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CONNECTION OF THE DIFFERENT TYPES 135inverse data is given by the response operator (the dynamial Dirihlet-to-Neumann map) (RT f) := ufx(0; t), and the inverse problem assoiatedwith (1.1) is to reover q(x); 0 < x < T , by given R2T . One of the eÆientmethods of solving this problem is the Boundary Control method [1, 4, 8℄.The ontrol operator and onneting operator are introdued by W T f :=uf ( · ; T ), CT := (W T )∗W T . The fat that CT is expressed in terms ofthe inverse data [4℄ plays an important role in BC method.We also onsider the spetral, quantum and aoustial sattering prob-lems for the Shr�odinger operator with the same potential q on the half-lineH = −�2x + q on L2(0;∞) with Dirihlet boundary ondition �(0) = 0.For eah problem we de�ne orresponding data: spetral measure andTithmarsh-Weil funtion for the spetral problem, disrete spetrum withnorming oeÆients and sattering matrix for the sattering problem (weneed to assume that the potential satisfy some additional ondition ongrowth at in�nity); aoustial response operator and aoustial responsefuntion (for this problem we assume that potential is in�nitely smoothand ompatly supported). Our aim will be to show the onnetion ofthe dynamial data, whih is the kernel of the response operator RT withspetral and sattering data and onnetion of the aoustial response withthe sattering data. Some of the results have been obtained in [1, 3℄, welist them for the sake of ompleteness or give a di�erent proof. The mainobjets whih play the key role in our onsiderations is the kernels of theonneting operators and Krein equations. The entral role of the onnet-ing operators in di�erent inverse problems have been pointed out in [2,4,7℄,in [11℄ the author studied the singular values of onneting operator forthe observation problem.In the seond setion we set up the forward and inverse problems: dy-namial, spetral, quantum and aoustial sattering, and for eah of themintrodue the orresponding inverse data. In the third setion we study indetails the integral kernel of the onneting operator and reveal the linkswith the spetral funtion of Levitan [19℄. In the last setion we derivethe spetral and sattering representation of the response funtion andexplain the onnetion of the response funtion with the Tithmarsh-Weilfuntion see also [1,3℄; we also derive the sattering representation for theaoustial sattering response funtion and establish its onnetion withthe sattering matrix.



136 A. S. MIKHAYLOV, V. S. MIKHAYLOV
§2. Inverse data2.1. Dynamial inverse data. For the potential q ∈ L1lo (R+) we on-sider the initial boundary value problem for the 1d wave equation with thepotential (1.1) with f be an arbitrary L2lo (R+) funtion referred to as aboundary ontrol. It is known [1℄ that the solution uf (x; t) of the problem(1.1) an be written in terms of the integral kernel w(x; s):uf (x; t) = 




f(t− x) + t∫x w(x; s)f(t− s) ds; x 6 t;0; x > t: (2.1)where w(x; s) is the unique solution to ertain Goursat problem. Fix T > 0and introdue the outer spae of the system (1.1), the spae of ontrols:

FT := L2(0; T ). The dynamial inverse data is given by the response op-erator (the dynamial Dirihlet-to-Neumann map) RT : FT 7→ FT withthe domain {f ∈ C2([0; T ℄) : f(0) = f ′(0) = 0}, ating by the rule:(RT f)(t) = ufx(0; t); t ∈ (0; T ):Aording to (2.1) it has a representation(RT f)(t) = −f ′(t) + t∫0 r(s)f(t− s) ds; (2.2)where r(t) := wx(0; t) is alled the response funtion. The natural set upof a inverse problem [1,4,8℄ is to reover the potential q(x); x ∈ (0; T ) fromR2T , or what is equivalent, from r(t); t ∈ (0; 2T ):We introdue the inner spae of system (1.1), the spae of states: HT :=L2(0; T ), so for all 0 6 t 6 T; uf ( · ; t) ∈ HT . The ontrol operator W T isde�ned by W T : FT 7→ HT ; W T f = uf ( · ; T );is bounded. From (2.1) it follows that(W T f)(x) = f(T − x) + T∫x w(x; �)f(T − �) d�:It is not hard to show that W T is in fat boundedly invertible. The on-neting operator CT : FT 7→ FT ; plays a entral role in the BC method.



CONNECTION OF THE DIFFERENT TYPES 137It onnets the outer spae of the dynamial system (1.1) with the innerspae, and is de�ned by its bilinear produt:
(CT f; g)FT = (uf ( · ; T ); ug( · ; T ))HT ; CT = (W T )∗W T : (2.3)The invertibility of W T implies that CT is positive de�nite, bounded andboundedly invertible in FT : The fat that CT is expressed in terms of theresponse operator is widely used in BC-method. In [1℄ we have shown thisfor the ase of nonsmooth potential:Proposition 1. For q ∈ L1lo(0; T ) and T > 0, operator CT admits therepresentation(CT f)(t) = f(t) + T∫0 T (t; s)f(s) ds ; 0 < t < T ; (2.4)whereT (t; s) = [p(2T − t− s)− p(t− s)℄; p(t) = 12 t∫0 r(s) ds: (2.5)We �x a funtion y to be solution to the following Cauhy problem:

{
−y′′ + qy = �y; x > 0y(0) = 0; y′(0) = 1:Set up the speial ontrol problem: to �nd a ontrol fT that(W T fT )(x) = { y(x); 0 < x < T;0; x > T:Theorem 1. The ontrol fT = W−1y; whih solves the speial ontrolproblem, is the solution of the Krein equation Cf = sin√�(T−t)√� in F , i.e.,satis�esfT (�) + T∫0 T (t; s)fT (s) ds = sin√�(T − t)√� ; 0 6 t 6 T:Notie that (W T )∗ is a transformation operator: it maps the solutionof the perturbed problem to the solution of the unperturbed (modulo shiftby T ):

(W T )∗ y( · ; �) = sin√�(T − t)√� : (2.6)



138 A. S. MIKHAYLOV, V. S. MIKHAYLOV2.2. Spetral inverse data. we onsider the Shr�odinger operatorH = −�2x + q (x) (2.7)on L2 (R+) ;R+ := [0;∞); with a real-valued loally integrable potential qand Dirihlet boundary ondition at x = 0: For z ∈ C onsider the solution
{

−'′′(x) + q(x)'(x) = z'(x);'(0; z) = 0; '′(0; z) = 1: (2.8)It is known [18℄ that there exist a spetral measure d�(�), suh that for allf; g ∈ L2(R+) the Parseval identity holds:
∞∫0 f(x)g(x) dx = ∞∫

−∞

(Ff)(�)(Fg)(�) d�(�); (2.9)where F : L2(R+) 7→ L2; �(R) is a Fourier transformation:(Ff)(�) = ∞∫0 f(x)'(x; �) dx (2.10)f(x) = ∞∫

−∞

(Ff)(�)'(x; �) d�(�):The so-alled transformation operator transforms the solutions of (2.8) tothe solution of (2.8) with zero potential:(Is + Ls)'( · ; �) = '(s; �) + s∫0 w(x; s)'(x; �) dx = sin√�s√� : (2.11)We assume that (2:7) is limit point ase at ∞, that is, for eah z ∈
C+ := {z ∈ C : Im z > 0} the equation

−u′′ + q (x)u = zu (2.12)has a unique, up to a multipliative onstant, solution in L2 at ∞ , wedenote this solution by u+:
∫

R+ |u+ (x; z)|2 dx <∞; z ∈ C+:



CONNECTION OF THE DIFFERENT TYPES 139Then the Tithmarsh-Weyl m-funtion, m(z); is de�ned for z ∈ C+ asm (z) := u′+ (0; z)u+ (0; z) :The funtion m(z) is analyti in C+ and satis�es the Herglotz property:m : C+ → C+, so m satis�es a Herglotz representation theorem,m (z) = + ∫

R

( 1t− z − t1 + t2) d� (t) ;where  = Rem (i) and � is spetral measure of H . The measure an bereovered from m(z) by the rule:d� (t) = w- lim"→+0 1� Imm (t+ i") dt:On the problems of uniqueness and reovering the potential from the Weylfuntion we refer to to lassial papers by Borg [10℄ and Marhenko [20℄,and to modern results by Simon [23℄ and Gesztesy and Simon [14℄. Theinverse problem on reovering the potential from the spetral measure d�was solved by Krein in [16, 17℄ and Gelfand and Levitan in [13℄.2.3. Quantum sattering inverse data. We onsider the Shr�odingerequation with the real-valued potential q ∈ L1+|x|(R+)
−�′′ + q(x)� = k2�; x > 0: (2.13)The solution e(k; x) of the above equation is determined by the onditionlimx→∞

e−ikxe(k; x) = 1:It admits the representatione(k; x) = eikx + ∞∫x K(x; t)eikt dt;where the kernel K(x; t) solves ertain Goursat problem. The pair
{e(k; x); e(−k; x)} forms a fundamental set of solutions when k ∈ R. An-other solution to (2.13) '(k; x) is de�ned by the the onditions'(k; 0) = 0; 'x(k; 0) = 1:



140 A. S. MIKHAYLOV, V. S. MIKHAYLOVWe set the notation M(k) = e(0; k). Then e and ' when k is on real axisare onneted by
−2ik'(k; x)M(k) = e(−k; x)− S(k)e(k; x); (2.14)where the sattering matrix is de�ned byS(k) = M(−k)M(k) = 1 + K̂(0;−k)1 + K̂(0; k) ; k ∈ R:And on introduing the amplitude and phase of M(k), we have:M(k) = A(k)ei�(k); A(k) = |M(k)|; �(k) = argM(k); (2.15)A(k) = A(−k); �(k) = −�(−k): (2.16)The problem (2.13) has a �nite number of (negative) eigenvalues

−k21; : : : ;−k2n, where ikl are zeroes of the funtion e(k; 0), l = 1 : : : ; n.By (Cj)−1 we denote (Cj)−1 = ∞∫0 |e(ikj ; x)|2 dx. Then the set of funtions
{'(k; x); k ∈ R+; 'j(x) = e(ikj ; x); j = 1; : : : ; n}is a omplete orthonormal set of eigenfuntions of the problem (2.13). TheParseval identity has the formÆ(x− y) = n∑j=1C2j 'j(x)'j(y) + ∞∫0 '(x; k) 1M(k)M(−k)'(y; k)k2 dk:After we introdue notations (here f ∈ L2(R+))U(k) := 1M(−k)M(k) ;(F sf) (k) = ∞∫0 f(x)'(k; x) dx; (F sj f) = ∞∫0 f(x)'j(x) dx; (2.17)the Parseval equality for arbitrary f; g ∈ L2(R+) reads(f; g)L2(R+) = n∑j=1 C2j (F sj f) (F sj g) + 2� ∞∫0 (F sf) (k) (F sg) (k)U(k)k2 dk:The set SD := {(kj ; Cj)nj=1; S(k); k ∈ R

}



CONNECTION OF THE DIFFERENT TYPES 141is alled the sattering data. For the solution of the inverse problem fromSD see [12℄ and referenes therein. It is important that the set SD deter-mines the funtion M(k) and U(k).2.4. Inverse aoustial sattering problem. We onsider the dynam-ial system assoiated with the (forward) problem





utt − uxx + qu = 0; x > 0; −∞ < t < xu|t<−x = 0lims→∞ u(s; � − s) = f(�); � > 0;u(0; t) = 0; (2.18)where q ∈ C∞[0;∞), supp q ⊂ [0; a℄, a < ∞ is a potential, f is a ontrol,u = uf (x; t) is a solution (wave). Notie that due to the hyperboliity of(2.18), the boundary ondition at x = 0 does not inuene on the solutionto the inverse problem [8℄.Sine q|x>a = 0, for large x's the solution satis�es utt − uxx = 0 and,hene, is a sum of two D'Alembert waves:uf (x; t)|x>a = f(x+ t) + f∗(x− t); (2.19)where the seond summand desribes the wave reeted by the potentialand outgoing to x = ∞: Taking f = Æ(t), one an introdue a fundamentalsolution of the form uÆ(x; t) = Æ(t+ x) + w(x; t), whih satis�esuÆ(x; t)|x>a = Æ(x + t) + p(x− t) (2.20)with p ∈ C∞[0;∞); supp p ⊂ (−∞; 2a). The Duhamel representationuf = uÆ ∗ f holds for the lassial solutions. Note that supp f∗ ⊂ [0; 2a℄;so that the reeted wave f∗(x − t) in (2.19) is ompatly supported ont 6 x 6 ∞ for any t.An outer spae of the system (2.18) is the spae of ontrols F :=L2(0;∞). An inner spae is H := L2(0;∞) (of funtions of x). A on-trol operator W : F → H ats by the rule(Wf)(x) := uf (x; 0); x > 0:It maps F onto H isomorphially. These fats are derived from the repre-sentation (Wf)(x) = f(x) + x∫0 w(x;−s)f(s) ds; x > 0: (2.21)



142 A. S. MIKHAYLOV, V. S. MIKHAYLOVA onneting operator C : F → F ;C :=W ∗Wis a positive de�nite isomorphism in F . It onnets the metris of the outerand inner spaes:(Cf; g)F = (Wf;Wg)H = (uf ( · ; 0); ug( · ; 0))H : (2.22)A response operator of the system (2.18) is R : F → F ;(Rf)(�) := lims→+∞
uf (s; s− �); � > 0:For f ∈ F vanishing at ∞, by (2.19), this limit is f∗(�): Hene we get(Rf)(�) = ∞∫0 p(� + s)f(s) ds; � > 0: (2.23)Here p, the aoustial response funtion ould be determined as a responseto delta funtion: p(�) = lims→+∞
uÆ(s; s− �); � > 0:The inverse aoustial sattering problem is to reover potential q|x>0 bygiven response operator R (or what is equivalent, from aoustial responsep|t>0). Note that to reover q|(0;a) it is enough to know p|(0;2a) (see [8℄).Theorem 2. The equality C = I +R (2.24)holds, where I is the identity operator in F .A natural setup of a ontrol problem for the system (2.18) is by giveny ∈ H to �nd f ∈ F suh that uf ( · ; 0) = y. This problem is equivalentto the equation Wf = y, whih has a unique solution f =W−1y ∈ F dueto (2.21).Let us onsider a speial ontrol problem: take y, whih satis�es

{
−y′′ + qy = k2y; x > 0;y|x>a = eikx: (2.25)



CONNECTION OF THE DIFFERENT TYPES 143Theorem 3. The ontrol f = W−1y; whih solves the speial CP, is thesolution of the equation Cf = eik( · ) in F , i.e., it satis�esf(�) + ∞∫0 r(� + s)f(s) ds = eik� ; � > 0: (2.26)Writing (2.26) in the form W ∗Wf = eik( · ); with regard to Wf = y; wehave W ∗y( · ; k) = eik( · ): (2.27)Hene, W ∗ is a transformation operator, whih maps the solution y(x; k)of (2.25) to the solution eikx of the unperturbed problem.
§3. Kernel of the onneting operator CT3.1. The spetral funtion of Levitan and the kernel of the on-neting operator. Here we derive the spetral representation of the on-neting operator (2.3), (2.4) following [1℄.We take a Fourier transform (2.10) of uf ( · ; T ) and use the transforma-tion property (2.6) of (W T )∗ :

(Fuf ( · ; T )) (�) = ∞∫

−∞

uf (x; T )'(x; �) dx = (W T f; '( · ; �))HT (3.1)= (f; (W T )∗ '( · ; �))HT = T∫0 sin√�s
√� f(T − s) ds:Let f; g ∈ FT . Using (2.9) and (2.10), we rewrite (CT f; g)FT

as
(CT f; g)FT = T∫0 uf (x; T )ug(x; T ) dx = ∞∫

−∞

(Fuf )(�; T )(Fug)(�; T ) d�(�):(3.2)Making use of (3.1), we an rewrite (3.2) as
(CT f; g)FT = ∞∫

−∞

T∫0 T∫0 sin√�(T − t) sin√�(T − s)� f(t)g(s) dt ds d�(�):(3.3)



144 A. S. MIKHAYLOV, V. S. MIKHAYLOVNow we make use of the sin transform: for all h; j ∈ L2(R+)ĥ(�) = ∞∫0 h(x) sin (√�x)√� dx; h(x) = ∞∫0 ĥ(�) sin (√�x) d( 23�� 32) ;
∞∫0 h(x)j(x) dx = ∞∫0 ĥ(�)ĵ(�) d( 23�� 32) :Let us extend the funtions f and g to the whole real axis setting f(t) =g(t) = 0 for t > T and t < 0 and use the notation fT (s) = f(T − s). Thenwe an rewriteT∫0 f(t)g(t) dt = ∞∫0 f(T − s)g(T − s) ds = ∞∫0 f̂T (�)ĝT (�) d( 23�� 32)= ∞∫0 T∫0 T∫0 sin√�(T − t) sin√�(T − s)� f(t)g(s) dt ds d( 23�� 32) : (3.4)On introduing the funtion�(�) = { �(�)− 23�� 32 ; � > 0;�(�); � < 0;we an rewrite (3.3) using (3.4) and ounting that for �xed n we we anhange the order of integration:limn→∞

T∫0 T∫0 n∫
−∞

sin√�(T − t) sin√�(T − s)� d�(�)f(t)g(s) dt ds (3.5)= T∫0 T∫0 T (s; t)f(t)g(s) dt ds:Let us introdue the funtion	n(t; s) := n∫
−∞

sin√�(T − t) sin√�(T − s)� d�(�): (3.6)Sine f; g are arbitrary funtions from FT , we an dedue from (3.5) that	n(t; s) −−−−→n→∞
T (t; s); weekly in L2 ((0; T )2):



CONNECTION OF THE DIFFERENT TYPES 145To strengthen the result on the onvergene we need the theorem of Levitan[19℄ on the onvergene of spetral funtions:Theorem 4. The sequene of funtions�n(t; s) = n∫
−∞

'(t; �)'(s; �) d�(�) − n∫0 sin√�t sin√�s� d( 23�� 32) ; (3.7)onverges uniformly on every bounded set to a di�erentiable outside thediagonal funtion, as n tends to in�nity.Applying operators (Is + Ls)(It + Lt) (see (2.11)) to (3.7) we have:(Is + Ls)(It + Lt)�n(t; s) = 	n(s; t) (3.8)
−

n∫0 


t∫0 L(t; �) sin√��√� d� sin√�s√� d( 23�� 32)

−
n∫0 


s∫0 L(s; �) sin√��√� d� sin√�t√� d( 23�� 32)

−
n∫0 


t∫0 L(t; �) sin√��√� d� 


s∫0 L(s; �) sin√��√� d� d( 23�� 32) :The sum of the last three terms in the right hand side of the above expres-sion onverges to −L(s; t) − L(t; s) − min {s;t}∫0 L(s; �)L(t; �) d� . This fatand the onvergene of the left hand side of (3.8) imply that	n(t; s) −−−−→n→∞

T (t; s) = ∞∫

−∞

sin√�(T − t) sin√�(T − s)� d�(�); (3.9)uniformly on every ompat set in R2.The estimates on regularized spetral funtion �n(t; s) reeive a lot ofattention, to mention [22℄ and literature ited therein. We believe thatthe onnetion of the regularized spetral funtion �n with the kernel ofthe onneting operator CT allows one to extends some of the results todi�erent dynamial systems, for example to vetor Shr�odinger system,Dira system, anonial systems.



146 A. S. MIKHAYLOV, V. S. MIKHAYLOV
§4. On the onnetion of the spetral, dynamial andsattering data4.1. Weyl funtion and response funtion. We now demonstrate theonnetion between the response funtion r (s) and the Tithmarsh-Weylm-funtion. A onnetion between spetral and time-domain data is widelyused in inverse problems, see, e.g., [6,7,15℄ where the equivalene of severaltypes of boundary inverse problems is disussed.Let f ∈ C∞0 (0;∞) and f̂(k) := ∞∫0 f(t) e−kt dtbe its Laplae transform. Funtion f̂(k) is well de�ned for k ∈ C. Goingin (1.1) over to the Laplae transforms, one has

{ −ûxx(x; k) + q(x)û(x; k) = −k2û(x; k);û(0; k) = f̂(k);and (̂Rf)(k) = ûx(0; k);respetively. The values of the funtion û(0; k) and its �rst derivative atthe origin, ûx(0; k); are related through the Tithmarsh{Weyl m-funtionûx(0; k) = m(−k2)f̂(k) :Therefore, (̂Rf)(k) = m(−k2)f̂(k) ; (4.1)and thus the spetral and dynami Dirihlet-to-Neumann maps are in one-to-one orrespondene. Taking the Laplae transform of (2.2) we get(̂Rf)(k) = −kf̂(k) + r̂(k)f̂(k): (4.2)In [3℄ the authors have shown that, if the potential belongs to the lassq ∈ l∞ (L1 (R+)) := 


q : n+1∫n |q (x)| dx ∈ l∞






CONNECTION OF THE DIFFERENT TYPES 147with the norm de�ned by ||q|| = sup x+1∫x |q (s)| ds < ∞ . Then (4.1) and(4.2) imply m(−k2) = −k + ∞∫0 e−k�r(�) d� ; (4.3)with the integral in (4.3) is absolute onvergent for z = −k2 where Re k >2max{√2 ||q||; e ||q||}:We notie that it was shown in [23℄ that there exists a unique real valuedfuntion A ∈ L1lo (R+) (the A−amplitude) suh thatm(−k2) = −k − ∞∫0 A(t)e−2tk dt : (4.4)The absolute onvergene of the integral was proved for q ∈ L1 (R+) andq ∈ L∞ (R+) in [14℄ for suÆiently large Re k. Clearly, the A−amplitudeand response funtion are onneted byA(t) = −2r(2t):4.2. Response funtion and spetral measure. Using the represen-tation for T (t; s) (3.9), we an derive the formula for the response funtion:Theorem 5. The representation for the response funtion rr(t) = ∞∫

−∞

sin√�t√� d�(�); (4.5)holds for almost all t ∈ [0;+∞).Proof. Let us note that aording to (3.9)
∞∫

−∞

sin√�t sin√�s� d�(�) = T (T − t; T − s); t; s ∈ [0; T ℄: (4.6)Using (2.5), we haveT (T − t; T − s) = 12 t+s∫

|t−s| r(�) d�; t; s ∈ [0; T ℄: (4.7)



148 A. S. MIKHAYLOV, V. S. MIKHAYLOVThe integral in (4.6) an be rewritten as12 ∞∫

−∞

(os√�(s+ t)− 1− (os√�|s− t| − 1)� d�(�) (4.8)= 12 ∞∫

−∞

t+s∫

|t−s| sin√��√� d� d�(�); t; s ∈ [0; T ℄:Equating the expressions in (4.7) and (4.8) for t = s we get2T (T−t; T−t) = 2t∫0 r(�) d� = ∞∫

−∞

2t∫0 sin√��√� d� d�(�); t ∈ [0; T ℄: (4.9)Aording to (2.2), r ∈ L1(0; T ), so we an use the Lebesgue theorem anddi�erentiate the last equation. We obtain the following equality almosteverywhere on [0; 2T ℄: r(t) = ∞∫

−∞

sin√�t√� d�(�):Sine the parameter T an be hosen arbitrary large, the last formulaproves the statement of the proposition. �A di�erent proof is given in [1℄, see also [23℄, where the regularizedversion of (4.5) was derived.The �nite speed of the wave propagation in (1.1) implies the loal natureof the response funtion r(t): the values of r(t), t ∈ [0; 2T ℄ are determinedby the potential q(x), x ∈ [0; T ℄. That is why if we are interested in therepresentation of r(t) on the interval t ∈ [0; 2T ℄, we an replae in (4.5)the regularized spetral funtion �(�) by any of the following funtions:�tr(�) = {l�tr(�)− 23�� 32 ; � > 0;�tr(�); � < 0; ; �d(�) = {�d(�)− �0(�); � > 0;�d(�); � < 0:Here �tr is the spetral funtion orresponding to the trunated potential:qT (x) = q(x) for 0 6 x 6 T and qT (x) = ~q(x) for x > T with arbitraryloally integrable ~q; �d(�) is the spetral funtion assoiated to the disreteproblem on the interval (0; T ) with the potential qd(x) = q(x), x ∈ [0; T ℄and �0(�) is the spetral funtion assoiated to the disrete problem on



CONNECTION OF THE DIFFERENT TYPES 149[0; T ℄ with zero potential. (Any self-adjoint boundary ondition an bepresribed at x = T ).We notie that the funtion �(t) = t∫0 r(�) d� , in aordane with (4.5)is given by �(t) = ∞∫

−∞

1− os√��� d�(�); 0 < t < 2Thas been used by Krein in [16, 17℄ as an inverse data.4.3. Quantum sattering data and response funtion. Using therepresentation for T (t; s) obtained in (3.9), we an derive the formula forthe response funtion:Theorem 6. The representation for the response funtion r in terms ofsattering data:r(t) = n∑j=1C2j sin kjtkj + 2� ∞∫0 sin kt (U(k)− 1) k dk (4.10)holds for almost all t ∈ [0;+∞).Proof. Let us take arbitrary f; g ∈ FT and onsider the onneting oper-ator CT (2.3)
(CT f; g)FT = (uf ( · ; T ); ug( · ; T ))HT : (4.11)Where uf is solutions to the wave equation (1.1) with the ontrol f . Rewrit-ing (4.11) using the Parseval identity, we obtain

(CT f; g)FT = n∑j=1C2j F sj (uf ( · ; T ))F sj (ug( · ; T ))+ 2� ∞∫0 (F suf ( · ; T )) (k) (F sug( · ; T )) (k)U(k)k2 dk:



150 A. S. MIKHAYLOV, V. S. MIKHAYLOVUsing the transformation property (2.6) of (W T )∗ yields
(F suf ( · ; T )) (k) = T∫0 '(x; k)uf (x; T ) dx = ('(x; k);W T f)HT= ((W T )∗ '(x; k); f)HT = T∫0 f(T − s) sin ksk ds:Similarly,

(F sj uf ( · ; T )) (k) = T∫0 f(T − s) sin kjskj ds:Using these observations we get an equivalent expression for (4.11):
(CT f; g)FT = n∑j=1C2j T∫0 T∫0 sin kj(T − s)kj sin kj(T − �)kj f(s)g(�) ds d�+ 2� ∞∫0 T∫0 T∫0 sin k(T − s)k sin k(T − �)k U(k)k2f(s)g(�) ds d� dk: (4.12)Using the representation for CT (2.4), (2.5) andT∫0 f(t)g(t) dt = 2� ∞∫0 T∫0 T∫0 sin k(T − s)k sin k(T − �)k k2f(s)g(�) ds d� dk;we an rewrite (4.12) asT∫0 T∫0 T (t; s)f(t)g(s) dt ds (4.13)= T∫0 T∫0 n∑j=1C2j sin kj(T − s)kj sin kj(T − �)kj f(s)g(�) ds d�+ 2� ∞∫0 T∫0 T∫0 sin k(T − s)k sin k(T − �)k (U(k)− 1)k2f(s)g(�) ds d� dk:



CONNECTION OF THE DIFFERENT TYPES 151We notie that it is possible to hange the order of integration in thelast integral in (4.13) due to results on onvergene from [12℄. The latterobservation leads to the representation for the kernel (t; x):(t; x) = n∑j=1C2j sin kj(T − x)kj sin kj(T − t)kj+ 2� ∞∫0 sin k(T − t)k sin k(T − x)k (U(k)− 1) k2 dk:We have that on the one hand (4.7), and on the other hand(T − t; T − x) = n∑j=1 C2j sin kjxkj sin kjtkj (4.14)+ 2� ∞∫0 sin ktk sin kxk (U(k)− 1) k2 dk:Note that sin ktk sin kxk = 12 t+x∫

|t−x| sin k�k d�: (4.15)Using (4.7), (4.14) and (4.15) we arrive at (4.10). This formula but inweaker form was derived in [14℄. �4.4. Sattering matrix and aoustial response funtion. Let f ∈C∞0 (0;∞) and (Ff) (k) := ∞∫

−∞

f(t) eikt dtbe its Fourier transform. Funtion f̂(k) is well de�ned for k ∈ C. Going in(2.18) with ontrol f = Æ over to the Fourier transforms, one has
{

−ûÆxx(x; k) + q(x)ûÆ(x; k) = k2ûÆ(x; k);û(0; k) = 0:



152 A. S. MIKHAYLOV, V. S. MIKHAYLOVOn the other hand, for x > a one has the representation (2.20) for uÆ,applying Fourier transform to it, we getûÆ(x; k) = e−ikx + ∞∫

−∞

p(s)e−iks ds eikx; x > a: (4.16)Comparing (4.16) with (2.14), we onlude that in the ase of absene ofthe disrete spetrum the sattering matrix and aoustial response areonneted by S(k) = −
∞∫

−∞

p(s)e−iks ds = −2� (F−1p) (k); (4.17)where the inverse Fourier transform is understood in the sene of gen-eralized funtions. We study the onneting operator for the aoustialproblem (2.22). Using the transformation F s (2.17), we rewrite (2.22) as(Cf; g)F = (Wf;Wg)H = n∑j=1C2j (F sjWf) (F sj Wg) (4.18)+ 2� ∞∫0 (F sWf) (k) (F sWg) (k)U(k)k2 dk:Let us evaluate using (2.14) and transformation property of W ∗ (2.27):(F sWf) (k) = ∞∫0 (Wf) (x)'(x; k) dx (4.19)= ∞∫0 (Wf) (x) i2k (M(k)e(x;−k)−M(−k)e(x; k)) dx= i2k (f;M(k)e−ik · −M(−k)eik · ) ;
(F sjWf) (k) = ∞∫0 (Wf) (x)'j(x) dx = (Wf; e(ikj ; · )) (4.20)= (f;W ∗e(ikj ; · )) = (f; e−kj · ) =: fj :



CONNECTION OF THE DIFFERENT TYPES 153We ontinue evaluate (4.18) using (4.19), (4.19) and (2.15), (2.16):(Cf; g)F = n∑j=1C2j fjgj+ 2� ∞∫0 (f; ei(�(k)−k · ) − ei(k · −�(k))2i ) (g; ei(�(k)−k · ) − ei(k · −�(k))2i ) dk= n∑j=1C2j fjgj + 2� ∞∫0 (f; sin (k · −�(k))) (g; sin (k · −�(k))) dk: (4.21)In the dynamial representation (2.22), (2.26):(Cf; g)F = 2� ∞∫0 (f; sin (k · )) (g; sin (k · )) dk + ∞∫0 ∞∫0 p(t+ s)f(t)g(s) dt ds:Then we an write:
∞∫0 ∞∫0 p(t+ s)f(t)g(s) dt ds = ∞∫0 ∞∫0 n∑j=1C2j e−kj(x+y)f(x)g(y) dx dy+ ∞∫0 ∞∫0 f(x)g(y) 2� ∞∫0 sin (kx− �(k)) sin (ky − �(k)) dk

−
∞∫0 ∞∫0 f(x)g(y) 2� ∞∫0 sin (kx) sin (ky) dkby the trigonometry,

∞∫0 ∞∫0 p(t+ s)f(t)g(s) dt ds = ∞∫0 ∞∫0 n∑j=1C2j e−kj(x+y)f(x)g(y) dx dy+ ∞∫0 ∞∫0 f(x)g(y) 1� ∞∫0 (os k(x+ y)− os (k(x+ y)− 2�(k))) dk
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