
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.A. Khvedelidze, A. TorosyanTHE SPECTRUM AND SEPARABILITY OF MIXEDTWO-QUBIT X-STATESAbstrat. The separable mixed two-qubit X-states are lassi�edin aordane with the degeneraies in the spetrum of density ma-tries. It is shown that there are four lasses of separable X-states,among them: one four-dimensional family, a pair of two-dimensionalfamilies, and a single zero-dimensional maximally mixed state.IntrodutionConsider the spae PX of 4× 4 Hermitian matries of the form%X := 


%11 0 0 %140 %22 %23 00 %32 %33 0%41 0 0 %44  : (1)Due to the Hermitiity, the diagonal entries in (1) are real numbers, whilethe elements of the minor diagonal are pairwise omplex onjugate num-bers, %14 = %14 and %23 = %32. Assuming that the matrix %X is semi-positive de�nite, %X > 0; (2)and has unit trae, tr%X = 1; (3)%X an be regarded as the density matrix of a 4-level quantum system.Sine the nonzero elements in (1) lie in a shape similar to the Latin letter\X," the orresponding quantum states are alled X-states.The 7-dimensional spae PX is a subspae of the 15-dimensional statespae P of a generi 4-level quantum system, PX ⊂ P. Sine the intro-dution of X-states [1℄, various subfamilies of PX have been attratingspeial attention. There are at least two reasons for that interest. First ofall, it was disovered that mirosopi systems being in ertain X-statesKey words and phrases: group ations, Lie group orbits, quantum entanglement.270



THE SPECTRUM AND SEPARABILITY OF X-STATES 271show a highly nontrivial quantum behavior.1 Seond, due to the simplealgebrai struture of X-states, many omputational diÆulties ommonfor generi states an be resolved when dealing with this speial sublassof states.2The aforementioned simpli�ation turned out to be very important indesribing suh a ompliated phenomenon as entanglement in ompositequantum systems. In partiular, it is well known that the famous entan-glement measure { onurrene { an be redued to a simple analytiexpression for X-states. In the present note, we will move towards a de-tailed entanglement lassi�ation of mixed two-qubit X-states. Namely, aparametrization of the separable mixed X-states of two qubits with anarbitrary spetrum of the density matrix will be desribed. Our analysisin the subsequent setions inludes the following steps:(1) Two unitary groups, both ating adjointly on the 7-dimensionalspae of two-qubit X-states, will be introdued.(a) The �rst one is the so-alled \global group," GX ∈ SU(4);de�ned as the invariane group of the subspae PX :GX%XG†X ∈ PX for every %X ∈ PX :(b) The seond one is a subgroup of GX , the so-alled \loalgroup," LGX ∈ GX : Its elements have a tensor produt formorresponding to the deomposition of the state spae PXinto two qubit subspaes, LGX ∈ SU(2)× SU(2):(2) The \global orbits" O% of the group GX will be identi�ed andlassi�ed into families/types aording to the degeneraies in thespetrum of the density matries.(3) Considering the equivalene lasses indued by the ation of theloal group LGX on O%, one an divide the latter into di�erent1Well-known entangled states, suh as Bell states [2℄, Werner states [3℄, isotropistates [4℄, and maximally entangled mixed states [5,6℄, are partiular subsets of X-sta-tes. For further referenes on X-states, see [7, 8℄.2Suh simpli�ations take plae owing to a disrete symmetry X-states possess.Namely, it an easily be veri�ed that every X-state (1) is equivalent to a blok-diagonalmatrix%X = P�


%11 %14 0 0%41 %44 0 00 0 %33 %320 0 %23 %22:  P�; with P� = 


1 0 0 00 0 0 10 0 1 00 1 0 0 : (4)



272 A. KHVEDELIDZE, A. TOROSYANsubfamilies aording to their entanglement harateristis. Havingin mind this grouping, the separable density X-matries will beategorized within the global lassi�ation of orbits.
§1. The global and loal invariane groups of X-statesIn order to prove the properties of two-qubitX-states announed above,let us start with a few de�nitions.
• The invariane subalgebra of X-states • A basis for the algebra
su(4) is onstruted as follows. Let �� = (�0;�) denote the set of 2 × 2matries, where �0 = I is the unit matrix and � := (�x; �y; �z) are thethree Pauli matries�x = ( 0 11 0 ) ; �y = ( 0 −{{ 0 ) ; �z = ( 1 00 −1 ) :The set of all possible tensor produts of two opies of matries ��,��� := �� ⊗ �� ; �; � = 0; x; y; z;forms a basis of the algebra su(4). For our aims, it is useful to write thelatter as the diret sum, su(4) = l ⊕ p; where the 6-dimensional vetorspae l is

l = span i2{�x0; �y0; �z0; �0x; �0y ; �0z}; (5)while the 9-dimensional spae p is3
p = span i2{�xx; �xy; �xz; �yx; �yy; �yz ; �zx; �zy; �zz}: (6)From now on, to denote the matries in (5) and (6), we use the notation�k; where k runs from 1 to 15:

l = span {�1; �2; : : : ; �6}; p = span {�7; �8; : : : ; �15}: (7)X-states (1) expand over the subset �X = {�15; �10; �6;−�11; �8; �3; �7}of the introdued basis of su(4):%X = 14(I + 2i ∑�k∈�X hk�k): (8)3Sine the ommutators between elements of two subspaes l and p are suh that[l; l℄ ⊂ l; [p; l℄ ⊂ p; [p;p℄ ⊂ l;the diret sum l⊕ p is nothing else than the Cartan deomposition of su(4).



THE SPECTRUM AND SEPARABILITY OF X-STATES 273The real oeÆients hk in (8) are given by linear ombinations of thedensity matrix elements:h3 = −%11 − %22 + %33 + %44; h6 = −%11 + %22 − %33 + %44; (9)h7 = −%14 − %23 − %32 − %41; h11 = −%14 + %23 + %32 − %41; (10)h8 = i(−%14 + %23 − %32 + %41); h10 = i(−%14 − %23 + %32 + %41); (11)h15 = −%11 + %22 + %33 − %44: (12)The subset �X possesses the following properties:(i) The subset is losed under the matrix ommutator operation, i.e.,its elements span a subalgebra of su(4).(ii) From the ommutators olleted in Table 1 it follows that theelement �15 ommutes with all other elements of �X .(iii) The remaining six elements, {�3; �6; �7; �8; �10; �11} , span the al-gebra su(2)⊕ su(2).To hek the last property, one an onstrut the linear ombinationsSz = i(�3 + �6); S± = ±(�8 + �10) + i(�7 − �11); (13)Tz = i(�3 − �6); T± = ∓(�8 − �10) + i(�7 + �11) (14)and verify that their ommutator relations are[Sz; S±℄ = ±2S±; [S+; S−℄ = 4Sz; (15)[Tz; T±℄ = ±2T±; [T+; T−℄ = 4Tz: (16)Thus, two sets of elementsS = {12(S+ + S−); i2(S+ − S−); Sz}; (17)T = {12(T+ + T−); i2(T+ − T−); Tz} (18)generate two opies of su(2).4 Gathering all together, we onlude that theset �X generates the subalgebra gX := su(2)⊕ su(2)⊕ u(1) ∈ su(4):
• The global unitary group of X-states • The exponentiation ofthe algebra gX results in the 7-parameter subgroup of SU(4),GX := exp(gX) ∈ SU(4);4In the terminology of [9℄, suh operators desribe \pseudospins" for a two-spinsystem.



274 A. KHVEDELIDZE, A. TOROSYANwhose ation preserves the spae of X-states PX , i.e., GX%XG†X ∈ PX :Using the expansion gX =∑i !i�i over the 7-tuple �i ∈ �X and formulas(43){(46) from Se. 5, one an verify that the group GX has the followingrepresentation:GX = P� ( e−i!15SU(2) 00 ei!15SU(2)′ )P�; (19)where the two opies of SU(2) are parametrized as follows:SU(2) = exp [i (!4 + !7)�1 + i (!2 + !5)�2 + i (!3 + !6)�3℄;SU(2)′ = exp [i (−!4 + !7)�1 + i (−!2 + !5)�2 + i (!3 − !6)�3℄:
• The loal subgroup of GX • Now assume that our 4-level sys-tem is omposed of 2-level subsystems, i.e., two qubits. In this ase, theHilbert spae H is the tensor produt of 2-dimensional Hilbert spaes,
H = H1 ⊗H2; and one an onsider the tensor produt of operators at-ing independently on the subspaes of individual qubits, H1 and H2. Inpartiular, having in mind the intuitive idea of the mutual independeneof isolated qubits, we de�ne the group LGX as the subgroup of the globalinvariane group of X-states GX suh that eah its element g ∈ LGX hasthe tensor produt form g = g1 × g2, with g1; g2 ∈ SU(2). From (19) itfollows that the loal unitary group an be written asLGX = P� exp({ '12 �3)× exp({'22 �3)P� : (20)

§2. Global GX -orbitsNow it will be shown that every X-state density matrix an be diago-nalized using some subgroup of the global group GX . Therefore, the ad-joint struture of GX -orbits is ompletely determined by the oset GX=H%,whereH% stands for the isotropy group of a density matrix %. This isotropygroup, in turn, depends on the degeneraies ourring in the spetrum ofdensity matries. Thus, the latter determines all possible types of GX -orbits, and the orresponding lassi�ation an be arried out as follows.2.1. The dimension of the tangent spae of GX -orbits. Considerthe adjoint ation of the global unitary group GX on the 7-dimensionalspae PX and introdue the following vetors at eah point % ∈ PX :tk = ��vk (g(v)%Xg†(v)) ∣∣∣∣vk=0 = [�k ; %X ℄; k = 3; 6; 7; 8; 10; 11; 15: (21)



THE SPECTRUM AND SEPARABILITY OF X-STATES 275In Eq. (21), group elements g(v) ∈ GX are parametrized by 7-tuples v =
{v3; v6; v7; v8; v10; v11; v15}:g(v) = exp( ∑�k∈�X vk�k) : (22)These vetors belong to the tangent spae of GX -orbits. The dimension ofthis tangent spae is given by the rank of the 7× 7 Gram matrixG = ‖Gkl‖ = 12‖Tr (tktl)‖: (23)A straightforward evaluation of the spetrum �(G) of the Gram matrix Gshows that it omprises two eigenvalues of multipliity 2 and three identi-ally vanishing eigenvalues,�(G) = {�1; �1; �2; �2; 0; 0; 0}; (24)where the multipliity 2 eigenvalues are�1 = (h3 + h6) 2 + (h8 + h10) 2 + (h7 + h11) 2; (25)�2 = (h3 − h6) 2 + (h8 − h10) 2 + (h7 − h11) 2: (26)Formulas (25) and (26) ensure that there exist 4 types of GX -orbits:

• dim O =4, the generi orbits;
• dim O =2, the degenerate orbits de�ned by the equationsh6 = h3; h10 = h8; h11 = h7 ; (27)
• dim O =2, the degenerate orbits de�ned by the equationsh6 = −h3; h10 = −h8; h11 = −h7 ; (28)
• dim O =0, the single orbit %X = 14I { the maximally mixed state.The four-dimensional orbits omprise all matries with a generi spetrum,while the two-dimensional orbits are generated by X-matries with doublemultipliity eigenvalues of the following form:P�


%11 %14 0 0%41 %44 0 00 0 %22 00 0 0 %22: P� and P�


%11 0 0 00 %11 0 00 0 %33 %320 0 %23 %22: P�:(29)



276 A. KHVEDELIDZE, A. TOROSYAN2.2. Parametrization of GX -orbits. Here, a detailed representation foreah type of GX -orbits will be given, starting from the orbit of the highestdimension.2.2.1. Generi orbits, dim (O) = 4. Let us assume that the spetrum of %Xis generi, i.e., all eigenvalues �(%) := {r1; r2; r3; r4} are di�erent positivereal numbers. Furthermore, in the blok-diagonal representation (4) of thedensity matrix, {r1; r2} denote the eigenvalues of the upper blok and
{r3; r4} are the eigenvalues of the lower blok.The 4× 4 density matrix %X an be blok-diagonalized,%X =W ( diag(r1; r2) 00 diag(r3; r4) )W †; (30)using the speial unitary matrixW = P� ( ei!U 00 e−i!V )P�; (31)where U and V are 2× 2 speial unitary matries diagonalizing the upperand lower subbloks in (4). Sine we have assumed a generi spetrum,the matries U and V belong to the oset SU(2)=U(1) × S2, where thegroup S2 interhanges the eigenvalues inside the pairs {r1; r2} and {r3; r4}.In order to have uniqueness in (30), one an �x a ertain order in thespetrum �(%X ): Namely, we assume that the elements of the spetrumform a partially ordered simplex �3, i.e.,�3 : 4

∑i=1 ri = 1; 0 6 r2 6 r1 6 1; 0 6 r4 6 r3 6 1; (32)this simplex is depited in Fig. 1.5Comparing expression (31) with (19), we see that the diagonalizingmatrix is an element of the global group GX with 2 × 2 speial unitarymatries U and V from the oset SU(2)=U(1) parametrized by angles�1; �2 ∈ [0; �℄;  1;  2 ∈ [0; 2�℄:U = ei 12 �3ei�12 �2 ; V = ei 22 �3ei�22 �2 : (33)5Note that the ase of general position onsidered here onsists of points inside �3and satis�es the inequalities r2 < r1 and r4 < r3.
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Fig. 1. The tetrahedron ABCD is the image of the par-tially ordered simplex �3, while the tetrahedron ABC ′D′inside it orresponds to a three-dimensional simplex withthe following omplete order of eigenvalues: { 4
∑i=1 ri = 1,1 > r1 > r2 > r3 > r4 > 0 } .The three-dimensional isotropy group HGeneri of generi orbits isHGeneri = P� ei! exp 12 �3 00 e−i! exp 22 �3 P�: (34)This is in aordane with the maximum dimension of GX -orbits:dim (O)Generi = dim (GX )− dimHGeneri = 7− 3 = 4:Summarizing, the adjoint ation of the global group GX determines thegeneri orbits, whih are loally given by the produt of 2-spheres.2.2.2. Degenerate orbits, dim (O)=2. Aording to the representation (29),two types of two-dimensional degenerate GX -orbits are generated by ma-tries with degenerate 2 × 2 subbloks, either upper or lower. In the �rst



278 A. KHVEDELIDZE, A. TOROSYANase, the isotropy group HDegenerate isHDegenerate = P� ( ei!SU(2) 00 e−i! exp 22 �3 )P�; (35)while for the seond ase, HDegenerate isH ′Degenerate = P� ( ei! exp 12 �3 00 e−i!SU(2)′ )P� : (36)In both ases, dimHDegenerate = dimH ′Degenerate = 5, and the dimensionof these degenerate GX -orbits isdim (O)Degenerate = dim (GX )− dimHDegenerate = 7− 5 = 2:2.2.3. Degenerate orbit, dim (O) = 0. Finally, there is one point in thestate spaePX whose isotropy group oinides with the invariane groupGX .This point orresponds to the maximally mixed state, %X = 14I .
§3. Separable statesNow we are in a position to prove that every type of GX -orbits inludesseparable states.63.1. Separable states on generi GX -orbits. The separability of sta-tes as a funtion of the spetrum �(%X ) of the density matrix an beanalyzed using the representation (30) for generi GX -orbits.Aording to the Peres{Horodeki riterion [10℄, whih is a neessaryand suÆient ondition for the separability of 2× 2 and 2× 3 systems, astate % is separable if its partial transposition, i.e., %T2 = I ⊗ T%, is semi-positive as well.7 A straightforward omputation with %X in the form6A density matrix % desribing a mixed state of a omposite system H = H1 ⊗H2is separable if it allows a onvex deomposition% =∑k !k%k1 ⊗ %k2 ; ∑k !k = 1; !k > 0; (37)where %k1 and %k2 are density matries ating on the fators H1 and H2, respetively.Otherwise, it is entangled, see [3℄.7Here we onsider the partial transposition with respet to the ordinary trans-position T in the seond subsystem; similarly, one an use the alternative ation%T1 = T ⊗ I%.
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Fig. 2. The set of absolutely separable states inside thetetrahedron of X-states.(30) shows that the semi-positivity of the partially transposed matrix %T2Xrequires the ful�lment of the following inequalities:(r1 − r2)2 os2 �1 + (r3 − r4)2 sin2 �2 6 (r1 + r2)2; (38)(r3 − r4)2 os2 �2 + (r1 − r2)2 sin2 �1 6 (r3 + r4)2: (39)Note that inequalities (38) and (39) do not onstraint two angles  1 and 2 in (33) that parametrize the loal groupK = exp (i 12 �3)×exp (i 22 �3).This onforms with the general observation that the separability propertyis independent from the loal harateristis of a omposite system. Thisloal group is a fator of the global group GX = KG′X , and the orre-sponding fator in the matrix W diagonalizing %X is irrelevant for theseparability of X-states.Analyzing inequalities (38) and (39), one an onlude the following.(i) There are separable states for any values of eigenvalues from thepartially ordered simplex �3. In other words, inequalities (38) and



280 A. KHVEDELIDZE, A. TOROSYAN(39) determine a nonempty domain of de�nition for the angles �1and �2 in (33) for every nondegenerate spetrum �(%X).(ii) There is a speial family of so-alled \absolutely separable" X-states, suh that the angles �1 and �2 an be arbitrary. The abso-lutely separable X-states are generated by the subset of the par-tially ordered simplex (32) de�ned by the inequalities(r1 − r2)2 6 4r3r4; (40)(r3 − r4)2 6 4r1r2: (41)Figure 2 illustrates the loation of the subset of absolutely separable statesinside the partially ordered simplex �3.3.2. Separable states on degenerate GX -orbits. Testing the degen-erate density matries of the form (29) by the Peres{Horodeki riterion,we reveal the following piture. The positivity requirement for the partiallytransposed density matrix with double multipliity of eigenvalues gives in-equalities similar to (38) and (39). However, owing to the larger isotropygroup HDegenerate of states, the new inequalities depend solely on a sin-gle oordinate of the oset GX=HDegenerate. More preisely, if r1 = r2,i.e., a degeneray ours in the upper subblok, then the angle �2 thatparametrizes the matrix V in (33) plays the role of suh a oordinate. Inthis ase, the Peres{Horodeki riterion asserts that the degenerateX-stateis separable if and only if os2 �2 6
4�(1− �)2 ; (42)where � = r4=r3 < 1 . This inequality points out the ritial value �∗ =3 − 2√2 , suh that for � 6 �∗ the angle �2 is onstrained, while for theinterval �∗ < � < 1 the state is separable for an arbitrary angle �2. Theanalogous results for the angle �1 (see the matrix U in (33)) hold true ifthe lower subblok in (29) is degenerate, i.e., r3 = r4. Therefore, in bothlasses of degenerate two-dimensional global orbits one an point out a two-dimensional family of separable degenerate states. Furthermore, amongthem there are \degenerate absolutely separable" states, i.e., degenerateglobal two-dimensional orbits onsisting only of separable states.

§4. Conluding remarksThe present artile is devoted to a disussion of an interplay betweenloal and global harateristis of a pair of qubits in mixed X-states. With



THE SPECTRUM AND SEPARABILITY OF X-STATES 281this aim, the orbits of the ation of the global unitary group GX weredesribed and lassi�ed aording to the degeneraies ourring in thespetrum of density matries. Using this analysis, the dependene of theseparability of X-states on the spetrum was studied. In partiular, theseparable X-states were olleted into the following families:
• the four-dimensional family of separable states with spetrum ingeneral position;
• two lasses of two-dimensional separable states with doubly degen-erate spetrum;
• the maximally mixed state.In onlusion, it is worth mentioning that, aording to the aforementionedlassi�ation, the entangled states, being omplementary to the separablestates, are likewise partitioned into three types. However, this lassi�a-tion is not omplete. A further, more subtle, grouping of the entangledstates loated at a given GX -orbit into sublasses is neessary. The lattersublasses are determined not by invariants of the global group GX , butby the values of LGX -invariants. In forthoming publiations, we plan todisuss this issue in more detail. Apart from that, following the approahelaborated in [11℄ and [12℄, a generalization of the derived results to ageneri ase of 15-dimensional two-qubit states will be onsidered.

§5. Supplementary materialHere we ollet a tehnial material useful for performing omputationsdesribed in the main text. It inludes a basis of the Lie algebra su(4),ommutators of its elements, and a blok-diagonal representation for thesubalgebra �X .
•A basis for the Lie algebra su(4) • The anti-Hermitian matries

{�1; �2; : : : ; �6} = i2{�x0; �y0; �z0; �0x; �0y; �0z}and
{�7; �8; : : : ; �15} = i2{�xx; �xy; �xz; �yx; �yy; �yz ; �zx; �zy; �zz}are



282 A. KHVEDELIDZE, A. TOROSYAN�1= i2 ∥∥∥∥∥∥
∥

∥

0 0 1 00 0 0 11 0 0 00 1 0 0∥∥∥∥∥∥∥∥ ; �2= i2 ∥∥∥∥∥∥
∥

∥

0 0 −i 00 0 0 −ii 0 0 00 i 0 0 ∥∥∥∥∥∥∥∥ ; �3= i2 ∥∥∥∥∥∥
∥

∥

1 0 0 00 1 0 00 0 −1 00 0 0 −1∥∥∥∥∥∥∥∥ ;
�4= i2 ∥∥∥∥∥∥

∥

∥

0 1 0 01 0 0 00 0 0 10 0 1 0∥∥∥∥∥∥∥∥ ; �5= i2 ∥∥∥∥∥∥
∥

∥

0 −i 0 0i 0 0 00 0 0 −i0 0 i 0 ∥∥∥∥∥∥∥∥ ; �6= i2 ∥∥∥∥∥∥
∥

∥

1 0 0 00 −1 0 00 0 1 00 0 0 −1∥∥∥∥∥∥∥∥ ;
�7= i2 ∥∥∥∥∥∥

∥

∥

0 0 0 10 0 1 00 1 0 01 0 0 0∥∥∥∥∥∥∥∥ ; �8= i2 ∥∥∥∥∥∥
∥

∥

0 0 0 −i0 0 i 00 −i 0 0i 0 0 0 ∥∥∥∥∥∥∥∥ ; �9= i2 ∥∥∥∥∥∥
∥

∥

0 0 1 00 0 0 −11 0 0 00 −1 0 0 ∥∥∥∥∥∥∥∥ ;�10 = i2 ∥∥∥∥∥∥
∥

∥

0 0 0 −i0 0 −i 00 i 0 0i 0 0 0 ∥∥∥∥∥∥∥∥ ; �11 = i2 ∥∥∥∥∥∥
∥

∥

0 0 0 −10 0 1 00 1 0 0
−1 0 0 0 ∥∥∥∥∥∥∥∥ ;�12 = i2 ∥∥∥∥∥∥

∥

∥

0 0 −i 00 0 0 ii 0 0 00 −i 0 0∥∥∥∥∥∥∥∥ ; �13 = i2 ∥∥∥∥∥∥
∥

∥

0 1 0 01 0 0 00 0 0 −10 0 −1 0 ∥∥∥∥∥∥∥∥ ;�14 = i2 ∥∥∥∥∥∥
∥

∥

0 −i 0 0i 0 0 00 0 0 i0 0 −i 0∥∥∥∥∥∥∥∥ ; �15 = i2 ∥∥∥∥∥∥
∥

∥

1 0 0 00 −1 0 00 0 −1 00 0 0 1∥∥∥∥∥∥∥∥ :
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�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12 �13 �14 �15�1 0 -�3 �2 0 0 0 0 0 0 -�13 -�14 -�15 �10 �11 �12�2 �3 0 -�1 0 0 0 �13 �14 �15 0 0 0 -�7 -�8 −�9�3 −�2 �1 0 0 0 0 -�10 -�11 -�12 �7 �8 �9 0 0 0�4 0 0 0 0 -�6 �5 0 -�9 �8 0 -�12 �11 0 -�15 �14�5 0 0 0 �6 0 -�4 �9 0 -�7 �12 0 -�10 �15 0 �13�6 0 0 0 -�5 �4 0 -�8 �7 0 -�11 �10 0 -�14 �13 0�7 0 -�13 �10 0 -�9 �8 0 -�6 �5 -�3 0 0 �2 0 0�8 0 -�14 �11 �9 0 -�7 �6 0 -�4 0 -�3 0 0 �2 0�9 0 -�15 �12 -�8 �7 0 -�5 �4 0 0 0 -�3 0 0 �2�10 �13 0 -�7 0 -�12 �11 �3 0 0 0 -�6 �5 -�1 0 0�11 �14 0 -�8 �12 0 -�10 0 �3 0 �6 0 -�4 0 -�1 0�12 �15 0 -�9 -�11 �10 0 0 0 �3 -�5 �4 0 0 0 -�1�13 -�10 �7 0 0 -�15 �14 -�2 0 0 �1 0 0 0 -�6 �5�14 -�11 �8 0 �15 0 -�13 0 -�2 0 0 �1 0 �6 0 -�4�15 -�12 �9 0 -�14 �13 0 0 0 -�2 0 0 �1 -�5 �4 0

Table1.Theommutatorrelationsfor
su(4).

Theblok-diagonalformofthebasiselementsofthesubalgebra�X
resultingfromapplyingthetranspositionP� :
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P��3P� = i2 ( �3 00 −�3 ) ; P��6P� = i2 ( �3 00 �3 ) ; (43)P��7P� = i2 ( �1 00 �1 ) ; P��8P� = i2 ( �2 00 �2 ) ; (44)P��10P� = i2 ( �2 00 −�2 ) ; P��11P� = i2 ( �1 00 −�1 ) ; (45)P��15P� = i2 ( I 00 −I ) : (46)
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