
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.A. Khvedelidze, A. TorosyanTHE SPECTRUM AND SEPARABILITY OF MIXEDTWO-QUBIT X-STATESAbstra
t. The separable mixed two-qubit X-states are 
lassi�edin a

ordan
e with the degenera
ies in the spe
trum of density ma-tri
es. It is shown that there are four 
lasses of separable X-states,among them: one four-dimensional family, a pair of two-dimensionalfamilies, and a single zero-dimensional maximally mixed state.Introdu
tionConsider the spa
e PX of 4× 4 Hermitian matri
es of the form%X := 


%11 0 0 %140 %22 %23 00 %32 %33 0%41 0 0 %44  : (1)Due to the Hermiti
ity, the diagonal entries in (1) are real numbers, whilethe elements of the minor diagonal are pairwise 
omplex 
onjugate num-bers, %14 = %14 and %23 = %32. Assuming that the matrix %X is semi-positive de�nite, %X > 0; (2)and has unit tra
e, tr%X = 1; (3)%X 
an be regarded as the density matrix of a 4-level quantum system.Sin
e the nonzero elements in (1) lie in a shape similar to the Latin letter\X," the 
orresponding quantum states are 
alled X-states.The 7-dimensional spa
e PX is a subspa
e of the 15-dimensional statespa
e P of a generi
 4-level quantum system, PX ⊂ P. Sin
e the intro-du
tion of X-states [1℄, various subfamilies of PX have been attra
tingspe
ial attention. There are at least two reasons for that interest. First ofall, it was dis
overed that mi
ros
opi
 systems being in 
ertain X-statesKey words and phrases: group a
tions, Lie group orbits, quantum entanglement.270



THE SPECTRUM AND SEPARABILITY OF X-STATES 271show a highly nontrivial quantum behavior.1 Se
ond, due to the simplealgebrai
 stru
ture of X-states, many 
omputational diÆ
ulties 
ommonfor generi
 states 
an be resolved when dealing with this spe
ial sub
lassof states.2The aforementioned simpli�
ation turned out to be very important indes
ribing su
h a 
ompli
ated phenomenon as entanglement in 
ompositequantum systems. In parti
ular, it is well known that the famous entan-glement measure { 
on
urren
e { 
an be redu
ed to a simple analyti
expression for X-states. In the present note, we will move towards a de-tailed entanglement 
lassi�
ation of mixed two-qubit X-states. Namely, aparametrization of the separable mixed X-states of two qubits with anarbitrary spe
trum of the density matrix will be des
ribed. Our analysisin the subsequent se
tions in
ludes the following steps:(1) Two unitary groups, both a
ting adjointly on the 7-dimensionalspa
e of two-qubit X-states, will be introdu
ed.(a) The �rst one is the so-
alled \global group," GX ∈ SU(4);de�ned as the invarian
e group of the subspa
e PX :GX%XG†X ∈ PX for every %X ∈ PX :(b) The se
ond one is a subgroup of GX , the so-
alled \lo
algroup," LGX ∈ GX : Its elements have a tensor produ
t form
orresponding to the de
omposition of the state spa
e PXinto two qubit subspa
es, LGX ∈ SU(2)× SU(2):(2) The \global orbits" O% of the group GX will be identi�ed and
lassi�ed into families/types a

ording to the degenera
ies in thespe
trum of the density matri
es.(3) Considering the equivalen
e 
lasses indu
ed by the a
tion of thelo
al group LGX on O%, one 
an divide the latter into di�erent1Well-known entangled states, su
h as Bell states [2℄, Werner states [3℄, isotropi
states [4℄, and maximally entangled mixed states [5,6℄, are parti
ular subsets of X-sta-tes. For further referen
es on X-states, see [7, 8℄.2Su
h simpli�
ations take pla
e owing to a dis
rete symmetry X-states possess.Namely, it 
an easily be veri�ed that every X-state (1) is equivalent to a blo
k-diagonalmatrix%X = P�


%11 %14 0 0%41 %44 0 00 0 %33 %320 0 %23 %22:  P�; with P� = 


1 0 0 00 0 0 10 0 1 00 1 0 0 : (4)



272 A. KHVEDELIDZE, A. TOROSYANsubfamilies a

ording to their entanglement 
hara
teristi
s. Havingin mind this grouping, the separable density X-matri
es will be
ategorized within the global 
lassi�
ation of orbits.
§1. The global and lo
al invarian
e groups of X-statesIn order to prove the properties of two-qubitX-states announ
ed above,let us start with a few de�nitions.
• The invarian
e subalgebra of X-states • A basis for the algebra
su(4) is 
onstru
ted as follows. Let �� = (�0;�) denote the set of 2 × 2matri
es, where �0 = I is the unit matrix and � := (�x; �y; �z) are thethree Pauli matri
es�x = ( 0 11 0 ) ; �y = ( 0 −{{ 0 ) ; �z = ( 1 00 −1 ) :The set of all possible tensor produ
ts of two 
opies of matri
es ��,��� := �� ⊗ �� ; �; � = 0; x; y; z;forms a basis of the algebra su(4). For our aims, it is useful to write thelatter as the dire
t sum, su(4) = l ⊕ p; where the 6-dimensional ve
torspa
e l is

l = span i2{�x0; �y0; �z0; �0x; �0y ; �0z}; (5)while the 9-dimensional spa
e p is3
p = span i2{�xx; �xy; �xz; �yx; �yy; �yz ; �zx; �zy; �zz}: (6)From now on, to denote the matri
es in (5) and (6), we use the notation�k; where k runs from 1 to 15:

l = span {�1; �2; : : : ; �6}; p = span {�7; �8; : : : ; �15}: (7)X-states (1) expand over the subset �X = {�15; �10; �6;−�11; �8; �3; �7}of the introdu
ed basis of su(4):%X = 14(I + 2i ∑�k∈�X hk�k): (8)3Sin
e the 
ommutators between elements of two subspa
es l and p are su
h that[l; l℄ ⊂ l; [p; l℄ ⊂ p; [p;p℄ ⊂ l;the dire
t sum l⊕ p is nothing else than the Cartan de
omposition of su(4).
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oeÆ
ients hk in (8) are given by linear 
ombinations of thedensity matrix elements:h3 = −%11 − %22 + %33 + %44; h6 = −%11 + %22 − %33 + %44; (9)h7 = −%14 − %23 − %32 − %41; h11 = −%14 + %23 + %32 − %41; (10)h8 = i(−%14 + %23 − %32 + %41); h10 = i(−%14 − %23 + %32 + %41); (11)h15 = −%11 + %22 + %33 − %44: (12)The subset �X possesses the following properties:(i) The subset is 
losed under the matrix 
ommutator operation, i.e.,its elements span a subalgebra of su(4).(ii) From the 
ommutators 
olle
ted in Table 1 it follows that theelement �15 
ommutes with all other elements of �X .(iii) The remaining six elements, {�3; �6; �7; �8; �10; �11} , span the al-gebra su(2)⊕ su(2).To 
he
k the last property, one 
an 
onstru
t the linear 
ombinationsSz = i(�3 + �6); S± = ±(�8 + �10) + i(�7 − �11); (13)Tz = i(�3 − �6); T± = ∓(�8 − �10) + i(�7 + �11) (14)and verify that their 
ommutator relations are[Sz; S±℄ = ±2S±; [S+; S−℄ = 4Sz; (15)[Tz; T±℄ = ±2T±; [T+; T−℄ = 4Tz: (16)Thus, two sets of elementsS = {12(S+ + S−); i2(S+ − S−); Sz}; (17)T = {12(T+ + T−); i2(T+ − T−); Tz} (18)generate two 
opies of su(2).4 Gathering all together, we 
on
lude that theset �X generates the subalgebra gX := su(2)⊕ su(2)⊕ u(1) ∈ su(4):
• The global unitary group of X-states • The exponentiation ofthe algebra gX results in the 7-parameter subgroup of SU(4),GX := exp(gX) ∈ SU(4);4In the terminology of [9℄, su
h operators des
ribe \pseudospins" for a two-spinsystem.



274 A. KHVEDELIDZE, A. TOROSYANwhose a
tion preserves the spa
e of X-states PX , i.e., GX%XG†X ∈ PX :Using the expansion gX =∑i !i�i over the 7-tuple �i ∈ �X and formulas(43){(46) from Se
. 5, one 
an verify that the group GX has the followingrepresentation:GX = P� ( e−i!15SU(2) 00 ei!15SU(2)′ )P�; (19)where the two 
opies of SU(2) are parametrized as follows:SU(2) = exp [i (!4 + !7)�1 + i (!2 + !5)�2 + i (!3 + !6)�3℄;SU(2)′ = exp [i (−!4 + !7)�1 + i (−!2 + !5)�2 + i (!3 − !6)�3℄:
• The lo
al subgroup of GX • Now assume that our 4-level sys-tem is 
omposed of 2-level subsystems, i.e., two qubits. In this 
ase, theHilbert spa
e H is the tensor produ
t of 2-dimensional Hilbert spa
es,
H = H1 ⊗H2; and one 
an 
onsider the tensor produ
t of operators a
t-ing independently on the subspa
es of individual qubits, H1 and H2. Inparti
ular, having in mind the intuitive idea of the mutual independen
eof isolated qubits, we de�ne the group LGX as the subgroup of the globalinvarian
e group of X-states GX su
h that ea
h its element g ∈ LGX hasthe tensor produ
t form g = g1 × g2, with g1; g2 ∈ SU(2). From (19) itfollows that the lo
al unitary group 
an be written asLGX = P� exp({ '12 �3)× exp({'22 �3)P� : (20)

§2. Global GX -orbitsNow it will be shown that every X-state density matrix 
an be diago-nalized using some subgroup of the global group GX . Therefore, the ad-joint stru
ture of GX -orbits is 
ompletely determined by the 
oset GX=H%,whereH% stands for the isotropy group of a density matrix %. This isotropygroup, in turn, depends on the degenera
ies o

urring in the spe
trum ofdensity matri
es. Thus, the latter determines all possible types of GX -orbits, and the 
orresponding 
lassi�
ation 
an be 
arried out as follows.2.1. The dimension of the tangent spa
e of GX -orbits. Considerthe adjoint a
tion of the global unitary group GX on the 7-dimensionalspa
e PX and introdu
e the following ve
tors at ea
h point % ∈ PX :tk = ��vk (g(v)%Xg†(v)) ∣∣∣∣vk=0 = [�k ; %X ℄; k = 3; 6; 7; 8; 10; 11; 15: (21)



THE SPECTRUM AND SEPARABILITY OF X-STATES 275In Eq. (21), group elements g(v) ∈ GX are parametrized by 7-tuples v =
{v3; v6; v7; v8; v10; v11; v15}:g(v) = exp( ∑�k∈�X vk�k) : (22)These ve
tors belong to the tangent spa
e of GX -orbits. The dimension ofthis tangent spa
e is given by the rank of the 7× 7 Gram matrixG = ‖Gkl‖ = 12‖Tr (tktl)‖: (23)A straightforward evaluation of the spe
trum �(G) of the Gram matrix Gshows that it 
omprises two eigenvalues of multipli
ity 2 and three identi-
ally vanishing eigenvalues,�(G) = {�1; �1; �2; �2; 0; 0; 0}; (24)where the multipli
ity 2 eigenvalues are�1 = (h3 + h6) 2 + (h8 + h10) 2 + (h7 + h11) 2; (25)�2 = (h3 − h6) 2 + (h8 − h10) 2 + (h7 − h11) 2: (26)Formulas (25) and (26) ensure that there exist 4 types of GX -orbits:

• dim O =4, the generi
 orbits;
• dim O =2, the degenerate orbits de�ned by the equationsh6 = h3; h10 = h8; h11 = h7 ; (27)
• dim O =2, the degenerate orbits de�ned by the equationsh6 = −h3; h10 = −h8; h11 = −h7 ; (28)
• dim O =0, the single orbit %X = 14I { the maximally mixed state.The four-dimensional orbits 
omprise all matri
es with a generi
 spe
trum,while the two-dimensional orbits are generated by X-matri
es with doublemultipli
ity eigenvalues of the following form:P�


%11 %14 0 0%41 %44 0 00 0 %22 00 0 0 %22: P� and P�


%11 0 0 00 %11 0 00 0 %33 %320 0 %23 %22: P�:(29)



276 A. KHVEDELIDZE, A. TOROSYAN2.2. Parametrization of GX -orbits. Here, a detailed representation forea
h type of GX -orbits will be given, starting from the orbit of the highestdimension.2.2.1. Generi
 orbits, dim (O) = 4. Let us assume that the spe
trum of %Xis generi
, i.e., all eigenvalues �(%) := {r1; r2; r3; r4} are di�erent positivereal numbers. Furthermore, in the blo
k-diagonal representation (4) of thedensity matrix, {r1; r2} denote the eigenvalues of the upper blo
k and
{r3; r4} are the eigenvalues of the lower blo
k.The 4× 4 density matrix %X 
an be blo
k-diagonalized,%X =W ( diag(r1; r2) 00 diag(r3; r4) )W †; (30)using the spe
ial unitary matrixW = P� ( ei!U 00 e−i!V )P�; (31)where U and V are 2× 2 spe
ial unitary matri
es diagonalizing the upperand lower subblo
ks in (4). Sin
e we have assumed a generi
 spe
trum,the matri
es U and V belong to the 
oset SU(2)=U(1) × S2, where thegroup S2 inter
hanges the eigenvalues inside the pairs {r1; r2} and {r3; r4}.In order to have uniqueness in (30), one 
an �x a 
ertain order in thespe
trum �(%X ): Namely, we assume that the elements of the spe
trumform a partially ordered simplex �3, i.e.,�3 : 4

∑i=1 ri = 1; 0 6 r2 6 r1 6 1; 0 6 r4 6 r3 6 1; (32)this simplex is depi
ted in Fig. 1.5Comparing expression (31) with (19), we see that the diagonalizingmatrix is an element of the global group GX with 2 × 2 spe
ial unitarymatri
es U and V from the 
oset SU(2)=U(1) parametrized by angles�1; �2 ∈ [0; �℄;  1;  2 ∈ [0; 2�℄:U = ei 12 �3ei�12 �2 ; V = ei 22 �3ei�22 �2 : (33)5Note that the 
ase of general position 
onsidered here 
onsists of points inside �3and satis�es the inequalities r2 < r1 and r4 < r3.
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Fig. 1. The tetrahedron ABCD is the image of the par-tially ordered simplex �3, while the tetrahedron ABC ′D′inside it 
orresponds to a three-dimensional simplex withthe following 
omplete order of eigenvalues: { 4
∑i=1 ri = 1,1 > r1 > r2 > r3 > r4 > 0 } .The three-dimensional isotropy group HGeneri
 of generi
 orbits isHGeneri
 = P� ei! exp 
12 �3 00 e−i! exp 
22 �3 P�: (34)This is in a

ordan
e with the maximum dimension of GX -orbits:dim (O)Generi
 = dim (GX )− dimHGeneri
 = 7− 3 = 4:Summarizing, the adjoint a
tion of the global group GX determines thegeneri
 orbits, whi
h are lo
ally given by the produ
t of 2-spheres.2.2.2. Degenerate orbits, dim (O)=2. A

ording to the representation (29),two types of two-dimensional degenerate GX -orbits are generated by ma-tri
es with degenerate 2 × 2 subblo
ks, either upper or lower. In the �rst
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ase, the isotropy group HDegenerate isHDegenerate = P� ( ei!SU(2) 00 e−i! exp 
22 �3 )P�; (35)while for the se
ond 
ase, HDegenerate isH ′Degenerate = P� ( ei! exp 
12 �3 00 e−i!SU(2)′ )P� : (36)In both 
ases, dimHDegenerate = dimH ′Degenerate = 5, and the dimensionof these degenerate GX -orbits isdim (O)Degenerate = dim (GX )− dimHDegenerate = 7− 5 = 2:2.2.3. Degenerate orbit, dim (O) = 0. Finally, there is one point in thestate spa
ePX whose isotropy group 
oin
ides with the invarian
e groupGX .This point 
orresponds to the maximally mixed state, %X = 14I .
§3. Separable statesNow we are in a position to prove that every type of GX -orbits in
ludesseparable states.63.1. Separable states on generi
 GX -orbits. The separability of sta-tes as a fun
tion of the spe
trum �(%X ) of the density matrix 
an beanalyzed using the representation (30) for generi
 GX -orbits.A

ording to the Peres{Horode
ki 
riterion [10℄, whi
h is a ne
essaryand suÆ
ient 
ondition for the separability of 2× 2 and 2× 3 systems, astate % is separable if its partial transposition, i.e., %T2 = I ⊗ T%, is semi-positive as well.7 A straightforward 
omputation with %X in the form6A density matrix % des
ribing a mixed state of a 
omposite system H = H1 ⊗H2is separable if it allows a 
onvex de
omposition% =∑k !k%k1 ⊗ %k2 ; ∑k !k = 1; !k > 0; (37)where %k1 and %k2 are density matri
es a
ting on the fa
tors H1 and H2, respe
tively.Otherwise, it is entangled, see [3℄.7Here we 
onsider the partial transposition with respe
t to the ordinary trans-position T in the se
ond subsystem; similarly, one 
an use the alternative a
tion%T1 = T ⊗ I%.
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Fig. 2. The set of absolutely separable states inside thetetrahedron of X-states.(30) shows that the semi-positivity of the partially transposed matrix %T2Xrequires the ful�lment of the following inequalities:(r1 − r2)2 
os2 �1 + (r3 − r4)2 sin2 �2 6 (r1 + r2)2; (38)(r3 − r4)2 
os2 �2 + (r1 − r2)2 sin2 �1 6 (r3 + r4)2: (39)Note that inequalities (38) and (39) do not 
onstraint two angles  1 and 2 in (33) that parametrize the lo
al groupK = exp (i 12 �3)×exp (i 22 �3).This 
onforms with the general observation that the separability propertyis independent from the lo
al 
hara
teristi
s of a 
omposite system. Thislo
al group is a fa
tor of the global group GX = KG′X , and the 
orre-sponding fa
tor in the matrix W diagonalizing %X is irrelevant for theseparability of X-states.Analyzing inequalities (38) and (39), one 
an 
on
lude the following.(i) There are separable states for any values of eigenvalues from thepartially ordered simplex �3. In other words, inequalities (38) and



280 A. KHVEDELIDZE, A. TOROSYAN(39) determine a nonempty domain of de�nition for the angles �1and �2 in (33) for every nondegenerate spe
trum �(%X).(ii) There is a spe
ial family of so-
alled \absolutely separable" X-states, su
h that the angles �1 and �2 
an be arbitrary. The abso-lutely separable X-states are generated by the subset of the par-tially ordered simplex (32) de�ned by the inequalities(r1 − r2)2 6 4r3r4; (40)(r3 − r4)2 6 4r1r2: (41)Figure 2 illustrates the lo
ation of the subset of absolutely separable statesinside the partially ordered simplex �3.3.2. Separable states on degenerate GX -orbits. Testing the degen-erate density matri
es of the form (29) by the Peres{Horode
ki 
riterion,we reveal the following pi
ture. The positivity requirement for the partiallytransposed density matrix with double multipli
ity of eigenvalues gives in-equalities similar to (38) and (39). However, owing to the larger isotropygroup HDegenerate of states, the new inequalities depend solely on a sin-gle 
oordinate of the 
oset GX=HDegenerate. More pre
isely, if r1 = r2,i.e., a degenera
y o

urs in the upper subblo
k, then the angle �2 thatparametrizes the matrix V in (33) plays the role of su
h a 
oordinate. Inthis 
ase, the Peres{Horode
ki 
riterion asserts that the degenerateX-stateis separable if and only if 
os2 �2 6
4�(1− �)2 ; (42)where � = r4=r3 < 1 . This inequality points out the 
riti
al value �∗ =3 − 2√2 , su
h that for � 6 �∗ the angle �2 is 
onstrained, while for theinterval �∗ < � < 1 the state is separable for an arbitrary angle �2. Theanalogous results for the angle �1 (see the matrix U in (33)) hold true ifthe lower subblo
k in (29) is degenerate, i.e., r3 = r4. Therefore, in both
lasses of degenerate two-dimensional global orbits one 
an point out a two-dimensional family of separable degenerate states. Furthermore, amongthem there are \degenerate absolutely separable" states, i.e., degenerateglobal two-dimensional orbits 
onsisting only of separable states.

§4. Con
luding remarksThe present arti
le is devoted to a dis
ussion of an interplay betweenlo
al and global 
hara
teristi
s of a pair of qubits in mixed X-states. With
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tion of the global unitary group GX weredes
ribed and 
lassi�ed a

ording to the degenera
ies o

urring in thespe
trum of density matri
es. Using this analysis, the dependen
e of theseparability of X-states on the spe
trum was studied. In parti
ular, theseparable X-states were 
olle
ted into the following families:
• the four-dimensional family of separable states with spe
trum ingeneral position;
• two 
lasses of two-dimensional separable states with doubly degen-erate spe
trum;
• the maximally mixed state.In 
on
lusion, it is worth mentioning that, a

ording to the aforementioned
lassi�
ation, the entangled states, being 
omplementary to the separablestates, are likewise partitioned into three types. However, this 
lassi�
a-tion is not 
omplete. A further, more subtle, grouping of the entangledstates lo
ated at a given GX -orbit into sub
lasses is ne
essary. The lattersub
lasses are determined not by invariants of the global group GX , butby the values of LGX -invariants. In forth
oming publi
ations, we plan todis
uss this issue in more detail. Apart from that, following the approa
helaborated in [11℄ and [12℄, a generalization of the derived results to ageneri
 
ase of 15-dimensional two-qubit states will be 
onsidered.

§5. Supplementary materialHere we 
olle
t a te
hni
al material useful for performing 
omputationsdes
ribed in the main text. It in
ludes a basis of the Lie algebra su(4),
ommutators of its elements, and a blo
k-diagonal representation for thesubalgebra �X .
•A basis for the Lie algebra su(4) • The anti-Hermitian matri
es

{�1; �2; : : : ; �6} = i2{�x0; �y0; �z0; �0x; �0y; �0z}and
{�7; �8; : : : ; �15} = i2{�xx; �xy; �xz; �yx; �yy; �yz ; �zx; �zy; �zz}are
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∥

∥

0 0 1 00 0 0 11 0 0 00 1 0 0∥∥∥∥∥∥∥∥ ; �2= i2 ∥∥∥∥∥∥
∥

∥

0 0 −i 00 0 0 −ii 0 0 00 i 0 0 ∥∥∥∥∥∥∥∥ ; �3= i2 ∥∥∥∥∥∥
∥

∥

1 0 0 00 1 0 00 0 −1 00 0 0 −1∥∥∥∥∥∥∥∥ ;
�4= i2 ∥∥∥∥∥∥

∥

∥

0 1 0 01 0 0 00 0 0 10 0 1 0∥∥∥∥∥∥∥∥ ; �5= i2 ∥∥∥∥∥∥
∥

∥

0 −i 0 0i 0 0 00 0 0 −i0 0 i 0 ∥∥∥∥∥∥∥∥ ; �6= i2 ∥∥∥∥∥∥
∥

∥

1 0 0 00 −1 0 00 0 1 00 0 0 −1∥∥∥∥∥∥∥∥ ;
�7= i2 ∥∥∥∥∥∥

∥

∥

0 0 0 10 0 1 00 1 0 01 0 0 0∥∥∥∥∥∥∥∥ ; �8= i2 ∥∥∥∥∥∥
∥

∥

0 0 0 −i0 0 i 00 −i 0 0i 0 0 0 ∥∥∥∥∥∥∥∥ ; �9= i2 ∥∥∥∥∥∥
∥

∥

0 0 1 00 0 0 −11 0 0 00 −1 0 0 ∥∥∥∥∥∥∥∥ ;�10 = i2 ∥∥∥∥∥∥
∥

∥

0 0 0 −i0 0 −i 00 i 0 0i 0 0 0 ∥∥∥∥∥∥∥∥ ; �11 = i2 ∥∥∥∥∥∥
∥

∥

0 0 0 −10 0 1 00 1 0 0
−1 0 0 0 ∥∥∥∥∥∥∥∥ ;�12 = i2 ∥∥∥∥∥∥

∥

∥

0 0 −i 00 0 0 ii 0 0 00 −i 0 0∥∥∥∥∥∥∥∥ ; �13 = i2 ∥∥∥∥∥∥
∥

∥

0 1 0 01 0 0 00 0 0 −10 0 −1 0 ∥∥∥∥∥∥∥∥ ;�14 = i2 ∥∥∥∥∥∥
∥

∥

0 −i 0 0i 0 0 00 0 0 i0 0 −i 0∥∥∥∥∥∥∥∥ ; �15 = i2 ∥∥∥∥∥∥
∥

∥

1 0 0 00 −1 0 00 0 −1 00 0 0 1∥∥∥∥∥∥∥∥ :
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�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15�1 0 -�3 �2 0 0 0 0 0 0 -�13 -�14 -�15 �10 �11 �12�2 �3 0 -�1 0 0 0 �13 �14 �15 0 0 0 -�7 -�8 −�9�3 −�2 �1 0 0 0 0 -�10 -�11 -�12 �7 �8 �9 0 0 0�4 0 0 0 0 -�6 �5 0 -�9 �8 0 -�12 �11 0 -�15 �14�5 0 0 0 �6 0 -�4 �9 0 -�7 �12 0 -�10 �15 0 �13�6 0 0 0 -�5 �4 0 -�8 �7 0 -�11 �10 0 -�14 �13 0�7 0 -�13 �10 0 -�9 �8 0 -�6 �5 -�3 0 0 �2 0 0�8 0 -�14 �11 �9 0 -�7 �6 0 -�4 0 -�3 0 0 �2 0�9 0 -�15 �12 -�8 �7 0 -�5 �4 0 0 0 -�3 0 0 �2�10 �13 0 -�7 0 -�12 �11 �3 0 0 0 -�6 �5 -�1 0 0�11 �14 0 -�8 �12 0 -�10 0 �3 0 �6 0 -�4 0 -�1 0�12 �15 0 -�9 -�11 �10 0 0 0 �3 -�5 �4 0 0 0 -�1�13 -�10 �7 0 0 -�15 �14 -�2 0 0 �1 0 0 0 -�6 �5�14 -�11 �8 0 �15 0 -�13 0 -�2 0 0 �1 0 �6 0 -�4�15 -�12 �9 0 -�14 �13 0 0 0 -�2 0 0 �1 -�5 �4 0

Table1.The
ommutatorrelationsfor
su(4).

Theblo
k-diagonalformofthebasiselementsofthesubalgebra�X
resultingfromapplyingthetranspositionP� :



284 A. KHVEDELIDZE, A. TOROSYAN
P��3P� = i2 ( �3 00 −�3 ) ; P��6P� = i2 ( �3 00 �3 ) ; (43)P��7P� = i2 ( �1 00 �1 ) ; P��8P� = i2 ( �2 00 �2 ) ; (44)P��10P� = i2 ( �2 00 −�2 ) ; P��11P� = i2 ( �1 00 −�1 ) ; (45)P��15P� = i2 ( I 00 −I ) : (46)
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