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THE SPECTRUM AND SEPARABILITY OF MIXED
TWO-QUBIT X-STATES

ABSTRACT. The separable mixed two-qubit X-states are classified
in accordance with the degeneracies in the spectrum of density ma-
trices. It is shown that there are four classes of separable X-states,
among them: one four-dimensional family, a pair of two-dimensional
families, and a single zero-dimensional maximally mixed state.

INTRODUCTION
Consider the space PBx of 4 x 4 Hermitian matrices of the form

oi1 O 0 o
0 022 023 O
= . 1
ox 0 o032 o033 0 (1)
041 0 0 o4

Due to the Hermiticity, the diagonal entries in (1) are real numbers, while
the elements of the minor diagonal are pairwise complex conjugate num-
bers, p14 = 04 and 23 = 03,. Assuming that the matrix ox is semi-
positive definite,
ox =0, (2)

and has unit trace,

trox =1, (3)
ox can be regarded as the density matrix of a 4-level quantum system.
Since the nonzero elements in (1) lie in a shape similar to the Latin letter
“X,” the corresponding quantum states are called X-states.

The 7-dimensional space Bx is a subspace of the 15-dimensional state
space P of a generic 4-level quantum system, Px C P. Since the intro-
duction of X-states [1], various subfamilies of Px have been attracting
special attention. There are at least two reasons for that interest. First of
all, it was discovered that microscopic systems being in certain X-states
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show a highly nontrivial quantum behavior.! Second, due to the simple
algebraic structure of X-states, many computational difficulties common
for generic states can be resolved when dealing with this special subclass
of states.?

The aforementioned simplification turned out to be very important in
describing such a complicated phenomenon as entanglement in composite
quantum systems. In particular, it is well known that the famous entan-
glement measure — concurrence — can be reduced to a simple analytic
expression for X-states. In the present note, we will move towards a de-
tailed entanglement classification of mixed two-qubit X-states. Namely, a
parametrization of the separable mixed X-states of two qubits with an
arbitrary spectrum of the density matrix will be described. Our analysis
in the subsequent sections includes the following steps:

(1) Two unitary groups, both acting adjointly on the 7-dimensional
space of two-qubit X-states, will be introduced.
(a) The first one is the so-called “global group,” Gx € SU(4),
defined as the invariance group of the subspace Px:

Gxngj&, €Px forevery px € Px.

(b) The second one is a subgroup of Gx, the so-called “local
group,” LG, € Gx. Its elements have a tensor product form
corresponding to the decomposition of the state space Px
into two qubit subspaces, LG, € SU(2) x SU(2).

(2) The “global orbits” O, of the group Gx will be identified and
classified into families/types according to the degeneracies in the
spectrum of the density matrices.

(3) Considering the equivalence classes induced by the action of the
local group LG, on O,, one can divide the latter into different

IWell-known entangled states, such as Bell states [2], Werner states [3], isotropic
states [4], and maximally entangled mixed states [5,6], are particular subsets of X-sta-
tes. For further references on X-states, see [7,8].

23uch simplifications take place owing to a discrete symmetry X-states possess.
Namely, it can easily be verified that every X-state (1) is equivalent to a block-diagonal
matrix

o111 014 0 0 1 0 0 O

_ 041 044 O 0 . |00 0 1
ox = Pr 0 0 o35 030 Pr, with Pp= 00 1 0 (4)

0 0 023 022 01 0 0
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subfamilies according to their entanglement characteristics. Having
in mind this grouping, the separable density X-matrices will be
categorized within the global classification of orbits.

§1. THE GLOBAL AND LOCAL INVARIANCE GROUPS OF X-STATES

In order to prove the properties of two-qubit X-states announced above,
let us start with a few definitions.
e The invariance subalgebra of X-states e A basis for the algebra
su(4) is constructed as follows. Let o, = (00,0) denote the set of 2 x 2
matrices, where oy = I is the unit matrix and o := (0,,0,,0.) are the
three Pauli matrices

(01 (0 — (1 0
“=\10) =\ 0 ) =T\o0o -1)
The set of all possible tensor products of two copies of matrices o,

Opv = O-,U,®Ulla ,uﬂyzoazayaza

forms a basis of the algebra su(4). For our aims, it is useful to write the
latter as the direct sum, su(4) = [ @ p, where the 6-dimensional vector
space [ is

)
[ = span 5{0&0703{070—2070—017UOyaUOZ}a (5)

while the 9-dimensional space p is®

i
p = span 5{0'1:1:: Oxy,Oxz,O0yx,Oyy,Oyzy Oz, Ozy, Uzz}- (6)

From now on, to denote the matrices in (5) and (6), we use the notation
Ak, where k runs from 1 to 15:

[:Span{klakb"'akﬁ}a p:Spa‘n{)‘7a)‘8a"'7)‘15}' (7)

X-states (1) expand over the subset ax = {15, A10, A6, —A11, As, Az, A7}
of the introduced basis of su(4):

ox = i<1+2i 3 hkAk). 8)

Ar€Eax

3Since the commutators between elements of two subspaces [ and p are such that

Lygce b, 1] Cp, [ppl C L

the direct sum [ p is nothing else than the Cartan decomposition of su(4).



THE SPECTRUM AND SEPARABILITY OF X-STATES 273

The real coefficients hy, in (8) are given by linear combinations of the
density matrix elements:

hs = —011 — 022 + 033 + Qu4, he = —o011 + 022 — 033 + 044, 9)
h7 = —014 — 023 — 032 — a1, hi1 = —014 + 023 + 032 — 0a1, (10)
hg = i(—014 + 023 — 032 + 041), hio = i(—014 — 023 + 032 + 041), (11)
his = —o11 + 022 + 033 — 0a4. (12)

The subset ax possesses the following properties:

(i) The subset is closed under the matrix commutator operation, i.e.,
its elements span a subalgebra of su(4).
(ii) From the commutators collected in Table 1 it follows that the
element \;5 commutes with all other elements of ax.
(iii) The remaining six elements, {A3, Ag, A7, As, Ao, A11}, span the al-
gebra su(2) & su(2).
To check the last property, one can construct the linear combinations

S. = Z(/\3 + )\6), St = :|:(/\8 + )\10) + Z()\'r — /\11), (13)
T, = ’L(/\3 — /\6): Ty = ZF(/\g - /\10) + ’L(/\7 + /\11) (14)
and verify that their commutator relations are
[S.,S+] = £254, [S+,S5-] =48S., (15)
[T,,Ty] = +2T, [T),T_]=4T,. (16)
Thus, two sets of elements
1 i
S:{§(S++S,), §(S+757)7 Sz}a (17)
1 i
T={5T++T), (T4 = T-), T2} (18)

generate two copies of su(2).* Gathering all together, we conclude that the
set ax generates the subalgebra gx := su(2) & su(2) $u(1) € su(4q).

e The global unitary group of X-states e The exponentiation of
the algebra gx results in the 7-parameter subgroup of SU(4),

Gx := exp(gx) S SU(4),

“In the terminology of [9], such operators describe “pseudospins” for a two-spin
system.
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whose action preserves the space of X-states Px, i.e., Gxngj&, € Px.
Using the expansion gx = > w;\; over the 7-tuple \; € ax and formulas

(43)—(46) from Sec. 5, one can verify that the group G'x has the following
representation:

_ e 15U(2) | 0
GX — Pﬂ' ( 0 | ewl5SU(2)' ) P7T7 (19)

where the two copies of SU(2) are parametrized as follows:
SU(2) = exp[i (wa +wr) 01 + i (w2 + ws) 02 + i (ws + we) 03],
SU(2) = expli(—ws + wr) o1 + i (—wa +ws) 02 + i (w3 — we) 03]

e The local subgroup of Gx e Now assume that our 4-level sys-
tem is composed of 2-level subsystems, i.e., two qubits. In this case, the
Hilbert space H is the tensor product of 2-dimensional Hilbert spaces,
H = H; ® Hs, and one can consider the tensor product of operators act-
ing independently on the subspaces of individual qubits, H; and H>. In
particular, having in mind the intuitive idea of the mutual independence
of isolated qubits, we define the group LG as the subgroup of the global
invariance group of X-states Gy such that each its element g € LG has
the tensor product form g = g1 X g2, with g1, 92 € SU(2). From (19) it
follows that the local unitary group can be written as

LG, = Prexp(s %03) X exp(z%ag)P,,. (20)

§2. GLOBAL G, -ORBITS

Now it will be shown that every X-state density matrix can be diago-
nalized using some subgroup of the global group G, . Therefore, the ad-
joint structure of G , -orbits is completely determined by the coset G, /H,,
where H, stands for the isotropy group of a density matrix p. This isotropy
group, in turn, depends on the degeneracies occurring in the spectrum of
density matrices. Thus, the latter determines all possible types of G-
orbits, and the corresponding classification can be carried out as follows.

2.1. The dimension of the tangent space of G, -orbits. Consider
the adjoint action of the global unitary group G, on the 7-dimensional
space Lx and introduce the following vectors at each point o € Px:

te (9(v)oxg'(v)) =[\r,ox], k=3,6,7,8,10,11,15. (21)

ka v, =0
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In Eq. (21), group elements g(v) € G, are parametrized by 7-tuples v =
{'U3, Vg, V7,08, V10, V11, UIS}:

g(v) = exp ( Z vk/\k> . (22)

Aw€ax

These vectors belong to the tangent space of G, -orbits. The dimension of
this tangent space is given by the rank of the 7 x 7 Gram matrix

1
G = |Gul = T Eta)]]- (23)

A straightforward evaluation of the spectrum o(G) of the Gram matrix G
shows that it comprises two eigenvalues of multiplicity 2 and three identi-
cally vanishing eigenvalues,

o(G) = {p1, 1, p2, p2,0,0,0}, (24)

where the multiplicity 2 eigenvalues are
p1 = (hg + he)* + (hs + h1o) > + (h7 + h11) 2, (25)
po = (hs — hg)* + (hg — hio)® + (hy — h11) 2. (26)

Formulas (25) and (26) ensure that there exist 4 types of G, -orbits:
e dim O =4, the generic orbits;
e dim O =2, the degenerate orbits defined by the equations
he = hz, hio = hs, hi1 = hz; (27)
e dim O =2, the degenerate orbits defined by the equations
he = —hs, hio = —hs, hi1 = —hr; (28)

e dim O =0, the single orbit px = LI — the maximally mixed state.

The four-dimensional orbits comprise all matrices with a generic spectrum,
while the two-dimensional orbits are generated by X-matrices with double
multiplicity eigenvalues of the following form:

o011 o1sa O 0 01
041 044 O 0 0 on O 0
P, P, and P, P_.
0 0 02 O o 0 0 o033 032
0

0 0 0 0o 0 023 09
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2.2. Parametrization of GG . -orbits. Here, a detailed representation for
each type of G, -orbits will be given, starting from the orbit of the highest
dimension.

2.2.1. Generic orbits, dim (O) = 4. Let us assume that the spectrum of px
is generic, i.e., all eigenvalues o (o) := {ry,r2, 73,74} are different positive
real numbers. Furthermore, in the block-diagonal representation (4) of the
density matrix, {ry,72} denote the eigenvalues of the upper block and
{rs,rs} are the eigenvalues of the lower block.

The 4 x 4 density matrix ox can be block-diagonalized,

_ diag(ry,72) | 0 t
ox = w < 0 | diag(r3,r4) w ’ (30)

using the special unitary matrix

iw 0
W:Pﬂ<e vl )Pﬂ, (31)
0 e WV

where U and V are 2 x 2 special unitary matrices diagonalizing the upper
and lower subblocks in (4). Since we have assumed a generic spectrum,
the matrices U and V belong to the coset SU(2)/U(1) x Ss, where the
group S interchanges the eigenvalues inside the pairs {ry,r2} and {rs,r4}.
In order to have uniqueness in (30), one can fix a certain order in the
spectrum o(px). Namely, we assume that the elements of the spectrum
form a partially ordered simplex A, i.e.,

4
Ag: Y ori=1, 0<rm<n<l, 0<n << (32)
=1

this simplex is depicted in Fig. 1.°

Comparing expression (31) with (19), we see that the diagonalizing
matrix is an element of the global group G, with 2 x 2 special unitary
matrices U and V from the coset SU(2)/U(1) parametrized by angles

¢17¢2 S [Oaﬂ-]: ¢17¢2 € [0,27?']:
U:e'2 6'2 , V=e?2 6'2 . (33)

5Note that the case of general position considered here consists of points inside A,
and satisfies the inequalities ro < r1 and r4 < r3.
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A 00

Fig. 1. The tetrahedron ABCD is the image of the par-

tially ordered simplex A, while the tetrahedron ABC’ D’

inside it corresponds to a three-dimensional simplex with
4

the following complete order of eigenvalues: { > r; = 1,
i=1

1>2r>2ra>2r3>ry >0},

The three-dimensional isotropy group Hgeneric Of generic orbits is

0

e exp %03 ‘

P (34)

H i =P, :
Generic w 0 ‘ =i exp 7_22 s

This is in accordance with the maximum dimension of G , -orbits:

dim (O) =dim (Gy) — dimHgeperic =7 — 3 = 4.

Generic

Summarizing, the adjoint action of the global group G, determines the
generic orbits, which are locally given by the product of 2-spheres.

2.2.2. Degenerate orbits, dim (O)=2. According to the representation (29),
two types of two-dimensional degenerate G -orbits are generated by ma-
trices with degenerate 2 x 2 subblocks, either upper or lower. In the first
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case, the isotropy group Hpegenerate 1S

" _p (sU@) | 0 -
Degenerate — I'm e~ ox Ba’ () (35)
0 P 503
while for the second case, Hpegenerate 18
; 71 0
e exp —o3 ‘
H' =P, 2 Pr. 36
Degenerate ( 0 | e PSU(2) (36)

In both cases, dim Hpegenerate = dimHp, 5, and the dimension

egenerate =
of these degenerate G, -orbits is

dim (O)Degenerate =dim (Gy) - dimHDegenerate =7-5=2
2.2.3. Degenerate orbit, dim (O) = 0. Finally, there is one point in the
state space P x whose isotropy group coincides with the invariance group G , .

This point corresponds to the maximally mixed state, ox = iI.

§3. SEPARABLE STATES

Now we are in a position to prove that every type of G, -orbits includes
separable states.%

3.1. Separable states on generic G, -orbits. The separability of sta-
tes as a function of the spectrum o(px) of the density matrix can be
analyzed using the representation (30) for generic G , -orbits.

According to the Peres—Horodecki criterion [10], which is a necessary
and sufficient condition for the separability of 2 x 2 and 2 x 3 systems, a
state p is separable if its partial transposition, i.e., o™ = I @ Tp, is semi-
positive as well.” A straightforward computation with ox in the form

6A density matrix ¢ describing a mixed state of a composite system H = H1 ® Ha
is separable if it allows a convex decomposition

Q:Zwkglf®gg7 Zwk:L wg >0, (37)
k k

where g’f and ng are density matrices acting on the factors H; and Ha, respectively.
Otherwise, it is entangled, see [3].

"Here we consider the partial transposition with respect to the ordinary trans-
position T in the second subsystem; similarly, one can use the alternative action
ot =T ® Ip.
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Fig. 2. The set of absolutely separable states inside the
tetrahedron of X-states.

(30) shows that the semi-positivity of the partially transposed matrix g?
requires the fulfilment of the following inequalities:

(r1 —1r9)? cos® ¢ + (rs — r4)?sin® o < (11 4+ 12)7, (38)
(r3 —r4)? cos? ¢ + (r1 — 13)? sin? ¢ < (r3 +74)>. (39)

Note that inequalities (38) and (39) do not constraint two angles ¢, and
o in (33) that parametrize the local group K = exp (i%ag) X exp (i%(]g).
This conforms with the general observation that the separability property
is independent from the local characteristics of a composite system. This
local group is a factor of the global group G, = KG'_, and the corre-
sponding factor in the matrix W diagonalizing ox is irrelevant for the
separability of X -states.

Analyzing inequalities (38) and (39), one can conclude the following.

(i) There are separable states for any values of eigenvalues from the
partially ordered simplex A;. In other words, inequalities (38) and
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(39) determine a nonempty domain of definition for the angles ¢
and ¢» in (33) for every nondegenerate spectrum o(ox).

(ii) There is a special family of so-called “absolutely separable” X-
states, such that the angles ¢; and ¢ can be arbitrary. The abso-
lutely separable X-states are generated by the subset of the par-
tially ordered simplex (32) defined by the inequalities

(7"1 — 7”2)2 < 47“37“4, (40)
(7'3 — 7”4)2 < 47“17“2. (41)

Figure 2 illustrates the location of the subset of absolutely separable states
inside the partially ordered simplex A,.

3.2. Separable states on degenerate G, -orbits. Testing the degen-
erate density matrices of the form (29) by the Peres—Horodecki criterion,
we reveal the following picture. The positivity requirement for the partially
transposed density matrix with double multiplicity of eigenvalues gives in-
equalities similar to (38) and (39). However, owing to the larger isotropy
group Hpegenerate Of states, the new inequalities depend solely on a sin-
gle coordinate of the coset Gy /Hpegenerate- More precisely, if 71 = 7y,
i.e., a degeneracy occurs in the upper subblock, then the angle ¢» that
parametrizes the matrix V' in (33) plays the role of such a coordinate. In
this case, the Peres—Horodecki criterion asserts that the degenerate X -state
is separable if and only if
4¢

a-o2
where ¢ = r4/r3 < 1. This inequality points out the critical value ¢, =
3 — 2v/2, such that for ¢ < (. the angle ¢, is constrained, while for the
interval (, < ( < 1 the state is separable for an arbitrary angle ¢-. The
analogous results for the angle ¢; (see the matrix U in (33)) hold true if
the lower subblock in (29) is degenerate, i.e., r3 = r4. Therefore, in both
classes of degenerate two-dimensional global orbits one can point out a two-
dimensional family of separable degenerate states. Furthermore, among
them there are “degenerate absolutely separable” states, i.e., degenerate
global two-dimensional orbits consisting only of separable states.

cos? ¢y < (42)

§4. CONCLUDING REMARKS

The present article is devoted to a discussion of an interplay between
local and global characteristics of a pair of qubits in mixed X-states. With
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this aim, the orbits of the action of the global unitary group G, were
described and classified according to the degeneracies occurring in the
spectrum of density matrices. Using this analysis, the dependence of the
separability of X-states on the spectrum was studied. In particular, the
separable X-states were collected into the following families:

e the four-dimensional family of separable states with spectrum in
general position;

e two classes of two-dimensional separable states with doubly degen-
erate spectrum;

e the maximally mixed state.

In conclusion, it is worth mentioning that, according to the aforementioned
classification, the entangled states, being complementary to the separable
states, are likewise partitioned into three types. However, this classifica-
tion is not complete. A further, more subtle, grouping of the entangled
states located at a given G, -orbit into subclasses is necessary. The latter
subclasses are determined not by invariants of the global group G, but
by the values of LG, -invariants. In forthcoming publications, we plan to
discuss this issue in more detail. Apart from that, following the approach
elaborated in [11] and [12], a generalization of the derived results to a
generic case of 15-dimensional two-qubit states will be considered.

§5. SUPPLEMENTARY MATERIAL

Here we collect a technical material useful for performing computations
described in the main text. It includes a basis of the Lie algebra su(4),
commutators of its elements, and a block-diagonal representation for the
subalgebra ax.

oA basis for the Lie algebra su(4) e The anti-Hermitian matrices
¢
{/\17 A?a R Aﬁ} = 5{0-%07 UyO: 020,00z, UOy: UOZ}
and

]
{/\7:/\87 .- -:/\15} = _{Uz'm:nyao'xz:o'yxao'yyao'ymUzmaUzyaa'zz}
2

are
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Table 1. The commutator relations for su(4).

The block-diagonal form of the basis elements of the subalgebra ax
resulting from applying the transposition P;:
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por = d (). pan-H(BH).
P,r/\7P,r:£(Ul 0 ) PﬂASPﬂ_i<”2 0 ) (44)
2 0| o1 2 0 | o2
PPy = & (i’i) . PP, =~ ( oy 0 ) . (45)
2 0| —oy 2 0| —o1
i (T] 0
PihisPr =5 (07 ) (46)
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