
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.N. Mnev, G. SharyginON LOCAL COMBINATORIAL FORMULAS FORCHERN CLASSES OF A TRIANGULATED CIRCLEBUNDLEAbstrat. A prinipal irle bundle over a PL polyhedron an betriangulated and thus obtains ombinatoris. The triangulation isassembled from triangulated irle bundles over simplies. To everytriangulated irle bundle over a simplex we assoiate a neklae (inthe ombinatorial sense). We express rational loal formulas for allpowers of the �rst Chern lass in terms of expetations of the paritiesof the assoiated neklaes. This rational parity is a ombinatorialisomorphism invariant of a triangulated irle bundle over a simplex,measuring the mixing by the triangulation of the irular graphsover verties of the simplex. The goal of this note is to sketh thelogi of deduing these formulas from Kontsevith's yli invariantonnetion form on metri polygons.
§1. Introdution0. After submitting this note we disovered that the main omputation inSes. 5, 6 is equivalent to the omputation in [13, Ses. 1, 2℄ of universalombinatorial ohains on the yli ategory from the universal yli on-netion form. Still, we have an aent on the geometry and ombinatorisof triangulations.1. A irle bundle T −→ E p
−→ B (see [2℄) is a prinipal �ber bundle witha ommutative Lie struture group T = R=Z ≈ U(1). There is a lassialhain of homotopy equivalenesBT ≈ BU(1) ≈ BO(2) ≈ CP∞ ≈ K(Z; 2): (1)Thus the isomorphism lasses of irle bundles over B are in a one-toone orrespondene with the lasses of omplex line bundles, lasses oforiented two-dimensional real linear vetor bundles, and elements of theKey words and phrases: irle bundle, Chern lass, loal formula.The main result of the paper (Theorem 4.1) was supported by the Russian SieneFoundation grant 14-21-00035. G. Sharygin was additionally supported by the RFBRgrant 14-01-00007. 201



202 N. MNEV, G. SHARYGINtwo-dimensional integer ohomology group H2(B;Z). The lass of a bun-dle 1(p) ∈ H2(B;Z) is alled its �rst Chern, or Chern{Euler, lass. Allharateristi lasses of p are powers h1 (p) ∈ H2h(B;Z).If the base B an be triangulated, then p an be triangulated over asubdivision of the given triangulation. It is not true that the base B analways be triangulated (see [23℄), but this happens in most interestingases. See [9, 30℄ for the general triangulation and bundle triangulationtheory. We are interested in the ombinatoris of triangulations in onne-tion with integer and rational loal ombinatorial formulas for the Chernlass and its powers. The triangulated bundle obtains a struture of anoriented PL bundle with �ber S1. The old folklore theoremPL(−→S )=U(1) ≈ ∗ (2)ompletes the sequene (1) by \B PL(−→S ) ≈ : : : ." Therefore, the ombi-natoris of a triangulation provides full information about harateristilasses.2. Our initial intention is to �nd some more hints for orret ombina-toris in the lassial problem of deteting loal ombinatorial formulasfor harateristi lasses ([6{8℄). It is well known that the problem faesmany troubles in a fruitful way. In partiular, the Chern{Simons theorywas a byprodut, as mentioned in the �rst lines of [28℄. The point of viewof on�guration spaes on the problem ([7,8℄) faes the algebro-geometriuniversality of moduli spaes of on�gurations in a way espeially interest-ing for the �rst author. The rational Euler [27℄ and Stiefel{Whitney [11℄lasses of the tangent bundle have a lear loal ombinatori nature (butin the latter ase, up to now there is only a not very enlightening proof).From the ombinatorial point of view, loal formulas are very interestingombinatorial funtions, universal oyles assoiated to elementary fami-lies of ell omplex reonstrutions; suh as hains of abstrat subdivisionsor hains of simple maps, abstrat mixed subdivisions (multi-simpliialomplexes), hains in the MaPhersonian, et.The line of simple examples, obviously, should ontain the Chern lassesof triangulated (or loally ombinatorially enoded in some other way)irle bundles. The setup for the ombinatoris of a irle bundle and anoutline of a onstrution for rational simpliial loal formulas were pre-sented by I. Gelfand and R. MaPherson in 14 lines around Proposition 2in [8, p. 306℄. There are deep formulas in the di�erential situation, whenthe bundle is enoded by the pattern of �berwise singularities of the Morse



ON LOCAL COMBINATORIAL FORMULAS 203funtion on the total spae [14, 17, 18℄. These formulas naturally onnetthe problem to a higher Franz{Reidemeister torsion [12℄ and yli ho-mology. The role of line bundles in the geometry of harateristi lassesand related mathematial physis is speial (see [1℄), so perhaps a reason-able idea is to understand the ase of irle bundles slightly better. Oneday, to our surprise, we disovered that anonially looking loal formu-las for all harateristi oyles of a triangulated irle bundle triviallypop out from assoiating to a triangulated irle bundle Kontsevih's on-netion [19, p. 8℄ on metri polygons. The answer is expressed throughmathematial expetations of the parities of neklaes assoiated with thetriangulation. Below we will present this \parity loal formulas" and asketh of a onstrution.3. Plan. In Se. 2, we introdue an abstrat simpliial irle bundle (s..bundle) and desribe the Gelfand{MaPherson setup for simpliial loalformulas in the ase of irle bundles. In Se. 3, we assoiate to a s.. bun-dle a yli diagram of words on the base. In Se. 4, we present a rationalparity formula for all powers of the �rst Chern lass and formulate themain Theorem 4.1. In Se. 5, on a geometri realization of a s.. bundle,we introdue a anonial metri gp of \geometri proportions." With thisspeial metri gp, the bundle beomes a pieewise di�erential prinipal ir-le bundle. It has gauge transition transformations desribed by funtionsenoded by matries of words as linear operators (analogs of permutationmatries). The irle bundle anonially appears as the pullbak of a for-mal universal irle bundle over Connes' yli simplex by a very speiallassifying map. The lassifying map is desribed by the same matries ofwords. In Se. 6, we desribe Kontsevih's onnetion form on metri poly-gons as a universal yli invariant onnetion on a universal irle bundleover Connes' yli osimplex. The pullbak of the onnetion is a PDonnetion on the geometri realization of the s.. bundle with the metrigp. We ompute the pullbaks of universal yli harateristi forms usingmatrix maps and, using Okuda's sum of minors PfaÆan identity, obtainrational parity oeÆients. In Se. 7, we assemble the proof of Theorem4.1. In Se. 8, we omment on omissions and possible outputs.4. The �rst author is deeply grateful to Peter Zograf for pointing to Kontse-vih's onnetion form. The authors thank for hospitality the OberwolfahMathematial Institute and IHES, where they had an opportunity to worktogether.



204 N. MNEV, G. SHARYGIN
§2. Loal simpliial formulas for irle bundles5. Triangulation of a irle bundle. If a map of �nite abstrat simpli-ial omplexes E

p
−→ B triangulates a irle bundle p, then we an supposethat the geometri realization |B| is B and the triangulation is the set ofdata (p; p; h):
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B |B| |B|; (3)where |E| h
−→ E is a �berwise homeomorphism ommuting with |p| and p.The map |p| is a PL �ber bundle. From the point of view of p, the trian-gulation homeomorphism h is equivalent to introduing on the PL bundle

|p| with �ber S1 an orientation and a ontinuous metri suh that forany x ∈ |B| the �ber over x, the oriented PL irle |p|−1(x), has perime-ter equal to one. On the other hand, the triangulation homeomorphism hprovides p with a PL struture related to a very speial system of loalsetions. We suppose that the simpliial omplex B is loally ordered, i.e.,its simplies have total orders on the verties and the fae maps are mono-tone injetions. That is to say, B is a �nite semi-simplial set with theextra property that eah simplex is determined by its verties. A loalorder makes simpliial hain and ohain omplexes available.The simpliial bundle p in (3) an be assembled as a olimit from sub-bundles over base ordered simplies using simpliial fae transition maps.The disassembly on bundles over simplies ommutes with the geometrirealization. Therefore, a subbundle of p over a simplex triangulates theirle bundle over the geometri simplex, whih is a trivial bundle. Anorientation of a trivial irle bundle selets a preferred generator in the1-homology of the total spae. Hene subbundles of p over simplies areequipped with an orientation lass in simpliial homology in suh a waythat boundary transition maps of subbundles send a generator to a gener-ator. This assembles to a onstant �ber orientation loal system on B.6. Basi simpliial notations. We denote by ��� the ategory of �niteordinals [0℄; [1℄ : : : . Nonstritly monotone maps between them are alledoperators, injetions are alled fae operators, surjetions are alled de-generay operators. We denote by ��� the subategory of ��� having the fae



ON LOCAL COMBINATORIAL FORMULAS 205operators only. The ategory of �nite ordinals an be presented by gen-erators and relations. The standard generators of ��� are the elementaryboundary operators [k − 1℄ Æj
−→ [k℄, j = 0; : : : ; k, where Æj is the monotoneinjetion omitting the element j in the image; and the elemetary degen-eray operators [k + 1℄ �j

−→ [k℄, j = 0; : : : ; k, where �j is the monotonesurjetion sending the elements j, j +1 in the domain to the element j inthe odomain. The ategory ��� is generated only by the boundaries. Wedenote by 〈k〉 an ordered ombinatorial simplex: the simpliial omplexformed by all subsets of [k℄. For an operator [m℄ �
−→ [k℄, we denote by

〈m〉 〈�〉
−−→ 〈k〉 the indued simpliial map of ombinatorial simplies. Thestandard geometri k-simplex with ordered verties is denoted by �k. Thegeometri realization of 〈�〉 is the map �m |�|

−−→ �k given in baryentrioordinates as follows:
|�i|(t0; : : : ; tm) = 



0 if i 6∈ im�;
∑j∈�−1(i) tj if i ∈ im� for i = 0; : : : ; k.7. Simpliial irle bundles. By an elementary simpliial irle bundle(elementary s.. bundle) we will mean a map R

e
−→ 〈k〉 of a simpliial om-plex R onto an ordered simplex 〈k〉 whose geometri realization |e| is atrivial PL �ber bundle over a geometri simplex with �ber S1, equippedwith a �xed orientation 1-dimensional homology lass of R. Here is a pi-ture of an elementary s.. bundle (Fig. 1). We de�ne the boundary mapÆ∗e Æ∗e−−→ e of elementary s.. bundles over the simpliial boundary [m℄ Æ

−→ [k℄to be the pullbak diagram Æ∗R Æ∗e
//Æ∗e

��

R

e

��

〈m〉 〈Æ〉
// 〈k〉:We suppose that Æ∗e sends the orientation lass of Æ∗R to the orientationlass of R. Let B be a loally ordered �nite simpliial omplex. A sim-pliial irle bundle (s.. bundle) E

p
−→ B is a map p of �nite simpliialomplexes that has a geometri PL �ber bundle with �ber S1 as its geo-metri realization and is equipped with a �xed onstant loal system thatgives a �ber orientation on elementary subbundles.



206 N. MNEV, G. SHARYGIN

Fig. 1. An elementary simpliial irle bundle.Simpliial irle bundles always triangulate some prinipal irle bun-dles. To build a irle bundle triangulated by p, it is suÆient to hoosea ontinuous metri on the geometri realization |E| suh that all �bersof |p| are irles with unit perimeter. Transition maps beome orientation-preserving isometries, and hene they will be T-transition maps. One pos-sible hoie of suh a metri is to normalize �berwise the standard atmetri on the simplies in |E|. Taking in onsideration the simple fat (2),we see that all irle bundles triangulated by p are isomorphi.8. The Gelfand{MaPherson rational simpliial loal formulas.Denote by R(−→S ) the semi-simpliial set of isomorphism lasses of allelementary simpliial irle bundles. Elements of Rk(−→S ) are ombinato-rial isomorphism lasses of elementary s.. bundles over the k-dimensionaloriented ombinatorial simplex. The boundary map is generated by theelementary s.. bundle boundary over the base simplex boundary. Bound-aries are well de�ned, sending isomorphism lasses to isomorphism lasses.The supersript \" stands for the fat that we are onsidering triangu-lations by lassial simpliial omplexes. With the bundle p, a map ofsemi-simpliial sets B
Gp

−−→ R(−→S ) is assoiated, sending the base simplex



ON LOCAL COMBINATORIAL FORMULAS 207U ∈ B to the ombinatorial isomorphism lass of the elementary subbun-dle pU over that simplex. The map Gp forgets a part of the informationabout the bundle. Sine an elementary s.. bundle an have nontrivial au-tomorphisms, one annot reover all boundary transition funtions from
Gp, and hene generally one annot reover from Gp the entire bundle pup to isomorphism.A rational simpliial loal formula for the Chern lass Ch1 is a 2h-oyleon R(−→S ) represented as a rational ombinatorial funtion of elementarybundles over the 2h-simplex suh that the pullbak of this oyle underthe map B

Gp

−−→ R(−→S ) is a rational simpliial 2h-Chern oyle of p. Toput it simple, the value of the oyle on the ordered simplex U2h of Bshould be an automorphism invariant C2h1 (pu) ∈ Q of the subbundle pUover that simplex.Due to the above-mentioned forgetful nature of Gp, it is not obvious thatsuh universal oyles exist; however, rational universal oyles do indeedexist by Proposition 2 of [8℄: it is speulated there that the transgressionof a rational �ber oorientation lass in the Serre spetral sequene ofa s.. bundle an be expressed as a loal rational formula involving theombinatorial Laplaian. The result was never alulated, but learly itends up in a slightly more ompliated automorphism invariant funtion ofthe assoiated 3-neklae for the �rst Chern lass than our rational parity.Loal formulas for powers an always be expressed automatially by usingthe �Ceh{Whitney formula for the up produt on simpliial ohains.This will result in ertain not very transparent, but purely ombinatorialonrete rational funtions GMC2h1 (e) of elementary s.. bundles.
§3. Simpliial irle bundles and yli words3.1. Half of Connes' yli ategory. Connes' yli ategory ���C(see [21, Chap. 6.1℄) has �nite ordinals as objets, and morphisms aregenerated by all operators from ��� and all yli permutations of �niteordinals. By this de�nition, ���C ontains ��� as a subategory. For the yliategory, we use new notation for the standard simpliial generators, sinewe will need a two-parameter yli-simpliial strutures on words. Thesimpliial generators are[n− 1℄ �n−1j

++ [n℄snill ; j = 0; : : : ; n; i = 0; : : : ; n− 1: (4)



208 N. MNEV, G. SHARYGINBesides the simpliial generators, ���C has the generator [n℄ �n−→ [n℄ atingon [n℄ aording to the rule �n(i) = (i − 1) mod (n + 1), i.e., as the per-mutation whih is the left yli shift by one; � jn(i) = (i− j) mod (n+ 1).In ���C there is an \extra degeneray," the surjetion [n℄ snn−→ [n− 1℄, whihdoes not exist in ��� but exists in ���C. It is de�ned as snn = sn0 �−1n .9. Duality. There are two subategories in ���C. One is ���C, the subate-gory generated by all boundaries �ni and yli shifts �n. Another ategory���C is generated by all standard monotone degeneraies sni , the extra de-generay snn, and �n.The ategory ���C is self-dual, i.e., there is a ategorial isomorphism���C •op
−−→���Cop. Sine ���C has automorphisms, a duality involution is notunique. With the extra degeneray, a duality an be presented on thegenerators as follows: for i ∈ [k℄ and [k − 1℄ �k−1i−−−→ [k℄, the dual map is�opi = ([k℄ ski−→ [k − 1℄); �opk = �−1k :The duality interhanges ���C and ���C.10. The duality has a remarkable graphial interpretation in terms of theylinder of a \simple map" of oriented graphs, oriented yles (it an be aloop) having a vertex �xed.A map of oriented graphs is a map sending verties to verties and arsto verties or ars in suh a way that an inident vertex and ar pair goeseither to the same vertex or to an inident vertex and ar pair. Orientedgraphs an be identi�ed with 1-dimensional semi-simpliial sets, and mapsof graphs, with singular maps of semi-simpliial sets. A graph g having ageometri realization |g|, a map of graphs g0 f

−→ g also obtains a geometrirealization |g0| |f |
−−→ |g|, and we an onsider the ylinder Cyl (|f |) −→ [0; 1℄of this map. The ylinder has a natural struture of a 2-dimensional ellomplex omposed of solid triangles and quadrangles and having a ellularprojetion to the interval [0; 1℄. A map f is alled simple [31℄ if for anypoint u ∈ |g| the preimage |f |−1u ⊆ |g0| is ontratible. Let both graphsg0; g1 be oriented yles. In this ase, a map is simple if the preimageof every vertex is an embedded interval, or, dually, any ar has a singlepreimage. The fundamental observation is that a map is simple if and onlyif the projetion Cyl (f) −→ [0; 1℄ is a trivial PL −→S -�ber bundle. In largegenerality, this is Cohen's theory of the ylinder of a PL map [3℄. Let ushave a �xed vertex s0 on the oriented yle g0. Then the orientation reates
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Fig. 2.a linear order on the verties and ars of g0; g. We suppose that in thisorder s0; f(s0) are minimal. Also we suppose that the position of an ar inthis order is equal to the position of its tail. In terms of the orders, a map fis simple if and only if f is a ���C-morphism f on ordered verties. If thisis the ase, then the dual ���C-morphism fop is a monotone injetion onordered ars sending an ar to its unique preimage. In Fig. 2 we depitedthis duality on the one for the generators and for the general ase.For a boundary ([k℄ �
−→ [m℄) ∈ Mor���C, the general formula for the dualyli degeneray ([m℄ �op
−−→ [k℄) ∈Mor���C is as follows:�op(i) = {0 if �(j) < i for every j;min�(j)>i j if there exists j suh that �(j) > i: (5)It an be omputed graphially using the ylinder of a simple map orindutively on the generators.11. Cyli-mono fatorization. Any morphism [k℄ %

−→ [m℄ in ���C hasa unique fatorization into a yli permutation followed by a monotone���-operator. The same is true for ���C and ���C. This is Connes' theorem([21, Theorem 6.1.3℄). We will �x a simpli�ed formula for this deomposi-tion for the ase of ���C.



210 N. MNEV, G. SHARYGINLemma 3.1. For any boundary map [k℄ �
−→ [m℄ and a yli permutation[m℄ � im−−→ [m℄ there are a unique boundary [k℄ (� im)∗�

−−−−→ [m℄ and a ylipermutation [k℄ �∗� im−−−→ [k℄ suh that the following diagram is ommutative:[k℄�∗� im
��

� // [m℄� im
��[k℄ (� im)∗� // [m℄:The following formula holds:�∗� im = ��op(i)k ; (6)where �op is de�ned in (5).Proof. This is a part of Connes' theorem, and it an be proved by a partof Connes' proof, whih in our ase is the onsideration of the irularmapping ylinder of the map �op with a �xed setion, whih we disussedearlier. The map � im ats by hanging the zero setion of the ylinder. �3.2. Simpliial irle bundles and yli diagrams of words on thebase. To a simpliial irle bundle de�ned in p. 7 with �xed ombinatorialsetions S0 over simplies of the base, we assoiate a yli diagram ofwords on the base.12. Words and neklaes. A word of length n+1 in an ordered alphabetwith k + 1 elements, k 6 n, is any surjetive map [n℄ w

−→ [k℄ (it is notrequired to be monotone). The yli group Z=(n + 1)Z ats by ylipermutations on [n℄. We an extend this yli ation to words: just put�nw(i) = w(�n(i)). The orbit of a word under the yli permutations isalled a \irular permutation," or an \oriented neklae" with n+1 beadsolored by [k℄. We regard a yli shift of a word as a morphism betweenwords: [n℄ � in //(� in)∗w   A
AA

AA
AA

A
[n℄w
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}}[k℄: (7)



ON LOCAL COMBINATORIAL FORMULAS 211If we have a word w and a boundary operator, i.e., a monotone injetion[k0℄ Æ
−→ [k℄, then the unique pullbak is de�ned by[n0℄Æ∗w

��

�Æ // [n℄w
��[k0℄ Æ // [k℄; (8)where �Æ is the boundary operator on �nite ordinals indued by the bound-ary Æ on the odomain of words. To say it di�erently, Æ∗w is the wordobtained from w by deleting all letters not in the image of Æ, and �Æ is theembedding of Æ∗w into w as a subword.We de�ne the yli ategory of words CW with words as objets andmorphisms being yli morphisms of words, i.e., ���C-morphisms of wordsgenerated by yli shifts (7) and boundaries (8) (that is, w 7→ Æ∗w) overboundaries on the alphabet. The ategory CW has two projetion funtors���C Dom

←−−− CW
Codom
−−−−→���;the \domain" projetion to ���C and the \odomain" projetion to ���.The odomain projetion makes CW a ategory �bered in ommutativegroupoids over ���. As in the ategory ���C, any yli morphism of wordshas a unique deomposition into a yli shift followed by a boundary.13. Words as matries. Words have assoiated matries, and we mayregard these matries as linear operators. This is our key trik.Let L(w) be the [n℄× [k℄ matrix

L
ji (w) = {1 if w(i) = j;0 if w(i) 6= j. (9)Put mj = #w−1(j), the number of times the letter j ∈ [k℄ appears inthe word w. The following is the de�nition of the matrix of a word wnormalized by olumns:

L
ji (w) = { 1mj if w(i) = j,0 if w(i) 6= j. (10)The sums of elements in olumns of L are all equal to 1, di�erent olumnsof L and L are orthogonal. A yli shift (� in)∗ of words goes to a ylipermutation of rows of matries, a boundary operation Æ∗ on words or-responds to the deletion of olumns in matries with numbers not in the



212 N. MNEV, G. SHARYGINimage of Æ followed by the deletion of the zero rows in what remains. Theopposite insertion of a matrix as a submatrix with adding zero rows isdesribed by �Æ .

Fig. 3.14. The geometri �ber of an elementary s.. bundle; 0- and1-setions; order out of orientation. Let R
e
−→ 〈k〉 be an elemen-tary s.. bundle over an ordered abstrat k-simplex with k + 1 verties,

|R|
|e|
−→ �k be its geometri realization, whih is, by de�nition, an orientedtrivial PL S1-bundle over �k. Geometri simplies of |R| that projet epi-morphially onto �k an have dimensions only k and k + 1. Let us allsuh a k-simplex a 0-setion of |e|, and a (k+1)-simplex, a 1-setion of |e|.



ON LOCAL COMBINATORIAL FORMULAS 213There are orresponding ombinatorial 0- and 1-setions, simplies in ethat projet epimorphially onto 〈k〉.Take the geometri �ber Ft of |e| over an interior point t ∈ int�k.The �ber Ft is a broken PL irle. Eah ar L of Ft is the intersetionof the �ber with some (k + 1)-simplex, a 1-setion A(L) of |e|. The endverties of the ar L are intersetions with geometri 0-setions, two faesof A(L). The broken irle Ft has the same number of ars and verties;let this number be equal to n+ 1. This means that there are n+ 1 0- and1-setions of |e| and e. Fix some 0-setion, denote it by S0, and denoteby S0(t) the orresponding vertex in Ft. The orientation of the bundles
e, |e| reates an orientation of the irle Ft. Therefore, all ars L obtainheads and tails, eah vertex of Ft obtains its input and output ars. Thisgenerates a linear order on the verties of Ft depending on the hoie ofthe �xed vertex S0(t). In this order, on any ar its tail preedes its head,and S0(t) is the minimal vertex. The order on verties reates a linearorder on the ars in whih an ar obtains the number of its tail. Therefore,on Ft we obtain n+ 1 ordered verties S0(t); : : : ; Sn(t) and n+ 1 orderedintervals L0(t); : : : ; Ln(t);Li(t) = [Si(t); Si+1 mod (n+1)(t)℄; i = 0; : : : ; n:Therefore, the 1-setion A(Li) also obtains the number i in the order, andwe put Ai = A(Li).15. The word assoiated to an elementary s.. bundle with a �xedsetion. Every 1-setion Ai of |e| is the domain simplex of a subbundleof the type �k+1 |�j |

−−→ �k whih is the geometri realization of an ele-mentary simpliial degeneray �j of ordered simplies 〈k + 1〉 〈�j〉
−−−→ 〈k〉,orresponding to an elementary degeneray operator [k + 1℄ �j
−→ [k℄ (seep. 6). The simpliial map |�j | (Fig. 4) shrinks the edge of Ai = �k+1 withverties vj ; vj+1 to the single vertex j of the base �k. Here j is a funtionof Ai and, therefore, a funtion of the number i. We denote this funtionby j = W(e; S0)(i). The funtion W(e; S0) is surjetive and independent oft ∈ int�k; therefore, it is a word (see p. 12) assoiated to the elementarys.. bundle e with the �xed 0-setion S0.16. Changing the setion of an elementary s.. bundle vs. a ylishift of a word, the assoiated neklae. Let us have, besides the0-setion S0, another 0-setion S0′ of e. The 0-setion S0′ orresponds toa vertex of Ft having the number {(S0; S0′) in the vertex order determined



214 N. MNEV, G. SHARYGINby the orientation and the setion S0. Then the word W(e; S0′) is obtainedfrom W(e; S0) by the yli shift � {(S0;S0′)n W(e; S0) = W(e; S0′).Thus the elementary s.. bundle e obtains the assoiated oriented nek-lae N(e) in the sense of p. 12 as the orbit of the words W(e; S0) underthe yli shifts.17. The boundary of an elementary s.. bundle with a setion vs.the boundary of a word. Take a fae of the base simplex 〈k−1〉 〈Æj〉
−−→ 〈k〉and onsider the orresponding boundary Æ∗j e (Æj)∗

−−−→ e of the elementarys.. bundle over that fae. If a 0-setion S0 is �xed for e, then Æ∗i e has theindued 0-setion Æ∗i S0. So we have a morphism (Æ∗j e; Æ∗jS0) (Æj)∗
−−−→ (e; S0).We are interested in the relation between W = W(e; S0) and W(Æ∗j e; Æ∗jS0).All 1-setions B of Æ∗i e are faes of 1-setions Ai of e suh that W(i) 6= j.For every 1-setion B of Æ∗j e there is a unique 1-setion �ÆjB of esuh that B is a fae of �ÆjB and this map is monotone with respet tothe indued order orresponding to the indued setion Æ∗i S0. This state-ment is orret but requires some simpliial work. One should use the1-dimensional version of Cohen's theorem on the ylinder of a simple mapfor PL manifolds mentioned in p. 10.Combining the previous observations, we onlude that the word

W(Æ∗j e; Æ∗jS0) ≡ Æ∗W(e; S0)and the indued map on 1-setions �Æi is the domain boundary operator (8)of words indued by the odomain boundary Æi.18. The yli diagram of words assoiated to a s.. bundle with�xed setions on elementary subbundles. We denote by ∫��� B theategory of simplies of a loally ordered simpliial �nite omplex B. Theobjets are simplies, and the only morphism between an m-simplex Umand a k-simplex Uk is the fae map Um Æ
−→ V k orresponding to the faeoperator [m℄ Æ

−→ [k℄. This ategory has the anonial funtor ∫��� B −→ ���making it a ategory �bered in �nite sets.Let us have a s.. bundle E
p
−→ B over B. Let any elementary s..subbundle pU over a simplex U ∈ B have a �xed individual 0-setionSU0 . We denote this system of 0-setions by S0; so we �x the pair (p;S0).Combining the onstrutions of pp. 15, 16, 17, we see that any boundary



ON LOCAL COMBINATORIAL FORMULAS 215U Æ
−→ V between simplies of B gives a yli morphism of words
W(p;S0)(U Æ

−→ V )= (W(pU ; SU0 ) � {(SU0 ;Æ∗SV0 )
−−−−−−−−→W(pU ; Æ∗SV0 ) �Æ−→W(pV ; SV0 )) : (11)These data, obviously, ommute with the omposition. Therefore, we ob-tain a funtor ∫��� B

W(p;S0)
−−−−−→ CW �bered over ���. We an imagine that thisfuntor is a oloring of the base simplies by words in the alphabet onsist-ing of the verties of the simplex, so that boundary morphisms on the basesimplies orrespond to yli morphisms of words in suh a way that thediagram is ommutative. Changing the 0-setions auses an equivalene offuntors, i.e., a system of yli permutations of words ommuting withall the struture morphisms. Thus the isomorphism lass of bundles goesto the equivalene lass of �bered funtors Funt(∫��� B; CW). The inversestatement is also true with important omments (p. 29), but we do notfully develop it here.

§4. Rational parities of words and loal formulas forpowers of Chern lasses4.1. The rational parity of a word and of an odd neklae. Con-sider a word [n℄ w
−→ [k℄. Call a \proper subword of w" any subword onsist-ing of k + 1 di�erent letters (thus, it is a setion of the map w). A propersubword de�nes a permutation of k + 1 elements, and this permutationhas a parity, even or odd. We de�ne the rational parity of w to be theexpetation of the parities of all its proper subwords. Namely, putP (w) = #(even proper subwords)−#(odd proper subwords)#(all proper subwords) :The parity of a permutation of an odd number of elements is invariantunder yli shifts of the permutation. Therefore, if k is even, then k + 1is odd, and in this situation P (w) is an invariant of the oriented nek-lae (p. 12). Words are ordered and have no nontrivial automorphisms.Neklaes an have remarkable groups of automorphisms, see [4℄. The par-ity of a proper subword survives an orientation-preserving automorphism.Therefore, if k + 1 is odd, then P (w) is an isomorphism invariant of theneklae de�ned by w.



216 N. MNEV, G. SHARYGINThe parity of a permutation oinides with the determinant of the ma-trix of the permutation. A similar interpretation exists for the rationalparity P (w). The rational parity of w is equal to the sum of the maximalminors of the normalized matrix of the word L de�ned in p. 13:P (w) = ∑06i0<i1<···<ik6n detL(i0;:::;ik)(w); (12)where L(i0;:::;ik)(w) denotes the square submatrix of L(w) with row num-bers i0; : : : ; ik.4.2. Loal formulas for powers of the Chern lass in terms of therational parities of odd neklaes. Rational simpliial loal formulasfor Chern lasses of irle bundles in the sense of p. 8 an be expressedthrough the rational parities of neklaes assoiated with elementary s..bundles (p. 16).Theorem 4.1. The rational funtionpCh1 (e) = (−1)h h!(2h)!P (N(e)) (13)of an elementary s.. bundle R
e
−→ 〈2h〉 over a 2h-simplex is a rationalsimpliial loal formula for the hth power of the �rst Chern lass of theirle bundle.Here the suÆx p stays for \parity."

§5. Geometri simpliial, irle, and yli bundles5.1. The metri of geometri proportions and the assoiated ir-le bundle.19. An elementary degeneray and geometri proportions. Let usintrodue the simplest possible metri on the geometri total omplex |R|of an elementary s.. bundle R
e
−→ 〈k〉 satisfying the properties desribedin p. 7. Here we essentially rely on the fats about geometri proportionsbetween elements of similar triangles from book VI of Eulid's Elements,where he presumably expliates the ahievements of the Pythagorean orAthens shool. Atually, geometri proportions is a geometri bakgroundof Milnor's geometri realization funtor. The fat is as follows (see Fig. 4for similar triangles).



ON LOCAL COMBINATORIAL FORMULAS 217Consider a standard geometri simpliial degenerayA = �k+1 |�j |
−−→ �k = B. It projets the edge �j of A withverties v′j ; v′j+1 to the vertex vj . Let us �x a at Eu-lidean metri � on the total simplex A in whih �j haspositive length aj ∈ R>0. Take a point with baryentrioordinates t = (t0; : : : ; tk) ∈ B and onsider the inter-val Lj(t) = |�i|−1(t) ⊂ A, the �ber of the projetion |�j |.Then the length l�j (t) of the interval Lj(t) in the metri �is equal to aj · tj .The domain simplex A of the projetion |�j | obtains bundle oordinatesif we delare one of the two 0-setions in it (see Fig. 4) as the \bot-tom," or \tail," setion and the other one as the \top," or \head," se-tion, respetively. A point u ∈ A is given the bundle oordinates u =(xst(u); t0(u); : : : ; tk(0)), where t(u) are the baryentri oordinates of theprojetion to the base, xst(u) is the distane in the �ber interval Lj(t(u))from the tail point to u in the standard at metri st on the simplex,0 6 xst(u) 6 tj(u). If we hange the at metri by assigning to the edge �jthe length aj , then the oordinate xst(u) will hange linearly, to aj ·xst(u).20. The matrix of a word and the global bundle oordinates.Geometri proportions impart a geometri meaning to the matrix L(W),given by formula (9) in p. 13, of the word W = W(e; S0) onstruted inp. 15 for an elementary s.. bundle R

e
−→ 〈k〉 with �xed 0-setion S0. Bythe geometri proportion identities of p. 19,k

∑a=0L
ai ta = tW(i) = lsti (t); (14)where lsti (t) is the length of the interval Li(t) = |e|−1(t)∩Ai in the standardat metri on |R|. So, viewed as a linear operator, the matrix L transformsthe vetor of the baryentri oordinates of a point t in the base to thevetor of the lengths of the intersetions with 1-setions of the �ber over tordered by the bundle orientation:

L(t0; : : : ; tk) = (lst0 (t); : : : ; lstn (t)):The bundle spae |R| also obtains global bundle oordinates relativeto the hosen 0-setion S0. A point u lying in a 1-setion Ai is given thebundle oordinatesu = (xst
W(i)(u) + lst0 (t(u)) + · · ·+ lsti (t(u); t(u)):



218 N. MNEV, G. SHARYGIN

Fig. 4. The bundle �3 |�2|
−−→ �2.The ith (with respet to the orientation and the �xed setion S0) 0-setionSi beomes the graph of the funtion Si(t) = i−1
∑b=0 lstb (t).21. Cirle bundle oordinates. Let us normalize the standard at met-ri on |e|. Any elementary s.. subbundle of e over a vertex vj of the baseis a simpliial oriented irle Rj evj

−−→ 〈0〉, |Rj | ≈ S1. Let the irle Rjhave mj ars. We assign to any ar in |Rj | the length equal to 1mj . Thisindues a new at metri on all 1-setions Ai, sine the ollapsing edge ofAi belongs to |RW(i)|. So we obtain a new at metri \gp" on |R| (\gp"stands for \geometri proportions"). In the new metri gp, the vetor ofthe lengths of the intervals in the �ber over t ∈ �k is expressible using thenormalized matrix of the word L(W) (see (10) in p. 13). Namely,k
∑a=0L

ai ta = 1mW(i) tW(i) = lgpi (t): (15)
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L(t0 : : : tk) = (lgp0 (t); : : : ; lgpk (t)); (16)and we have the identityn
∑i=0 lgpi (t) = k

∑j=0 mjmj tj ≡ 1:These observations show that L is a linear operator�k L
−→ �n: (17)We have normalized the metri on |R| in suh a way that all �ber irlesobtain unit lengths and fae maps are isometries.Now any point u in |R|, lying in the ith 1-setion Ai of |R|, obtains thetrivial T-irle bundle oordinates

T
gpS0(u) = ( exp( 1mW(i)xstW(i)(u) + Ssti (t))|t) ∈ T×�k :Let TTT k be a trivial irle bundle T×�k −→ �k. The map T

gpS0 is a bundlehomeomorphism
|(e; S0)| T

gpS0−−→ (TTT k; 0);sending S0 to a 0-setion and Si to the graph of the T-valued funtionexp(Sgpi (t))on �k, where Sgpi (t) = i
∑a=0 lgpa (t): (18)Thus, introduing the metri of geometri proportions on the bundle |e|with �xed 0-setion S0 produed T-trivialization, ontrolled by the dataof the redued matrix of the word L(W(e; S0)).22. 0-Setions as T-transition funtions; the PD irle bundleTTT gp(W(p;S0)). Let us onsider a s.. bundle p with a system S0 of 0-setions over the simplies of the base, as in p. 18. Let us �x the lengthsof the edges of the irles E over the verties of B, as in p. 21; then thegeometri realizations of all elementary subbundles obtain the geometriproportions metri and T-trivialization relative to the �xed setions. Fora boundary Um Æ

−→ V k of the simplies in the base, the trivializations



220 N. MNEV, G. SHARYGINTTTm and TTT k are related by the T-gauge transformation determined by thehange of 0-setions (see Fig. 6) followed by the trivial fae embedding:

Fig. 5.
|(pU ; SU0 )| Æ∗ //

T
gpSU0

��

|(pV ; SV0 )|
T
gpSV0

��(TTTm; 0) TTT gp(U Æ
−→V )

// (TTT k; 0); (19)TTT gp(U Æ
−→ V )(z|t) = (z exp(−Sgp{(SU0 ;Æ∗SV0 )(t))||Æ|(t)):Here { was de�ned in p. 16. The transition transformation TTT gp(U Æ

−→ V )is determined by the yli morphism of words W(p;S0)(U Æ
−→ V ) (see(11) in p. 18). Generally, the diagram of trivial irle bundles and lin-ear boundary gauge transformations is a funtion of W(p;U0). The di-agram TTT gp(W(p;S0)) assembles to a PD irle bundle over |B|, and themap Tgp assembles to a triangulation |p| T

gp
−−→ TTT gp(W(p;S0)). Changingthe system of setions S0 −→ S′0 auses a global gauge transformation ofTTT gp(W(p;S0)) −→ TTT gp(W(p;S′0)).



ON LOCAL COMBINATORIAL FORMULAS 2215.2. The yli osimplex and the universal yli irle bundle.We equip the half of Connes' yli osimplex [21, Chap. 7.1.3℄ with a���C-diagram of trivial T-bundles TTTC having yli linear transition maps.The diagram TTTC itself does not admit a olimit that assembles to any sortof �ber bundle, but still we an use it as a universal objet for the �berbundles TTT gp(p;S0).23. The irle bundle over the half of the yli osimplex. Let��� △
−→ Top be a anonial semi-osimplex with baryentri oordinates.Below we will slightly hange the notation for boundary operators andoordinates on it and denote

△([n℄) = �n = {l0; : : : ; ln|∑ li = 1} ⊂ Rn+1;
△(�i) = |�i|(l0; : : : ; ln−1) = (l0; : : : ; li−1; 0; li; : : : ; ln−1):The yli group Z=(n+1)Z ats by yli permutations of [n℄, the standardgenerator �n being represented by the left shift by one:�n(i) = i− 1 mod (n+ 1):A yli semi-osimplex is a funtor ���C �C

−−→ Top; it is an extensionof △ whih inorporates the yli shifts of baryentri oordinates. For[n℄ � in−→ [n℄, the map △C(� in) = (�n |�jn|−−→ �n) is de�ned by the standardoordinate representation of Z=(n+ 1)Z in Rn+1:
|� jn|(l0; : : : ; ln) = (l�jn(0); : : : ; l�jn(n)) = (ln+1−j : : : ; ln; l0 : : : ln−j):Consider the following family of linear funtions:�n Sni−−→ [0; 1℄; i = 0; : : : ; n; Sni = i−1

∑a=0 la:Then the family exp(Sni (l)); i = 0; : : : ; n;of T-valued funtions on simplies an be viewed as a family of setionsof the trivial irle bundle TTTn = (T ×�)n −→ �n over �n. Geometrially,the setions exp(Sni (l)), i = 0; : : : ; n, at a point l = (l0; : : : ; ln) ∈ �n de-ompose the �ber over eah point, whih is a irle T of unit perimeterwith a �xed zero point, into intervals Li(l) of lengths li, i.e., the intervalsLi(l) = [exp(Sni (l)); exp(Sni+1(l))℄ ⊆ T. This objet an be regarded asKontsevih's [19℄ oriented metri n-polygon mp(l) (Fig. 6) of unit perime-ter with �xed zero vertex.
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Fig. 6. The bundle map TTTC(�23 ).Consider the diagram TTTC of trivial T-bundles and nontrivial gaugetransformations over a yli semi-osimplex △C. For [n− 1℄ �i−→ [t℄, putTTTn−1 TTTC(�i)
−−−−→ TTTn : TTTC(�i)(z|l) = (z||�i|(l)): (20)For [n℄ � in−→ [n℄, putTTTn TTTC(� in)−−−−−→ TTTn : TTTC(� in)(z|l) = (z · exp(−Sni (l))||� in|(l)) : (21)One an imagine the bundle maps TTTC(� in) being onstruted as follows:�rst we rotate the �ber of TTTn over l ∈ �n by the angle exp(−Sni (l)), send-ing exp(Sni (l)) to the zero setion, after whih we make the yli permu-tation |� in| of oordinates in the base, ausing a proper yli renumberingof the intervals and setions in the �ber (see Fig. 6).The diagram TTTC is a orret ���C-diagram of trivial T-bundles over sim-plies and gauge transformations over the yli semi-osimplex △C. Thisfat an be proved by heking the omposition law vs. yli identities.24. The irle bundle TTT gp(W(p;S0)) is the pullbak of the univer-sal bundle TTTC by a map omposed from the matries of words

L(: : : ). The irle bundle TTT gp(W(p;S0)) was de�ned in p. 22, its linear
T-transition maps are given by (19), using a boundary hange of 0-setionsin the geometri proportions metri. What remains of the geometri on-strutions now, is just to observe that the bundle TTT gp(W(p;S0)) an be



ON LOCAL COMBINATORIAL FORMULAS 223anonially regarded as a pullbak of the universal yli bundle TTTC sothat the linear operators of the normalized matries of the words L(: : : )ompose into the lassifying map LW(p;S0)).Let us make a few simple observations on linear operators that omefrom the redued matries of words. Consider a boundary morphism anda yli shift of words:[n0℄w0
��

�Æ // [n℄w
��[k0℄ Æ // [k℄; [n℄ � in //w0

  A
AA

AA
AA

A
[n℄w

~~}}
}}

}}
}}[k℄:Then the following diagrams of linear maps in baryentri oordinates areommutative: �n0 |�Æ |

// �n�k0L(w0) OO
|Æ|

// �k;L(w)OO �n |� in| // �n�k :L(w0)bbDDDDDDDD L(w)<<zzzzzzzz (22)These diagrams indue pullbak diagrams of boundary gauge transforma-tions: TTTn0 TTTC(�Æ)
// TTTnTTT k0L∗(w0) OO TTT Æ // TTT k;L∗(w)OO TTTn TTTC(� in) // TTTnTTT kL∗(w0) OO TTT gp(� in) // TTT k:L∗(w)OO (23)Assume that we are given a oloring of the loally ordered simpliial om-plex B by yli diagrams of words ∫��� B

W
−→ CW (see p. 18). We havetwo funtors ∫��� B

△W;△B
−−−−−−→ Top:

△W = (∫ ���
B

W
−→ CW

Dom
−−−→���C △C

−−→ Top) ;
△B = (∫ ���

B −→��� △
−→ Top) :



224 N. MNEV, G. SHARYGINThe diagrams (22) are the data of the natural transformation△B
L
−→ △W,and the diagrams (23) are the data of the pullbak TTTW

L∗−−→ TTTC of thebundle diagram TTTC to the PD irle bundle TTTW on |B|, de�ned by thetransition funtions enoded in W. Therefore, starting from W(p;S0) weobtain the irle bundle TTT gp(W(p;S0)) as a pullbak of TTTC de�ned by thenormalized matries of the words orresponding to elementary subbundleswith �xed 0-setions.
§6. Some linear algebra6.1. Universal yli invariant harateristi forms. We wish to�nd a PD onnetion form on TTTC. Observe that, stritly speaking, thebundle TTTC over a yli semi-osimplex△C is not a bundle, but a diagramof trivial T-bundles over simplies and transition gauge transformations.So the natural de�nition for a PD onnetion form on TTTC is a family ofonnetions n ∈ 
1TTTn, n = 0; 1; : : : , suh thatTTTC(� in)∗n = n; i = 0; : : : ; n;TTTC(�)∗n = m for every ([m℄ �

−→ [n℄):One may all suh a onnetion a \yli invariant onnetion." This prop-erty holds, for instane, for the onnetion form \�" on metri polygons,see [19, p. 8℄, whih we slightly reompile. If now n is a yli invariantonnetion, then any power of its urvature form !h = ∧hdn should be aPD yli invariant form on △C.Lemma 6.1. The family of onnetion forms �n ∈ 
1TTTn de�ned in loaloordinates (x; l0; : : : ; ln) on TTT k = T×�k by the expression�n = −dx− ∑06i<j6n lidlj (24)is a universal yli invariant. Its urvature form has the expressiond�n = !n = − ∑06i<j6n dli ∧ dlj ∈ 
2�n: (25)The power of the urvature form has the expression!hn = (−1)hh! ∑06i1<i2<···<i2h6n dli1 ∧ dli2 · · · ∧ dli2h ∈ 
2h�n: (26)



ON LOCAL COMBINATORIAL FORMULAS 225Proof. The form �n is a Bott-style onstruted universal form. The groupof bundle automorphisms TTTnC(Z=(n+1)Z) of TTTn ats on onnetion formslying in 
1TTTn, and we wish to �nd a onnetion invariant under this ation.We may try to onstrut an invariant onvex ombination of elements of theorbit of the Maurer{Cartan horizontal onnetion −dx: for i = 1; : : : ; n+1,put TTTC(� in)∗(−dx) = −dx−dlk−i+1−· · ·−dln, and take a smooth onvexombination of onnetions in the orbit:+ ln × (−dx)ln−1 × (−dx− dln)ln−2 × (−dx− dln−1 − dln): : : : : : : : :l0 × (−dx− dl1 − · · · − dln)
−dx− ∑06i<j6n lidlj : (27)The sum is the onnetion form �n = −dx− ∑06i<j6n lidlj .The fat that TTTC(�)∗�n = �m for any boundary m �

−→ n follows fromthe de�nition of TTTC(�) in (z|l) oordinates (20). We now need to hekthat �n is yli-invariant: TTTC(� in)∗�n = �n, see (21). It is suÆient toensure that this is true for the generator, i.e., that TTTC(�n)∗�n = �n. Wealulate:TTTC(�n)∗�n = −dx− dln − ln(dl0 + · · ·+ dln−1)− ∑06i<j6n−1 lidlj ;�n = −dx− ∑06i<j6n−1 lidlj − (l0 + : : : ln−1)dln: (28)Taking into aount that the oordinates are baryentri and substitutingl0 = 1− l1 − · · · − ln in (28), we obtain equal expressions in both ases:TTTC(�n)∗�n = −dx− dln + lndln − ∑06i<j6n−1 lidlj ;�n = −dx− ∑06i<j6n−1 lidlj − dln + lndln: (29)The transgression of �n is the simpleti 2-form!n = d�n = − ∑06i<j6n dli ∧ dlj



226 N. MNEV, G. SHARYGINon the base, whih is a ���C-form, sine � is a TTTC-form; its pullbak tothe bundle is the urvature of �n (it is obvious that we an onsider itinstead of the urvature). The power of ! is obtained by a standard Grass-mann algebra alulation as the power of the Grassmann quadrati form,providing the fator (−1)hh!. �6.2. The sum of minors PfaÆan identity and the \matrix parity"rational funtion. LetX = X [n℄×[k℄ be an [n℄×[k℄ matrix of variables xij ,i ∈ [n℄, j ∈ [k℄. We suppose that n > k. Let [n+1k+1 ℄ be the set of all (k+1)-ele-ment subsets of [n℄. Let Da ∈ Z[X ℄ be the maximal minor of X with rowsnumbered by a ∈ [n+1k+1 ℄, regarded as a polynomial. Consider the polynomialsss = ∑a∈[nk ℄Da(X) ∈ Z[X ℄, the sum of all maximal minors. The polynomials an be expressed as the PfaÆan polynomial of an even skew-symmetrimatrix in the variables X . This is Okada's sum of minors PfaÆan identity[25, Theorem 3℄, [15℄. Assume that u ⊆ [k℄ and denote byXu the submatrixof the variables X formed by the olumns with numbers in u, and bysu ∈ Z[X ℄, the sum of the maximal minors polynomial for Xu.If k + 1 is odd, thens = Pf






0 s{0} s{1} s{2} · · · s{k}
−s{0} 0 s{0;1} s{0;2} · · · s{0;k}
−s{1} −s{0;1} 0 s{1;2} · · · s{1;k}
−s{2} −s{0;2} −s{1;2} 0 · · · s{2;k}

· · ·
−s{k} −s{0;k} −s{1;k} −s{2;k} · · · 0

















: (30)If k + 1 is even, thens = Pf




0 s{0;1} s{0;2} · · · s{0;k}
−s0;1 0 s{1;2} · · · s{1;k}
−s{0;2} −s{1;2} 0 · · · s{2;k}

· · ·
−s{0;k} −s{1;k} −s{2;k} · · · 0 











: (31)We will use the de�ning reursive identity for the PfaÆan of a skew-symmetri 2m× 2m matrix M :Pf(M) = 2m
∑j=2(−1)ja1;jPf(M1̂;ĵ); (32)



ON LOCAL COMBINATORIAL FORMULAS 227where M1̂;ĵ denotes the matrix M with both the 1st and the jth rows andolumns removed.Denote by Æ∗jX the (n + 1) × k matrix obtained by deleting the jtholumn fromX . Applying (32) to the right-hand side of (30), and replaingthe PfaÆans by the sums of minors from the left-hand side of (30), (31),we obtain the following identity if k + 1 is odd:s = k
∑i=0(−1)js{j}s(Æ∗jX)): (33)De�ne a rational funtion of a matrix, the \matrix rational parity fun-tion," by the formula P = sk

∏j=0 s{j}

: (34)Important properties of the matrix rational parity are given by the follow-ing lemma.Lemma 6.2.(a) If k + 1 is odd, then P (X) is invariant under yli permutations ofrows.(b) k
∑j=0(−1)jP (Æ∗jX) = {P (X) if k + 1 is odd,0 if k + 1 is even. (35)Proof. (a) The determinant of an odd-dimensional matrix is invariantunder yli permutations. Therefore, if k + 1 is odd, then the sum of themaximal minors of X is invariant under yli permutations of rows.(b) If k + 1 is odd, then we an take expression (33) and divide bothsides by k+1

∏i=0 sj , resulting in the required identity. If k + 1 is even, thenÆ∗jX has an odd number of olumns; hene, by the odd ase, we have theoyle ondition on the parity. �6.3. The pullbak of the univesal yli harateristi forms bya matrix map.



228 N. MNEV, G. SHARYGIN25. Let us have an [n℄× [2h℄ matrix A = {aji}, i ∈ 0; 1; : : : ; n, j ∈ 0; : : : ; 2h,of nonnegative reals. We suppose that n > 2h and n
∑i=0 aji = 1, j = 0; : : : ; 2h.Regard A as a linear map in baryentri oordinates �2h A

−→ �n, wheret0; : : : ; t2h are the baryentri oordinates on �2h and l0; : : : ; ln are oor-dinates on �n:t = (t0; : : : ; t2h) A
7→ (l0(t); : : : ln(t)); li(t) = a0i t0 + a1i t1 + · · ·+ a2hi t2h:We wish to ompute the pullbak A∗!h of the hth power of the urvature(or transgression) form (26) in the standard oordinates t0; t1; : : : ; t2h−1on �2h. Denote by s(A) the sum of the maximal minors of the matrix A.Lemma 6.3. A∗!hn = (−1)hh!s(A)dt0 ∧ dt1 ∧ · · · ∧ dt2h−1:Proof. We ompute the summands in the sum
∑06i1<i2<···<i2h6n dli1(t) ∧ dli2(t) · · · ∧ dli2h (t) (36)from (26) orresponding to all (2h)× (2h+1) submatries of A, and thenwe apply the identity of Lemma 6.2. To desribe a summand, we �rstassume that n = 2h− 1 and ompute dl0(t) ∧ dl2 · · · ∧ dl2h−1(t). Let Æ∗jA,j = 0; : : : ; 2h, be the square 2h × 2h matrix obtained from A by deletingthe jth olumn. We denote Æ∗j dt = dt0 ∧ dtj−1 ∧ dtj+1 ∧ · · · ∧ dt2h. Then,by the Grassmann algebra rules,dl0(t) ∧ dl2(t) · · · ∧ dl2h−1(t) = 2h

∑j=0 det(Æ∗jA)Æ∗j dt:Substituting t2h = 1− t0 − · · · − t2h−1 into the right-hand side, we obtaindl0(t) ∧ dl2(t) ∧ · · · ∧ dl2h−1(t)= (∑j (−1)j det(Æ∗jA)) dt0 ∧ · · · ∧ dt2h−1: (37)Now we assume that n > 2h and apply (37) to eah summand of (36).Finally, using Lemma 6.2 in the odd ase and keeping in mind the onditionthat the sums of elements in olumns of A are equal to 1 (and hene thedenominator in expression (34) for the matrix parity is equal to 1), weobtain the desired expression for A∗!hn. �
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§7. Proof of Theorem 4.1We hek that pC2h1 satis�es the de�nition of a rational simpliial loalformula from p. 8.26. First, we hek that pC2h1 is a rational simpliial 2h-oyle on R(−→S ).Let N be the semi-simpliial set of isomorphism lasses of neklaes. Then

Nk (see p. 12) is the set of isomorphism lasses of all �nite neklaes withbeads olored by [k℄. The boundary map �∗i is indued from the orre-sponding boundary on words, i.e., by deleting all beads with olor i. LetK•�(N;Q) be the rational simpliial ohain omplex of N. Then for a wordw ∈ CW2h (i.e., an \odd word," a word in the alphabet of 2h+1 letters),the rational parity P (w) is an invariant of the isomorphism lass of theoriented \odd neklae" de�ned as the yli orbit of w. Therefore, the ra-tional parity of odd neklaes is a funtion (N2h P 2h
−−→ Q) ∈ K2h� (N;Q). Therational ohain P 2h is a simpliial oyle, this follows from Lemma 6.2(even ase) applied to the matrix representation of the rational parityfuntion (12) and the matrix representation of the boundary of a word,see p. 13. Assoiating the neklae N(e) to an elementary s.. bundle e(see p. 16) sends the isomorphism lass of the bundle to the isomorphismlass of the neklae and the boundary to the boundary. Hene it de�nesa map of semi-simpliial sets R(−→S ) N

−→ N. So we get the pullbak 2h-o-yle P 2h(N(−)) ∈ K2h(R;Q). The 2h-hain pC2h1 (33) is proportional tothe oyle P 2h(N(−)); therefore, it is a rational simpliial 2h-oyle on
R(−→S ).27. We need to prove that for a s.. bundle R

p
−→ B the pullbak of pC2h1 bythe map Gp is a simpliial ohain on B representing 2h1 (p). For the �rstChern lass, the formula an be guessed and then heked on the Madahar{Shakaria triangulation of the Hopf bundle [24℄. For higher lasses, we anbe sure only that pC2h1 are some universal oyles. We are not sure aboutthe homotopy lass of N or R(−→S ), we have no good series of examples oftriangulated irle bundles to hek. The latter fat is related to the well-known problem of triangulating the omplex projetive spaes CPn. It isvery hard to triangulate CPn ( [29℄), it is muh harder to triangulate Hopfirle bundles over them. Also, it is di�uult to ompare the formulas withthe simpliial up produt of the �rst lass; this is related to well-knownproblems on formulas for the up produt.



230 N. MNEV, G. SHARYGIN28. What we an do now, is to use the Chern{Weil homomorphism forKontsevih's onnetion form � on metri polygons and then use de Rham'stheorem. To this end, we have disussed yli bundle geometry in Se. 5and linear algebra in Se. 6.(1) The pieewise di�erential Chern{Weil homomorphism for piee-wise di�erential prinipal bundles exists as a byprodut of theChern{Weil homomorphism for simpliial manifold prinipal bun-dles ( [5℄).(2) We hoose a system S0 of 0-setions of elementary s.. subbundlesof p, and obtain the yli diagram of words W(p;S0) on B (seep. 18).(3) We hoose the geometri proportions metri gp on |E|. The nor-malized matrix of a word L(W(R e
−→ 〈k〉; S0)) of an elementarybundle e with �xed ombinatorial setion S0 applied as a linearoperator to a point of the base simplex �k produes the vetor ofdistanes between the 0-setions of |R| in the metri gp orderedby the orientation (see p. 21). Changing the setion S0 results in ayli permutation of this vetor. This is a point of ommuniationbetween simpliial and yli geometry.(4) With W(p;S0) we assoiate the PD irle bundle Tgp(W(E;S0))on |B| de�ned as a diagram of trivial bundles over simplies andtransition gauge transformations de�ned by hanging ombinato-rial setions (see p. 22). The irle bundle Tgp(W(p;S0)) is anon-ially triangulated by |p|.(5) In p. 24 we obtained the bundle TTT gp(W(p;S0)) as a diagram pull-bak Tgp(W(p;S0)) L∗−−→ TTTCof the universal yli bundle diagram TTTC over the yli semi-o-simplex △C. The diagram morphism |B| ≈ △B

L(W(p;S0))
−−−−−−−→ △Con the simplex △(Uk) of the base is a linear operator�k L(W(pU ;SU0 ))−−−−−−−−−→ �n:Here pU is the elementary s.. subbundle of p over U and SU0 isits �xed setion, while n + 1 is the number of ombinatorial 0-setions of pU , the same as the total number of letters in the word

W(pU ; SU0 ).



ON LOCAL COMBINATORIAL FORMULAS 231(6) The yli invariane of Kontsevih's onnetion � on TTTC (Lem-ma 6.1) means that its indivdulal pullbaks�U = L(W(pU ; SU0 )∗� ∈ 
1(TTT gp(W(pU ; SU0 );Q)
≈ 
1(T×�k;Q); U ∈ B;are invariant under hanging the �xed setion SU0 and, therefore,under all transition gauge transformations. Hene the pullbaks�U , U ∈ B, assemble into a rational PD onnetion on the PD ir-le bundle TTT gp(W(p;S0)) invariant under all gauge tranformationsaused by hanging systems of setions S0. We an apply the PDChern{Weil homomorphism and dedue that the powers!hU = L(W(pU ; SU0 )∗!h ∈ 
2h(△U ;Q)of the urvature !U = d�U ∈ 
2(△U ;Q) assemble into a rationalPD form in 
2h(|B|;Q) representing the rational h-power of the�rst Chern lass2h1 (TTT gp(W(p;S0));Q) = 2h1 (p;Q) ∈ H2h(|B|;Q):(7) We an now apply the de Rham{Weyl{Dupont{Sullivan homotopybetween 
PD(|B|;Q) and K�(B;Q), obtaining the simpliial o-yles representing h(p;Q), by integrating the forms !hU over thebase simplies. This gives zero if the dimension of the base simplexis not equal to 2h. Thus we arrive at omputing the pullbaks ofthe universal yli harateristi form!h(W(e; S0)) = L(W(e; S0))∗!hnfor an elementary .s. bundle e over 2h-simplies having n + 10-setions and integrating them over the base simplies. The form!h(W(e; S0)) is invariant under hanging the base setion S0, there-fore, the resulting number is an invariant of the neklae N(e).The pullbak of the yli form !hn by the matrix map on �2h wasomputed in Lemma 6.3 of p. 25 using the sum of minors PfaÆanidentity. The result is!h(W(e; S0)) = (−1)hh!s(L(W(e; S0))dt0 ∧ · · · ∧ dt2h−1:Here s(L(W(e; S0)) is the sum of the maximal minors of the nor-malized matrix of an odd word. This number is equal to the ratio-nal parity of the neklae (12):s(L(W(e; S0)) = P (N(e)):



232 N. MNEV, G. SHARYGINThe fator h! appears from the power of the Grassmann quadratiform, and (−1)h omes from the hange of oordinates rule forthe universal yli onnetion. What remains is to integrate theonstant 2h-form over the 2h-simplex, whih adds the volume 12h!of the standard 2h simplex as a fator, and the promised loalsimpliial expression (13) for h1 (p;Q) as pCh1 (e) is ready.
§8. Notes29. Here we swept under the arpet an appropriate version of PL simpli-ial bundle theory. Although we need it only in an elementary form andin the one-dimensional ase, it still requires spae for the setup. Simpliialbundle theory is a parametri extension of the simple homotopy theoryof families of simple maps. It was presented in [31℄ and ommented on inthe letures [22℄. Simple maps pop up in the desription of the bound-ary of an elementary s.. bundle (see p. 17) and in the one-dimensionalase relate simpliial bundle ombinatoris to yli ategory, this is whatwe are atually investigating. In our ase, the adequate variant would besemi-simpliial, whih has not yet been �xed. A semi-simpliial bundle isa singular map of semi-simpliial sets (the same as a map of \n.d.. sim-pliial sets" of [26℄, or a \trisps map" of [20℄). The semi-simpliial irlebundles on a given base are in a one-to-one orrespondene with the ylideorations of the base by words.30. Modulo the hidden semi-simpliial setup, we an formulate a oupleof fats whih we hope to write out somewhere in future.Sine Chern lasses are integer lasses, the orresponding simpliialohains, represented by any rational loal formulas, should have integersimpliial periods, i.e., they are integrated to integer numbers over all in-teger 2h-simpliial yles in the base. When the base is some triangulationof an oriented losed surfae, this is a version of the ombinatorial Gauss{Bonnet theorem. This fat oupled with the simple expressions pC1(e) pro-vides some understanding whih bundles have or have not a triangulationover a partiular simpliial base:Let |B| be an oriented two-dimensional losed surfae tri-angulated by a lassial simpliial omplex B, and let theomplex B have F triangles. In this situation, F is alwayseven. Then the Chern number of a lassially triangulated



ON LOCAL COMBINATORIAL FORMULAS 233irle bundle over |B| having B as the base omplex be-longs to the integer interval [− 12F + 1; : : : ; 12F − 1℄.Moreover, the Chern numbers of semi-simpliially tri-angulated irle bundles over |B| having B as the baseomplex �ll the entire integer interval [− 12F; : : : ; 12F ℄. Inthis situation, B an be assumed to be a �nite semi-simpliial set, and |B| is a \�-omplex" in the sense of [10℄.The only onrete example of a triangulated irle bundle observable inthe literature is the triangulation of the Hopf bundle over the boundary ofthe tetrahedron ��3, onstruted in [24℄. The parity loal formulas allowone to dedue that the ited result is the best possible. From the abovestatement one may onlude that over ��3 one an triangulate only thetrivial bundle and the Hopf bundle using a map of lassial simpliial om-plexes. If one an use semi-simpliial triangulations, then over ��3 one anadditionally triangulate the irle bundle assoiated to the tangent bundleof the 2-sphere, and this is the omplete list of irle bundles allowing atriangulation over ��3. Classial triangulations are fundamental, but havetheir own additional degree of interesting arithmetial omplexity relativeto semi-simpliial triangulations, see [16℄. The semi-simpliial ategory isrelated to the lassial simpliial ategory by funtorial double normal (≈double baryentri) subdivision.There is a somewhat strange more general statement whih requires asa premise an integer ombinatorial formula for the �rst Chern lass:If a irle bundle p has a triangulation with a simpli-ial loally ordered base B, then 1(p) an be representedby a simpliial 2-oyle on B having values 0 and 1 on2-simplies. The inverse is true for semi-simpliial trian-gulations of irle bundles and not true for triangulationsby lassial simpliial omplexes.Referenes1. J.-L. Brylinski, Loop Spaes, Charateristi Classes and Geometri Quantiza-tion, reprint of the 1993 edition, Birkh�auser Basel, 2008.2. S. Chern, Cirle bundles. | In: J. Palis, M. do Carmo (eds.), Geometry andTopology, Leture Notes Math., Vol. 597, Springer, Berlin{Heidelberg, 1977,pp. 114{131.3. M. M. Cohen, Simpliial strutures and transverse ellularity. | Ann. Math.(2) 85 (1967), 218{245.
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