A. Khvedelidze, A. Torosyan

THE SPECTRUM AND SEPARABILITY OF MIXED TWO-QUBIT X-STATES

Abstract

The separable mixed two-qubit X-states are classified in accordance with the degeneracies in the spectrum of density matrices. It is shown that there are four classes of separable X-states, among them: one four-dimensional family, a pair of two-dimensional families, and a single zero-dimensional maximally mixed state.

InTRODUCTION

Consider the space \mathfrak{P}_{X} of 4×4 Hermitian matrices of the form

$$
\varrho_{X}:=\left(\begin{array}{cccc}
\varrho_{11} & 0 & 0 & \varrho_{14} \tag{1}\\
0 & \varrho_{22} & \varrho_{23} & 0 \\
0 & \varrho_{32} & \varrho_{33} & 0 \\
\varrho_{41} & 0 & 0 & \varrho_{44}
\end{array}\right)
$$

Due to the Hermiticity, the diagonal entries in (1) are real numbers, while the elements of the minor diagonal are pairwise complex conjugate numbers, $\varrho_{14}=\bar{\varrho}_{14}$ and $\varrho_{23}=\bar{\varrho}_{32}$. Assuming that the matrix ϱ_{X} is semipositive definite,

$$
\begin{equation*}
\varrho_{X} \geqslant 0 \tag{2}
\end{equation*}
$$

and has unit trace,

$$
\begin{equation*}
\operatorname{tr} \varrho_{X}=1, \tag{3}
\end{equation*}
$$

ϱ_{X} can be regarded as the density matrix of a 4-level quantum system. Since the nonzero elements in (1) lie in a shape similar to the Latin letter "X," the corresponding quantum states are called X-states.

The 7-dimensional space \mathfrak{P}_{X} is a subspace of the 15 -dimensional state space \mathfrak{P} of a generic 4-level quantum system, $\mathfrak{P}_{X} \subset \mathfrak{P}$. Since the introduction of X-states [1], various subfamilies of \mathfrak{P}_{X} have been attracting special attention. There are at least two reasons for that interest. First of all, it was discovered that microscopic systems being in certain X-states

[^0]show a highly nontrivial quantum behavior. ${ }^{1}$ Second, due to the simple algebraic structure of X-states, many computational difficulties common for generic states can be resolved when dealing with this special subclass of states. ${ }^{2}$

The aforementioned simplification turned out to be very important in describing such a complicated phenomenon as entanglement in composite quantum systems. In particular, it is well known that the famous entanglement measure - concurrence - can be reduced to a simple analytic expression for X-states. In the present note, we will move towards a detailed entanglement classification of mixed two-qubit X-states. Namely, a parametrization of the separable mixed X-states of two qubits with an arbitrary spectrum of the density matrix will be described. Our analysis in the subsequent sections includes the following steps:
(1) Two unitary groups, both acting adjointly on the 7 -dimensional space of two-qubit X-states, will be introduced.
(a) The first one is the so-called "global group," $G_{X} \in S U(4)$, defined as the invariance group of the subspace \mathfrak{P}_{X} :

$$
G_{X} \varrho_{X} G_{X}^{\dagger} \in \mathfrak{P}_{X} \quad \text { for every } \quad \varrho_{X} \in \mathfrak{P}_{X}
$$

(b) The second one is a subgroup of G_{X}, the so-called "local group," $L G_{X} \in G_{X}$. Its elements have a tensor product form corresponding to the decomposition of the state space \mathfrak{P}_{X} into two qubit subspaces, $L G_{X} \in S U(2) \times S U(2)$.
(2) The "global orbits" \mathcal{O}_{ϱ} of the group G_{X} will be identified and classified into families/types according to the degeneracies in the spectrum of the density matrices.
(3) Considering the equivalence classes induced by the action of the local group $L G_{X}$ on \mathcal{O}_{ϱ}, one can divide the latter into different

[^1]subfamilies according to their entanglement characteristics. Having in mind this grouping, the separable density X-matrices will be categorized within the global classification of orbits.

§1. The global and local invariance groups of X-States

In order to prove the properties of two-qubit X-states announced above, let us start with a few definitions.

- The invariance subalgebra of X-states - A basis for the algebra $\mathfrak{s u}(4)$ is constructed as follows. Let $\sigma_{\mu}=\left(\sigma_{0}, \boldsymbol{\sigma}\right)$ denote the set of 2×2 matrices, where $\sigma_{0}=I$ is the unit matrix and $\boldsymbol{\sigma}:=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ are the three Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The set of all possible tensor products of two copies of matrices σ_{μ},

$$
\sigma_{\mu \nu}:=\sigma_{\mu} \otimes \sigma_{\nu}, \quad \mu, \nu=0, x, y, z
$$

forms a basis of the algebra $\mathfrak{s u}(4)$. For our aims, it is useful to write the latter as the direct sum, $\mathfrak{s u}(4)=\mathfrak{l} \oplus \mathfrak{p}$, where the 6 -dimensional vector space \mathfrak{l} is

$$
\begin{equation*}
\mathfrak{l}=\operatorname{span} \frac{i}{2}\left\{\sigma_{x 0}, \sigma_{y 0}, \sigma_{z 0}, \sigma_{0 x}, \sigma_{0 y}, \sigma_{0 z}\right\}, \tag{5}
\end{equation*}
$$

while the 9 -dimensional space \mathfrak{p} is ${ }^{3}$

$$
\begin{equation*}
\mathfrak{p}=\operatorname{span} \frac{i}{2}\left\{\sigma_{x x}, \sigma_{x y}, \sigma_{x z}, \sigma_{y x}, \sigma_{y y}, \sigma_{y z}, \sigma_{z x}, \sigma_{z y}, \sigma_{z z}\right\} . \tag{6}
\end{equation*}
$$

From now on, to denote the matrices in (5) and (6), we use the notation λ_{k}, where k runs from 1 to 15 :

$$
\begin{equation*}
\mathfrak{l}=\operatorname{span}\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{6}\right\}, \quad \mathfrak{p}=\operatorname{span}\left\{\lambda_{7}, \lambda_{8}, \ldots, \lambda_{15}\right\} . \tag{7}
\end{equation*}
$$

X-states (1) expand over the subset $\alpha_{X}=\left\{\lambda_{15}, \lambda_{10}, \lambda_{6},-\lambda_{11}, \lambda_{8}, \lambda_{3}, \lambda_{7}\right\}$ of the introduced basis of $\mathfrak{s u}(4)$:

$$
\begin{equation*}
\varrho_{X}=\frac{1}{4}\left(I+2 i \sum_{\lambda_{k} \in \alpha_{X}} h_{k} \lambda_{k}\right) . \tag{8}
\end{equation*}
$$

[^2]the direct sum $\mathfrak{l} \oplus \mathfrak{p}$ is nothing else than the Cartan decomposition of $\mathfrak{s u}(4)$.

The real coefficients h_{k} in (8) are given by linear combinations of the density matrix elements:

$$
\begin{array}{ll}
h_{3}=-\varrho_{11}-\varrho_{22}+\varrho_{33}+\varrho_{44}, & h_{6}=-\varrho_{11}+\varrho_{22}-\varrho_{33}+\varrho_{44}, \\
h_{7}=-\varrho_{14}-\varrho_{23}-\varrho_{32}-\varrho_{41}, & h_{11}=-\varrho_{14}+\varrho_{23}+\varrho_{32}-\varrho_{41}, \\
h_{8}=i\left(-\varrho_{14}+\varrho_{23}-\varrho_{32}+\varrho_{41}\right), & h_{10}=i\left(-\varrho_{14}-\varrho_{23}+\varrho_{32}+\varrho_{41}\right), \\
h_{15}=-\varrho_{11}+\varrho_{22}+\varrho_{33}-\varrho_{44} . & \tag{12}
\end{array}
$$

The subset α_{X} possesses the following properties:
(i) The subset is closed under the matrix commutator operation, i.e., its elements span a subalgebra of $\mathfrak{s u}(4)$.
(ii) From the commutators collected in Table 1 it follows that the element λ_{15} commutes with all other elements of α_{X}.
(iii) The remaining six elements, $\left\{\lambda_{3}, \lambda_{6}, \lambda_{7}, \lambda_{8}, \lambda_{10}, \lambda_{11}\right\}$, span the algebra $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$.
To check the last property, one can construct the linear combinations

$$
\begin{array}{ll}
S_{z}=i\left(\lambda_{3}+\lambda_{6}\right), & S_{ \pm}= \pm\left(\lambda_{8}+\lambda_{10}\right)+i\left(\lambda_{7}-\lambda_{11}\right) \\
T_{z}=i\left(\lambda_{3}-\lambda_{6}\right), & T_{ \pm}=\mp\left(\lambda_{8}-\lambda_{10}\right)+i\left(\lambda_{7}+\lambda_{11}\right) \tag{14}
\end{array}
$$

and verify that their commutator relations are

$$
\begin{array}{ll}
{\left[S_{z}, S_{ \pm}\right]= \pm 2 S_{ \pm},} & {\left[S_{+}, S_{-}\right]=4 S_{z}} \\
{\left[T_{z}, T_{ \pm}\right]= \pm 2 T_{ \pm},} & {\left[T_{+}, T_{-}\right]=4 T_{z}} \tag{16}
\end{array}
$$

Thus, two sets of elements

$$
\begin{align*}
& \boldsymbol{S}=\left\{\frac{1}{2}\left(S_{+}+S_{-}\right), \frac{i}{2}\left(S_{+}-S_{-}\right), S_{z}\right\} \tag{17}\\
& \boldsymbol{T}=\left\{\frac{1}{2}\left(T_{+}+T_{-}\right), \frac{i}{2}\left(T_{+}-T_{-}\right), T_{z}\right\} \tag{18}
\end{align*}
$$

generate two copies of $\mathfrak{s u}(2) .{ }^{4}$ Gathering all together, we conclude that the set α_{X} generates the subalgebra $\mathfrak{g}_{X}:=\mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \oplus \mathfrak{u}(1) \in \mathfrak{s u}(4)$.

- The global unitary group of X-states • The exponentiation of the algebra \mathfrak{g}_{X} results in the 7-parameter subgroup of $S U(4)$,

$$
G_{X}:=\exp \left(\mathfrak{g}_{X}\right) \in S U(4)
$$

[^3]whose action preserves the space of X-states \mathfrak{P}_{X}, i.e., $G_{X} \varrho_{X} G_{X}^{\dagger} \in \mathfrak{P}_{X}$. Using the expansion $\mathfrak{g}_{X}=\sum_{i} \omega_{i} \lambda_{i}$ over the 7 -tuple $\lambda_{i} \in \alpha_{X}$ and formulas (43)-(46) from Sec. 5, one can verify that the group G_{X} has the following representation:
\[

G_{X}=P_{\pi}\left($$
\begin{array}{c|c}
e^{-i \omega_{15}} S U(2) & 0 \tag{19}\\
\hline 0 & e^{i \omega_{15}} S U(2)^{\prime}
\end{array}
$$\right) P_{\pi}
\]

where the two copies of $\mathrm{SU}(2)$ are parametrized as follows:

$$
\begin{aligned}
S U(2) & =\exp \left[i\left(\omega_{4}+\omega_{7}\right) \sigma_{1}+i\left(\omega_{2}+\omega_{5}\right) \sigma_{2}+i\left(\omega_{3}+\omega_{6}\right) \sigma_{3}\right], \\
S U(2)^{\prime} & =\exp \left[i\left(-\omega_{4}+\omega_{7}\right) \sigma_{1}+i\left(-\omega_{2}+\omega_{5}\right) \sigma_{2}+i\left(\omega_{3}-\omega_{6}\right) \sigma_{3}\right] .
\end{aligned}
$$

- The local subgroup of G_{X} - Now assume that our 4-level system is composed of 2-level subsystems, i.e., two qubits. In this case, the Hilbert space \mathcal{H} is the tensor product of 2-dimensional Hilbert spaces, $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$, and one can consider the tensor product of operators acting independently on the subspaces of individual qubits, \mathcal{H}_{1} and \mathcal{H}_{2}. In particular, having in mind the intuitive idea of the mutual independence of isolated qubits, we define the group $L G_{X}$ as the subgroup of the global invariance group of X-states G_{X} such that each its element $g \in L G_{X}$ has the tensor product form $g=g_{1} \times g_{2}$, with $g_{1}, g_{2} \in S U(2)$. From (19) it follows that the local unitary group can be written as

$$
\begin{equation*}
L G_{X}=P_{\pi} \exp \left(\imath \frac{\varphi_{1}}{2} \sigma_{3}\right) \times \exp \left(\imath \frac{\varphi_{2}}{2} \sigma_{3}\right) P_{\pi} . \tag{20}
\end{equation*}
$$

§2. Global G_{X}-ORBIts

Now it will be shown that every X-state density matrix can be diagonalized using some subgroup of the global group G_{X}. Therefore, the adjoint structure of G_{X}-orbits is completely determined by the coset G_{X} / H_{ϱ}, where H_{ϱ} stands for the isotropy group of a density matrix ϱ. This isotropy group, in turn, depends on the degeneracies occurring in the spectrum of density matrices. Thus, the latter determines all possible types of $G_{X^{-}}$ orbits, and the corresponding classification can be carried out as follows.
2.1. The dimension of the tangent space of G_{X}-orbits. Consider the adjoint action of the global unitary group G_{X} on the 7-dimensional space \mathfrak{P}_{X} and introduce the following vectors at each point $\varrho \in \mathfrak{P}_{X}$:

$$
\begin{equation*}
t_{k}=\left.\frac{\partial}{\partial v_{k}}\left(g(\boldsymbol{v}) \varrho_{X} g^{\dagger}(\boldsymbol{v})\right)\right|_{v_{k}=0}=\left[\lambda_{k}, \varrho_{X}\right], \quad k=3,6,7,8,10,11,15 \tag{21}
\end{equation*}
$$

In Eq. (21), group elements $g(\boldsymbol{v}) \in G_{X}$ are parametrized by 7-tuples $\boldsymbol{v}=$ $\left\{v_{3}, v_{6}, v_{7}, v_{8}, v_{10}, v_{11}, v_{15}\right\}:$

$$
\begin{equation*}
g(\boldsymbol{v})=\exp \left(\sum_{\lambda_{k} \in \alpha_{X}} v_{k} \lambda_{k}\right) \tag{22}
\end{equation*}
$$

These vectors belong to the tangent space of G_{X}-orbits. The dimension of this tangent space is given by the rank of the 7×7 Gram matrix

$$
\begin{equation*}
G=\left\|G_{k l}\right\|=\frac{1}{2}\left\|\operatorname{Tr}\left(t_{k} t_{l}\right)\right\| . \tag{23}
\end{equation*}
$$

A straightforward evaluation of the spectrum $\sigma(G)$ of the Gram matrix G shows that it comprises two eigenvalues of multiplicity 2 and three identically vanishing eigenvalues,

$$
\begin{equation*}
\sigma(G)=\left\{\mu_{1}, \mu_{1}, \mu_{2}, \mu_{2}, 0,0,0\right\} \tag{24}
\end{equation*}
$$

where the multiplicity 2 eigenvalues are

$$
\begin{align*}
& \mu_{1}=\left(h_{3}+h_{6}\right)^{2}+\left(h_{8}+h_{10}\right)^{2}+\left(h_{7}+h_{11}\right)^{2} \tag{25}\\
& \mu_{2}=\left(h_{3}-h_{6}\right)^{2}+\left(h_{8}-h_{10}\right)^{2}+\left(h_{7}-h_{11}\right)^{2} . \tag{26}
\end{align*}
$$

Formulas (25) and (26) ensure that there exist 4 types of G_{X}-orbits:

- $\operatorname{dim} \mathcal{O}=4$, the generic orbits;
- $\operatorname{dim} \mathcal{O}=\mathbf{2}$, the degenerate orbits defined by the equations

$$
\begin{equation*}
h_{6}=h_{3}, \quad h_{10}=h_{8}, \quad h_{11}=h_{7} \tag{27}
\end{equation*}
$$

- $\operatorname{dim} \mathcal{O}=\mathbf{2}$, the degenerate orbits defined by the equations

$$
\begin{equation*}
h_{6}=-h_{3}, h_{10}=-h_{8}, \quad h_{11}=-h_{7} \tag{28}
\end{equation*}
$$

- $\operatorname{dim} \mathcal{O}=\mathbf{0}$, the single orbit $\varrho_{X}=\frac{1}{4} I$ - the maximally mixed state. The four-dimensional orbits comprise all matrices with a generic spectrum, while the two-dimensional orbits are generated by X-matrices with double multiplicity eigenvalues of the following form:

$$
P_{\pi}\left(\begin{array}{cccc}
\varrho_{11} & \varrho_{14} & 0 & 0 \tag{29}\\
\varrho_{41} & \varrho_{44} & 0 & 0 \\
0 & 0 & \varrho_{22} & 0 \\
0 & 0 & 0 & \varrho_{22} .
\end{array}\right) P_{\pi} \text { and } P_{\pi}\left(\begin{array}{cccc}
\varrho_{11} & 0 & 0 & 0 \\
0 & \varrho_{11} & 0 & 0 \\
0 & 0 & \varrho_{33} & \varrho_{32} \\
0 & 0 & \varrho_{23} & \varrho_{22} .
\end{array}\right) P_{\pi} .
$$

2.2. Parametrization of G_{X}-orbits. Here, a detailed representation for each type of G_{X}-orbits will be given, starting from the orbit of the highest dimension.
2.2.1. Generic orbits, $\operatorname{dim}(\mathcal{O})=4$. Let us assume that the spectrum of ϱ_{X} is generic, i.e., all eigenvalues $\sigma(\varrho):=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ are different positive real numbers. Furthermore, in the block-diagonal representation (4) of the density matrix, $\left\{r_{1}, r_{2}\right\}$ denote the eigenvalues of the upper block and $\left\{r_{3}, r_{4}\right\}$ are the eigenvalues of the lower block.

The 4×4 density matrix ϱ_{X} can be block-diagonalized,

$$
\varrho_{X}=W\left(\begin{array}{c|c}
\operatorname{diag}\left(r_{1}, r_{2}\right) & 0 \tag{30}\\
\hline 0 & \operatorname{diag}\left(r_{3}, r_{4}\right)
\end{array}\right) W^{\dagger}
$$

using the special unitary matrix

$$
W=P_{\pi}\left(\begin{array}{c|c}
e^{i \omega} U & 0 \tag{31}\\
\hline 0 & e^{-i \omega} V
\end{array}\right) P_{\pi}
$$

where U and V are 2×2 special unitary matrices diagonalizing the upper and lower subblocks in (4). Since we have assumed a generic spectrum, the matrices U and V belong to the coset $S U(2) / U(1) \times S_{2}$, where the group S_{2} interchanges the eigenvalues inside the pairs $\left\{r_{1}, r_{2}\right\}$ and $\left\{r_{3}, r_{4}\right\}$. In order to have uniqueness in (30), one can fix a certain order in the spectrum $\sigma\left(\varrho_{X}\right)$. Namely, we assume that the elements of the spectrum form a partially ordered simplex $\underline{\Delta}_{3}$, i.e.,

$$
\begin{equation*}
\underline{\Delta}_{3}: \quad \sum_{i=1}^{4} r_{i}=1, \quad 0 \leqslant r_{2} \leqslant r_{1} \leqslant 1, \quad 0 \leqslant r_{4} \leqslant r_{3} \leqslant 1 \tag{32}
\end{equation*}
$$

this simplex is depicted in Fig. 1. ${ }^{5}$
Comparing expression (31) with (19), we see that the diagonalizing matrix is an element of the global group G_{X} with 2×2 special unitary matrices U and V from the coset $S U(2) / U(1)$ parametrized by angles $\phi_{1}, \phi_{2} \in[0, \pi], \psi_{1}, \psi_{2} \in[0,2 \pi]:$

$$
\begin{equation*}
U=e^{i \frac{\psi_{1}}{2} \sigma_{3}} e^{i \frac{\phi_{1}}{2} \sigma_{2}}, \quad V=e^{i \frac{\psi_{2}}{2} \sigma_{3}} e^{i \frac{\phi_{2}}{2} \sigma_{2}} \tag{33}
\end{equation*}
$$

[^4]

Fig. 1. The tetrahedron $A B C D$ is the image of the partially ordered simplex $\underline{\Delta}_{3}$, while the tetrahedron $A B C^{\prime} D^{\prime}$ inside it corresponds to a three-dimensional simplex with the following complete order of eigenvalues: $\left\{\sum_{i=1}^{4} r_{i}=1\right.$, $\left.1 \geqslant r_{1} \geqslant r_{2} \geqslant r_{3} \geqslant r_{4} \geqslant 0\right\}$.

The three-dimensional isotropy group $H_{\text {Generic }}$ of generic orbits is

$$
H_{\text {Generic }}=P_{\pi}\left(\begin{array}{c|c}
e^{i \omega} \exp \frac{\gamma_{1}}{2} \sigma_{3} & 0 \tag{34}\\
\hline 0 & e^{-i \omega} \exp \frac{\gamma_{2}}{2} \sigma_{3}
\end{array}\right) P_{\pi} .
$$

This is in accordance with the maximum dimension of G_{X}-orbits:

$$
\operatorname{dim}(\mathcal{O})_{\text {Generic }}=\operatorname{dim}\left(G_{X}\right)-\operatorname{dim} H_{\text {Generic }}=7-3=4
$$

Summarizing, the adjoint action of the global group G_{X} determines the generic orbits, which are locally given by the product of 2 -spheres.
2.2.2. Degenerate orbits, $\operatorname{dim}(\mathcal{O})=2$. According to the representation (29), two types of two-dimensional degenerate G_{x}-orbits are generated by matrices with degenerate 2×2 subblocks, either upper or lower. In the first
case, the isotropy group $H_{\text {Degenerate }}$ is

$$
H_{\text {Degenerate }}=P_{\pi}\left(\begin{array}{c|c}
e^{i \omega} S U(2) & 0 \tag{35}\\
\hline 0 & e^{-i \omega} \exp \frac{\gamma_{2}}{2} \sigma_{3}
\end{array}\right) P_{\pi}
$$

while for the second case, $H_{\text {Degenerate }}$ is

$$
H_{\text {Degenerate }}^{\prime}=P_{\pi}\left(\begin{array}{c|c}
e^{i \omega} \exp \frac{\gamma_{1}}{2} \sigma_{3} & 0 \tag{36}\\
\hline 0 & e^{-i \omega} S U(2)^{\prime}
\end{array}\right) P_{\pi} .
$$

In both cases, $\operatorname{dim} H_{\text {Degenerate }}=\operatorname{dim} H_{\text {Degenerate }}^{\prime}=5$, and the dimension of these degenerate G_{X}-orbits is

$$
\operatorname{dim}(\mathcal{O})_{\text {Degenerate }}=\operatorname{dim}\left(G_{X}\right)-\operatorname{dim} H_{\text {Degenerate }}=7-5=2
$$

2.2.3. Degenerate orbit, $\operatorname{dim}(\mathcal{O})=0$. Finally, there is one point in the state space \mathfrak{P}_{X} whose isotropy group coincides with the invariance group G_{X}. This point corresponds to the maximally mixed state, $\varrho_{X}=\frac{1}{4} I$.

§3. SEPARABLE STATES

Now we are in a position to prove that every type of G_{X}-orbits includes separable states. ${ }^{6}$
3.1. Separable states on generic G_{X}-orbits. The separability of states as a function of the spectrum $\sigma\left(\varrho_{X}\right)$ of the density matrix can be analyzed using the representation (30) for generic G_{X}-orbits.

According to the Peres-Horodecki criterion [10], which is a necessary and sufficient condition for the separability of 2×2 and 2×3 systems, a state ϱ is separable if its partial transposition, i.e., $\varrho^{T_{2}}=I \otimes T \varrho$, is semipositive as well. ${ }^{7}$ A straightforward computation with ϱ_{X} in the form

[^5]

Fig. 2. The set of absolutely separable states inside the tetrahedron of X-states.
(30) shows that the semi-positivity of the partially transposed matrix $\varrho_{X}^{T_{2}}$ requires the fulfilment of the following inequalities:

$$
\begin{align*}
& \left(r_{1}-r_{2}\right)^{2} \cos ^{2} \phi_{1}+\left(r_{3}-r_{4}\right)^{2} \sin ^{2} \phi_{2} \leqslant\left(r_{1}+r_{2}\right)^{2} \tag{38}\\
& \left(r_{3}-r_{4}\right)^{2} \cos ^{2} \phi_{2}+\left(r_{1}-r_{2}\right)^{2} \sin ^{2} \phi_{1} \leqslant\left(r_{3}+r_{4}\right)^{2} \tag{39}
\end{align*}
$$

Note that inequalities (38) and (39) do not constraint two angles ψ_{1} and ψ_{2} in (33) that parametrize the local group $K=\exp \left(i \frac{\psi_{1}}{2} \sigma_{3}\right) \times \exp \left(i \frac{\psi_{2}}{2} \sigma_{3}\right)$. This conforms with the general observation that the separability property is independent from the local characteristics of a composite system. This local group is a factor of the global group $G_{X}=K G_{X}^{\prime}$, and the corresponding factor in the matrix W diagonalizing ϱ_{X} is irrelevant for the separability of X-states.

Analyzing inequalities (38) and (39), one can conclude the following.
(i) There are separable states for any values of eigenvalues from the partially ordered simplex $\underline{\Delta}_{3}$. In other words, inequalities (38) and
(39) determine a nonempty domain of definition for the angles ϕ_{1} and ϕ_{2} in (33) for every nondegenerate spectrum $\sigma\left(\varrho_{X}\right)$.
(ii) There is a special family of so-called "absolutely separable" X states, such that the angles ϕ_{1} and ϕ_{2} can be arbitrary. The absolutely separable X-states are generated by the subset of the partially ordered simplex (32) defined by the inequalities

$$
\begin{align*}
& \left(r_{1}-r_{2}\right)^{2} \leqslant 4 r_{3} r_{4} \tag{40}\\
& \left(r_{3}-r_{4}\right)^{2} \leqslant 4 r_{1} r_{2} \tag{41}
\end{align*}
$$

Figure 2 illustrates the location of the subset of absolutely separable states inside the partially ordered simplex $\underline{\Delta}_{3}$.
3.2. Separable states on degenerate G_{X}-orbits. Testing the degenerate density matrices of the form (29) by the Peres-Horodecki criterion, we reveal the following picture. The positivity requirement for the partially transposed density matrix with double multiplicity of eigenvalues gives inequalities similar to (38) and (39). However, owing to the larger isotropy group $H_{\text {Degenerate }}$ of states, the new inequalities depend solely on a single coordinate of the $\operatorname{coset} G_{X} / H_{\text {Degenerate }}$. More precisely, if $r_{1}=r_{2}$, i.e., a degeneracy occurs in the upper subblock, then the angle ϕ_{2} that parametrizes the matrix V in (33) plays the role of such a coordinate. In this case, the Peres-Horodecki criterion asserts that the degenerate X-state is separable if and only if

$$
\begin{equation*}
\cos ^{2} \phi_{2} \leqslant \frac{4 \zeta}{(1-\zeta)^{2}} \tag{42}
\end{equation*}
$$

where $\zeta=r_{4} / r_{3}<1$. This inequality points out the critical value $\zeta_{*}=$ $3-2 \sqrt{2}$, such that for $\zeta \leqslant \zeta_{*}$ the angle ϕ_{2} is constrained, while for the interval $\zeta_{*}<\zeta<1$ the state is separable for an arbitrary angle ϕ_{2}. The analogous results for the angle ϕ_{1} (see the matrix U in (33)) hold true if the lower subblock in (29) is degenerate, i.e., $r_{3}=r_{4}$. Therefore, in both classes of degenerate two-dimensional global orbits one can point out a twodimensional family of separable degenerate states. Furthermore, among them there are "degenerate absolutely separable" states, i.e., degenerate global two-dimensional orbits consisting only of separable states.

§4. Concluding REmarks

The present article is devoted to a discussion of an interplay between local and global characteristics of a pair of qubits in mixed X-states. With
this aim, the orbits of the action of the global unitary group G_{X} were described and classified according to the degeneracies occurring in the spectrum of density matrices. Using this analysis, the dependence of the separability of X-states on the spectrum was studied. In particular, the separable X-states were collected into the following families:

- the four-dimensional family of separable states with spectrum in general position;
- two classes of two-dimensional separable states with doubly degenerate spectrum;
- the maximally mixed state.

In conclusion, it is worth mentioning that, according to the aforementioned classification, the entangled states, being complementary to the separable states, are likewise partitioned into three types. However, this classification is not complete. A further, more subtle, grouping of the entangled states located at a given G_{x}-orbit into subclasses is necessary. The latter subclasses are determined not by invariants of the global group G_{X}, but by the values of $L G_{X}$-invariants. In forthcoming publications, we plan to discuss this issue in more detail. Apart from that, following the approach elaborated in [11] and [12], a generalization of the derived results to a generic case of 15 -dimensional two-qubit states will be considered.

§5. SUPPLEMENTARY MATERIAL

Here we collect a technical material useful for performing computations described in the main text. It includes a basis of the Lie algebra $\mathfrak{s u}(4)$, commutators of its elements, and a block-diagonal representation for the subalgebra α_{X}.

- A basis for the Lie algebra $\mathfrak{s u}(4)$ - The anti-Hermitian matrices

$$
\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{6}\right\}=\frac{i}{2}\left\{\sigma_{x 0}, \sigma_{y 0}, \sigma_{z 0}, \sigma_{0 x}, \sigma_{0 y}, \sigma_{0 z}\right\}
$$

and

$$
\left\{\lambda_{7}, \lambda_{8}, \ldots, \lambda_{15}\right\}=\frac{i}{2}\left\{\sigma_{x x}, \sigma_{x y}, \sigma_{x z}, \sigma_{y x}, \sigma_{y y}, \sigma_{y z}, \sigma_{z x}, \sigma_{z y}, \sigma_{z z}\right\}
$$

are

$$
\lambda_{1}=\frac{i}{2}\left\|\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right\|, \lambda_{2}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & -i \\
i & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right\|, \lambda_{3}=\frac{i}{2}\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right\|,
$$

$$
\lambda_{4}=\frac{i}{2}\left\|\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right\|, \lambda_{5}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & -i \\
0 & 0 & i & 0
\end{array}\right\|, \lambda_{6}=\frac{i}{2}\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right\|,
$$

$$
\lambda_{7}=\frac{i}{2}\left\|\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right\|, \lambda_{8}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right\|, \lambda_{9}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right\|,
$$

$$
\lambda_{10}=\frac{i}{2}\left\|\begin{array}{llcc}
0 & 0 & 0 & -i \\
0 & 0 & -i & 0 \\
0 & i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right\|, \quad \lambda_{11}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right\|,
$$

$$
\lambda_{12}=\frac{i}{2}\left\|\begin{array}{llcc}
0 & 0 & -i & 0 \\
0 & 0 & 0 & i \\
i & 0 & 0 & 0 \\
0 & -i & 0 & 0
\end{array}\right\|, \quad \lambda_{13}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right\|,
$$

$$
\lambda_{14}=\frac{i}{2}\left\|\begin{array}{cccc}
0 & -i & 0 & 0 \\
i & 0 & 0 & 0 \\
0 & 0 & 0 & i \\
0 & 0 & -i & 0
\end{array}\right\|, \quad \lambda_{15}=\frac{i}{2}\left\|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| .
$$

$$
\begin{align*}
P_{\pi} \lambda_{3} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
\sigma_{3} & 0 \\
\hline 0 & -\sigma_{3}
\end{array}\right), \quad P_{\pi} \lambda_{6} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
\sigma_{3} & 0 \\
\hline 0 & \sigma_{3}
\end{array}\right), \tag{43}\\
P_{\pi} \lambda_{7} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
\sigma_{1} & 0 \\
\hline 0 & \sigma_{1}
\end{array}\right), \quad P_{\pi} \lambda_{8} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
\sigma_{2} & 0 \\
\hline 0 & \sigma_{2}
\end{array}\right), \tag{44}\\
P_{\pi} \lambda_{10} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
\sigma_{2} & 0 \\
\hline 0 & -\sigma_{2}
\end{array}\right), \quad P_{\pi} \lambda_{11} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
\sigma_{1} & 0 \\
\hline 0 & -\sigma_{1}
\end{array}\right), \tag{45}\\
P_{\pi} \lambda_{15} P_{\pi}=\frac{i}{2}\left(\begin{array}{c|c}
I & 0 \\
\hline 0 & -I
\end{array}\right) . \tag{46}
\end{align*}
$$

References

1. T. Yu, J. H. Eberly, Evolution from entanglement to decoherence of bipartite mixed "X" states. - Quantum Inf. Comput. 7 (2007), 459-468.
2. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, 2011.
3. R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. — Phys. Rev. A 40, No. 8 (1989), 4277-4281.
4. M. Horodecki, P. Horodecki. Reduction criterion of separability and limits for a class of distillation protocols. - Phys. Rev. A 59, 4206-4216 (1999).
5. S. Ishizaka, T. Hiroshima, Maximally entangled mixed states under nonlocal unitary operations in two qubits. - Phys. Rev. A 62 (2000), 22310.
6. F. Verstraete, K. Audenaert, T. D. Bie, B. D. Moor, Maximally entangled mixed states of two qubits. - Phys. Rev. A 64 (2001), 012316.
7. N. Quesada, A. Al-Qasimi, D. F. V. James, Quantum properties and dynamics of X states. - J. Modern Optics 59 (2012), 1322-1329.
8. P. Mendonca, M. Marchiolli, D. Galetti, Entanglement universality of two-qubit X-states. - Ann. Phys. 351 (2014), 79-103.
9. A. R. P. Rau, Manipulating two-spin coherences and qubit pairs. - Phys. Rev. A 61 (2000), 032301.
10. A. Peres, Separability criterion for density matrices. - Phys. Rev. Lett. 77 (1996), 1413-1415.
11. V. Gerdt, A. Khvedelidze, Yu. Palii, On the ring of local polynomial invariants for a pair of entangled qubits. - Zap. Nauchn. Semin. POMI 373 (2009), 104-123.
12. V. Gerdt, A. Khvedelidze, Yu. Palii, Constraints on $\mathrm{SU}(2) \times \mathrm{SU}(2)$ invariant polynomials for entangled qubit pair. - Phys. Atomic Nuclei 74 (2011), 893-900.
A. Razmadze Mathematical Institute,

Поступило 17 сентября 2016 г.
Iv. Javakhishvili Tbilisi State University,

Tbilisi, Georgia;
Institute of Quantum Physics and Engineering Technologies,
Georgian Technical University,
Tbilisi, Georgia;
National Research Nuclear University
MEPhI (Moscow Engineering Physics Institute),
115409 Moscow, Russia
E-mail: akhved@jinr.ru
Laboratory of Information Technologies, Joint Institute for Nuclear Research
141980 Dubna, Russia
E-mail: astghik@jinr.ru

[^0]: Key words and phrases: group actions, Lie group orbits, quantum entanglement.

[^1]: ${ }^{1}$ Well-known entangled states, such as Bell states [2], Werner states [3], isotropic states [4], and maximally entangled mixed states [5,6], are particular subsets of X-states. For further references on X-states, see $[7,8]$.
 ${ }^{2}$ Such simplifications take place owing to a discrete symmetry X-states possess. Namely, it can easily be verified that every X-state (1) is equivalent to a block-diagonal matrix

 $$
 \varrho_{X}=P_{\pi}\left(\begin{array}{cccc}
 \varrho_{11} & \varrho_{14} & 0 & 0 \tag{4}\\
 \varrho_{41} & \varrho_{44} & 0 & 0 \\
 0 & 0 & \varrho_{33} & \varrho_{32} \\
 0 & 0 & \varrho_{23} & \varrho_{22} .
 \end{array}\right) P_{\pi}, \quad \text { with } \quad P_{\pi}=\left[\begin{array}{cccc}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0
 \end{array}\right]
 $$

[^2]: ${ }^{3}$ Since the commutators between elements of two subspaces \mathfrak{l} and \mathfrak{p} are such that

 $$
 [\mathfrak{l}, \mathfrak{l}] \subset \mathfrak{l}, \quad[\mathfrak{p}, \mathfrak{l}] \subset \mathfrak{p}, \quad[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{l}
 $$

[^3]: ${ }^{4}$ In the terminology of [9], such operators describe "pseudospins" for a two-spin system.

[^4]: ${ }^{5}$ Note that the case of general position considered here consists of points inside $\underline{\Delta}_{3}$ and satisfies the inequalities $r_{2}<r_{1}$ and $r_{4}<r_{3}$.

[^5]: ${ }^{6}$ A density matrix ϱ describing a mixed state of a composite system $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is separable if it allows a convex decomposition

 $$
 \begin{equation*}
 \varrho=\sum_{k} \omega_{k} \varrho_{1}^{k} \otimes \varrho_{2}^{k}, \quad \sum_{k} \omega_{k}=1, \quad \omega_{k}>0 \tag{37}
 \end{equation*}
 $$

 where ϱ_{1}^{k} and ϱ_{2}^{k} are density matrices acting on the factors \mathcal{H}_{1} and \mathcal{H}_{2}, respectively. Otherwise, it is entangled, see [3].
 ${ }^{7}$ Here we consider the partial transposition with respect to the ordinary transposition T in the second subsystem; similarly, one can use the alternative action $\varrho^{T_{1}}=T \otimes I \varrho$.

