’s elsewhere. For a € R, and 1 < i,j < n, we define

qeij(a) = Iop + aej; — ae,(j)p(iy for i # j,

) Lon +aey(yy) — Aaejp)  for i £ g,
qri]'( ) 1 for i = 4
on + aep(s) or e =j,

Lo, + ae iy, — Aae,;; for i # j,
qlij(a) = " p(i)j () 7
IQn + aep(i)j for ¢ = J-
(Note that for the second and third type of elementary matrices, if i = j,

then we get a = —\@, and hence it forces that a € Ayax(R). One checks
that these above matrices belong to GQ(2n, R, A); cf. [2].)

n-th Elementary Quadratic Group EQ(2n, R, A): The subgroup
generated by ge;i;(a), grij(a) and gl;j(a), for a € R and 1 <i,j < n.
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It is clear that the stabilization map takes generators of EQ(2n, R, A)
to the generators of EQ(2(n + 1), R, A).

Commutator Relations: There are standard formulas for the com-
mutators between quadratic elementary matrices. For details we refer [2,
Lemma 3.16], and [17, §2]. In later sections we shall repeatedly use those
relations.

§4. HERMITIAN GROUP

We assume that A is a A-form parameter on R. For a matrix M = (m;;)

over R we define M = (7;;)¢. For ay,...,a, € A and n > r let
aq 0 0 0
0 a 0 - 0
A= o o = lai,...,a]
o --- 0 ar—1 O
o --- 0 0 ar

denote the diagonal matrix whose #i-th diagonal coefficient is a;. Let A =
Ay L 1,_,. We define the forms

ph = A A, ¢ _ 0 A,
n I, 0 )’ " I, 0 )°
Definition: General Hermitian Group of the elements aq,...,a, is

defined as follows: GH(2n, R, a1, ...,a,,A): The group generated by the
all non-singular 2n x 2n matrices

{o € GL(2n, B) |7¢lo = o1}
As before, there is an obvious embedding
GH(2n,R,a4,...,a,,\) — GH(2n + 2, R, a4,...,a,,\).

To define elementary Hermitian matrices, we need to consider the
T

set C = {(x1,...,2.)t € (R Y. Tiaiz; € Amin(R)} for ay,...,a, as
i=1

above. In order to overcome the technical difficulties caused by the el-

ements ay,...,a,, we shall finely partition a typical matrix <: B) of
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GH(2n, R, a1, ...,a,,A) into the form

a1 oz B Prie
a1 ooy fBar Poo
71 vz i 02
Y21 Yoz 021 Oa2

where a11, 811,711,011 are r X r matrices, a2, 812,712,012 are r X (n —r)
matrices, 0421,621,’)/21,521 are (TL — ’I") xXr matrices, and 0422,622,’)/22,622
are (n —r) X (n — r) matrices. By ([39, Lemma 3.4]),

the columns of a1 — Ir:04125611’B1273117§217311 — 1,091 € C. (1)

It is a  straightforward check  that the subgroup  of
GH(2n, R, a4, ...,a,, ) consisting of

I, 0 0 0

0 ax 0 B

0 0 I 0 € GH(2n,R,a1,-..,a;)
0 722 0 2

~GH(2(n —1),R,a1,...,a,,A).

Elementary Hermitian Matrices: The first three kinds of generators
are taken for the most part from GQ(2(n—r), R, A), which is embedded, as
above, as a subgroup of GH(2n, R) and the last two kinds are motivated
by the result (1) concerning the column of a matrix in GH(2n, R). For
a € R, we define

h’l""(a,) _ Ign + aeip(j) — /\Ee]p(l) for r +1 < Z,j < ’I’L,i 75']
Y Ly + aeqp(y) forr +1<14,j <n,i=1j,
hl(a) — I2n + aep(i)j — Xaep(j)i for 1 < 7,,] < n,1 ;é i
Y L + aepy; for 1 <i,j <n,i=

(Note that for the second and third type of elementary matrices, if i = j,
then we get @ = —Aa, and hence it forces that a € Apax(R)). One checks
that the above matrices belong to GH(2n, R, a4, ..., a.,A); cf. [39].



LOCAL-GLOBAL PRINCIPLE 15

_ r
For ¢ = (z1,...,2,)! € C, let {; € R be such that (s +A(p = Y Tia;w;.
i=1

(The element (y is not unique in general). We define

Ir Q12 0 0

0 L—» 0 0
hml(C) - 0 —Zlam Ir 0

0 Y22 a1y I,

for ( € C'and r + 1 < i < n to be the 2n x 2n matrix, where a;y is the
r X (n—r) matrix with ¢ as its (i —r)th column and all other column’s zero,
and 722 is the (n — ) X (n — r) matrix with Zf in (i — r,i — r)th position
and 0’s elsewhere. Let e denote the column vector of length (n—r) with 1
in the kth position and 0’s elsewhere, and e; s denote a (n —r) x (n —r)
matrix with 1 in the ¢sth position and 0’s elsewhere.

As above, we define

I, 0 0 Bi2
|0 T =B B22

hri(Q) = 0 0 I, — A Bio
0 0 0 I,_»

for ( € C and r+1 < i < n to be a 2n x 2n matrix, where (315 is the
r X (n — r) matrix with ¢ as its (¢ — 7)th column and all other column’s
zero, and (22 is the (n —r) X (n — r) matrix with )\Zf in (i —r,i —r)th
position and 0’s elsewhere.

Note that if n = epy(a) is an elementary generator in GL(s, R), then
the matrix (I,—s L n L I,—s L n~") = heyj(a). It has been shown in [39]
(85) that each of the above matrices is in GH(2n, R, a1, . ..,a,,A).

Definition: nth Elementary Hermitian Group of the elements
ai,...,ar; EH(2n,R,a1,...,ar,A): The group generated by he;;(a),
hrij(a), hlij(a), hm;(¢) and hr;(¢), fora € R, ( € C and 1 < i,j < n.

The stabilization map takes generators of EH(2n, R, a,...,a,, A) to
the generators of EH(2(n + 1), R, a1, . ..,a,, A).

Commutator Relations: There are standard formulas for the com-
mutators between quadratic elementary matrices. For details we refer [39].



16 R. BASU

§5. PRELIMINARIES AND NOTATIONS

Blanket Assumption: We always assume that 2n > 6 and n > r while
dealing with the Hermitian case. We do not want to put any restriction on
the elements of C'. Therefore we assume that a; € Apin(R) fori=1,...,r,
as in that case C' = R". We always assume a; = 0.

Notation 5.1. In the sequel M(2n, R) will denote the set of all 2n x
2n matrices. By G(2n, R, A) we shall denote either the quadratic group
GQ(2n, R, A) or the Hermitian group GH(2n, R, ay, ..., a,, A) of size 2n x
2n. By S(2n, R, A) we shall denote respective subgroups SQ(2n, R, A) or
SH(2n, R, ay,...,a,, A) with matrices of determinant 1, in the case when R
will be commutative. Then, by E(2n, R, A) we shall denote the correspond-
ing elementary subgroups EQ(2n, R,A) and EH(2n,R,a4,.-.,a,,A). To
treat uniformly we denote the elementary generators of EQ(2n, R, A), and
the first three types of elementary generators of EH(2n, R, A) by ¥;; (%), for
some x € R. To express the last two types of generators of EH(2n, R, A)
we shall use the notation ¥;(x), where *x is a column vector of length r
defined over the ring R, i.e., we will have two types of elementary gener-
ators, namely ;;(ring element) and ¢;(column vector). Let A[X] denote
the A-form parameter on R[X] induced from (R, A), i.e., A-form param-
eter on R[X] generated by A, i.e., the smallest form parameter on R[X]
containing A. Let A; denote the A\-form parameter on Rg induced from
(R,A).

For any column vector v € (R*™)! we define the row vectors v, = v’
and vy, = Et’(ﬁz.
Definition 5.2. We define the map M : (R?")! x (R*")! — M(2n, R) and
the inner product (,) as follows:
M(v,w) = v.i, — M\w.v;, when G(2n,R) = GQ(2n, R, A)
= 0.W,, — \W.0,, when G(2n,R) = GH(2n, R, a4,...,a,,A),
(v,w) =v5.w, when G(2n, R) = GQ(2n, R, A)
=vp.w, when G(2n,R) = GH(2n, R, ay4,...,a, 7).
Note that the elementary generators of the both groups EQ(2n, R) and
EH(2n, R) are of the form I, + M(%,*2) for suitable chosen standard

basis vectors.
We recall the following well known facts:
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Lemma 5.3. (cf. [2,39]) The group E(2n, R, A) is perfect for n > 3 in the
quadratic case, and for n > r + 3 in the Hermitian case, i.e.,

[E(2n, R,A),E(2n, R,A)] = E(2n, R, A).

Lemma 5.4. (Splitting property): For all elementary generators of
the general quadratic group GQ(2n, R, A) and for the first three types el-
ementary generators of the Hermitian group GH(2n,R, a1, ...,a,,\) we
have:
Dij(z +y) = D4 (@)0i5(y)

for all z,y € R.

For the last two types of elementary generators of Hermitian group we
have the following relation:

him;(Q)hmi(€) = hm;(C + hlii(Cr + & + CAIE— (C+E)),
hri(Qhri(€) = hri(C + Ehru((C + &) 5 — &5 — ¢ — EALQ).

Proof. See [2, pp. 43-44, Lemma 3.16] for the GQ(2n, R, A) and [39,
Lemma 8.2] for the group GH(2n, R, ay,...,a,, A). O

Lemma 5.5. Let G be a group, and a;, b; € G, fori =1,...,n. Then for

k2 n n 1 n
r; = Il a;, we have Il a;b; = IL ribyr; " 11 a;.
j=1 i=1 i=1 i=1

Notation 5.6. By G(2n, R[X], A[X], (X)) we shall mean the group of all
quadratic and Hermitian matrices over R[X] which are I,, modulo (X).

Lemma 5.7. The group G(2n,R[X],A[X], (X)) N E(2n, R[X],A[X]) is
generated by the elements of the types e0;j(x1)e™"! and e0;(%2)e™", where
€ Ec E(Qn, R,A), *1 € R[X], *9 € ((R[X])Qn)t with both 19@’]' (*1) and '191'(*2)
congruent to Ia, modulo (X).

We give a proof of this Lemma for the Hermitian group. The proof for
the quadratic case is similar, but easier.

Proof of Lemma 5.7. Let a1 (X),...,a,(X) be r elements in the poly-
nomial ring R[X] with respect to which we are considering the Hermitian
group GH(2n, R[X],a1(X),...,a.(X), A[X]).

Let a(X)€EH(2n, R[X],a1(X),...,a,(X), A[X]) be such that «(X) is
congruent to I», modulo (X). Then we can write a(X) as a product of
elements of the form ¥;;(%1), where x; is a polynomial in R[X], and of the
form ¥;(x2), where x5 is a column vector of length r defined over R[X].
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We write each x; as a sum of a constant term and a polynomial which is
identity modulo (X). Hence by using the splitting property described in
Lemma 5.4 each elementary generator ¥;;(%1) of first three type can be
written as a product of two such elementary generators with the left one
defined on R and the right one defined on R[X] which is congruent to I,
modulo (X).

For the last two types of elementary generators we write each vector
%3 as a sum of a column vector defined over the ring R and a column
vector defined over R[X] which is congruent to the zero vector of length r
modulo (X). In this case, as shown in Lemma 5.4, we get one extra term
involving elementary generator of the form hl;; or hr;. But that extra
term is one of the generator of first three types. And then we can split
that term again as above. Therefore, a(X) can be expressed as a product
of following types of elementary generators:

935 (%1(0))9;5 (X 1) with %1 (0) € R and 9;;(X+1) = Iz, modulo (X),

93 (x2(0))0; (X *2) with x2 (0) € R and ¢;(X*2) = I, modulo (X).
Now result follows by using the identity described in Lemma 5.5. O

§6. SUSLIN’S LOCAL-GLOBAL PRINCIPLE

In his remarkable thesis (¢f. [2]) A. Bak showed that for a form ring
(R,A) the elementary subgroup EQ(2n, R, A) is perfect for n > 3 and
hence is a normal subgroup of GQ(2n,R,A). As we have noted earlier,
this question is related to Suslin’s local-global principle for the elemen-
tary subgroup. In [39], G. Tang has shown that for n > r + 3 the ele-
mentary Hermitian group EH(2n, R,ay,...,a,,A) is a normal subgroup
of GH(2n, R, ay,...,a,,A). In this section we deduce an analogous local-
global principle for the elementary subgroup of the general quadratic and
Hermitian groups, when R is module finite, i.e., finite over its center. We
use this result in §8 to prove the nilpotent property of the unstable Her-
mitian group KH; . Furthermore, we show that if R is finite over its center,
then the normality of the elementary subgroup is equivalent to the local-
global principle. This generalizes our result in [12].

The following is the key Lemma, and it tells us the reason why we need
to assume that the size of the matrix is at least 6. In [12], proof is given for
the general linear group. Arguing in similar manner by using identities of
commutator laws result follows in the unitary and Hermitian cases. A list
of commutator laws for elementary generators is stated in (]2, pp. 43—44,
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Lemma 3.16]) for the unitary groups and in ([39, pp. 237-239, Lemma 8.2])
for the Hermitian groups. For a direct proof we refer [30, Lemma 5].

Lemma 6.1. Suppose ¢ is an elementary generator of the general qua-
dratic (Hermitian) group G(2n, R[X],A[X]), n > 3. Let ¥ be congruent to
identity modulo (X?™), for m > 0. Then, if we conjugate ¥ with an ele-
mentary generator of the general quadratic (Hermitian) group G(2n, R, A),
we get the resulting matriz as a product of elementary generators of general
quadratic (Hermitian) group G(2n, R[X], A[X]), each of which is congruent
to identity modulo (X™).

Corollary 6.2. In Lemma 6.1 we can take ¥ as a product of elementary
generators of the general quadratic (general Hermitian) group

G(2n, R[X], A[X)).

Lemma 6.3. Let (R,A) be a form ring and v € E(2n, R, A)es,. Let
w € R?™ be a column vector such that (v,w) = 0. Then Iz, + M(v,w) €
E(2n,R,A).

Proof. Let v = eeq,, where ¢ € E(2n, R, A). Then it follows that I, +
M, w) = e(Iz,, + M(e2n,w;))e™t, where w; = e 1w. Since (ez,,w;) =
(v,w) =0, we get wt = (wi1,...,w1n-1,0,W1p41,-.-,w12,). Therefore,
as M =\ =1,

I + M(vw)

I eqlin(=ATp41:) qejn(—AT1 )l (+)e ™
1<j<sn
1<i<n—1
7Y L ehlin(= N1 i (=AW 1 jomn (=T01 1))l (1)
T+I§;§n
1<i<n—1
(in the quadratic and Hermitian cases respectively),

where Wy 1, = (W1 pak,0,--.,0). Hence the result follows. O

Note that the above implication is true for any associative ring with
identity. From now onwards we assume that R is finite over its center
C(R). Let us recall

Lemma 6.4. Let A be a Noetherian ring and s € A. Then there ez-
ists a natural number k such that the homomorphism G(A,s*A, s*A) —
G(As, As) (induced by localization homomorphism A — Ag) is injective.
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For the proof of the above lemma we refer ([18, Lemma 5.1]). Also,
we recall that any module finite ring R is the direct limit of its finitely
generated subrings. Thus, one may assume that C(R) is Noetherian.

Let (R, A) be a (module finite) form ring with identity.

Lemma 6.5. (Dilation Lemma) Let a(X) € G(2n, R[X],A[X]), with
a(0) = Lo, If as(X) € E(2n, R[X], As[X]), for some non-nilpotent s € R,
then a(bX) € E(2n, R[X], A[X]), for b € s'C(R), and | > 0.

Remark 6.6. (In the above Lemma we actually mean there exists some
B(X) € E(2n, R[X], A[X]) such that 3(0) = I, and 85(X) = a(bX).)

Proof. Given that as(X) € E(2n, Rs[X], As[X]). Since a(0) = Ia,, us-
ing Lemma, 5.7 we can write as(X) as a product of the matrices of the
form ev;;(x1)e™! and e¥;(x2)e™!, where e € E(2n, R,, A;), 51 € R,;[X],
xs € ((Rs[X])*™)" with both 9;j(x1) and ¥;(x2) congruent to I, mod-
ulo (X). Applying the homomorphism X + XT9 where d > 0, from
the polynomial ring R[X] to the polynomial ring R[X,T], we look on
a(XT?). Note that Rs[X,T] = (Rs[X])[T]. As C(R) is Noetherian, it fol-
lows from Lemma 6.4 and Corollary 6.2 that over the ring (Rs[X])[T] we
can write az(XT?) as a product of elementary generators of general qua-
dratic (Hermitian) group such that each of those elementary generators
is congruent to identity modulo (7). Let ! be the maximum of the pow-
ers occurring in the denominators of those elementary generators. Again,
as C(R) is Noetherian, by applying the homomorphism T +— s™T, for
m > [, it follows from Lemma 6.4 that over the ring R[X,T] we can
write o (XT?) as a product of elementary generators of general quadratic
(Hermitian) group such that each of those elementary generator is con-
gruent to identity modulo (T'), for some b € (s')C(R), i.e., we get there
exists some (X, T) € E(2n, R[X,T], A[X,T]) such that 3(0,0) = I, and
Bs(X,T) = a(bXT?). Finally, the result follows by putting 7' = 1. O

Theorem 6.7. (Local-Global Principle) If a(X) € G(2n, R[X], A[X]),
a(0) =1, and
an(X) € E(2n, Rn[X], An[X]),
for every mazimal ideal m € Max (C(R)), then
a(X) € E(2n, R[X], A[X]).
(Note that Ry, denotes S~'R, where S = C(R)\ m).
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Proof. Since an(X) € E(2n, Rn[X], An[X]), for all m € Max(C(R)), for
each m there exists s € C(R) \ m such that as(X) € E(2n, Rs[X], As[X]).
Using Noetherian property we can consider a finite cover of C'(R), say
51+ +8. =1 Let 0(X,T) = as(X + T)ay(T) ™. Then

0(X,T) € E(2n, (R,[T])[X], As[T][X])

and #(0,T) = I,,. By Dilation Lemma, applied with base ring R[T], there
exists A(X) € E(2n, R[X,T], A[X,T]) such that

Bs(X) = 6(bX,T). (2)
Since for [ > 0, the ideal (s},...,s.) = R, we chose by,bs,...,b, €
1.

[\

C(R), with b; € (s')C(R), [ > 0 such that (2) holds and by + - - - + b, =
Then there exists 5%(X) € E(2n, R[X,T],A[X,T]) such that £ (X) =
0(b; X, T). Therefore,

11 5(X) € B(2n, RIX, T], A[X, T).
But,

r—1
s, -5, (X) = <,H1981---37---sr (bi X, T)|Tbi+1X+...+b,X> Osy......5,, (br X, 0).

Since a(0) = I,, and as a consequence of the Lemma 6.4 it follows that
the map E(R,s*R,s*A) — E(R,, A,) in injective, we conclude a(X) €
E(2n, R[X], A[X]). O

§7. EQUIVALENCE OF NORMALITY AND LOCAL-GLOBAL
PRINCIPLE

Next we are going to show that if k is a commutative ring with iden-
tity and R is an associative k-algebra such that R is finite as a left k-
module, then the normality criterion of elementary subgroup is equivalent
to Suslin’s local-global principle for above two classical groups. (Remark:
One can also consider R as a right k-algebra.)

One of the crucial ingredients in the proof of the above theorem is
the following result which states that the group E acts transitively on
unimodular vectors. The precise statement of the fact is the following:

Definition 7.1. A vector (vy,...,vs,) € R?" is said to be unimodular if
2n

there exists another vector (ug,...,us,) € R?™ such that > v;u; = 1.
i=1

The set of all unimodular vector in R?" is denoted by Ijm(Qn, R).
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Theorem 7.2. Let R be a semilocal ring (not necessarily commutative)
with involution and v = (v, ..., v2,)" be a unimodular and isotropic vector
in R*™. Then v € E(2n, R)es, for n > 2, i.e., E(2n, R) acts transitively
on the set of isotropic vectors in Um(2n, R).

Let us first recall some known facts before we give a proof of the theo-
rem.

Definition 7.3. An associative ring R is said to be semilocal if R/rad(R)
is Artinian semisimple.

We recall the following three lemmas.

Lemma 7.4. (H. Bass) Let A be an associative B-algebra such that A is
finite as a left B-module and B be a commutative local ring with identity.
Then A is semilocal.

Proof. Since B is local, B/rad(B) is a division ring by definition. That
implies A/rad(A) is a finite module over the division ring B/rad(B) and
hence is a finitely generated vector space. Thus A/rad(A) Artinian as
B/rad(B) module and hence A/rad(A) Artinian as A/rad(A) module, so
it is an Artinian ring.

It is known that an artin ring is semisimple if its radical is trivial. Thus
A/rad(A) is semisimple, as rad(A/rad(A)) = 0. Hence A/rad(A) Artinian
semisimple. Therefore, A is semilocal by definition. O

Lemma 7.5. (H. Bass) ([10, Lemma 4.3.26]) Let R be a semilocal ring
(may not be commutative), and let I be a left ideal of R. Let a in R be
such that Ra+ I = R. Then the coset a +1 = {a + x|z € I} contains a
unit of R.

Proof. We give a proof due to R. G. Swan. We can factor out the radical
and assume that R is semisimple Artinian. Let I = (RaNI)@®I’. Replacing
I by I' we can assume that R = Ra® I. Let f : R — Ra by r — ra, for
r € R. Therefore, we get a split exact sequence

OHJHRLRCL—»(),

for some ideal J in R which gives us a map ¢ : R — J such that R (fi?

Ra @ J is an isomorphism. Since Ra® J = R 2 Ra® I cancellation (using
Jordan—Holder or Krull-Schmidt) shows that J = I. If h : R = J = I,

then R (79) Ra@®I = Ris an isomorphism sending 1 to (a,i) to a + i,

where i = h(1). Hence it follows that a + i is a unit. O



LOCAL-GLOBAL PRINCIPLE 23

Lemma 7.6. Let R be a semisimple Artinian ring and I be a left ideal
of R. Let J = Ra+ I. Write J = Re, where e is an idempotent (possible
since J is projective. For detail cf. [13, Theorem 4.2.7]). Then there is an
element i € I such that a + i = ue, where u is a unit in R.

Proof. Since R=J+R(1—e) = Ra+1+ R(1—e), using Lemma 7.5 we
can find a unit u =a+i+ (1 —e) in R, for some z € R. Since a+i € Re,
it follows that ue = a + 1. O

Corollary 7.7. Let R be a semisimple Artinian ring and (a,...,ay)!
be a column vector over R, where n > 2. Let ¥Ra; = Re, where e is
an idempotent. Then there exists ¢ € E,(R) such that e(a1,...,a,)" =
(0,...,0,e)t.

Proof. By Lemma 7.6 we can write ue = E?:_llbiai + a,, where u is a
unit. Therefore, applying an elementary transformation we can assume
that a,, = ue. Multiplying from the left by (I,_» L v 1 u™!) we can make
an, = e. Since all a; are left multiple of e, further elementary transforma-
tions reduce our vector to the required form. O

The following observation will be needed to do the case 2n = 4.

Lemma 7.8. Let R be a semisimple Artinian ring and e be an idempotent.
Let f =1—e, and b be an element of R. If fRb C Re, then we have b € Re.

Proof. Since R is a product of simple rings, it will suffice to do the case
in which R is simple. If e = 1, we are done. Otherwise RfR is a non-zero
two sided ideal, and hence RfR = R. Since Rb = RfRb C Re, we have
b € Re. O

Lemma 7.9. Let R be a semisimple Artinian ring and let — : R — R be
a A-involution on R. Let (x y)! be a unimodular row of length 2n, where
2n > 4, and z,y € R"™. Then there exists an element ¢ € E(2n, R) such
that e(x y)t = (2’ y')t, where o is a unit in R.

Proof. Let * = (z1,...,2,)" and b = (y1,...,yn)t. We claim that there
exists € € E(2n, R) such that e(z y)! = (z’ y'), where #’ is a unit in R.
Among all (2’ y')? of this form, choose one for which the ideal I = ¥Rz
is maximal. Replacing the original (z y)! by (2’ ¥')! we can assume that
I = ¥Rz; is maximal among such ideals. Write I = Re, where e is an
idempotent in R. By Corollary 7.7 we can find an element n € E,,(R) such
that nz = (0,0,...,e)t. So we can modify = by elementary generators of
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the form ge;;(x) or he;j(x) and hence we assume that z = (0,0,..., €)%
We claim that y; € Re for all ¢ > 1.

First we consider the case 2n > 6. Assume y; ¢ I, but y; € I for all
i > 2. If we apply ¢e1,(1) in the quadratic case then this replaces y,, to
Yn — Y1 but not changes e and y;. On the other hand for the Hermitian
case we do not have the generator geq,(1). But if we apply hm,(1,...,1),
then it changes y» but does not changes e and by. Therefore, in both the
cases we can therefore assume that some y; with i > 1 is not in I. (Here
recall that we have put no restriction on C, i.e., for us C' = R"). Apply
grii(1) with 2 < i < n in the quadratic case. This changes z; = 0 (for
i > 1) to y; while 2, = e is preserved. The ideal generated by the entries
of x now contains Re + Ry;, which is larger than I, a contradiction, as [ is
maximal. In the Hermitian case if we apply suitable hr;(1,...,1) then also
we see that the ideal generated by the entries of x now contains Re + Ry;,
hence a contradiction.

If 2n = 4, we can argue as follows. Let f = 1 — e. Let us assume that
y1 # I as above. Then by Lemma 7.8 it will follow that we can find some
s € R such that fsy; # Re. First consider the quadratic case. Applying
gro1(fs) replaces x2 = e by ¢ = e+ fsy;. Asec = e, [ = Re C Re. Also,
fe = fsyr € Rebut fc ¢ I. Hence I C Re, a contradiction. We can get
the similar contradiction for y» by applying greo(fs). In the Hermitian
case, apply hri(1) to get the contradiction for y;. Now note that in this
r = 1 as we have assume r < n. Hence we can apply graao(fs) to get the
contradiction.

Since all y; lie in Re, the left ideal generated by the all entries of (z y)? is
Re, but as this column vector is unimodular, we get Re = R, and therefore
e=1. Il

Proof of Theorem 7.2. Let J be the Jacobson radical of R. Since the
left and the right Jacobson radical are same, .J is stable under the invo-
lution which therefore passes to R/.J. Let € be as in Lemma 7.9 for the
image (' y')! of (z y). By lifting € from R/J to R and applying it to
(z y)! we reduce to the case where z,, is a unit in R. Let « = z,, L z;!.
Then applying (I,_» L a L I, 5 L a~') we can assume that z, = 1.
Next applying H?;ll qlni(—yi) and H?;ll hl,i(—y;) in the respective cases
we get y1 = --- = yp,—1 = 0. As isotropic vector remains isotropic under
elementary quadratic (Hermitian) transformation, we have y,, + \y,, = 0,
hence ql11(A\7,,) and hly;()\7,,) are defined and applying it reduces y,, to
0 in both the cases. Now we want to make z; =0 for i = 1,...,n. In the
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quadratic case it can be done by applying H?;ll hein(—x;). Note that this
transformation does not affect any y;’s, as y; = 0. In the Hermitian case
we can make x,.4; = --- = x, = 0 as before applying H?:_Tlﬂqsin(fa:i).
To make z; = --- = z,, = 0 we have to recall that the set C' = R", i.e.,
there is no restriction on the set C. Hence hr,(—x1,...,—x,) is defined
and applying it we get ; = --- = x, = 0. Also note that other z;’s and
y;’s remain unchanged. Finally, applying hl,,(1) and then hr,,(—1) we
get the required vector (0, ...,0,1). This completes the proof. O

Theorem 7.10. Let k be a commutative ring with identity and R an
associative k-algebra such that R is finite as a left k-module. Then the
following are equivalent for n > 3 in the quadratic case and n > r + 3 in
the Hermitian case:

(1) (Normality) E(2n, R, A) is a normal subgroup of G(2n, R, A).
(2) (L-G Principle) If a(X) € G(2n, R[X],A[X]), a(0) =1, and

am(X) € E2n, Rn[X], An[X])
for every mazimal ideal m € Max(k), then
a(X) € E(2n, R[X], A[X]).
(Note that Ry, denotes S™'R, where S =k '\ m.)

Proof. In Section 6 we have proved Lemma 6.3 for any form ring with
identity and shown that the local-global principle is a consequence of
Lemma 6.3. So, the result is true in particular if E(2n, R, A) is a normal
subgroup of G(2n, R, A).

To prove the converse we need R to be finite as k-module, where k is a
commutative ring with identity (i.e., a ring with trivial involution).

Let a € E(2n, R,A) and 8 € G(2n, R, A). Then « can be expressed as a
product of matrices of the form ¥;;(ring element) and ¥;(column vector).
Hence we can write Sa3~! as a product of the matrices of the form (I, +
BM(x1,%2)371), with (x1,%3) = 0, where x; and %y are suitably chosen
standard basis vectors. Now let v = Bx;. Then we can write fa3~! as a
product of the matrices of the form (Iz, + 8 M(v,w)3~ 1), with (v, w) =
0 for some row vector w in R?". We show that each (I, + M(v,w)) €
E(2n, R, 7).

Let v(X) = I, + XM(v, w). Then (0) = I,. By Lemma 7.4 it follows
that ST'R is a semilocal ring, where S = k — m, m € Max(k). Since
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v € Um(2n, R), using Theorem 7.2 we get
veE@2n,ST'R, ST Aey,

hence Xv € E(2n, S~'R[X],S~'A[X])e;. Therefore, applying Lemma 6.3
over ST1(A[X], A[X]) it follows that

Ym(X) € E(2n, ST'R[X], STIA[X]).

Now applying Theorem 6.7, it follows that v(X) € E(2n, R[X], A[X]).
Finally, putting X = 1 we get the result. O

§8. NILPOTENT PROPERTY FOR K; OF HERMITIAN GROUPS

We devote this section to discuss the study of nilpotent property of
unstable K;-groups. The literature in this direction can be found in the
work of A. Bak, N. Vavilov and R. Hazrat. Throughout this section we
assume R is a commutative ring with identity, i.e., we are considering
trivial involution and n > r 4 3. Following is the statement of the theorem.

Theorem 8.1. The quotient group %

r + 3. The class of nilpotency is at the most max (1,d + 3 — n), where
d = dim (R).

is nilpotent for n >

The proof follows by imitating the proof of Theorem 4.1 in [6].

Lemma 8.2. Let I be an ideal contained in the Jacobson radical J(R) of
R, and g € SH(2n,R,A), with 8 = 1,, modulo I. Then there exists 6 €
EH(2n,R,a;,..,a,) such that f0= the diagonal matriz [dy,ds, ..., ds,],
where each d; is a unit in R with d; = 1 modulo I, and 6 a product of
elementary generators with each congruent to identity modulo 1.

Proof. The diagonal elements of § are units. Let § = (8;;), where d; =
Bii = 1+ s with s;; € I C J(R), fori=1,...,2n, and 8;; € I C J(R)
for i # j. First we make all the (2n, j)th, and (i,2n)th entries zero, for
1=2,...,n,j =2,...,n. Then repeating the above process we can reduce
the size of 3. Since we are considering trivial involution, we take

a = I hly;(—Ban;d; ")
j=1

X I hmi(_CJ’djﬂ) 11 hEin(Bp(n)P(i) djil)’

n+r+1<i<2n—-1 r+l1<i<n—1
n+l<j<ntr n+r+1<j<2n—1
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where j =i —r and (; = (0,...,0, B2y;), and

y=__ I henj(aip(*)dy, ) hirn(n),

r+1<j<2n-1
r+1<i<2n—1

where a; = 0 for ¢t > 7, and n = (and;,},ﬁmnd;,},...,Bngnd;nl). Then

the last column and last row of yBa become (0, . ..,0,ds,)t, where da, is
a unit in R and dy, = 1 modulo I. Repeating the process we can modify
[ to the required form. O

Proposition 8.3. (¢f. [30, Lemma 7]) Let (R, A) be a commutative form
ring, t.e., with trivial involution, and s be a non-nilpotent element in R
and a € R. Then forl > 2

|9 (%) ,SH(n.s'R)| € EH(2n, R).
More generally,
[e,SH(2n,s'R)] ¢ EH(2n, R), for I > 0 and € € EH(2n, R,).
Proof of Theorem 8.1. Recall

Let G be a group. Define Z° = G, Z! = [G,G] and Z¢ = [G,Z71].
Then G is said to be nilpotent if Z" = {e} for some r > 0, where e denotes
the identity element of G.

Since the map EH(2n, R,a4,...,a,) — EH(2n,R/I,@,...,a,) is sur-
jective we may and do assume that R is a reduced ring. Note that if
n > d + 3, then the group SH(2n, R, a4, ...,a,)/EH(2n, R, a4, ...,a,) =
KH;(R,a,-..,a,), which is abelian and hence nilpotent. (For details see
[4]). So we consider the case n < d + 3. Let us first fix a n. We prove the
theorem by induction on d = dim R. Let

G =SH(2n,R,a1,...,a,)/EH(2n, R, a4, ..., a;).
Let m =d+3—n and a = [$,7], for some 3 € G and v € Z™ L. Clearly,
the result is true for d = 0. Let 8 be the pre-image of § under the map
SH(2n, R, ay,...,a,) — SH(2n, R, ay,...,a,)/EH(2n, R, a4, ..., a,).

If R is reduced then arguing as Lemma 8.2 it follows that we can choose a
non-zero-divisor s in R such that ES € EH(2n, Ry, a4, ...,a,).

Consider G, where bar denote reduction modulo s, for some [ > 0.
By the induction hypothesis ¥ = {1} in SH(2n, R), where bar denote
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the reduction modulo the subgroup EH(2n, R). Since EH(2n, R) is a nor-
mal subgroup of SH(2n, R), for n > r + 3, by modifying v we may as-
sume that ¥ € SH(2n, R,s'R,a,,...,a,), where ¥ is the pre-image of
in SH(2n, R, a1, ...,a,;). Now by Proposition 8.3 it follows that [B, 9] €
EH(2n, R, a1,...,a,). Hence a = {1} in G. O

Remark 8.4. In ( [12, Theorem 3.1]) it has been proved that the question
of normality of the elementary subgroup and the local-global principle
are equivalent for the elementary subgroups of the linear, symplectic and
orthogonal groups over an almost commutative ring with identity. There is
a gap in the proof of the statement (3) = (2) of Theorem 3.1 in [12] (for an
almost commutative ring). The fact that over a non-commutative semilocal
ring the elementary subgroups of the classical groups acts transitively on
the set of unimodular and isotropic (i.e., (v,v) = 0) vectors of length
n > 3 in the linear case, and n = 2r > 6 in the non-linear cases has been
used in the proof, but it is not mentioned anywhere in the article. This
was pointed by Professor R. G. Swan and he provided us a proof for the
above result.
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