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CONNECTION OF THE DIFFERENT TYPES OF
INVERSE DATA FOR THE ONE-DIMENSIONAL
SCHRODINGER OPERATOR ON THE HALF-LINE

ABSTRACT. We consider inverse dynamical, spectral, quantum and
acoustical scattering problems for the Schrédinger operator on the
half line. The goal of the paper is to establish the connections be-
tween different types of inverse data for these problems. The central
objects which serve as a source for all formulaes are kernels of so-
called connecting operators and Krein equations.

§1. INTRODUCTION

This paper is of methodological character, its primary goal is to show
the connection of the different types of inverse data for the Shrédinger
operator on the half line. The idea of using the connection of the inverse
data in solving the inverse problems is not knew, to mention [1,3,4,15,21].
In our approach we exploit the central objects of the Boundary Control
method — the connecting operators and corresponding Krein equations,
and show that using just these two well-known objects leads to interesting
results.

The central object we will be dealing with is a wave equation on the
half-line with the potential ¢ € Lj,, (R4 ):

gt (2, 1) — uga(z,t) + q(z)u(z,t) =0, x>0, t>0, (1.1)
u(z,0) = ug(x,0) = 0, u(0,t) = f(¢). '
Here f is an arbitrary L?, . (R ) function referred to as a boundary control,

by u/ we denote the solution to (1.1). Let T > 0 be fixed. The dynamical
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inverse data is given by the response operator (the dynamical Dirichlet-
to-Neumann map) (R” f) := uf(0,t), and the inverse problem associated
with (1.1) is to recover ¢(z), 0 < z < T, by given R*T. One of the efficient
methods of solving this problem is the Boundary Control method [1,4,8].
The control operator and connecting operator are introduced by W7 f :=
uf(-+,T), CT := (WT)"WT. The fact that C7 is expressed in terms of
the inverse data [4] plays an important role in BC method.

We also consider the spectral, quantum and acoustical scattering prob-
lems for the Schrodinger operator with the same potential ¢ on the half-line
H = —0? + q on L(0,00) with Dirichlet boundary condition ¢(0) = 0.
For each problem we define corresponding data: spectral measure and
Titchmarsh-Weil function for the spectral problem, discrete spectrum with
norming coefficients and scattering matrix for the scattering problem (we
need to assume that the potential satisfy some additional condition on
growth at infinity); acoustical response operator and acoustical response
function (for this problem we assume that potential is infinitely smooth
and compactly supported). Our aim will be to show the connection of
the dynamical data, which is the kernel of the response operator RT with
spectral and scattering data and connection of the acoustical response with
the scattering data. Some of the results have been obtained in [1, 3], we
list them for the sake of completeness or give a different proof. The main
objects which play the key role in our considerations is the kernels of the
connecting operators and Krein equations. The central role of the connect-
ing operators in different inverse problems have been pointed out in [2,4,7],
in [11] the author studied the singular values of connecting operator for
the observation problem.

In the second section we set up the forward and inverse problems: dy-
namical, spectral, quantum and acoustical scattering, and for each of them
introduce the corresponding inverse data. In the third section we study in
details the integral kernel of the connecting operator and reveal the links
with the spectral function of Levitan [19]. In the last section we derive
the spectral and scattering representation of the response function and
explain the connection of the response function with the Titchmarsh-Weil
function see also [1,3]; we also derive the scattering representation for the
acoustical scattering response function and establish its connection with
the scattering matrix.
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§2. INVERSE DATA

2.1. Dynamical inverse data. For the potential ¢ € L, (R) we con-

sider the initial boundary value problem for the 1d wave equation with the
potential (1.1) with f be an arbitrary L? . (Ry) function referred to as a
boundary control. It is known [1] that the solution uf(x,t) of the problem
(1.1) can be written in terms of the integral kernel w(z, s):

t
- - <
uf(a:,t) — ft—2) +{w($75)f(t s)ds, =z <t, (2.1)
0, x>t.
where w(z, s) is the unique solution to certain Goursat problem. Fix T' > 0
and introduce the outer space of the system (1.1), the space of controls:
FT := Ly(0,T). The dynamical inverse data is given by the response op-

erator (the dynamical Dirichlet-to-Neumann map) R? : FT — FT with
the domain {f € C?([0,T]) : £(0) = f'(0) = 0}, acting by the rule:

(R £)(t) = ul(0,t), t € (0,T).

According to (2.1) it has a representation

(RTF) () = —f'(t) + / r(8)f(t — ) ds, (2.2)
0

where r(t) := w,(0,1) is called the response function. The natural set up
of a inverse problem [1,4,8] is to recover the potential ¢(z), z € (0,T) from
R?T or what is equivalent, from »(t), t € (0,2T).

We introduce the inner space of system (1.1), the space of states: HT :=
L>(0,T), so for all 0 < t < T, uf(-,t) € HT. The control operator W7 is
defined by

W Fl e HY, W =u/(-,T),
is bounded. From (2.1) it follows that

T

WTf) (@) = f(T - z) + / w(z, ) (T — 7)dr.

T

It is not hard to show that W7 is in fact boundedly invertible. The con-
necting operator CT : FT s FT plays a central role in the BC method.
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It connects the outer space of the dynamical system (1.1) with the inner
space, and is defined by its bilinear product:

(Cvag)]:T = (’U,f(-,T),’u,g(-,T))HT ’ CT = (WT)*WT (23)
The invertibility of W7 implies that C” is positive definite, bounded and
boundedly invertible in FT. The fact that C7 is expressed in terms of the

response operator is widely used in BC-method. In [1] we have shown this
for the case of nonsmooth potential:

Proposition 1. For ¢ € L} (0,T) and T > 0, operator CT admits the
representation

T
CTH) = F(t) +/cT(t,s)f(s) ds, 0<t<T, (2.4)
where
1
T(ts) =T~ t =) = plt =5, pl) = [r@ds.  (23)

We fix a function y to be solution to the following Cauchy problem:

{y”+qy=Ay, x>0
y(0) =0, y'(0)=1.

Set up the special control problem: to find a control f7 that

_ (), 0<z<T,
o = { 4 05

Theorem 1. The control fT = W'y, which solves the special control
sin V(T —t)

problem, is the solution of the Krein equation C'f = — n F, ie.,
satisfies
[ in V(T — t)
T T T sin —t
)+ [T, fT(s)ds= 2 0<t<T.
1) J (4:5)7(5) %

Notice that (WT)" is a transformation operator: it maps the solution
of the perturbed problem to the solution of the unperturbed (modulo shift
by T):

* sin V(T — t)
wT ) = 2.6
W)y N 7 (2.6)
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2.2. Spectral inverse data. we consider the Schrédinger operator
H=-02+q(z) (2.7)

on L? (Ry) ,R, :=[0,00), with a real-valued locally integrable potential ¢
and Dirichlet boundary condition at z = 0. For z € C consider the solution

—¢" (@) + q(2)p(x) = 29(x),
{ ¢(0,2) =0, ¢'(0,2) = 1. (2.8)

It is known [18] that there exist a spectral measure dp(\), such that for all
f,g € L*(R,) the Parseval identity holds:

/f(ﬂf)g(ﬂr) dr = /(Ff)(A)(Fg)(A) dp(N), (2.9)
0 —o0

where F : Lo(Ry) — Ly ,(R) is a Fourier transformation:

(FHO) = / f(@)p(, ) de (2.10)

f(a) = / (F) Nl A) do(A).

The so-called transformation operator transforms the solutions of (2.8) to
the solution of (2.8) with zero potential:

S

(L4 Lo ) = p(s,0) + [ wla,s)p(e N do = “7? (2.11)

0

We assume that (2.7) is limit point case at oo, that is, for each z €
C; :={z € C:Imz > 0} the equation

—u" +q(z)u=zu (2.12)

has a unique, up to a multiplicative constant, solution in L, at oo , we
denote this solution by w4 :

/ luy (z,2)" de < 0o, ze€Cy.
Ry
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Then the Titchmarsh-Weyl m-function, m(z), is defined for z € C; as
), (0,2)
Ut (07 Z) .

The function m(z) is analytic in C; and satisfies the Herglotz property:
m : C; — C4, so m satisfies a Herglotz representation theorem,

m(z):c+/(tlz—1%2)dp(t),
R

where ¢ = Rem (i) and p is spectral measure of H. The measure can be
recovered from m(z) by the rule:

m(z) :=

1
dp (t) = w- limo —Imm (¢ + ie) dt.
T

E—

On the problems of uniqueness and recovering the potential from the Weyl
function we refer to to classical papers by Borg [10] and Marchenko [20],
and to modern results by Simon [23] and Gesztesy and Simon [14]. The
inverse problem on recovering the potential from the spectral measure dp
was solved by Krein in [16,17] and Gelfand and Levitan in [13].

2.3. Quantum scattering inverse data. We consider the Schrodinger
equation with the real-valued potential ¢ € Ly, (R4)

—¢" +q(x)p = k2, x> 0. (2.13)
The solution e(k, x) of the above equation is determined by the condition

lim e~ *%e(k,z) = 1.
T—00

It admits the representation
o0
e(k,z) = e 4 /K(m,t)eikt dt,
T

where the kernel K(z,t) solves certain Goursat problem. The pair
{e(k,z),e(—k,z)} forms a fundamental set of solutions when k& € R. An-
other solution to (2.13) ¢(k, ) is defined by the the conditions

go(k,O) =0, Som(kao) =1.
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We set the notation M (k) = e(0,k). Then e and ¢ when k is on real axis
are connected by

 2ikep(k, )
M (k)
where the scattering matriz is defined by
M(—k) 14 K(0,—k)
M(k) — 1+ K(0,k)
And on introducing the amplitude and phase of M (k), we have:
M(K) = A(R)e™ ™, A(k) = |M(R)], n(k) = arg M(K),  (2.15)
A(k) = A(=k), n(k)=—-n(=k).  (2.16)

The problem (2.13) has a finite number of (negative) eigenvalues
—k?,...,—k2, where ikl are zeroes of the function e(k,0), ] = 1...,n

=e(—k,z) — S(k)e(k, ), (2.14)

S(k) =

By (C;)~! we denote ( f le(ikj, z)|*> dz. Then the set of functions

{cp(k,a:), ke Ry, goj(a:):e(zkj,a:),jzl,...,n}
is a complete orthonormal set of eigenfunctions of the problem (2.13). The

Parseval identity has the form

oo

ZjZ::lew(w)st(y) +/90(ar,k)mcp(y,k)k2 dk.

0
After we introduce notations (here f € L2(Ry))

= 7f(z)¢(k,z) dz, /f dr,  (2.17)

the Parseval equality for arbitrary f,g € La(Ry) reads

Do 202 (F15) (F9) + 2 / (F*1) () (F*9) (1)U ()R .
0
The set
Sp = {(kj,Cj);-lzl, S(k), k € R}
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is called the scattering data. For the solution of the inverse problem from
Sp see [12] and references therein. It is important that the set Sp deter-
mines the function M (k) and U (k).

2.4. Inverse acoustical scattering problem. We consider the dynam-
ical system associated with the (forward) problem

Ut —Uge +qu =0, >0, —0o<t<zz

u|t<—x =0
lims oo u(s, 7—s) = f(r), 7>=0, (2.18)
u(0,t) =0,

where ¢ € C*°[0,00), suppq C [0,a], a < oo is a potential, f is a control,
u = uf (x,t) is a solution (wave). Notice that due to the hyperbolicity of
(2.18), the boundary condition at 2 = 0 does not influence on the solution
to the inverse problem [8].

Since ¢ly>q = 0, for large z’s the solution satisfies usy — ugz, = 0 and,
hence, is a sum of two D’Alembert waves:

ul (2, t)|esa = flz +1) + f*(z — 1), (2.19)

where the second summand describes the wave reflected by the potential
and outgoing to = oo. Taking f = §(t), one can introduce a fundamental
solution of the form u’(x,t) = §(t + x) + w(x,t), which satisfies

U (2, )o>a = 0(z + 1) +p(z —t) (2.20)

with p € C*®[0,00), supp p C (—00,2a). The Duhamel representation
uf = u® * f holds for the classical solutions. Note that supp f* C [0, 2a],
so that the reflected wave f*(z — ¢) in (2.19) is compactly supported on
t < r < oo for any t.

An outer space of the system (2.18) is the space of controls F :=
L3(0,00). An inner space is H := L2(0,00) (of functions of z). A con-
trol operator W : F — H acts by the rule

(W f)(z) :=u? (z,0), x> 0.

It maps F onto H isomorphically. These facts are derived from the repre-
sentation

T

(WF)(@) = f(2) + / w(z,~$)f(s)ds,  £>0.  (2.21)

0
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A connecting operator C : F — F,
C:=W*W

is a positive definite isomorphism in F. It connects the metrics of the outer
and inner spaces:

(C’fa g)f = (Wfa Wg)?‘i = (uf( : ’0)’ug( '50))7." (222)

A response operator of the system (2.18) is R : F — F,
(Rf)(1) := lim uf(s,s — 1), T20.

s—-4o00

For f € F vanishing at oo, by (2.19), this limit is f*(7). Hence we get
oo
(Rf)(7) = /p(T + 5)f(s) ds, T2 0. (2.23)
0

Here p, the acoustical response function could be determined as a response
to delta function:

p(r) = lim w’(s,s —7), 7>0.

s—-4o00

The inverse acoustical scattering problem is to recover potential ¢|;>0 by
given response operator R (or what is equivalent, from acoustical response
pli=0). Note that to recover g|(g q) it is enough to know p|(g 24) (see [8]).

Theorem 2. The equality
C=I+R (2.24)
holds, where 1 is the identity operator in JF.

A natural setup of a control problem for the system (2.18) is by given
y € H to find f € F such that u/(-,0) = y. This problem is equivalent
to the equation W f = y, which has a unique solution f = W~y € F due
to (2.21).

Let us consider a special control problem: take y, which satisfies

-y +qy=ky, x>0,
{ A (2.25)
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Theorem 3. The control f = W'y, which solves the special CP, is the
solution of the equation C'f = e*(") in F, i.e., it satisfies
(oo}
flo)+ /r(r +5)f(s)ds = 7, T>0. (2.26)
0
Writing (2.26) in the form W*W f = e?*(*) | with regard to W f =y, we
have
Wry(-, k) = (), (2.27)
Hence, W* is a transformation operator, which maps the solution y(z, k)
of (2.25) to the solution e?** of the unperturbed problem.

§3. KERNEL OF THE CONNECTING OPERATOR CT

3.1. The spectral function of Levitan and the kernel of the con-
necting operator. Here we derive the spectral representation of the con-
necting operator (2.3), (2.4) following [1].

We take a Fourier transform (2.10) of u/(-,T) and use the transforma-
tion property (2.6) of (W7)" :

oo

(Ful (-, T)) (u) = / uf (2, T)p(e, p) dz = (W f (- ) (3.1)
J .
B ™nF o [sinyis o) ds.
Let f,g € FT. Using (2.9) and (2.10), we rewrite (C’Tf, g)]__T as
T e’}
(CT f,0) 1 = / u! (2, TYud (2, T) d = / (Ful YO\ T)(Fud)(\, T) dp().
0 —00

(3.2)
Making use of (3.1), we can rewrite (3.2) as

co T T
sin V(T — t) sin V(T — s)
(CTf.9) pr = F(D)g(s) dt ds dp(N).

A
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Now we make use of the sin transform: for all h,j € L?(R)

B = Zh(m)% o, h(z) = 7%) sin (V\z) d (3%/\) ,
) .

Let us extend the functions f and g to the whole real axis setting f(t) =
g(t) =0for ¢t > T and ¢t < 0 and use the notation fr(s) = f(T —s). Then
we can rewrite

Ai)

:77f sin\/X(T—t)/\Sin\/X(T*S)f(t)g(s) gt dsd (%ﬁ) . (3.4)
0 0 O

On introducing the function

p(A), A<O,

we can rewrite (3.3) using (3.4) and counting that for fixed n we we can
change the order of integration:

T T n
. sin VA(T — t) sin VA(T — s)
lim 0/ 0/4 do(\) f(Dg(s)dtds  (3.5)

MY

7h(a:) i(w) do = 7E(A)7(A) d (3%/\
0 0

S

T (e’ e’}
0/ F(0yg(t) de = / F(T — $)g(T — s)ds = / Frvarva (

n—oo A

T T
://CT(s,t)f(t)g(s)dtds.
0 0

Let us introduce the function

- [ sin VAT — t)sin V(T — s)
U, (t,s) := / 3

do(N). (3.6)
—00
Since f, g are arbitrary functions from F7, we can deduce from (3.5) that

W, (t,s) —— ¢ (t,s), weekly in Ly ((0,T)?).
n—oo
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To strengthen the result on the convergence we need the theorem of Levitan
[19] on the convergence of spectral functions:

Theorem 4. The sequence of functions

Da(t,5) = / ot Nepls, N) dp(A) / Md(%x) (3.7)

—00

converges uniformly on every bounded set to a differentiable outside the
diagonal function, as n tends to infinity.

Applying operators (Is + L) (I; + Lt) (see (2.11)) to (3.7) we have:
(Is + Ls) (It + L)@y (¢, 5) = Uy (s, 1) (3.8)

t
sin VT sin v/ \s 2 s
_ L )2
/ 0/ (t,7) sy dr 7 d(37r/\)

_/ /L(S,T)sin\/XTdT sin\/Xtd(?%/\ )

VA VA
_/ /tL(t,T)Si“\/;TdT O/SL(S,T)%CJT d(%/\%).

0 0

wleo

The sum of the last three terms in the right hand side of the above expres-
min {s,t}
sion converges to —L(s,t) — L(t,s) — [ L(s,7)L(t,7)dr. This fact

0
and the convergence of the left hand side of (3.8) imply that

\I’n(ta S) — CT(ta 5) =
n—o0

70 sin VA(T — t) sin VA(T — s) do(N), (3.9)

A
— 00
uniformly on every compact set in RZ.

The estimates on regularized spectral function ®,,(t, s) receive a lot of
attention, to mention [22] and literature cited therein. We believe that
the connection of the regularized spectral function ®, with the kernel of
the connecting operator C7 allows one to extends some of the results to
different dynamical systems, for example to vector Schridinger system,
Dirac system, canonical systems.
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§4. ON THE CONNECTION OF THE SPECTRAL, DYNAMICAL AND
SCATTERING DATA

4.1. Weyl function and response function. We now demonstrate the
connection between the response function r (s) and the Titchmarsh-Weyl
m-~function. A connection between spectral and time-domain data is widely
used in inverse problems, see, e.g., [6,7,15] where the equivalence of several
types of boundary inverse problems is discussed.

Let f € C§°(0,00) and

Fk) = / F(t) e dt
0

o~

be its Laplace transform. Function f(k) is well defined for & € C. Going
in (1.1) over to the Laplace transforms, one has

{ i (2, k) + q(@)i(, k) =~k k),
(0, k) = f(k),

and

—

respectively. The values of the function @(0, k) and its first derivative at
the origin, @, (0, k), are related through the Titchmarsh—Weyl m-function

Ua(0,k) = m(~k*) f (k).

Therefore,

— ~

(Rf)(k) = m(—k*)f(k), (4.1)

and thus the spectral and dynamic Dirichlet-to-Neumann maps are in one-
to-one correspondence. Taking the Laplace transform of (2.2) we get

— ~

(RI)(k) = =k F (k) +7 (k) F(F)- (42)
In [3] the authors have shown that, if the potential belongs to the class

n+1
q €l™ (L1 (Ry)) =14 / lg (z)] do € 1%

n
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r+1

with the norm defined by ||g|| = sup [ |¢(s)|ds < co . Then (4.1) and
T

(4.2) imply

m(—k*) = —k+ /e*kar(a) do , (4.3)
0
with the integral in (4.3) is absolute convergent for z = —k? where Rek >

2max{+/2]|q||,el|q||}-

We notice that it was shown in [23] that there exists a unique real valued
function 4 € L} (R,) (the A—amplitude) such that

loc

m(—k?) = —k — [ A(t)e 2* dt. (4.4)
/

The absolute convergence of the integral was proved for ¢ € L' (R) and
g € L (Ry) in [14] for sufficiently large Re k. Clearly, the A—amplitude
and response function are connected by

A(t) = —2r(21).

4.2. Response function and spectral measure. Using the represen-
tation for ¢ (t, s) (3.9), we can derive the formula for the response function:

Theorem 5. The representation for the response function r

7 sin v\t
VA

— 00

holds for almost all t € [0, +00).

r(t) = do()), (4.5)

Proof. Let us note that according to (3.9)
o0
in v Atsin v A
/ —S‘nf;m VA by = (T~ 1.7~ s), tsc0.T)  (46)
Using (2.5), we have
1 t+s
(T —t,T—s) = 3 / r(r)dr, t,s€][0,T]. (4.7

|t—s]
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The integral in (4.6) can be rewritten as

1 7 (cosVA(s +t) — 1 — (cos VA|s — t| — 1)

5 N do(\) (4.8)
oo t+s
/ / Sm‘fg SOV 8 do(N), t,se0,T).
2 ol

Equating the expressions in (4.7) and (4.8) for t = s we get

26T (T—t, T—t) = / dr—//sm\/_ededa(/\), te0,T]. (4.9)

—oo 0

According to (2.2), r € L*(0,T), so we can use the Lebesgue theorem and
differentiate the last equation. We obtain the following equality almost

everywhere on [0, 277:
r(t) = / sV L.

VA
—0o0
Since the parameter T can be chosen arbitrary large, the last formula
proves the statement of the proposition. O

A different proof is given in [1], see also [23], where the regularized
version of (4.5) was derived.

The finite speed of the wave propagation in (1.1) implies the local nature
of the response function r(t): the values of r(¢), t € [0,27T] are determined
by the potential ¢(z), z € [0,T]. That is why if we are interested in the
representation of r(t) on the interval ¢ € [0,27], we can replace in (4.5)
the regularized spectral function o(A) by any of the following functions:

Iper(\) — 223, A >0, ) —po(N), A>0,
Utr(/\) — Pt ( ) 3T , Ud()\) — pd( ) PO( )
ptr(/\)ﬂ A< 07 pd(/\)7 A <O.

Here py, is the spectral function corresponding to the truncated potential:
gr(z) = q(z) for 0 < x < T and qr(z) = ¢(z) for x > T with arbitrary
locally integrable §; pa(A) is the spectral function associated to the discrete
problem on the interval (0,T") with the potential ¢4(z) = ¢(x), € [0,T]
and po(A) is the spectral function associated to the discrete problem on
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[0,T] with zero potential. (Any self-adjoint boundary condition can be
prescribed at x = T).

t
We notice that the function ®(¢) = [ r(7)dr, in accordance with (4.5)
0
is given by
(oo}
1- A
B(t) = / %\ﬂda@), 0<t<2T

— 00

has been used by Krein in [16,17] as an inverse data.

4.3. Quantum scattering data and response function. Using the
representation for ¢Z' (¢, s) obtained in (3.9), we can derive the formula for
the response function:

Theorem 6. The representation for the response function r in terms of
scattering data:

N~ psink;t 27 . _
r(t) = Z_: C: k]_ + = [ sinkt (U(k) — 1) k dk (4.10)
- 0

holds for almost all t € [0, +00).

Proof. Let us take arbitrary f,g € F' and consider the connecting oper-
ator CT (2.3)

(CTfag)j:T = (uf( ! 7T)7ug( ' 7T))HT . (411)

Where u/ is solutions to the wave equation (1.1) with the control f. Rewrit-
ing (4.11) using the Parseval identity, we obtain

(C™t,9) ZC2F5 ,T))Fy (u?(-,T))
+% / (F*uf (-, 7)) (k) (F*u? (-, T)) (k)U (k)k* dk.
0
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Using the transformation property (2.6) of (W7)" yields
T

(F*a (-, T)) (k) = /(p(m,k)uf(a:,T) de = (p(z, k), W), .,

0

sin ks

T
= ((WT)*cp(ac,k),f)HT :/f(Tfs) A ds.

Similarly,

sin k;s

T
(Fjsuf("T))(k):/f(T*S) k; ds.
0

Using these observations we get an equivalent expression for (4.11):

n T T . 3 o . i —r
wwmﬂ=§)ﬁ//m“f VLT ) g(r) ds
j=1 0 J

k;

oco T T
[ [ =D ok g ) dsrar. (112

Using the representation for CT (2.4), (2.5) and
oco T T

]ﬂ%( ///Mk'”ﬁwg D) f)g(r) ds dr di,

we can rewrite (4.12) as

// (t,8)f()g(s) dt ds (4.13)

+

3w

smo

T

T n
://202smk )SlnklifT)f(S)g(T)deT
0o o /=1
co T T
2 sink(T — s) sink(T — 1) 9
+;0/0/0/ A (Uk) — 1)k*f(s)g(T) dsdr dk.
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We notice that it is possible to change the order of integration in the
last integral in (4.13) due to results on convergence from [12]. The latter
observation leads to the representation for the kernel c(t, z):

elt.z) = ZC;Slnkj(T —x)sink; (T —t)

= kj kj

2 [ sink(T — t) sin k(T —

_/smk( t) sin k( x) (U(K) — 1) K dk.
T k k

0

We have that on the one hand (4.7), and on the other hand

n . .
sin kjx sin k;t

_ 2
c(Tft,fo)_ch o (4.14)
j=1
2 Oosin kt sin kx
— k) — 1) k2 dk.
42 [EEEE O -
0
Note that
ktsinks 1 [ sinkd
sin kt sin kx sin
A" _5/ — db. (4.15)
[t—=|

Using (4.7), (4.14) and (4.15) we arrive at (4.10). This formula but in
weaker form was derived in [14]. O

4.4. Scattering matrix and acoustical response function. Let f €
C§°(0,00) and

o0

FH® = [ raet

~

be its Fourier transform. Function f(k) is well defined for k£ € C. Going in
(2.18) with control f = § over to the Fourier transforms, one has

{ - (z,k) + q(z)u’ (z, k) = k*@° (x, k),
u(0,k) = 0.
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On the other hand, for z > a one has the representation (2.20) for u°,
applying Fourier transform to it, we get

0 (z, k) = e e 4 / p(s)e”* dse** x> a. (4.16)

Comparing (4.16) with (2.14), we conclude that in the case of absence of
the discrete spectrum the scattering matrix and acoustical response are
connected by

(oo}
S(k) =— / p(s)e”*sds = —2r (F~'p) (k), (4.17)
where the inverse Fourier transform is understood in the sence of gen-

eralized functions. We study the connecting operator for the acoustical
problem (2.22). Using the transformation F'* (2.17), we rewrite (2.22) as

(Ct.9)r =W Wa)y =Y C;(F;W[) (F;Wg) (4.18)
j=1
+%/ (FSW f) (k) (F*Wg) (k)U (k)k* dk.
0

Let us evaluate using (2.14) and transformation property of W* (2.27):

(F5W f) ( / o(z, k) dz (4.19)
0

= [ V1) @) 3 (M (Relr,~) ~ M(~Rpe(a, ) do
0
= o (f, M(k)e= ™ — M(—k)e™*);
(E5WE) (0 = [ W) @pio)do = (Whieliky, ) (420)

= (faW*e(ija )) = (fae_kj') = fJ
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We continue evaluate (4.18) using (4.19), (4.19) and (2.15), (2.16):

(Cf7 g)f = ZCJQf]g]

j=1
5 F n(k)—k-) _ gilk - —n(k)) k) itk )
) )
0
n 9 co .
=" C g+ = [ (Fusin (k- —n0) (g,5in (k - ~n(k) db. (2.21)
j=1 0

In the dynamical representation (2.22), (2.26):

2 o0
(Cf,9) :—/ f,sin(k-)) (g,sin (k dk+// (t+s)f(t)g(s)dtds.
0

Then we can write:

//pt+s dtds-//ZC’fe i@ £(2)g(y) da dy
00

+ 77f 7sm (kz —n(k)) sin (ky — n(k)) dk
0 0

—77wm@§7mwmmww%

3

by the trigonometry,

//pt+s dtds-//ZCfeik @) £ (2)g(y) dz dy
00

0
I

=1|H

/ (cosk(xz +y) — cos (k(z +y) — 2n(k))) dk
0
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from where we deduce the representation for p on the interval (0, 2a):

oo

p(t) = z”: Cje kit 4 % / (cos kt — cos (kt — 2n(k))) dk, (4.22)
Jj=1 0
p(t) = ZC’je_kjt + %/(sin n(k) sin (n(k) — kt)) dk, (4.23)

where the right hand sides are understood as generalized functions.

sc
fu

Notice that the acoustical response in (4.17) plays the same role for the
attering matrix as response function (or A—amplitude) plays for Weyl
nction in (4.3) and (4.4).

We think that the result of the convergence of integrals in (4.22), (4.23)

can be improved, we are planing to return to this question elsewhere in
the framework of studying the inverse acoustical scattering problem for
the system (2.18) with a potential with non compact support.

10.
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