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DIAGONAL COMPLEXES FOR PUNCTURED
POLYGONS

ABSTRACT. It is known that taken together, all collections of non-
intersecting diagonals in a convex planar n-gon give rise to a (combi-
natorial type of a) convex (n — 3)-dimensional polytope As, called
the Stasheff polytope, or associahedron. In the paper, we act in a
similar way by taking a convex planar n-gon with k£ labeled punc-
tures. All collections of mutually nonintersecting and mutually non-
homotopic topological diagonals yield a complex As; ;. We prove
that it is a topological ball. We also show a natural cellular fibration
Asp . — Asp r—1. A special example is delivered by the case k = 1.
Here the vertices of the complex are labeled by all possible permu-
tations together with all possible bracketings on n distinct entries.
This hints to a relationship with M. Kapranov’s permutoassociahe-
dron.

§1. INTRODUCTION

Although the combinatorics of the associahedron was first described by
Dov Tamari, a more common reference is James Stasheff’s paper [4]. It
reads as follows. Assume that n > 2 is fixed. We say that two diagonals in
a convex n-gon are nonintersecting if they intersect only at their endpoints
(or do not intersect at all). Consider all possible collections of mutually
nonintersecting diagonals® in a convex polygon. This set is partially or-
dered by reverse inclusion, and it was shown by John Milnor that the
poset is isomorphic to the face poset of some convex (n — 3)-dimensional
polytope, called the associahedron, which is denoted here? by As,,.

In particular, the vertices of the associahedron As, correspond to the
triangulations of an n-gon, and the edges correspond to the edge flips in
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1t is important that the vertices of the polygon are labeled and, therefore, we do
not identify collections of diagonals that differ by a rotation.

2Tn the literature, it is sometimes denoted by Asy,_3. This indicates the dimension of
the associahedron. However, in the present paper, we keep the notation where n refers
to the number of vertices of the n-gon.
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which one of the diagonals is removed and replaced by a (uniquely defined)
different diagonal. The single diagonals are in a bijection with the facets
of As,, and the empty set corresponds to the entire associahedron As,.

There exist many explicit constructions of the associahedron: as a spe-
cial instance of a secondary polytope, a truncation of a simplex, etc.

There also exist many ways to meaningfully generalize the associahe-
dron. In the present paper, we propose one more way of generalizing. As-
sume that n > 1 and k& > 0 with n — 3 + 2k > 1 are fixed. Take a disk D?
with n (also labeled) marked points on its boundary. If n > 2, one may
think of a (convex) n-gon, so we call these n points vertices. The vertices
divide the boundary of the disk into edges. Assume also that & labeled
punctures (that is, k points in the interior of the disk) are fixed.

A diagonal is a simple (that is, not self-intersecting) smooth curve ¢
in the disk whose endpoints are some of the (possibly one and the same)
vertices such that

(1) ¢ avoids punctures,

(2) clies in the interior of the disk (except for its endpoints),
(3) ¢ is homotopic (in the punctured disk) to no edge, and
(4) ¢ is noncontractible in the punctured disk.

A diagonal arrangement is a collection of diagonals with the following
properties:

(1) no two diagonals intersect (except for endpoints),
(2) no two diagonals are homotopic,
(3) the collection is nonempty.

We identify two arrangements A; and A, whenever there exists a dif-
feomorphism of the disk that maps A; to As, preserves the orientation
(this is important if n < 3), maps vertices to vertices and punctures to
punctures, keeping the numbering.

Diagonal arrangements are partially ordered by reverse inclusion. Eu-
ler’s formula implies that arrangements with maximum number of diago-
nals contain exactly n — 3 + 2k diagonals.

A cell complex K is nice if each k-dimensional cell C' is attached to some
subcomplex of the (k — 1)-skeleton of K via a bijective mapping on 9C.

Theorem.

(1) The poset described above is combinatorially isomorphic to some
nice cell complex As,, , whose support is the ball Bn—2+2k,



248 G. PANINA

(2) There exists a natural cellular mapping Asp j, — As, g—1 that is
a fibration with combinatorially explicitly describable fibers. Fach
fiber is a topological disk D?.

The cell complex As,, ;, is a close relative of the complexes introduced
in [1,2]. The idea of the paper is applicable to the case when an n-gon is
replaced by some surface with a higher genus; details are left beyond the

paper.

§2. PROOF OF THE THEOREM AND EXPLICIT CONSTRUCTIONS

The following example gives a base for the further inductive construc-
tion.

Example 1.

(1) Asy, is combinatorially isomorphic to the associahedron As,.
(2) Asy o is D? with two vertices and two edges.

(3) Asy; is a segment.

(4) Ass; is a hexagon.

Example 2. The vertices of As; ; are labeled by the same labels as the
vertices of M. Kapranov’s permutoassociahedron [3]: in Fig. 1 one sees a
permutation and a complete bracketing on the set {1, ..., k}. However, here
we do not have a complete combinatorial isomorphism because of different
incidence relations.

Now comes the proof of the theorem.

Due to the above examples, the theorem holds true for small n and k.

Let us first prove that As, j is a nice cell complex. We need to prove
that it is possible to attach cells (= balls) starting from small dimen-
sions according to the desired combinatorics. The vertices of the complex
( = diagonal arrangements maximal by inclusion) are already well de-
fined. Assume that the m-skeleton is already constructed. We have to
attach an (m + 1)-dimensional ball which encodes some arrangement A of
n — 3 + 2k —m diagonals. Let us prove that the complex of all arrange-
ments strictly contained in A is a topological sphere. Cut the disk along the
diagonals of A. We get a collection of punctured polygons and can apply
the inductive assumption for each of them. Altogether, we have a product
of balls minus the interior, which gives us a sphere. So the attachment of
a new cell is well defined.
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Fig. 1. Here we have a one-gon with three punctures. This
configuration gives the permutation and bracketing
(3-1)-2.

Consider now the following forgetful projection
7 Asp g1 — Asp k.

By definition, it is a cellular mapping. Given a cell corresponding to an
arrangement A in an n-gon with k& 4+ 1 punctures, we first eliminate the
puncture number k+ 1 and keep all the diagonals. Some diagonals become
mutually homotopic; we leave exactly one representative in each of the
classes. Some may become homotopic to edges of the polygon; we eliminate
them. Some may become contractible; we eliminate them as well. We get
either an arrangement m(A) in an n-gon with k& punctures, or an empty
set.

Let us examine the preimage of an inner point of a cell, corresponding
to an arrangement A in an n-gon with k& punctures. We will show that
it is a cell complex homeomorphic to the disk D?. Here is its explicit
construction: the arrangement A cuts the n-gon into cells, so we have a
representation of D? as a cell complex K (A). Its vertices are the vertices of
the n-gon, its edges are either edges of the n-gon or the diagonals. A corner
is a vertex with two germs g; and g, of incident edges such that there are
no other germs between g; and g,. For each of the corners, we blow up
its vertex, that is, replace it by an extra edge, as shown in Fig. 2. We get
another cell complex K’(A) which encodes the combinatorics of 771 (A).
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Fig. 3. Here we depict arrangements that correspond to
a vertex and two edges (an initial edge of the n-gon and
the blow-up of a corner).

Indeed, each cell C of K'(A) gives rise to an arrangement A(C) € 7~1(A)
in an n-gon with k£ + 1 punctures by the following rule:
(1) If C' is a 2-dimensional cell, we keep A and add the puncture
number k 4 1 in the cell C.
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(2) If the cell is an edge e of the polygon, we keep A, add the puncture
number k + 1 in the (uniquely defined) cell C which is adjacent to
e, and also add one more diagonal embracing the puncture which
is parallel to e.

(3) If the cell is the blow-up of one of the corners, we keep A, add
the puncture number &k + 1 in the (uniquely defined) cell C' which
is adjacent to e, and also add one loop diagonal embracing the
puncture which starts and ends at the corner.

(4) If the cell is one of the diagonals ¢, we keep A, duplicate ¢, and
put the puncture number k& + 1 between ¢ and its copy.

(5) If the cell is one of the new vertices, that is, corresponds to a corner
and a vertex of the n-gon, we combine either (3) and (2), or (3)
and (4), that is, add both a loop and a diagonal parallel to the
edge.
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