
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 452, 2016 Ç.R. BasuLOCAL-GLOBAL PRINCIPLE FOR GENERALQUADRATIC AND GENERAL HERMITIAN GROUPSAND THE NILPOTENCE OF KH1Abstrat. In this artile we establish an analog of the Quillen{Suslin's loal-global priniple for the elementary subgroup of thegeneral quadrati group and the general Hermitian group. We showthat unstable K1-groups of general Hermitian groups over module�nite rings are nilpotent-by-abelian. This generalizes earlier resultsof A. Bak, R. Hazrat, and N. Vavilov.Dediated to the memory of late Professor Amit Roy
§1. IntrodutionThe vigorous study of general linear groups and more generally algebraiK-theory was stimulated in mid-sixties by the desire to solve Serre's prob-lem on projetive modules (f. Faiseaux Alg�ebriques Coherents, 1955).This prominent problem in ommutative algebra asks whether �nitely gen-erated projetive modules over a polynomial ring over a �eld are free. Thebeautiful book Serre's problem on projetive modules by T. Y. Lam givesa omprehensive aount of the mathematis surrounding Serre's prob-lem and its solution. Later we see analogs of Serre's Problem for mod-ules with forms and for other lassial groups in the work of H. Bass,A. Suslin, L. N. Vaserstein, V. I. Kopeiko, R. Parimala and others in[11, 26, 28, 29, 37, 38℄. In this urrent paper, we are interested in the on-text of modules with forms in ertain problems related to Serre's Problem,viz. normality of the elementary subgroup of the full automorphism group,Suslin's loal-global priniple for lassial-like groups, stabilization for K1-funtors of lassial-like groups, and the struture of unstable K1-groupsof lassial-like groups.DiÆulties one has in handling the quadrati version of Serre's Problemin harateristi 2 were �rst noted by Bass in [11℄. In fat, in many asesit was diÆult to handle lassial groups over �elds of harateristi 2,Key words and phrases: bilinear forms, quadrati forms.5



6 R. BASUrather than lassial groups over �elds of har 6= 2. (For details see [19℄).In 1969, A. Bak resolved this problem by introduing form rings and formparameter. He introdued the general quadrati group or Bak's unitarygroup, whih overs many di�erent types of lassial-like groups. We alsosee some results in this diretion in the work of Klein, Mikhalev, Vasersteinet al. in [24, 25, 43℄. The onept of form parameter also appears in thework of K. MCrimmon, and plays an important role in his lassi�ationtheory of Jordan algebras (f. [27℄), for details see ( [22, footnote pg. 190℄)and [23℄. In his seminal work \K-theory of forms", Bak has establishedanalog of many problems related to Serre's problem in a very expliit andrigorous manner. But, Bak's de�nition of the general quadrati group doesnot inlude many other types of lassial-like groups, viz. odd dimensionalorthogonal groups, exeptional groups of types E6, E7, E8 et. In 2000,G. Tang, in his Ph.D thesis, established analog of many results for thegeneral Hermitian groups. Very reently, in 2005, Vitor Petrov using Bak'sonept of doubly parametrized form parameter has resolved this problemby introduing odd unitary groups, whih also inludes Bak's unitary andgeneral Hermitian groups; f. [30℄. Also, he has established many analogousresults for his group.In 1976, D. Quillen ame up with a loalization method whih wasone of the main ingredients for the proof of Serre's problem (now widelyknown as Quillen{Suslin Theorem). Shortly after the original proof Suslinintrodued the following matrix theoreti version of Quillen's loal-globalpriniple.Suslin's Loal-Global Priniple: Let R be a ommutative ring withidentity, X a variable and �(X) ∈ GL(n;R[X ℄) with �(0) = In, n > 3. If�m(X) ∈ E(n;Rm[X ℄) for every maximal ideal m ∈ Max(R), then �(X) ∈E(n;R[X ℄).Soon after he gave the K1-analog of Serre's problem, whih says,for a polynomial ring in r variables over a �eld K elementary subgroupof GL(n;R), n > 3, oinides with the speial linear group. i.e.,E(n;K[X1; : : : ; Xr℄) = SL(n;K[X1; : : : ; Xr℄):In onnetion with this theorem he proved the normality of the elementarysubgroup E(n;A) in the general linear group GL(n;A), over a module �nitering A, for n > 3; (f. [41℄). Later analogous results for the sympleti andorthogonal groups were proven by Suslin and Kopeiko in [35℄ and [37℄ andby Fu An Li in [16℄, and for arbitrary Chevalley groups by Abe (f. [1℄) in



LOCAL-GLOBAL PRINCIPLE 7the loal ase, and by Taddei (f. [40℄) in general. Later we see a simplerand more general treatment in works of Ambily, Bak, Hazrat, Petrov, Rao,Stavrova, Stepanov, Suzuki, Vavilov, and others.We see generalization of the above loal-global priniple for the sym-pleti group in [26℄, and for the orthogonal group in [37℄. The normalityof the general quadrati groups is known from the work of A. Bak andN. Vavilov, f. [8℄. In [39℄, G. Tang has proved the normality property forthe general Hermitian groups. In [12℄, we have shown that the question ofnormality of the elementary subgroup of the general linear group, symple-ti and orthogonal groups, is equivalent to the above loal-global priniple,where the base ring is assoiative with identity and �nite over its enter. Inthat artile above three lassial groups were treated uniformly. Motivatedby the work of A. Bak, R. G. Swan, L. N. Vaserstein and others, in [6℄, theauthor with A. Bak and R. A. Rao has established an analog of Suslin'sloal-global priniple for the transvetion subgroup of the automorphismgroup of projetive, sympleti and orthogonal modules of global rank atleast 1 and loal rank at least 3, under the assumption that the projetivemodule has onstant loal rank and that the sympleti and orthogonalmodules are loally an orthogonal sum of a onstant number of hyperboliplanes. In this artile we have proved the equivalene of the loal-globalpriniple with the normality property. Sine normality holds in the aboveases, this establishes that the loal global priniple also holds. In fat, fol-lowing Suslin{Vaserstein's method we establish an analogous loal-globalpriniple for the general quadrati and general Hermitian groups.We treat these two groups uniformly and give expliit proofs of thoseresults. We have overome many tehnial diÆulties whih ome in theHermitian ase due to the elements a1; : : : ; ar (with respet to these ele-ments we de�ne the Hermitian groups). We assume a1 = 0. The rigorousstudy of the general Hermitian groups an be found in [39℄. In [8℄, we getan exellent survey on this area in a joint work of A. Bak and N. Vav-ilov. We refer to [20℄ for an alternative approah to loalization, [21℄ fora general overview, and to [14℄ for relative ases. Also, for ommutativerings with identity Quillen{Suslin's loal-global priniple is in the work ofV. Petrov and A. Stavrova (f. [31℄), whih overs, in partiular, lassialgroups of Witt index > 2 or > 3, depending on the type.In [12℄, it has been shown that the normality riterion of the elementarysubgroup of the general linear group is equivalent to the above loal-globalpriniple. In this paper we establish the analogous loal-global priniple



8 R. BASUfor the general quadrati and Hermitian group, and prove an equivalene.More preisely, we prove (§6, Theorem 6.7, and §7, Theorem 7.10)Theorem 1 (Loal-Global Priniple). Let k be a ommutative ringwith identity and R an assoiative k-algebra suh that R is �nite as a leftk-module. If �(X) ∈ G(2n;R[X ℄;�[X ℄), �(0) = In and�m(X) ∈ E(2n;Rm[X ℄;�m[X ℄)for every maximal ideal m ∈ Max(k), then�(X) ∈ E(2n;R[X ℄;�[X ℄):Theorem 2. Let k be a ommutative ring with identity and R an asso-iative k-algebra suh that R is �nite as a left k-module. Then for size atleast 6 in the quadrati ase and at least 2(r + 3) in the Hermitian ase:(Normality of the elementary subgroup)
≡(Loal-Global Priniple)To give a omplete piture about the K1-funtors we shall shortly dis-uss the progress in the stabilization problem for K1-funtors. The studyof this problem �rst appeared in the work of Bass{Milnor{Serre, and thenwe see it in the work by A. Bak, M. Stein, L. N. Vaserstein, and othersfor the sympleti, orthogonal and general quadrati groups. For detailsf. [2, 36, 42{44℄. In 1998, R. A. Rao, and W. van der Kallen studied thisproblem for the linear groups over an aÆne algebra in [32℄. The result set-tled for the general quadrati and the general Hermitian groups by A. Bak,G. Tang and V. Petrov in [5℄ and [4℄. The result by Bak{Petrov{Tang hasbeen improved by Sergei Sinhuk, (f. [34℄). It has been observed that overa regular aÆne algebra Vaserstein's bounds for the stabilization an beimproved for the transvetion subgroup of the full automorphism groupof projetive, and sympleti modules. But they annot be improved forthe orthogonal ase in general. For details f. [33℄. We refer to the reentbreakthrough result by J. Fasel, R. A. Rao, and R. G. Swan ([15, Corol-lary 7.7℄). A very reent result of Weibo Yu gives a similar bound for theodd unitary groups, (f. [46℄). In this paper we don't prove any new resultin this diretion.Though the study of stability for K1-funtors started in mid-sixties,initially the struture of K1-group below the level of stable range was notmuh studied. In 1991, A. Bak showed that the group GL(n;R)=E(n;R)



LOCAL-GLOBAL PRINCIPLE 9is nilpotent-by-abelian for n > 3; (f. [3℄). In [17℄, R. Hazrat proved thesimilar result for the general quadrati groups over module �nite rings.The paper of Hazrat and Vavilov [18℄ redoes this for ordinary lassialChevalley groups (that is types A, C, and D) and then extends it furtherto the exeptional Chevalley groups (that is types E, F, and G). Theyhave shown the following: Let � be a redued irreduible root system ofrank > 2 and R be a ommutative ring suh that its Bass{Serre dimensionÆ(R) is �nite. Then for any Chevalley group G(�; R) of type � over R thequotient G(�; R)=E(�; R) is nilpotent-by-abelian. In partiular, K1(�; R)is nilpotent of lass at most Æ(R)+1. They use the loalization-ompletionmethod of A. Bak in [3℄. In [6℄, the author with Bak and Rao gave a uniformproof for the transvetion subgroup of the full automorphism group ofprojetive, sympleti and orthogonal modules of global rank at least 1and loal rank at least 3. Our method of proof shows that for lassialgroups the loalization part suÆes. Reently, in (f. [7℄) Bak, Vavilov andHazrat proved the relative ase for the unitary and Chevalley groups. But,to my best knowledge, so far there is no de�nite result for the generalHermitian groups. I observe that using the above loal-global priniple,arguing as in [6℄, it follows that the unstable K1 of general Hermitiangroup is nilpotent-by-abelian. We follow the line of Theorem 4.1 in [6℄.More preisely, we prove (Theorem 8.1)Theorem 3. For the general Hermitian group of large size over a om-mutative ring R with identity, the quotient groupSH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar)is nilpotent for n > r + 3.We onlude with a brief desription of the organization of the rest ofthe paper. Setion 1 of the paper serves as an introdution. In Setion 2 wereall the notion of form rings, in Setion 3 we disuss general quadratigroups over form rings and their elementary subgroups, in Setion 4 weintrodue general Hermitian groups and their elementary subgroups, Se-tion 5 provides preliminary results regarding the groups above, in Setion 6we establish the loal-global priniple for the elementary subgroup of thegeneral quadrati and general Hermitian group, and in Setion 7 we proveequivalene of normality of the elementary subgroup and the loal-globalpriniple for the elementary subgroup. Finally, Setion 8 ulminates with



10 R. BASUthe proof of the nilpotent by abelian struture of non-stable K1 of thegeneral Hermitian group.
§2. Form RingsDe�nition. Let us �rst reall the onept of �-quadrati forms introduedby A. Bak in his Ph.D. thesis (f. [2℄) in order to overome the diÆultiesthat arise for the harateristi 2 ases.Let R be an (not neessarily ommutative) assoiative ring with identity,and with involution − : R → R, a 7→ a. Let � ∈ C(R) = enter of R be anelement with the property �� = 1. We de�ne additive subgroups of R�max = {a ∈ R | a = −�a} & �min = {a− �a | a ∈ R}:One heks that �max and �min are losed under the onjugation oper-ation a 7→ xax for any x ∈ R. A �-form parameter on R is an additivesubgroup � of R suh that �min ⊆ � ⊆ �max, and x�x ⊆ � for all x ∈ R.A pair (R;�) is alled a form ring.Examples:(1) �min = 0 ⇔ � = 1, and involution is trivial. In partiular, � =0 ⇔ � = 1, involution is trivial, and R is ommutative.(2) If R is a ommutative integral domain, and involution is trivial,then �2 = 1 ⇔ � = ±1. If � = 1 and harR 6= 2, then �max = 0,and so 0 is the only form parameter. If � = −1 and harR 6= 2,then � ontains 2R, and losed under multipliation by squares. IfR is a �eld, then we get � = R. If R is a Z, then we get � = 2Z and

Z. If harR = 2, then R2 is a subring of R, and � = R2-submodulesof R.(3) The ring of n× n matries (M(n;R);�n) is a form ring.Remark. An earlier version of �-form parameter due to K. MCrimmonplays an important role in his lassi�ation theory of Jordan algebras. Hede�ned it for the wider lass of alternative rings (not just assoiative rings),but for assoiative rings it is a speial ase of Bak's onept. (For details,f. N. Jaobson; Letures on Quadrati Jordan Algebras, TIFR, Bombay1969). The exellent work of Hazrat{Vavilov in [19℄ is a very good soureto understand the historial motivation behind the onept of form rings.And, an exellent soure to understand the theory of form rings is thebook [22℄ by A. J. Hahn and O. T. O'Meara.



LOCAL-GLOBAL PRINCIPLE 11
§3. General Quadrati GroupLet V be a right R-module and GL(V ) the group of all R-linear au-tomorphisms of V . A map f : V × V → R is alled sesqulinear form iff(u + v; z + w) = f(u; z) + f(u;w) + f(v; z) + f(v; w) and f(ua; vb) =af(u; v)b for all u; v ∈ V , a; b ∈ R. We de�ne �-quadrati form q on V ,and assoiated �-Hermitian form and as follows:q : V → R=�; given by q(v) = f(v; v) + �; andh : V × V → R; given by h(u; v) = f(u; v) + �f(v; u):A Quadrati Module over (R;�) is a triple (V; h; q).De�nition. \Bak's Unitary Groups" or \The Unitary Group of a Qua-drati Module" or \General Quadrati Group" GQ(V; q; h) is de�ned asfollows:GQ(V; q; h) = {� ∈ GL(V ) | h(�u; �v) = h(u; v); q(�v) = q(v)}:Examples: Traditional Classial Groups(1) By taking � = �max = R, � = −1, and trivial involution we getthe sympleti group GQ(2n;R;�) = Sp(2n;R).(2) By taking � = �min = 0, � = 1, trivial involution we get thequadrati or the orthogonal group GQ(2n;R;�) = O(2n;R).(3) For the general linear group, let Ro be the ring opposite to R, andRe = R ⊕ Ro. De�ne involution as follows: (x; yo) 7→ (y; xo). Let� = (1; 1o) and � = {(x;−xo) | x ∈ R}. Then identifyGQ(2n;Re;�) = {(g; g−1) | g ∈ GL(n;R)}with GL(n;R).Free Case: Let V be a free right R-module of rank 2n with orderedbasis e1; e2; : : : ; en; e−n; : : : ; e−2; e−1. Consider the sesqulinear form f :V ×V −→ R, de�ned by f(u; v) = u1v−1+ · · ·+unv−n. Let h be Hermitianform, and q be the �-quadrati form de�ned by f . So, we haveh(u; v) = u1v−1 + · · ·+ unv−n + �u−nvn + · · ·+ �u−1v1;q(u) = � + u1u−1 + · · ·+ unu−n:Using this basis we an identify GQ(V; h;q) with a subgroup of GL(2n;R)of rank 2n. We denote this subgroup by GQ(2n;R;�).



12 R. BASUBy �xing a basis e1; e2; : : : ; en; e−1; e−2; : : : ; e−n, we de�ne the form n = ( 0 �InIn 0 ) :Hene, GQ(2n;R;�) = {� ∈ GL(2n;R;�) |� n� =  n}:For � = (� � Æ) ∈ GL(2n;R;�), one an show that � ∈ GQ(2n;R;�)(�; �; ; Æ are n × n blok matries) if and only if �; Æ� ∈ �. For moredetails see ( [2, 3.1 and 3.4℄).A typial element in GQ(2n;R;�) is denoted by a 2n × 2n matrix(� � Æ), where �; �; ; Æ are n× n blok matries.There is a standard embedding, GQ(2n;R;�)→ GQ(2n+2; R;�), givenby
(� � Æ) 7→




� 0 � 00 1 0 0 0 Æ 00 0 0 1alled the stabilization map. This allows us to identify GQ(2n;R;�) witha subgroup in GQ(2n+ 2; R;�).Elementary Quadrati Matries: Let � be the permutation, de�nedby �(i) = n+ i for i = 1; : : : ; n. Let eij be the matrix with 1 in the ij-thposition and 0's elsewhere. For a ∈ R, and 1 6 i; j 6 n, we de�neq"ij(a) = I2n + aeij − ae�(j)�(i) for i 6= j;qrij(a) = {I2n + aei�(j) − �aej�(i) for i 6= j;I2n + ae�(i)j for i = j;qlij(a) = {I2n + ae�(i)j − �ae�(j)i for i 6= j;I2n + ae�(i)j for i = j:(Note that for the seond and third type of elementary matries, if i = j,then we get a = −�a, and hene it fores that a ∈ �max(R). One heksthat these above matries belong to GQ(2n;R;�); f. [2℄.)n-th Elementary Quadrati Group EQ(2n;R;�): The subgroupgenerated by q"ij(a), qrij(a) and qlij(a), for a ∈ R and 1 6 i; j 6 n.



LOCAL-GLOBAL PRINCIPLE 13It is lear that the stabilization map takes generators of EQ(2n;R;�)to the generators of EQ(2(n+ 1); R;�).Commutator Relations: There are standard formulas for the om-mutators between quadrati elementary matries. For details we refer [2,Lemma 3.16℄, and [17, §2℄. In later setions we shall repeatedly use thoserelations.
§4. Hermitian GroupWe assume that � is a �-form parameter on R. For a matrixM = (mij)over R we de�ne M = (mij)t. For a1; : : : ; ar ∈ � and n > r letA1 = 



a1 0 0 · · · 00 a2 0 · · · 0
· · · · · · · · · · · · · · ·0 · · · 0 ar−1 00 · · · 0 0 ar


= [a1; : : : ; ar℄denote the diagonal matrix whose ii-th diagonal oeÆient is ai. Let A =A1 ⊥ In−r. We de�ne the forms hn = (A �InIn 0 ) ;  qn = ( 0 �InIn 0 ) :De�nition: General Hermitian Group of the elements a1; : : : ; ar isde�ned as follows: GH(2n;R; a1; : : : ; ar;�): The group generated by theall non-singular 2n× 2n matries

{� ∈ GL(2n;R) |� hn� =  hn}:As before, there is an obvious embeddingGH(2n;R; a1; : : : ; ar;�) ,→ GH(2n+ 2; R; a1; : : : ; ar;�):To de�ne elementary Hermitian matries, we need to onsider theset C = {(x1; : : : ; xr)t ∈ (Rr)t | r∑i=1xiaixi ∈ �min(R)} for a1; : : : ; ar asabove. In order to overome the tehnial diÆulties aused by the el-ements a1; : : : ; ar, we shall �nely partition a typial matrix (� � Æ) of



14 R. BASUGH(2n;R; a1; : : : ; ar;�) into the form



�11 �12 �11 �12�21 �22 �21 �2211 12 Æ11 Æ1221 22 Æ21 Æ22where �11; �11; 11; Æ11 are r × r matries, �12; �12; 12; Æ12 are r × (n− r)matries, �21; �21; 21; Æ21 are (n − r) × r matries, and �22; �22; 22; Æ22are (n− r)× (n− r) matries. By ([39, Lemma 3.4℄),the olumns of �11 − Ir; �12; �11; �12; �11; �21; Æ11 − Ir; Æ21 ∈ C: (1)It is a straightforward hek that the subgroup ofGH(2n;R; a1; : : : ; ar;�) onsisting of







Ir 0 0 00 �22 0 �220 0 Ir 00 22 0 Æ22 ∈ GH(2n;R; a1; : : : ; ar)
∼= GH(2(n− r); R; a1; : : : ; ar;�):Elementary Hermitian Matries: The �rst three kinds of generatorsare taken for the most part from GQ(2(n−r); R;�), whih is embedded, asabove, as a subgroup of GH(2n;R) and the last two kinds are motivatedby the result (1) onerning the olumn of a matrix in GH(2n;R). Fora ∈ R, we de�neh"ij(a) =I2n + aeij − ae�(j)�(i) for r + 1 6 i 6 n; 1 6 j 6 n; i 6= j;hrij(a) ={I2n + aei�(j) − �aej�(i) for r + 1 6 i; j 6 n; i 6= jI2n + aei�(j) for r + 1 6 i; j 6 n; i = j;hlij(a) ={I2n + ae�(i)j − �ae�(j)i for 1 6 i; j 6 n; i 6= jI2n + ae�(i)j for 1 6 i; j 6 n; i = j:(Note that for the seond and third type of elementary matries, if i = j,then we get a = −�a, and hene it fores that a ∈ �max(R)). One heksthat the above matries belong to GH(2n;R; a1; : : : ; ar;�); f. [39℄.



LOCAL-GLOBAL PRINCIPLE 15For � = (x1; : : : ; xr)t ∈ C, let �f ∈ R be suh that �f +��f = r∑i=1xiaixi.(The element �f is not unique in general). We de�nehmi(�) = 


Ir �12 0 00 In−r 0 00 −A1�12 Ir 00 22 −�12 In−rfor � ∈ C and r + 1 6 i 6 n to be the 2n × 2n matrix, where �12 is ther×(n−r) matrix with � as its (i−r)th olumn and all other olumn's zero,and 22 is the (n− r)× (n− r) matrix with �f in (i− r; i− r)th positionand 0's elsewhere. Let ek denote the olumn vetor of length (n−r) with 1in the kth position and 0's elsewhere, and et s denote a (n − r) × (n − r)matrix with 1 in the tsth position and 0's elsewhere.As above, we de�nehri(�) = 


Ir 0 0 �120 In−r −��12 �220 0 Ir −A1�120 0 0 In−r 
for � ∈ C and r + 1 6 i 6 n to be a 2n × 2n matrix, where �12 is ther × (n − r) matrix with � as its (i − r)th olumn and all other olumn'szero, and �22 is the (n − r) × (n − r) matrix with ��f in (i − r; i − r)thposition and 0's elsewhere.Note that if � = epq(a) is an elementary generator in GL(s;R), thenthe matrix (In−s ⊥ � ⊥ In−s ⊥ �−1) = h"ij(a). It has been shown in [39℄(§5) that eah of the above matries is in GH(2n;R; a1; : : : ; ar;�).De�nition: nth Elementary Hermitian Group of the elementsa1; : : : ; ar; EH(2n;R; a1; : : : ; ar;�): The group generated by h"ij(a),hrij(a), hlij(a), hmi(�) and hri(�), for a ∈ R, � ∈ C and 1 6 i; j 6 n.The stabilization map takes generators of EH(2n;R; a1; : : : ; ar;�) tothe generators of EH(2(n+ 1); R; a1; : : : ; ar;�).Commutator Relations: There are standard formulas for the om-mutators between quadrati elementary matries. For details we refer [39℄.



16 R. BASU
§5. Preliminaries and NotationsBlanket Assumption:We always assume that 2n > 6 and n > r whiledealing with the Hermitian ase. We do not want to put any restrition onthe elements of C. Therefore we assume that ai ∈ �min(R) for i = 1; : : : ; r,as in that ase C = Rr. We always assume a1 = 0.Notation 5.1. In the sequel M(2n;R) will denote the set of all 2n ×2n matries. By G(2n;R;�) we shall denote either the quadrati groupGQ(2n;R;�) or the Hermitian group GH(2n;R; a1; : : : ; ar;�) of size 2n×2n. By S(2n;R;�) we shall denote respetive subgroups SQ(2n;R;�) orSH(2n;R; a1; : : : ; ar;�) with matries of determinant 1, in the ase when Rwill be ommutative. Then, by E(2n;R;�) we shall denote the orrespond-ing elementary subgroups EQ(2n;R;�) and EH(2n;R; a1; : : : ; ar;�). Totreat uniformly we denote the elementary generators of EQ(2n;R;�), andthe �rst three types of elementary generators of EH(2n;R;�) by #ij(?), forsome ? ∈ R. To express the last two types of generators of EH(2n;R;�)we shall use the notation #i(?), where ? is a olumn vetor of length rde�ned over the ring R, i.e., we will have two types of elementary gener-ators, namely #ij(ring element) and #i(olumn vetor). Let �[X ℄ denotethe �-form parameter on R[X ℄ indued from (R;�), i.e., �-form param-eter on R[X ℄ generated by �, i.e., the smallest form parameter on R[X ℄ontaining �. Let �s denote the �-form parameter on Rs indued from(R;�).For any olumn vetor v ∈ (R2n)t we de�ne the row vetors ṽq = vt qnand ṽh = vt hn.De�nition 5.2. We de�ne the map M : (R2n)t × (R2n)t → M(2n;R) andthe inner produt 〈 ; 〉 as follows:M(v; w) = v:w̃q − �w:ṽq ; when G(2n;R) = GQ(2n;R;�)= v:w̃h − �w:ṽh; when G(2n;R) = GH(2n;R; a1; : : : ; ar;�);

〈v; w〉 = ṽq :w; when G(2n;R) = GQ(2n;R;�)= ṽh:w; when G(2n;R) = GH(2n;R; a1; : : : ; ar;�):Note that the elementary generators of the both groups EQ(2n;R) andEH(2n;R) are of the form I2n + M(?1; ?2) for suitable hosen standardbasis vetors.We reall the following well known fats:



LOCAL-GLOBAL PRINCIPLE 17Lemma 5.3. (f. [2,39℄) The group E(2n;R;�) is perfet for n > 3 in thequadrati ase, and for n > r + 3 in the Hermitian ase, i.e.,[E(2n;R;�);E(2n;R;�)℄ = E(2n;R;�):Lemma 5.4. (Splitting property): For all elementary generators ofthe general quadrati group GQ(2n;R;�) and for the �rst three types el-ementary generators of the Hermitian group GH(2n;R; a1; : : : ; ar;�) wehave: #ij(x + y) = #ij(x)#ij(y)for all x; y ∈ R.For the last two types of elementary generators of Hermitian group wehave the following relation:hmi(�)hmi(�) = hmi(� + �)hlii(��f + ��f + �� �A1� − (� + �)f );hri(�)hri(�) = hri(� + �)hrii((� + �)f − �f − �f − ��A1�):Proof. See [2, pp. 43{44, Lemma 3.16℄ for the GQ(2n;R;�) and [39,Lemma 8.2℄ for the group GH(2n;R; a1; : : : ; ar;�). �Lemma 5.5. Let G be a group, and ai, bi ∈ G, for i = 1; : : : ; n. Then forri = i�j=1aj , we have n�i=1aibi = n�i=1ribir−1i n�i=1ai:Notation 5.6. By G(2n;R[X ℄;�[X ℄; (X)) we shall mean the group of allquadrati and Hermitian matries over R[X ℄ whih are In modulo (X).Lemma 5.7. The group G(2n;R[X ℄;�[X ℄; (X)) ∩ E(2n;R[X ℄;�[X ℄) isgenerated by the elements of the types "#ij(?1)"−1 and "#i(?2)"−1, where" ∈ E(2n;R;�), ?1 ∈ R[X ℄, ?2 ∈ ((R[X ℄)2n)t with both #ij(?1) and #i(?2)ongruent to I2n modulo (X).We give a proof of this Lemma for the Hermitian group. The proof forthe quadrati ase is similar, but easier.Proof of Lemma 5.7. Let a1(X); : : : ; ar(X) be r elements in the poly-nomial ring R[X ℄ with respet to whih we are onsidering the Hermitiangroup GH(2n;R[X ℄; a1(X); : : : ; ar(X);�[X ℄).Let �(X)∈EH(2n;R[X ℄; a1(X); : : : ; ar(X);�[X ℄) be suh that �(X) isongruent to I2n modulo (X). Then we an write �(X) as a produt ofelements of the form #ij(?1), where ?1 is a polynomial in R[X ℄, and of theform #i(?2), where ?2 is a olumn vetor of length r de�ned over R[X ℄.



18 R. BASUWe write eah ?1 as a sum of a onstant term and a polynomial whih isidentity modulo (X). Hene by using the splitting property desribed inLemma 5.4 eah elementary generator #ij(?1) of �rst three type an bewritten as a produt of two suh elementary generators with the left onede�ned on R and the right one de�ned on R[X ℄ whih is ongruent to I2nmodulo (X).For the last two types of elementary generators we write eah vetor?2 as a sum of a olumn vetor de�ned over the ring R and a olumnvetor de�ned over R[X ℄ whih is ongruent to the zero vetor of length rmodulo (X). In this ase, as shown in Lemma 5.4, we get one extra terminvolving elementary generator of the form hlii or hrii. But that extraterm is one of the generator of �rst three types. And then we an splitthat term again as above. Therefore, �(X) an be expressed as a produtof following types of elementary generators:#ij(?1(0))#ij(X?1) with ?1 (0) ∈ R and #ij(X?1) = I2n modulo (X);#i(?2(0))#i(X?2) with ?2 (0) ∈ R and #i(X?2) = I2n modulo (X):Now result follows by using the identity desribed in Lemma 5.5. �

§6. Suslin's Loal-Global PrinipleIn his remarkable thesis (f. [2℄) A. Bak showed that for a form ring(R;�) the elementary subgroup EQ(2n;R;�) is perfet for n > 3 andhene is a normal subgroup of GQ(2n;R;�). As we have noted earlier,this question is related to Suslin's loal-global priniple for the elemen-tary subgroup. In [39℄, G. Tang has shown that for n > r + 3 the ele-mentary Hermitian group EH(2n;R; a1; : : : ; ar;�) is a normal subgroupof GH(2n;R; a1; : : : ; ar;�). In this setion we dedue an analogous loal-global priniple for the elementary subgroup of the general quadrati andHermitian groups, when R is module �nite, i.e., �nite over its enter. Weuse this result in §8 to prove the nilpotent property of the unstable Her-mitian group KH1. Furthermore, we show that if R is �nite over its enter,then the normality of the elementary subgroup is equivalent to the loal-global priniple. This generalizes our result in [12℄.The following is the key Lemma, and it tells us the reason why we needto assume that the size of the matrix is at least 6. In [12℄, proof is given forthe general linear group. Arguing in similar manner by using identities ofommutator laws result follows in the unitary and Hermitian ases. A listof ommutator laws for elementary generators is stated in ([2, pp. 43{44,



LOCAL-GLOBAL PRINCIPLE 19Lemma 3.16℄) for the unitary groups and in ([39, pp. 237{239, Lemma 8.2℄)for the Hermitian groups. For a diret proof we refer [30, Lemma 5℄.Lemma 6.1. Suppose # is an elementary generator of the general qua-drati (Hermitian) group G(2n;R[X ℄;�[X ℄), n > 3. Let # be ongruent toidentity modulo (X2m), for m > 0. Then, if we onjugate # with an ele-mentary generator of the general quadrati (Hermitian) group G(2n;R;�),we get the resulting matrix as a produt of elementary generators of generalquadrati (Hermitian) group G(2n;R[X ℄;�[X ℄), eah of whih is ongruentto identity modulo (Xm).Corollary 6.2. In Lemma 6.1 we an take # as a produt of elementarygenerators of the general quadrati (general Hermitian) groupG(2n;R[X ℄;�[X ℄):Lemma 6.3. Let (R;�) be a form ring and v ∈ E(2n;R;�)e2n. Letw ∈ R2n be a olumn vetor suh that 〈v; w〉 = 0. Then I2n +M(v; w) ∈E(2n;R;�).Proof. Let v = "e2n, where " ∈ E(2n;R;�). Then it follows that I2n +M(v; w) = "(I2n + M(e2n; w1))"−1; where w1 = "−1w. Sine 〈e2n; w1〉 =
〈v; w〉 = 0, we get wt1 = (w11; : : : ; w1n−1; 0; w1n+1; : : : ; w1 2n). Therefore,as �� = �� = 1,I2n +M(v;w)=





�16j6n16i6n−1 " qlin(−�wn+1 i) q"jn(−�w1 j)ql−1nn(∗)"−1�16k6rr+16j6n16i6n−1"hlin(−�wn+1 i)h"jn(−�w1 j)hmn(−w1 k))hl−1nn(∗)"−1(in the quadrati and Hermitian ases respetively),where w1 n+k = (w1n+k; 0; : : : ; 0). Hene the result follows. �Note that the above impliation is true for any assoiative ring withidentity. From now onwards we assume that R is �nite over its enterC(R). Let us reallLemma 6.4. Let A be a Noetherian ring and s ∈ A. Then there ex-ists a natural number k suh that the homomorphism G(A; skA; sk�) →G(As;�s) (indued by loalization homomorphism A→ As) is injetive.



20 R. BASUFor the proof of the above lemma we refer ( [18, Lemma 5.1℄). Also,we reall that any module �nite ring R is the diret limit of its �nitelygenerated subrings. Thus, one may assume that C(R) is Noetherian.Let (R;�) be a (module �nite) form ring with identity.Lemma 6.5. (Dilation Lemma) Let �(X) ∈ G(2n;R[X ℄;�[X ℄), with�(0) = I2n. If �s(X) ∈ E(2n;Rs[X ℄;�s[X ℄), for some non-nilpotent s ∈ R,then �(bX) ∈ E(2n;R[X ℄;�[X ℄), for b ∈ slC(R), and l ≫ 0.Remark 6.6. (In the above Lemma we atually mean there exists some�(X) ∈ E(2n;R[X ℄;�[X ℄) suh that �(0) = I2n and �s(X) = �(bX).)Proof. Given that �s(X) ∈ E(2n;Rs[X ℄;�s[X ℄). Sine �(0) = I2n, us-ing Lemma 5.7 we an write �s(X) as a produt of the matries of theform "#ij(?1)"−1 and "#i(?2)"−1, where " ∈ E(2n;Rs;�s), ?1 ∈ Rs[X ℄,?2 ∈ ((Rs[X ℄)2n)t with both #ij(?1) and #i(?2) ongruent to I2n mod-ulo (X). Applying the homomorphism X 7→ XT d, where d ≫ 0, fromthe polynomial ring R[X ℄ to the polynomial ring R[X;T ℄, we look on�(XT d). Note that Rs[X;T ℄ ∼= (Rs[X ℄)[T ℄. As C(R) is Noetherian, it fol-lows from Lemma 6.4 and Corollary 6.2 that over the ring (Rs[X ℄)[T ℄ wean write �s(XT d) as a produt of elementary generators of general qua-drati (Hermitian) group suh that eah of those elementary generatorsis ongruent to identity modulo (T ). Let l be the maximum of the pow-ers ourring in the denominators of those elementary generators. Again,as C(R) is Noetherian, by applying the homomorphism T 7→ smT , form > l, it follows from Lemma 6.4 that over the ring R[X;T ℄ we anwrite �s(XT d) as a produt of elementary generators of general quadrati(Hermitian) group suh that eah of those elementary generator is on-gruent to identity modulo (T ), for some b ∈ (sl)C(R), i.e., we get thereexists some �(X;T ) ∈ E(2n;R[X;T ℄;�[X;T ℄) suh that �(0; 0) = I2n and�s(X;T ) = �(bXT d). Finally, the result follows by putting T = 1. �Theorem 6.7. (Loal-Global Priniple) If �(X) ∈ G(2n;R[X ℄;�[X ℄),�(0) = In and �m(X) ∈ E(2n;Rm[X ℄;�m[X ℄);for every maximal ideal m ∈ Max (C(R)), then�(X) ∈ E(2n;R[X ℄;�[X ℄):(Note that Rm denotes S−1R, where S = C(R) \ m).



LOCAL-GLOBAL PRINCIPLE 21Proof. Sine �m(X) ∈ E(2n;Rm[X ℄;�m[X ℄), for all m ∈ Max(C(R)), foreah m there exists s ∈ C(R) \ m suh that �s(X) ∈ E(2n;Rs[X ℄;�s[X ℄).Using Noetherian property we an onsider a �nite over of C(R), says1 + · · ·+ sr = 1. Let �(X;T ) = �s(X + T )�s(T )−1. Then�(X;T ) ∈ E(2n; (Rs[T ℄)[X ℄;�s[T ℄[X ℄)and �(0; T ) = In. By Dilation Lemma, applied with base ring R[T ℄, thereexists �(X) ∈ E(2n;R[X;T ℄;�[X;T ℄) suh that�s(X) = �(bX; T ): (2)Sine for l ≫ 0, the ideal 〈sl1; : : : ; slr〉 = R, we hose b1; b2; : : : ; br ∈C(R), with bi ∈ (sl)C(R); l ≫ 0 suh that (2) holds and b1+ · · ·+ br = 1.Then there exists �i(X) ∈ E(2n;R[X;T ℄;�[X;T ℄) suh that �isi(X) =�(biX;T ). Therefore,r�i=1�i(X) ∈ E(2n;R[X;T ℄;�[X;T ℄):But,�s1···sr (X) = (r−1�i=1�s1:::ŝi:::sr (biX;T )|T=bi+1X+···+brX) �s1::::::sr−1 (brX; 0):Sine �(0) = In, and as a onsequene of the Lemma 6.4 it follows thatthe map E(R; skR; sk�) → E(Rs;�s) in injetive, we onlude �(X) ∈E(2n;R[X ℄;�[X ℄). �

§7. Equivalene of Normality and Loal-GlobalPrinipleNext we are going to show that if k is a ommutative ring with iden-tity and R is an assoiative k-algebra suh that R is �nite as a left k-module, then the normality riterion of elementary subgroup is equivalentto Suslin's loal-global priniple for above two lassial groups. (Remark:One an also onsider R as a right k-algebra.)One of the ruial ingredients in the proof of the above theorem isthe following result whih states that the group E ats transitively onunimodular vetors. The preise statement of the fat is the following:De�nition 7.1. A vetor (v1; : : : ; v2n) ∈ R2n is said to be unimodular ifthere exists another vetor (u1; : : : ; u2n) ∈ R2n suh that 2n∑i=1 viui = 1.The set of all unimodular vetor in R2n is denoted by Um(2n;R).



22 R. BASUTheorem 7.2. Let R be a semiloal ring (not neessarily ommutative)with involution and v = (v1; : : : ; v2n)t be a unimodular and isotropi vetorin R2n. Then v ∈ E(2n;R)e2n for n > 2, i.e., E(2n;R) ats transitivelyon the set of isotropi vetors in Um(2n;R).Let us �rst reall some known fats before we give a proof of the theo-rem.De�nition 7.3. An assoiative ring R is said to be semiloal if R=rad(R)is Artinian semisimple.We reall the following three lemmas.Lemma 7.4. (H. Bass) Let A be an assoiative B-algebra suh that A is�nite as a left B-module and B be a ommutative loal ring with identity.Then A is semiloal.Proof. Sine B is loal, B=rad(B) is a division ring by de�nition. Thatimplies A=rad(A) is a �nite module over the division ring B=rad(B) andhene is a �nitely generated vetor spae. Thus A=rad(A) Artinian asB=rad(B) module and hene A=rad(A) Artinian as A=rad(A) module, soit is an Artinian ring.It is known that an artin ring is semisimple if its radial is trivial. ThusA=rad(A) is semisimple, as rad(A=rad(A)) = 0. Hene A=rad(A) Artiniansemisimple. Therefore, A is semiloal by de�nition. �Lemma 7.5. (H. Bass) ([10, Lemma 4.3.26℄) Let R be a semiloal ring(may not be ommutative), and let I be a left ideal of R. Let a in R besuh that Ra+ I = R. Then the oset a + I = {a+ x |x ∈ I} ontains aunit of R.Proof. We give a proof due to R. G. Swan. We an fator out the radialand assume that R is semisimple Artinian. Let I = (Ra∩I)⊕I ′. ReplaingI by I ′ we an assume that R = Ra ⊕ I . Let f : R → Ra by r 7→ ra, forr ∈ R. Therefore, we get a split exat sequene0 −→ J −→ R f
−→ Ra −→ 0;for some ideal J in R whih gives us a map g : R → J suh that R (f;g)

−→Ra⊕J is an isomorphism. Sine Ra⊕J ∼= R ∼= Ra⊕ I anellation (usingJordan{H�older or Krull{Shmidt) shows that J ∼= I . If h : R ∼= J ∼= I ,then R (f;g)
−→ Ra ⊕ I ∼= R is an isomorphism sending 1 to (a; i) to a + i,where i = h(1). Hene it follows that a+ i is a unit. �



LOCAL-GLOBAL PRINCIPLE 23Lemma 7.6. Let R be a semisimple Artinian ring and I be a left idealof R. Let J = Ra+ I. Write J = Re, where e is an idempotent (possiblesine J is projetive. For detail f. [13, Theorem 4.2.7℄). Then there is anelement i ∈ I suh that a+ i = ue, where u is a unit in R.Proof. Sine R = J +R(1− e) = Ra+ I +R(1− e), using Lemma 7.5 wean �nd a unit u = a+ i+x(1− e) in R, for some x ∈ R. Sine a+ i ∈ Re,it follows that ue = a+ i. �Corollary 7.7. Let R be a semisimple Artinian ring and (a1; : : : ; an)tbe a olumn vetor over R, where n > 2. Let �Rai = Re, where e isan idempotent. Then there exists " ∈ En(R) suh that "(a1; : : : ; an)t =(0; : : : ; 0; e)t.Proof. By Lemma 7.6 we an write ue = �n−1i=1 biai + an, where u is aunit. Therefore, applying an elementary transformation we an assumethat an = ue. Multiplying from the left by (In−2 ⊥ u ⊥ u−1) we an makean = e. Sine all ai are left multiple of e, further elementary transforma-tions redue our vetor to the required form. �The following observation will be needed to do the ase 2n = 4.Lemma 7.8. Let R be a semisimple Artinian ring and e be an idempotent.Let f = 1−e, and b be an element of R. If fRb ⊆ Re, then we have b ∈ Re.Proof. Sine R is a produt of simple rings, it will suÆe to do the asein whih R is simple. If e = 1, we are done. Otherwise RfR is a non-zerotwo sided ideal, and hene RfR = R. Sine Rb = RfRb ⊆ Re, we haveb ∈ Re. �Lemma 7.9. Let R be a semisimple Artinian ring and let − : R → R bea �-involution on R. Let (x y)t be a unimodular row of length 2n, where2n > 4, and x; y ∈ Rn. Then there exists an element " ∈ E(2n;R) suhthat "(x y)t = (x′ y′)t, where x′1 is a unit in R.Proof. Let x = (x1; : : : ; xn)t and b = (y1; : : : ; yn)t. We laim that thereexists " ∈ E(2n;R) suh that "(x y)t = (x′ y′), where x′ is a unit in R.Among all (x′ y′)t of this form, hoose one for whih the ideal I = �Rx′iis maximal. Replaing the original (x y)t by (x′ y′)t we an assume thatI = �Rxi is maximal among suh ideals. Write I = Re, where e is anidempotent in R. By Corollary 7.7 we an �nd an element � ∈ En(R) suhthat �x = (0; 0; : : : ; e)t. So we an modify x by elementary generators of



24 R. BASUthe form q"ij(?) or h"ij(?) and hene we assume that x = (0; 0; : : : ; e)t.We laim that yi ∈ Re for all i > 1.First we onsider the ase 2n > 6. Assume y1 =∈ I , but yi ∈ I for alli > 2. If we apply q"1n(1) in the quadrati ase then this replaes yn toyn − y1 but not hanges e and y1. On the other hand for the Hermitianase we do not have the generator q"1n(1). But if we apply hmn(1; : : : ; 1),then it hanges y2 but does not hanges e and b1. Therefore, in both theases we an therefore assume that some yi with i > 1 is not in I . (Herereall that we have put no restrition on C, i.e., for us C = Rr). Applyqrii(1) with 2 6 i 6 n in the quadrati ase. This hanges xi = 0 (fori > 1) to yi while xn = e is preserved. The ideal generated by the entriesof x now ontains Re+Ryi, whih is larger than I , a ontradition, as I ismaximal. In the Hermitian ase if we apply suitable hri(1; : : : ; 1) then alsowe see that the ideal generated by the entries of x now ontains Re+Ryi,hene a ontradition.If 2n = 4, we an argue as follows. Let f = 1− e. Let us assume thaty1 6= I as above. Then by Lemma 7.8 it will follow that we an �nd somes ∈ R suh that fsy1 6= Re. First onsider the quadrati ase. Applyingqr21(fs) replaes x2 = e by  = e+ fsy1. As e = e, I = Re ⊂ R. Also,f = fsy1 ∈ R but f =∈ I . Hene I ( R, a ontradition. We an getthe similar ontradition for y2 by applying qr22(fs). In the Hermitianase, apply hr1(1) to get the ontradition for y1. Now note that in thisr = 1 as we have assume r < n. Hene we an apply qr22(fs) to get theontradition.Sine all yi lie in Re, the left ideal generated by the all entries of (x y)t isRe, but as this olumn vetor is unimodular, we get Re = R, and thereforee = 1. �Proof of Theorem 7.2. Let J be the Jaobson radial of R. Sine theleft and the right Jaobson radial are same, J is stable under the invo-lution whih therefore passes to R=J . Let " be as in Lemma 7.9 for theimage (x′ y′)t of (x y)t. By lifting " from R=J to R and applying it to(x y)t we redue to the ase where xn is a unit in R. Let � = xn ⊥ x−1n .Then applying (In−2 ⊥ � ⊥ In−2 ⊥ �−1) we an assume that xn = 1.Next applying �n−1i=1 qlni(−yi) and �n−1i=1 hlni(−yi) in the respetive aseswe get y1 = · · · = yn−1 = 0. As isotropi vetor remains isotropi underelementary quadrati (Hermitian) transformation, we have yn + �yn = 0,hene ql11(�yn) and hl11(�yn) are de�ned and applying it redues yn to0 in both the ases. Now we want to make xi = 0 for i = 1; : : : ; n. In the



LOCAL-GLOBAL PRINCIPLE 25quadrati ase it an be done by applying �n−1i=1 h"in(−xi). Note that thistransformation does not a�et any yi's, as yi = 0. In the Hermitian asewe an make xr+1 = · · · = xn = 0 as before applying �n−1i=r+1q"in(−xi).To make x1 = · · · = xr = 0 we have to reall that the set C = Rr, i.e.,there is no restrition on the set C. Hene hrn(−x1; : : : ;−xr) is de�nedand applying it we get x1 = · · · = xr = 0. Also note that other xi's andyi's remain unhanged. Finally, applying hlnn(1) and then hrnn(−1) weget the required vetor (0; : : : ; 0; 1). This ompletes the proof. �Theorem 7.10. Let k be a ommutative ring with identity and R anassoiative k-algebra suh that R is �nite as a left k-module. Then thefollowing are equivalent for n > 3 in the quadrati ase and n > r + 3 inthe Hermitian ase:(1) (Normality) E(2n;R;�) is a normal subgroup of G(2n;R;�).(2) (L-G Priniple) If �(X) ∈ G(2n;R[X ℄;�[X ℄), �(0) = In and�m(X) ∈ E(2n;Rm[X ℄;�m[X ℄)for every maximal ideal m ∈ Max(k), then�(X) ∈ E(2n;R[X ℄;�[X ℄):(Note that Rm denotes S−1R, where S = k \ m.)Proof. In Setion 6 we have proved Lemma 6.3 for any form ring withidentity and shown that the loal-global priniple is a onsequene ofLemma 6.3. So, the result is true in partiular if E(2n;R;�) is a normalsubgroup of G(2n;R;�).To prove the onverse we need R to be �nite as k-module, where k is aommutative ring with identity (i.e., a ring with trivial involution).Let � ∈ E(2n;R;�) and � ∈ G(2n;R;�). Then � an be expressed as aprodut of matries of the form #ij(ring element) and #i(olumn vetor).Hene we an write ���−1 as a produt of the matries of the form (I2n+�M(?1; ?2)�−1), with 〈?1; ?2〉 = 0, where ?1 and ?2 are suitably hosenstandard basis vetors. Now let v = �?1. Then we an write ���−1 as aprodut of the matries of the form (I2n + �M(v; w)�−1), with 〈v; w〉 =0 for some row vetor w in R2n. We show that eah (I2n + M(v; w)) ∈E(2n;R;�).Let (X) = I2n+XM(v; w). Then (0) = I2n. By Lemma 7.4 it followsthat S−1R is a semiloal ring, where S = k − m, m ∈ Max(k). Sine



26 R. BASUv ∈ Um(2n;R), using Theorem 7.2 we getv ∈ E(2n; S−1R;S−1�)e1;hene Xv ∈ E(2n; S−1R[X ℄; S−1�[X ℄)e1. Therefore, applying Lemma 6.3over S−1(A[X ℄;�[X ℄) it follows thatm(X) ∈ E(2n; S−1R[X ℄; S−1�[X ℄):Now applying Theorem 6.7, it follows that (X) ∈ E(2n;R[X ℄;�[X ℄).Finally, putting X = 1 we get the result. �

§8. Nilpotent property for K1 of Hermitian groupsWe devote this setion to disuss the study of nilpotent property ofunstable K1-groups. The literature in this diretion an be found in thework of A. Bak, N. Vavilov and R. Hazrat. Throughout this setion weassume R is a ommutative ring with identity, i.e., we are onsideringtrivial involution and n > r+3. Following is the statement of the theorem.Theorem 8.1. The quotient group SH(2n;R;a1;:::;ar)EH(2n;R;a1;:::;ar) is nilpotent for n >r + 3. The lass of nilpoteny is at the most max (1; d + 3 − n), whered = dim (R).The proof follows by imitating the proof of Theorem 4.1 in [6℄.Lemma 8.2. Let I be an ideal ontained in the Jaobson radial J(R) ofR, and � ∈ SH(2n;R;�), with � ≡ In modulo I. Then there exists � ∈EH(2n;R; a1;: : :; ar) suh that ��= the diagonal matrix [d1; d2; : : : ; d2n℄,where eah di is a unit in R with di ≡ 1 modulo I, and � a produt ofelementary generators with eah ongruent to identity modulo I.Proof. The diagonal elements of � are units. Let � = (�ij), where di =�ii = 1 + sii with sii ∈ I ⊂ J(R), for i = 1; : : : ; 2n, and �ij ∈ I ⊂ J(R)for i 6= j. First we make all the (2n; j)th, and (i; 2n)th entries zero, fori = 2; : : : ; n, j = 2; : : : ; n. Then repeating the above proess we an reduethe size of �. Sine we are onsidering trivial involution, we take� = n�j=1hlnj(−�2njd−1j )
× �n+r+16i62n−1n+16j6n+r hmi(−�jd−1j ) �r+16i6n−1n+r+16j62n−1h"in(��(n)�(i)d−1j );



LOCAL-GLOBAL PRINCIPLE 27where j = i− r and �j = (0; : : : ; 0; �2nj), and = �r+16j62n−1h"nj(ai−r(?)d−12n )r+16i62n−1 hrn(�);where at = 0 for t > r, and � = (�12nd−12n ; �22nd−12n ; : : : ; �n2nd−12n ). Thenthe last olumn and last row of �� beome (0; : : : ; 0; d2n)t, where d2n isa unit in R and d2n ≡ 1 modulo I. Repeating the proess we an modify� to the required form. �Proposition 8.3. (f. [30, Lemma 7℄) Let (R;�) be a ommutative formring, i.e., with trivial involution, and s be a non-nilpotent element in Rand a ∈ R. Then for l > 2
[#ij (as) ; SH(2n; slR)] ⊂ EH(2n;R):More generally,["; SH(2n; slR)℄ ⊂ EH(2n;R); for l ≫ 0 and " ∈ EH(2n;Rs):Proof of Theorem 8.1. ReallLet G be a group. De�ne Z0 = G, Z1 = [G;G℄ and Zi = [G;Zi−1℄.Then G is said to be nilpotent if Zr = {e} for some r > 0, where e denotesthe identity element of G.Sine the map EH(2n;R; a1; : : : ; ar) → EH(2n;R=I; a1; : : : ; ar) is sur-jetive we may and do assume that R is a redued ring. Note that ifn > d + 3, then the group SH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar) =KH1(R; a1; : : : ; ar), whih is abelian and hene nilpotent. (For details see[4℄). So we onsider the ase n 6 d+ 3. Let us �rst �x a n. We prove thetheorem by indution on d = dimR. LetG = SH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar):Let m = d+3− n and � = [�; ℄, for some � ∈ G and  ∈ Zm−1. Clearly,the result is true for d = 0. Let �̃ be the pre-image of � under the mapSH(2n;R; a1; : : : ; ar) → SH(2n;R; a1; : : : ; ar)=EH(2n;R; a1; : : : ; ar):If R is redued then arguing as Lemma 8.2 it follows that we an hoose anon-zero-divisor s in R suh that �̃s ∈ EH(2n;Rs; a1; : : : ; ar).Consider G, where bar denote redution modulo sl, for some l ≫ 0.By the indution hypothesis  = {1} in SH(2n;R), where bar denote



28 R. BASUthe redution modulo the subgroup EH(2n;R). Sine EH(2n;R) is a nor-mal subgroup of SH(2n;R), for n > r + 3, by modifying  we may as-sume that ̃ ∈ SH(2n;R; slR; a1; : : : ; ar), where ̃ is the pre-image of in SH(2n;R; a1; : : : ; ar). Now by Proposition 8.3 it follows that [�̃; ̃℄ ∈EH(2n;R; a1; : : : ; ar). Hene � = {1} in G. �Remark 8.4. In ( [12, Theorem 3.1℄) it has been proved that the questionof normality of the elementary subgroup and the loal-global prinipleare equivalent for the elementary subgroups of the linear, sympleti andorthogonal groups over an almost ommutative ring with identity. There isa gap in the proof of the statement (3) ⇒ (2) of Theorem 3.1 in [12℄ (for analmost ommutative ring). The fat that over a non-ommutative semiloalring the elementary subgroups of the lassial groups ats transitively onthe set of unimodular and isotropi (i.e., 〈 v; v〉 = 0) vetors of lengthn > 3 in the linear ase, and n = 2r > 6 in the non-linear ases has beenused in the proof, but it is not mentioned anywhere in the artile. Thiswas pointed by Professor R. G. Swan and he provided us a proof for theabove result.Aknowledgment: My sinere thanks to Professors R. G. Swan forgiving me his permission to reprodue his proof of Theorem 7.2 (he gavea proof for the sympleti and orthogonal groups as noted above). I thankDAE Institutes in India and ISI Kolkata for allowing me to use their infras-truture failities in times. I am very muh grateful to Prof. A. Bak andProf. Nikolai Vavilov for their kind e�orts to orret the manusript, andI thank University of Bielefeld, NBHM, and IISER Pune for their �nan-ial supports for my visits. I thank Professors T. Y. Lam, D. S. Nagaraj,Ravi Rao, B. Sury and Nikolai Vavilov for many useful suggestions andeditorial inputs. I would like to give some redit to Mr. Gaurab Tripathifor orreting few mathematial misprints.Referenes1. E. Abe, Chevalley groups over loal rings. | Tôhoku Math. J. (2) 21 (1969), 474{494.2. A. Bak, K-Theory of forms. Annals of Mathematis Studies, 98. Prineton Univer-sity Press, Prineton, N.J. University of Tokyo Press, Tokyo, (1981).3. A. Bak, Nonabelian K-theory: the nilpotent lass of K1 and general stability. |K-Theory 4, No. 4 (1991) 363{397.4. A. Bak, G. Tang, Stability for Hermitian K1. | J. Pure Appl. Algebra 150 (2000),107{121.



LOCAL-GLOBAL PRINCIPLE 295. A. Bak, V. Petrov, G. Tang, Stability for Quadrati K1. | K-Theory 29 (2003),1{11.6. A. Bak, R. Basu, R. A. Rao, Loal-global priniple for transvetion groups. | Pro.Amer. Math. So. 138, No. 4 (2010), 1191{1204.7. A. Bak, R. Hazrat, N. Vavilov, Loalization-ompletion strikes again: Relative K1is nilpotent-by-abelian. | J. Pure Appl. Algebra 213 (2009), 1075{1085.8. A. Bak, N. Vavilov, Struture of hyperboli unitary groups I, elementary subgroups.| Alg. Colloquium 7 (2) (2000), 159{196.9. H. Bass, Algebrai K-Theory, Benjamin, New York-Amsterdam, 1968.10. H. Bass, Unitary algebrai K-theory. | In: Algebrai K-theory, III: Hermitian K-theory and geometri appliations (Pro. Conf., Battelle Memorial Inst., Seattle,Wash., 1972). Leture Notes in Mathematis, Vol. 343, Springer, Berlin (1973),57{265.11. H. Bass, Quadrati modules over polynomial rings. | In: Contribution to Algebra(Colletion of papers dediated to Ellis Kolhin) Aademi Press, N.Y. (1977), 1{23.12. R. Basu, R. A. Rao, R. Khanna, On Quillen's loal-global priniple. | CommutativeAlgebra and Algebrai Geometry (Bangalore, India, 2003), Contemp. Math. 390,AMS, Providene, RI, (2005), 17{30.13. A. J. Berrik, M. E. Keating, An Introdution to Rings and Modules with K-theoryin view, Cambridge Univ. Press, Cambridge Studies Adv. Math. 65, 2000.14. P. Chattopadhyay, R. A. Rao, Elementary sympleti orbits and improved K1-stability. | J. K-Theory 7, No. 2 (2011), 389{403.15. J. Fasel, R. A. Rao, R. G. Swan, On stably free modules over aÆne algebras. |Publ. Math. Inst. Hautes �Etudes Si. 116 (2012), 223{243.16. Fu An Li, The struture of orthogonal groups over arbitrary ommutative rings. |Chinese Ann. Math. Ser. B 10 (1989), 341{350.17. R. Hazrat, Dimension theory and nonstable K1 of quadrati modules. | K-Theory 27, No. 4 (2002), 293{328.18. R. Hazrat, N. Vavilov, K1 of Chevalley groups are nilpotent. | J. Pure Appl.Algebra 179, No. 1-2 (2003), 99{116.19. R. Hazrat, N. Vavilov, Bak's work on K-theory of rings. On the oasion of his65th birthday. | J. K-Theory 4, No. 1 (2009), 1{65.20. R. Hazrat, N. Vavilov, Z. Zhang, Relative unitary ommutator alulus, and appli-ations. | J. Algebra 343 (2011), 107{137.21. R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, The yoga of ommutators. | Zap.Nauhn. Semin. POMI 387 (2011) 53{82, 189; translation in J. Math. Si. (N.Y.) 179, No. 6 (2011), 662{678.22. A. J. Hahn, O. T. O'Meara, The Classial groups and K-theory, With a forewordby J. Dieudonn�e. Grundlehren Math. Wiss. 291. Springer-Verlag, Berlin, 1989.23. N. Jaobson, Letures on Quadrati Jordan algebras, Tata Istitute of FundamentalResearh, Bombay, 1969.24. I. S. Klein, A. V. Mikhalev, The Orthogonal Steinberg group over a ring with invo-lution. | Algebra Logika 9 (1970) 145{166.25. I. S. Klein, A. V. Mikhalev, The Unitary Steinberg group over a ring with involution.| Algebra Logika 9 (1970) 510{519.



30 R. BASU26. V. I. Kopeiko, The stabilization of Sympleti groups over a polynomial ring. |Math. USSR. Sbornik 34 (1978), 655{669.27. K. MCrimmon, A general theory of Jordan rings. | Pro. Nat. Aad. Si.U.S.A. 56 (1966), 1072{1079.28. R. Parimala, Failure of Quadrati analog of Serre's Conjeture. | Bull. Amer.Math. So. 82 (1976), 962{964.29. R. Parimala, Failure of Quadrati analog of Serre's Conjeture. | Amer. J.Math. 100 (1978), 913{924.30. V. A. Petrov, Odd unitary groups. | J. Math. Si. (N. Y.) 130, No. 3 (2005),4752{4766.31. V. A. Petrov, A. K. Stavrova, Elementary subgroups in isotropi redutive groups.| Algebra Analiz 20 (2008), No. 4, 160{188; translation in St. Petersburg Math.J. 20, No. 4 (2009), 625{644.32. R. A. Rao, W. van der Kallen, Improved stability for SK1 and WMSd of a non-singular aÆne algebra. | K-theory (Strasbourg, 1992). Ast�erisque 226 (1994),411{420.33. R. A. Rao, R. Basu, S. Jose, Injetive Stability for K1 of the Orthogonal group. |J. Algebra 323 (2010), 393{396.34. Sergei Sinhuk, Injetive stability for unitary K1, revisited. (To appear).35. A. A. Suslin, On the struture of speial Linear group over polynomial rings. |Math. USSR. Izv. 11 (1977), 221{238.36. M. R. Stein, Stability theorems for K1, K2 and related funtors modeled on Cheval-ley groups. | Japan. J. Math. (N.S.) 4, No. 1 (1978), 77{108.37. A. A. Suslin, V. I. Kopeiko, Quadrati modules and Orthogonal groups over poly-nomial rings. | Zap. Nauhn. Sem. LOMI 71 (1978), 216{250.38. A. A. Suslin, L. N. Vaserstein, Serre's problem on projetive modules over polyno-mial rings, and algebrai K-theory. | Izv. Akad SSSR. Ser. Mat. 40, No. 5 (1976),937{1001.39. Guoping Tang, Hermitian groups and K-theory. | K-Theory 13, No. 3 (1998),209{267.40. G. Taddei, Normalit�e des groupes �el�ementaires dans les groupes de Chevalley sur unanneau. | Appliation of Algebrai K-Theory to Algebrai Geometry and NumberTheory. Part II (Boulder, Colo., 1983), Contemp. Math., vol. 55, Amer. Math. So.,Providene, RI, (1986), 693{710.41. M. S. Tulenbaev, Shur multiplier of a group of elementary matries of �nite order.| Zap. Nauhn. Semin. LOMI 86 (1979), 162{169.42. L. N. Vaserstein, On the Stabilization of the general Linear group over a ring.| Mat. Sbornik (N.S.) 79 (121) 405{424 (Russian); English translated in Math.USSR-Sbornik. 8 (1969), 383{400.43. L. N. Vaserstein, Stabilization of Unitary and Orthogonal Groups over a Ring withInvolution. | Mat. Sbornik, 81 (123), No. 3 (1970), 307{326.44. L. N. Vaserstein, Stabilization for Classial groups over rings [in Russian℄. | Mat.Sb. (N.S.) 93 (135) (1974), 268{295, 327.45. L. N. Vaserstein, On the normal subgroups of GLn over a ring. | AlgebraiK-theory. Evanston (1980) (Pro. Conf., Northwestern Univerisy, Evanston, Ill.,



LOCAL-GLOBAL PRINCIPLE 31(1980)), pp. 456{465, Leture Notes in Mathematis, 854, Springer, Berlin-NewYork, (1981).46. Weibe Yu, Stability for odd unitary K1 under the �-stable range ondition. | J.Pure Appl. Algebra, 217 (2013), 886{891.47. J. Wilson, The normal and subnormal struture of general linear groups. | Pro.Camb. Phil. So. 71 (1972), 163{177. ðÏÓÔÕ�ÉÌÏ 11 ÏËÔÑÂÒÑ 2016 Ç.Indian Institute of Siene Eduationand Researh - Pune,Maharashtra 411008, IndiaE-mail : rabeya.basu�gmail.om, rbasu�iiserpune.a.in


