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ON LOCAL COMBINATORIAL FORMULAS FOR
CHERN CLASSES OF A TRIANGULATED CIRCLE
BUNDLE

ABSTRACT. A principal circle bundle over a PL polyhedron can be
triangulated and thus obtains combinatorics. The triangulation is
assembled from triangulated circle bundles over simplices. To every
triangulated circle bundle over a simplex we associate a necklace (in
the combinatorial sense). We express rational local formulas for all
powers of the first Chern class in terms of expectations of the parities
of the associated necklaces. This rational parity is a combinatorial
isomorphism invariant of a triangulated circle bundle over a simplex,
measuring the mixing by the triangulation of the circular graphs
over vertices of the simplex. The goal of this note is to sketch the
logic of deducing these formulas from Kontsevitch’s cyclic invariant
connection form on metric polygons.

§1. INTRODUCTION

0. After submitting this note we discovered that the main computation in
Secs. 5, 6 is equivalent to the computation in [13, Secs. 1, 2] of universal
combinatorial cochains on the cyclic category from the universal cyclic con-
nection form. Still, we have an accent on the geometry and combinatorics
of triangulations.

1. A circle bundle T — E £ B (see [2]) is a principal fiber bundle with
a commutative Lie structure group T = R/Z ~ U(1). There is a classical
chain of homotopy equivalences

BT ~ BU(1) = BO(2) = CP* ~ K(Z,2). (1)

Thus the isomorphism classes of circle bundles over B are in a one-to
one correspondence with the classes of complex line bundles, classes of
oriented two-dimensional real linear vector bundles, and elements of the
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two-dimensional integer cohomology group H?(B;Z). The class of a bun-
dle ¢i(p) € H?(B;Z) is called its first Chern, or Chern-Euler, class. All
characteristic classes of p are powers c?(p) € H*"(B;7Z).

If the base B can be triangulated, then p can be triangulated over a
subdivision of the given triangulation. It is not true that the base B can
always be triangulated (see [23]), but this happens in most interesting
cases. See [9,30] for the general triangulation and bundle triangulation
theory. We are interested in the combinatorics of triangulations in connec-
tion with integer and rational local combinatorial formulas for the Chern
class and its powers. The triangulated bundle obtains a structure of an
oriented PL bundle with fiber S'. The old folklore theorem

PL(S)/U(1) ~ 2)

completes the sequence (1) by “B PL(?) ~ ....” Therefore, the combi-
natorics of a triangulation provides full information about characteristic
classes.

2. Our initial intention is to find some more hints for correct combina-
torics in the classical problem of detecting local combinatorial formulas
for characteristic classes ([6-8]). It is well known that the problem faces
many troubles in a fruitful way. In particular, the Chern—Simons theory
was a byproduct, as mentioned in the first lines of [28]. The point of view
of configuration spaces on the problem ([7,8]) faces the algebro-geometric
universality of moduli spaces of configurations in a way especially interest-
ing for the first author. The rational Euler [27] and Stiefel-Whitney [11]
classes of the tangent bundle have a clear local combinatoric nature (but
in the latter case, up to now there is only a not very enlightening proof).
From the combinatorial point of view, local formulas are very interesting
combinatorial functions, universal cocycles associated to elementary fami-
lies of cell complex reconstructions; such as chains of abstract subdivisions
or chains of simple maps, abstract mixed subdivisions (multi-simplicial
complexes), chains in the MacPhersonian, etc.

The line of simple examples, obviously, should contain the Chern classes
of triangulated (or locally combinatorially encoded in some other way)
circle bundles. The setup for the combinatorics of a circle bundle and an
outline of a construction for rational simplicial local formulas were pre-
sented by I. Gelfand and R. MacPherson in 14 lines around Proposition 2
in [8, p. 306]. There are deep formulas in the differential situation, when
the bundle is encoded by the pattern of fiberwise singularities of the Morse
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function on the total space [14,17,18]. These formulas naturally connect
the problem to a higher Franz—Reidemeister torsion [12] and cyclic ho-
mology. The role of line bundles in the geometry of characteristic classes
and related mathematical physics is special (see [1]), so perhaps a reason-
able idea is to understand the case of circle bundles slightly better. One
day, to our surprise, we discovered that canonically looking local formu-
las for all characteristic cocycles of a triangulated circle bundle trivially
pop out from associating to a triangulated circle bundle Kontsevich’s con-
nection [19, p. 8] on metric polygons. The answer is expressed through
mathematical expectations of the parities of necklaces associated with the
triangulation. Below we will present this “parity local formulas” and a
sketch of a construction.

3. Plan. In Sec. 2, we introduce an abstract simplicial circle bundle (s.c.
bundle) and describe the Gelfand—MacPherson setup for simplicial local
formulas in the case of circle bundles. In Sec. 3, we associate to a s.c. bun-
dle a cyclic diagram of words on the base. In Sec. 4, we present a rational
parity formula for all powers of the first Chern class and formulate the
main Theorem 4.1. In Sec. 5, on a geometric realization of a s.c. bundle,
we introduce a canonical metric gp of “geometric proportions.” With this
special metric gp, the bundle becomes a piecewise differential principal cir-
cle bundle. It has gauge transition transformations described by functions
encoded by matrices of words as linear operators (analogs of permutation
matrices). The circle bundle canonically appears as the pullback of a for-
mal universal circle bundle over Connes’ cyclic simplex by a very special
classifying map. The classifying map is described by the same matrices of
words. In Sec. 6, we describe Kontsevich’s connection form on metric poly-
gons as a universal cyclic invariant connection on a universal circle bundle
over Connes’ cyclic cosimplex. The pullback of the connection is a PD
connection on the geometric realization of the s.c. bundle with the metric
gp- We compute the pullbacks of universal cyclic characteristic forms using
matrix maps and, using Okuda’s sum of minors Pfaffian identity, obtain
rational parity coefficients. In Sec. 7, we assemble the proof of Theorem
4.1. In Sec. 8, we comment on omissions and possible outputs.

4. The first author is deeply grateful to Peter Zograf for pointing to Kontse-
vich’s connection form. The authors thank for hospitality the Oberwolfach
Mathematical Institute and THES, where they had an opportunity to work
together.
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§2. LOCAL SIMPLICIAL FORMULAS FOR CIRCLE BUNDLES

5. Triangulation of a circle bundle. If a map of finite abstract simpli-
cial complexes & LN triangulates a circle bundle p, then we can suppose
that the geometric realization |8| is B and the triangulation is the set of
data (p,p, h):

¢ E ¢ —> 4 E
[ N Y
B B 1B,

where |€| 2, E is a fiberwise homeomorphism commuting with [p| and p.
The map [p| is a PL fiber bundle. From the point of view of p, the trian-
gulation homeomorphism A is equivalent to introducing on the PL bundle
Ip| with fiber S! an orientation and a continuous metric such that for
any x € |B| the fiber over z, the oriented PL circle |p|~!(z), has perime-
ter equal to one. On the other hand, the triangulation homeomorphism A
provides p with a PL structure related to a very special system of local
sections. We suppose that the simplicial complex B is locally ordered, i.e.,
its simplices have total orders on the vertices and the face maps are mono-
tone injections. That is to say, B is a finite semi-simplcial set with the
extra property that each simplex is determined by its vertices. A local
order makes simplicial chain and cochain complexes available.

The simplicial bundle p in (3) can be assembled as a colimit from sub-
bundles over base ordered simplices using simplicial face transition maps.
The disassembly on bundles over simplices commutes with the geometric
realization. Therefore, a subbundle of p over a simplex triangulates the
circle bundle over the geometric simplex, which is a trivial bundle. An
orientation of a trivial circle bundle selects a preferred generator in the
1-homology of the total space. Hence subbundles of p over simplices are
equipped with an orientation class in simplicial homology in such a way
that boundary transition maps of subbundles send a generator to a gener-
ator. This assembles to a constant fiber orientation local system on ‘B.

6. Basic simplicial notations. We denote by A the category of finite
ordinals [0],[1].... Nonstrictly monotone maps between them are called
operators, injections are called face operators, surjections are called de-
generacy operators. We denote by A the subcategory of A having the face
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operators only. The category of finite ordinals can be presented by gen-
erators and relations. The standard generators of A are the elementary

6.
boundary operators [k — 1] = [k], j = 0,..., k, where d; is the monotone
injection omitting the element j in the image; and the elemetary degen-
oj . .
eracy operators [k + 1] — [k], = 0,...,k, where o, is the monotone

surjection sending the elements j, 7 + 1 in the domain to the element j in
the codomain. The category A is generated only by the boundaries. We
denote by (k) an ordered combinatorial simplex: the simplicial complex

formed by all subsets of [k]. For an operator [m] £ [k], we denote by

(m) LN (k) the induced simplicial map of combinatorial simplices. The

standard geometric k-simplex with ordered vertices is denoted by A¥. The

geometric realization of (u) is the map A™ NN given in barycentric

coordinates as follows:
0 ifi ¢ imp,
wil(to, - - tm) = St ificimp fori =0,...,k.
JERTI(9)

7. Simplicial circle bundles. By an elementary simplicial circle bundle
(elementary s.c. bundle) we will mean a map % = (k) of a simplicial com-
plex ! onto an ordered simplex (k) whose geometric realization |e| is a
trivial PL fiber bundle over a geometric simplex with fiber S', equipped
with a fixed orientation 1-dimensional homology class of R. Here is a pic-
ture of an elementary s.c. bundle (Fig. 1). We define the boundary map

5 e 2% ¢ of elementary s.c. bundles over the simplicial boundary [m)] 2, [k]
to be the pullback diagram

YRR

lé*e le
(5)

(m) —— (k).

We suppose that d.e sends the orientation class of *R to the orientation
class of RR. Let B be a locally ordered finite simplicial complex. A sim-
plicial circle bundle (s.c. bundle) ¢ £ B is a map p of finite simplicial
complexes that has a geometric PL fiber bundle with fiber S! as its geo-
metric realization and is equipped with a fixed constant local system that
gives a fiber orientation on elementary subbundles.
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Fig. 1. An elementary simplicial circle bundle.

Simplicial circle bundles always triangulate some principal circle bun-
dles. To build a circle bundle triangulated by p, it is sufficient to choose
a continuous metric on the geometric realization |€| such that all fibers
of |p| are circles with unit perimeter. Transition maps become orientation-
preserving isometries, and hence they will be T-transition maps. One pos-
sible choice of such a metric is to normalize fiberwise the standard flat
metric on the simplices in |&|. Taking in consideration the simple fact (2),
we see that all circle bundles triangulated by p are isomorphic.

8. The Gelfand—MacPherson rational simplicial local formulas.
—

Denote by 2R¢(S) the semi-simplicial set of isomorphism classes of all

elementary simplicial circle bundles. Elements of ER;(@) are combinato-

rial isomorphism classes of elementary s.c. bundles over the k-dimensional

oriented combinatorial simplex. The boundary map is generated by the

elementary s.c. bundle boundary over the base simplex boundary. Bound-

aries are well defined, sending isomorphism classes to isomorphism classes.
[{P=2

The superscript “c” stands for the fact that we are considering triangu-
lations by classical simplicial complexes. With the bundle p, a map of

®
semi-simplicial sets B —- %C(g) is associated, sending the base simplex
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U € %5 to the combinatorial isomorphism class of the elementary subbun-
dle py over that simplex. The map &, forgets a part of the information
about the bundle. Since an elementary s.c. bundle can have nontrivial au-
tomorphisms, one cannot recover all boundary transition functions from
&,, and hence generally one cannot recover from &, the entire bundle p
up to isomorphism.

A rational simplicial local formula for the Chern class CP is a 2h-cocycle
on ﬁ%c(g) represented as a rational combinatorial function of elementary
bundles over the 2h-simplex such that the pullback of this cocycle under

the map B AN ‘ﬁc(g) is a rational simplicial 2h-Chern cocycle of p. To
put it simple, the value of the cocycle on the ordered simplex U?" of B
should be an automorphism invariant C?"(p,) € Q of the subbundle py
over that simplex.

Due to the above-mentioned forgetful nature of &,, it is not obvious that
such universal cocycles exist; however, rational universal cocycles do indeed
exist by Proposition 2 of [8]: it is speculated there that the transgression
of a rational fiber coorientation class in the Serre spectral sequence of
a s.c. bundle can be expressed as a local rational formula involving the
combinatorial Laplacian. The result was never calculated, but clearly it
ends up in a slightly more complicated automorphism invariant function of
the associated 3-necklace for the first Chern class than our rational parity.
Local formulas for powers can always be expressed automatically by using
the Cech-Whitney formula for the cup product on simplicial cochains.
This will result in certain not very transparent, but purely combinatorial
concrete rational functions “MC2?" (¢) of elementary s.c. bundles.

§3. SIMPLICIAL CIRCLE BUNDLES AND CYCLIC WORDS

3.1. Half of Connes’ cyclic category. Connes’ cyclic category AC
(see [21, Chap. 6.1]) has finite ordinals as objects, and morphisms are
generated by all operators from A and all cyclic permutations of finite
ordinals. By this definition, AC contains A as a subcategory. For the cyclic
category, we use new notation for the standard simplicial generators, since
we will need a two-parameter cyclic-simplicial structures on words. The
simplicial generators are

n—1
‘91'

n—1_  *[], j=0,....,n, i=0,...,n—1 (4)
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Besides the simplicial generators, AC' has the generator [n] ~ [n] acting
on [n] according to the rule 7,(i) = (i —1) mod (n + 1), i.e., as the per-
mutation which is the left cyclic shift by one; 77 (i) = (i — j) mod (n + 1).

In AC there is an “extra degeneracy,” the surjection [n] > [n — 1], which
does not exist in A but exists in AC. It is defined as s = sf, '

9. Duality. There are two subcategories in AC. One is AC, the subcate-
gory generated by all boundaries 9] and cyclic shifts 7,,. Another category
AC is generated by all standard monotone degeneracies s?, the extra de-
generacy sy, and T,.

The category AC is self-dual, i.e., there is a categorial isomorphism
AC =25 ACP. Since AC has automorphisms, a duality involution is not

unique. With the extra degeneracy, a duality can be presented on the
k—1

generators as follows: for ¢ € [k] and [k — 1] —— [k], the dual map is

o = (K S k-1l =
The duality interchanges AC and AC.

10. The duality has a remarkable graphical interpretation in terms of the
cylinder of a “simple map” of oriented graphs, oriented cycles (it can be a
loop) having a vertex fixed.

A map of oriented graphs is a map sending vertices to vertices and arcs
to vertices or arcs in such a way that an incident vertex and arc pair goes
either to the same vertex or to an incident vertex and arc pair. Oriented
graphs can be identified with 1-dimensional semi-simplicial sets, and maps
of graphs, with singular maps of semi-simplicial sets. A graph g having a
geometric realization |g|, a map of graphs go ER g also obtains a geometric

realization |go| Y, |gl, and we can consider the cylinder Cyl(]f|) — [0,1]
of this map. The cylinder has a natural structure of a 2-dimensional cell
complex composed of solid triangles and quadrangles and having a cellular
projection to the interval [0,1]. A map f is called simple [31] if for any
point u € |g| the preimage |f|~'u C |go| is contractible. Let both graphs
Jgo, g1 be oriented cycles. In this case, a map is simple if the preimage
of every vertex is an embedded interval, or, dually, any arc has a single
preimage. The fundamental observation is that a map is simple if and only
if the projection Cyl(f) — [0,1] is a trivial PL 'S-fiber bundle. In large
generality, this is Cohen’s theory of the cylinder of a PL map [3]. Let us
have a fixed vertex sy on the oriented cycle go. Then the orientation creates
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"exfra degeneracy"

Fig. 2.

a linear order on the vertices and arcs of gg,g. We suppose that in this
order sg, f(so) are minimal. Also we suppose that the position of an arc in
this order is equal to the position of its tail. In terms of the orders, a map f
is simple if and only if f is a AC-morphism f on ordered vertices. If this
is the case, then the dual AC-morphism 70p is a monotone injection on
ordered arcs sending an arc to its unique preimage. In Fig. 2 we depicted
this duality on the cone for the generators and for the general case.

For a boundary ([k] 2, [m]) € Mor AC, the general formula for the dual
cyclic degeneracy ([m] o, [k]) € Mor AC is as follows:

ooy =40  HoW<iforeveryj g
ming(j)»;j  if there exists j such that 9(j) > i.

It can be computed graphically using the cylinder of a simple map or
inductively on the generators.

11. Cyclic-mono factorization. Any morphism [k] 2, [m] in AC has
a unique factorization into a cyclic permutation followed by a monotone
A-operator. The same is true for AC' and AC. This is Connes’ theorem
([21, Theorem 6.1.3]). We will fix a simplified formula for this decomposi-
tion for the case of AC.
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Lemma 3.1. For any boundary map [k] LR [m] and a cyclic permutation

[m)] Tn, [m] there are a unique boundary [k )70, [m] and a cyclic

P
permutation [k] — [k] such that the following diagram is commutative:

k] —2— [m]

B*Tfnl l‘r,’n

L3 W [m].

The following formula holds:
B*Tfn = Tl?cp(i), (6)
where 0°P is defined in (5).

Proof. This is a part of Connes’ theorem, and it can be proved by a part
of Connes’ proof, which in our case is the consideration of the circular
mapping cylinder of the map 0°P with a fixed section, which we discussed
earlier. The map 7, acts by changing the zero section of the cylinder. [

3.2. Simplicial circle bundles and cyclic diagrams of words on the
base. To a simplicial circle bundle defined in p. 7 with fixed combinatorial
sections Sy over simplices of the base, we associate a cyclic diagram of
words on the base.

12. Words and necklaces. A word of length n+1 in an ordered alphabet
with k 4+ 1 elements, k < n, is any surjective map [n] - [k] (it is not
required to be monotone). The cyclic group Z/(n + 1)Z acts by cyclic
permutations on [n]. We can extend this cyclic action to words: just put
Tow(i) = w(r,(7)). The orbit of a word under the cyclic permutations is
called a “circular permutation,” or an “oriented necklace” with n+1 beads
colored by [k]. We regard a cyclic shift of a word as a morphism between
words:

N
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If we have a word w and a boundary operator, i.e., a monotone injection
[ko] > [K], then the unique pullback is defined by

o] —— [n]

5*1{ Jw (8)

[ko] —— [K],

where 05 is the boundary operator on finite ordinals induced by the bound-
ary 6 on the codomain of words. To say it differently, 0*w is the word
obtained from w by deleting all letters not in the image of 4, and 95 is the
embedding of §*w into w as a subword.

We define the cyclic category of words C'W with words as objects and
morphisms being cyclic morphisms of words, i.e., AC-morphisms of words
generated by cyclic shifts (7) and boundaries (8) (that is, w +— ¢*w) over
boundaries on the alphabet. The category C'W has two projection functors

AC Dom CW Codom A,

the “domain” projection to AC and the “codomain” projection to A.
The codomain projection makes C'W a category fibered in commutative
groupoids over A. As in the category AC, any cyclic morphism of words
has a unique decomposition into a cyclic shift followed by a boundary.

13. Words as matrices. Words have associated matrices, and we may
regard these matrices as linear operators. This is our key trick.
Let L(w) be the [n] x [k] matrix

o1 () =4,
Li(w)_{o if w(i) # j. )

Put m; = #w~!(j), the number of times the letter j € [k] appears in

the word w. The following is the definition of the matrix of a word w
normalized by columns:

Ty =m0 =0 (10
0 ifw(i)#jJ.

The sums of elements in columns of L are all equal to 1, different columns

of £ and L are orthogonal. A cyclic shift (72)* of words goes to a cyclic

permutation of rows of matrices, a boundary operation 6* on words cor-
responds to the deletion of columns in matrices with numbers not in the
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image of § followed by the deletion of the zero rows in what remains. The
opposite insertion of a matrix as a submatrix with adding zero rows is
described by 0s.

W(e,S)=0101101

RN
0
SO
1

S

0 \ZO

0000

°0
Ft
Op
So
1
e
1
¥
t
g//‘
Fig. 3.

14. The geometric fiber of an elementary s.c. bundle; 0- and
1-sections; order out of orientation. Let % < (k) be an elemen-
tary s.c. bundle over an ordered abstract k-simplex with k& + 1 vertices,
|9R]| el Ak be its geometric realization, which is, by definition, an oriented
trivial PL, S*-bundle over A*. Geometric simplices of |9R| that project epi-
morphically onto A¥ can have dimensions only k and & + 1. Let us call
such a k-simplex a 0-section of |e|, and a (k+ 1)-simplex, a 1-section of |e|.
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There are corresponding combinatorial 0- and 1-sections, simplices in e
that project epimorphically onto (k).

Take the geometric fiber F; of |¢| over an interior point ¢ € int A*.
The fiber F; is a broken PL circle. Each arc L of F} is the intersection
of the fiber with some (k + 1)-simplex, a 1-section A(L) of |e¢|. The end
vertices of the arc L are intersections with geometric 0-sections, two faces
of A(L). The broken circle F; has the same number of arcs and vertices;
let this number be equal to n 4+ 1. This means that there are n + 1 0- and
1-sections of |e| and e. Fix some 0-section, denote it by Sy, and denote
by So(t) the corresponding vertex in Fi. The orientation of the bundles
¢, || creates an orientation of the circle F;. Therefore, all arcs L obtain
heads and tails, each vertex of F; obtains its input and output arcs. This
generates a linear order on the vertices of F; depending on the choice of
the fixed vertex Sy(t). In this order, on any arc its tail precedes its head,
and Sp(t) is the minimal vertex. The order on vertices creates a linear
order on the arcs in which an arc obtains the number of its tail. Therefore,
on F; we obtain n + 1 ordered vertices So(t),...,Sn(t) and n + 1 ordered
intervals Lo(t),. .., Ly(t);

Li(t) = [Si(t), Sit1 mod (n+1)(#)], i =0,...,n.

Therefore, the 1-section A(L;) also obtains the number ¢ in the order, and
we put A; = A(L;).

15. The word associated to an elementary s.c. bundle with a fixed
section. Every 1-section A; of |e¢| is the domain simplex of a subbundle
of the type AkF+! LZIR A* which is the geometric realization of an ele-
mentary simplicial degeneracy o; of ordered simplices (k + 1) LiIR (k),
corresponding to an elementary degeneracy operator [k + 1] — [k] (see
p. 6). The simplicial map |o;| (Fig. 4) shrinks the edge of 4; = AF! with
vertices vj,v;4+1 to the single vertex j of the base A¥. Here j is a function
of A; and, therefore, a function of the number i. We denote this function
by 7 = W(e, Sp)(¢). The function W(e, Sp) is surjective and independent of
t € int A¥; therefore, it is a word (see p. 12) associated to the elementary
s.c. bundle e with the fized 0-section Sy.

16. Changing the section of an elementary s.c. bundle vs. a cyclic
shift of a word, the associated necklace. Let us have, besides the
0O-section Sp, another O-section Sy’ of e. The 0-section Sy’ corresponds to
a vertex of F} having the number 1(Sy, So’) in the vertex order determined
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by the orientation and the section Sy. Then the word W(e, Sp’) is obtained
from W(e, So) by the cyclic shift 770 W(e, So) = W(e, So’).

Thus the elementary s.c. bundle ¢ obtains the associated oriented neck-
lace N(e) in the sense of p. 12 as the orbit of the words W(e, Sp) under
the cyclic shifts.

17. The boundary of an elementary s.c. bundle with a section vs.

the boundary of a word. Take a face of the base simplex (k—1) AN (k)

85)
and consider the corresponding boundary d7e L4)-, ¢ of the elementary

s.c. bundle over that face. If a 0-section S is fixed for e, then §}e has the

induced O-section d7Sp. So we have a morphism (67,87 So) La)e, (e,50).

We are interested in the relation between W = W(e, Sp) and W(d7e, 07 Sp).
All 1-sections B of §;e are faces of 1-sections A; of e such that W(i) # j.

For every l-section B of dje there is a unique l-section Os;B of e
such that B is a face of 05; B and this map is monotone with respect to
the induced order corresponding to the induced section §;Sy. This state-
ment is correct but requires some simplicial work. One should use the
1-dimensional version of Cohen’s theorem on the cylinder of a simple map
for PL manifolds mentioned in p. 10.

Combining the previous observations, we conclude that the word

W(d7e,d7S0) = 6*W(e, So)

and the induced map on 1-sections 95, is the domain boundary operator (8)
of words induced by the codomain boundary §;.

18. The cyclic diagram of words associated to a s.c. bundle with
fixed sections on elementary subbundles. We denote by fA‘B the
category of simplices of a locally ordered simplicial finite complex 8. The
objects are simplices, and the only morphism between an m-simplex U™
and a k-simplex U* is the face map U™ % V* corresponding to the face
operator [m)] 2, [k]. This category has the canonical functor [ A8 A
making it a category fibered in finite sets.

Let us have a s.c. bundle € £ B over B. Let any elementary s.c.
subbundle py over a simplex U € 9B have a fixed individual 0-section
SY. We denote this system of O-sections by Sp; so we fix the pair (p, So).
Combining the constructions of pp. 15, 16, 17, we see that any boundary
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U 2 V between simplices of B gives a cyclic morphism of words

W(p,So)(U 2 V)
Tz(sg,a*s(‘{) (11)

_ (W@U,S{{) O b0, 67T ) 2 Wipr, SV >> -

These data, obviously, commute with the composition. Therefore, we ob-

. Ao, W(p.SY) L .
tain a functor [= B ———= C'W fibered over A. We can imagine that this

functor is a coloring of the base simplices by words in the alphabet consist-
ing of the vertices of the simplex, so that boundary morphisms on the base
simplices correspond to cyclic morphisms of words in such a way that the
diagram is commutative. Changing the 0-sections causes an equivalence of
functors, i.e., a system of cyclic permutations of words commuting with
all the structure morphisms. Thus the isomorphism class of bundles goes
to the equivalence class of fibered functors Funct( [ A%, CW). The inverse
statement is also true with important comments (p. 29), but we do not
fully develop it here.

§4. RATIONAL PARITIES OF WORDS AND LOCAL FORMULAS FOR
POWERS OF CHERN CLASSES

4.1. The rational parity of a word and of an odd necklace. Con-
sider a word [n] > [k]. Call a “proper subword of w” any subword consist-
ing of k + 1 different letters (thus, it is a section of the map w). A proper
subword defines a permutation of k + 1 elements, and this permutation
has a parity, even or odd. We define the rational parity of w to be the
expectation of the parities of all its proper subwords. Namely, put

#(even proper subwords) — #(odd proper subwords)
#(all proper subwords) )

P(w) =

The parity of a permutation of an odd number of elements is invariant
under cyclic shifts of the permutation. Therefore, if k is even, then k£ + 1
is odd, and in this situation P(w) is an invariant of the oriented neck-
lace (p. 12). Words are ordered and have no nontrivial automorphisms.
Necklaces can have remarkable groups of automorphisms, see [4]. The par-
ity of a proper subword survives an orientation-preserving automorphism.
Therefore, if k£ + 1 is odd, then P(w) is an isomorphism invariant of the
necklace defined by w.
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The parity of a permutation coincides with the determinant of the ma-
trix of the permutation. A similar interpretation exists for the rational
parity P(w). The rational parity of w is equal to the sum of the maximal
minors of the normalized matrix of the word £ defined in p. 13:

P(w) = Z detz(io,---,ik)(w)a (12)

0<ip<iy <+ <ip<n

where Z(io,m’ik)(w) denotes the square submatrix of £(w) with row num-
bers 7:0, .. .,ik.

4.2. Local formulas for powers of the Chern class in terms of the
rational parities of odd necklaces. Rational simplicial local formulas
for Chern classes of circle bundles in the sense of p. 8 can be expressed
through the rational parities of necklaces associated with elementary s.c.
bundles (p. 16).

Theorem 4.1. The rational function
n Rl
(2h)!

CT (e) = (-1) P(N(e)) (13)
of an elementary s.c. bundle | = (2h) over a 2h-simplex is a rational
simplicial local formula for the hth power of the first Chern class of the
circle bundle.

Here the suffix p stays for “parity.”

§5. GEOMETRIC SIMPLICIAL, CIRCLE, AND CYCLIC BUNDLES

5.1. The metric of geometric proportions and the associated cir-
cle bundle.

19. An elementary degeneracy and geometric proportions. Let us
introduce the simplest possible metric on the geometric total complex |R|
of an elementary s.c. bundle % = (k) satisfying the properties described
in p. 7. Here we essentially rely on the facts about geometric proportions
between elements of similar triangles from book VI of Euclid’s Elements,
where he presumably explicates the achievements of the Pythagorean or
Athens school. Actually, geometric proportions is a geometric background
of Milnor’s geometric realization functor. The fact is as follows (see Fig. 4
for similar triangles).
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Consider a standard geometric simplicial degeneracy

A=Ak 1T AR — B projects the edge a; of A with
vertices v},v},, to the vertex v;. Let us fix a flat Eu-

clidean metric p on the total simplex A in which a; has

positive length a; € Rso. Take a point with barycentric

coordinates t = (to,...,tx) € B and consider the inter-

val L;(t) = |o;|71(t) C A, the fiber of the projection |o;]|.

Then the length 19(t) of the interval L;(t) in the metric p

is equal to a; - t;.
The domain simplex A of the projection |o;| obtains bundle coordinates
if we declare one of the two 0-sections in it (see Fig. 4) as the “bot-
tom,” or “tail,” section and the other one as the “top,” or “head,” sec-
tion, respectively. A point u € A is given the bundle coordinates u =
(%t (u); to(u),. . ., t,(0)), where t(u) are the barycentric coordinates of the
projection to the base, % (u) is the distance in the fiber interval L;(#(u))
from the tail point to w in the standard flat metric st on the simplex,
0 < 2% (u) < tj(u). If we change the flat metric by assigning to the edge «;
the length a;, then the coordinate z*¢(u) will change linearly, to a; - 2% (u).
20. The matrix of a word and the global bundle coordinates.
Geometric proportions impart a geometric meaning to the matrix L(W),
given by formula (9) in p. 13, of the word W = W(e, S°) constructed in
p. 15 for an elementary s.c. bundle /® 5 (k) with fixed 0-section S°. By
the geometric proportion identities of p. 19,

k
ZL?ta =tw) = I7(t), (14)
a=0

where [5(t) is the length of the interval L;(t) = |e| ()N A; in the standard
flat metric on |R|. So, viewed as a linear operator, the matrix L transforms
the vector of the barycentric coordinates of a point ¢ in the base to the
vector of the lengths of the intersections with 1-sections of the fiber over ¢
ordered by the bundle orientation:

Llto, .. tr) = (I55(t), ..., I55(t)).

The bundle space |9| also obtains global bundle coordinates relative
to the chosen 0-section Sp. A point u lying in a 1-section A; is given the
bundle coordinates

u = (23 () + 15 (H(w) + -+ 1 (H(w); 1 (w)).
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head section

o)

=tal[ o]

Fig. 4. The bundle A3 721 A2,

The ith (with respect to the orientation and the fixed section Sp) 0-section

i1
S; becomes the graph of the function S;(t) = Y I5¢(¢).
b=0

21. Circle bundle coordinates. Let us normalize the standard flat met-
ric on |e|. Any elementary s.c. subbundle of ¢ over a vertex v; of the base

is a simplicial oriented circle R; 2, (0), |R;| ~ S'. Let the circle R;
have m; arcs. We assign to any arc in |9, the length equal to mi] This
induces a new flat metric on all 1-sections A;, since the collapsing edge of
A; belongs to [Ryy(;)|- So we obtain a new flat metric “gp” on |R| (“gp”
stands for “geometric proportions”). In the new metric gp, the vector of
the lengths of the intervals in the fiber over t € A* is expressible using the
normalized matrix of the word L(W) (see (10) in p. 13). Namely,

—a 1
Lity = twey = 1P (t). 15
> Ty (t) (15)
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Then
Llto...ty) = (BP(), ..., 77 (1)), (16)
and we have the identity
n k
M
i=0 j=0 "7

These observations show that £ is a linear operator
Ak 5 A, (17)

We have normalized the metric on || in such a way that all fiber circles
obtain unit lengths and face maps are isometries.

Now any point u in |R|, lying in the ith 1-section A; of |R|, obtains the
trivial T-circle bundle coordinates

T (u) = <exp ( 1 x%(i) (u) + Sft(t)) |t> € T x Ak,
0 MW (4)

Let T* be a trivial circle bundle T x A¥ — A¥. The map T is a bundle
homeomorphism

gap

(¢, S0)| = (T*.0),
sending Sy to a O-section and S; to the graph of the T-valued function
exp (57" (t))

on AF where
i
S0 = 1), (18)
a=0
Thus, introducing the metric of geometric proportions on the bundle |e|
with fixed O-section Sp produced T-trivialization, controlled by the data
of the reduced matrix of the word L(W(e, Sp)).

22. 0-Sections as T-transition functions; the PD circle bundle
T97(W(p,SY)). Let us consider a s.c. bundle p with a system Sg of 0-
sections over the simplices of the base, as in p. 18. Let us fix the lengths
of the edges of the circles & over the vertices of B, as in p. 21; then the
geometric realizations of all elementary subbundles obtain the geometric
proportions metric and T-trivialization relative to the fixed sections. For

a boundary U™ % VE of the simplices in the base, the trivializations
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T™ and T* are related by the T-gauge transformation determined by the
change of 0-sections (see Fig. 6) followed by the trivial face embedding;:

Veorp(-sP()
Fig. 5.
5.
(v, S§7)| —— |(pv, Sy)
% |7 (19)
Tor (U V)
—

(T™,0) (T*,0),

TP 2 V) (lt) = (zexp(~ 5%y 5. ) (D)]18]():

Here 2 was defined in p. 16. The transition transformation T97 (U LR V)

is determined by the cyclic morphism of words W(p, So)(U 2 V) (see
(11) in p. 18). Generally, the diagram of trivial circle bundles and lin-
ear boundary gauge transformations is a function of W(p, Ug). The di-
agram T97(W(p,Sp)) assembles to a PD circle bundle over |%B|, and the

map T9 assembles to a triangulation |p] =, T9"(W(p,Sp)). Changing
the system of sections Sy — Sj causes a global gauge transformation of

T9(W(p,So)) — T9*(W(p,Sp)).
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5.2. The cyclic cosimplex and the universal cyclic circle bundle.
We equip the half of Connes’ cyclic cosimplex [21, Chap. 7.1.3] with a
AC(C-diagram of trivial T-bundles T'C having cyclic linear transition maps.
The diagram T'C' itself does not admit a colimit that assembles to any sort
of fiber bundle, but still we can use it as a universal object for the fiber
bundles T97(p, Sp).

23. The circle bundle over the half of the cyclic cosimplex. Let

N . - . . .
A — Top be a canonical semi-cosimplex with barycentric coordinates.
Below we will slightly change the notation for boundary operators and
coordinates on it and denote

A(n]) = A" = {lo,...,In| D _1; =1} C R";

A0;) = |0i| Loy -+ -y ln-1) = (loy -+, lic1,0,L5, o oy In—1).
The cyclic group Z/(n+1)Z acts by cyclic permutations of [n], the standard
generator 7, being represented by the left shift by one:

Tn(i) =7 — 1 mod (n + 1).

A cyclic semi-cosimplex is a functor AC a9, Top; it is an extension
of /A which incorporates the cyclic shifts of barycentric coordinates. For
n] == [n , the map AC(7)) = (A" Iral, A™) is defined by the standard

n
coordinate representation of Z/(n + 1)Z in R"*!:

7l (o ln) = Ui oys- s Lrimy) = Unti—j oo s by lo oo D).

Consider the following family of linear functions:

i—1
A 00,1), i=0,m; SP=Y e
a=0

Then the family
exp(Si*(l)), i=0,...,n,

of T-valued functions on simplices can be viewed as a family of sections
of the trivial circle bundle T™ = (T x A)® — A™ over A". Geometrically,
the sections exp(S/*(1)), i = 0,...,n, at a point [ = (lp,...,l,,) € A" de-
compose the fiber over each point, which is a circle T of unit perimeter
with a fixed zero point, into intervals L;(l) of lengths [;, i.e., the intervals
Li(l) = [exp(Sy(1)),exp(Si,(1))] € T. This object can be regarded as
Kontsevich’s [19] oriented metric n-polygon mp(l) (Fig. 6) of unit perime-
ter with fixed zero vertex.
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-s3()

1=(lg,l1.00,13) | (I2,13.10.14)

Fig. 6. The bundle map TC(73).

Consider the diagram T'C' of trivial T-bundles and nontrivial gauge

transformations over a cyclic semi-cosimplex AC. For [n — 1] 2, [t], put

Tt XL T 700 (=) = (=131 (1)- (20)

For [n] == [n], put
TO(Ti) n i n i
L), P PO (Al = (= - exp(=SPO)IFND) . (21)
One can imagine the bundle maps T'C(7}) being constructed as follows:
first we rotate the fiber of T" over [ € A™ by the angle exp(—S?*(1)), send-
ing exp(S7*(1)) to the zero section, after which we make the cyclic permu-
tation |7 | of coordinates in the base, causing a proper cyclic renumbering
of the intervals and sections in the fiber (see Fig. 6).

The diagram T'C' is a correct AC-diagram of trivial T-bundles over sim-
plices and gauge transformations over the cyclic semi-cosimplex AC'. This
fact can be proved by checking the composition law vs. cyclic identities.

24. The circle bundle T9?(W(p,S)) is the pullback of the univer-
sal bundle T'C' by a map composed from the matrices of words
L(...). The circle bundle T97(W(p,S°)) was defined in p. 22, its linear
T-transition maps are given by (19), using a boundary change of 0-sections
in the geometric proportions metric. What remains of the geometric con-
structions now, is just to observe that the bundle T9?(W(p,S%)) can be

Tn
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canonically regarded as a pullback of the universal cyclic bundle TC so
that the linear operators of the normalized matrices of the words L(...)
compose into the classifying map LW(p, Sp)).

Let us make a few simple observations on linear operators that come
from the reduced matrices of words. Consider a boundary morphism and
a cyclic shift of words:

[n0] —— [n]

n]—>
AT /
[ko] —— [¥],

Then the following diagrams of linear maps in barycentric coordinates are
commutative:

A™0 s AM A" s AM

[Tl
T(w T(w (22)
wl N A

These diagrams induce pullback diagrams of boundary gauge transforma-
tions:

TC(95) TC()
L*(WO)T Ta*(w) L*(woJ Tuw) (23)
T, o7 (7})
Tho — Tk, Tk ———"s T,

Assume that we are given a coloring of the locally ordered simplicial com-

plex B by cyclic diagrams of words fé% W, ow (see p. 18). We have

AW, AB
two functors [ Agy 2WEP, Top:

A
AW:(/ %ﬂcwg’l&écﬂTop),

A
A‘Bz(/ %eAiTop).
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The diagrams (22) are the data of the natural transformation A8 £, AW,

and the diagrams (23) are the data of the pullback T'W £+, TC of the
bundle diagram TC to the PD circle bundle TW on %8|, defined by the
transition functions encoded in 'W. Therefore, starting from W(p,So) we
obtain the circle bundle T9?(W(p, So)) as a pullback of T'C' defined by the
normalized matrices of the words corresponding to elementary subbundles
with fixed 0-sections.

§6. SOME LINEAR ALGEBRA

6.1. Universal cyclic invariant characteristic forms. We wish to
find a PD connection form on T'C'. Observe that, strictly speaking, the
bundle T'C over a cyclic semi-cosimplex AC' is not a bundle, but a diagram
of trivial T-bundles over simplices and transition gauge transformations.
So the natural definition for a PD connection form on T'C' is a family of
connections vy, € Q'T", n =0,1,..., such that

TC(T:;)*’)/n =Y, 1=0,...,n;
TC(0) vn = Ym  for every ([m] 2 [n]).

One may call such a connection a “cyclic invariant connection.” This prop-
erty holds, for instance, for the connection form “a” on metric polygons,
see [19, p. 8], which we slightly recompile. If now 7, is a cyclic invariant
connection, then any power of its curvature form w” = A"d~, should be a

PD cyclic invariant form on AC.

Lemma 6.1. The family of connection forms o, € Q'T™ defined in local

coordinates (z;lo,...,l,) on T* =T x AF by the expression
an=—de— > Ll (24)
0<i<j<n

is a universal cyclic invariant. Its curvature form has the expression
dop =wn =~ Y dl; Adlj € QPA™ (25)
0<i<jsn
The power of the curvature form has the expression

wh = (=1)"n! > dliy Ndliy -+~ Adliy, € QPPA™.(26)

01 <io<---<iop <N
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Proof. The form «, is a Bott-style constructed universal form. The group
of bundle automorphisms T"C(Z/(n+1)Z) of T™ acts on connection forms
lying in Q'T™, and we wish to find a connection invariant under this action.
We may try to construct an invariant convex combination of elements of the
orbit of the Maurer—Cartan horizontal connection —dx: fori = 1,...,n+1,
put TC(72)*(—dx) = —dx —dly_;+1 — - - - — dl,,, and take a smooth convex
combination of connections in the orbit:

Iy X  (—dz)
lhor X (—=dx—dl,)
+ Iy X (=dz —dly—1 —dly)

e (27)
lo X (—dx —dly —--- —dly)
—dx — Z lldl]
0<i<j<n
The sum is the connection form a, = —dz — lidl;.
0<i<j<n

The fact that TC(9)*ay, = ayy, for any boundary m 2, 1 follows from
the definition of T'C'(9) in (z|l) coordinates (20). We now need to check
that «, is cyclic-invariant: TC(7%)*a, = ay, see (21). It is sufficient to
ensure that this is true for the generator, i.e., that T'C(7,)*ay, = a,. We
calculate:

TC(rn) an = —dz — dly — ln(dlo + -+ dlp_y) — > L,
o<i<j<n—1

an=—dv— Y ldlj—(lo+...lp1)dl,.

o<i<j<n—1

(28)

Taking into account that the coordinates are barycentric and substituting
lo=1-1; —---—1, in (28), we obtain equal expressions in both cases:

TC(rn) on = —da —dly + lpdl, — Y Lidly,
0<i<j<n—1

an=—do— > Lidly—dly + lydly,.

0<i<j<n—1

(29)

The transgression of «,, is the simplectic 2-form

wp =do, == Y dli Adl;

0<i<j<n
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on the base, which is a AC-form, since « is a T'C-form; its pullback to
the bundle is the curvature of a,, (it is obvious that we can consider it
instead of the curvature). The power of w is obtained by a standard Grass-
mann algebra calculation as the power of the Grassmann quadratic form,
providing the factor (—1)"hl. O

6.2. The sum of minors Pfaffian identity and the “matrix parity”
rational function. Let X = X["*[* be an [n]x [k] matrix of variables a:;-,

i € [n], j € [k]. We suppose that n > k. Let [Zi}] be the set of all (k+1)-ele-

ment subsets of [n]. Let D* € Z[X] be the maximal minor of X with rows
numbered by a € [Zﬂ , regarded as a polynomial. Consider the polynomial
s= > D?*X) € Z[X], the sum of all maximal minors. The polynomial
a€(y]
s can b’:e expressed as the Pfaffian polynomial of an even skew-symmetric
matrix in the variables X. This is Okada’s sum of minors Pfaffian identity
[25, Theorem 3], [15]. Assume that u C [k] and denote by X, the submatrix
of the variables X formed by the columns with numbers in u, and by
Su € Z[X], the sum of the maximal minors polynomial for Xy,.
If £+ 1is odd, then

0 {0} {1} S{2} Sk}
—5{0} 0 S{01}  S{02} T S{0k}
s—pf| S —Spn 0 S2p Sk | (30)
—8{2} —S{2} —8{1,2} 0 T S{2k)
—S{k}  —S{oky —S{ky —Sgzky -0

If £+ 1 is even, then

0 S{01} {02} "t S{0k)
—Sp,1 0 S{12)  t S{1k}
s =Pf —8{0’2} —8{1,2} 0 R 8{2,16} . (31)
—S{ok} —S{uky —Szky - 0

We will use the defining recursive identity for the Pfaffian of a skew-
symmetric 2m X 2m matrix M:

2m

PF(M) =Y (=1) a1 ;PE(M ;), (32)

j=2
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where M i denotes the matrix M with both the 1st and the jth rows and
columns removed.

Denote by 67X the (n + 1) x k matrix obtained by deleting the jth
column from X. Applying (32) to the right-hand side of (30), and replacing
the Pfaffians by the sums of minors from the left-hand side of (30), (31),
we obtain the following identity if k£ + 1 is odd:

k

s=> (~1)7s(;y8(0;X)). (33)

=0

Define a rational function of a matrix, the “matrix rational parity func-
tion,” by the formula
s

P=——— (34)

I1 sg
J:

Important properties of the matrix rational parity are given by the follow-
ing lemma.

Lemma 6.2.
(a) If k + 1 is odd, then P(X) is invariant under cyclic permutations of
rows.

(b)

k . .
P(X f 1
0 if K+ 1 is even.

]=0
Proof. (a) The determinant of an odd-dimensional matrix is invariant
under cyclic permutations. Therefore, if k£ + 1 is odd, then the sum of the
maximal minors of X is invariant under cyclic permutations of rows.
(b) If k + 1 is odd, then we can take expression (33) and divide both

sides by H s;, resulting in the required identity. If £ + 1 is even, then
=0
07X has an odd number of columns; hence, by the odd case, we have the

cocycle condition on the parity. O

6.3. The pullback of the univesal cyclic characteristic forms by
a matrix map.
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25. Let us have an [n] x [2h] matrix A = {a/},i € 0,1,...,n,j €0,...,2h,
n .
of nonnegative reals. We suppose that n > 2h and Y a! =1, =0,...,2h.
i=0
Regard A as a linear map in barycentric coordinates A%" 4, A™, where
to, ..., tas are the barycentric coordinates on A?* and I, ...,I, are coor-
dinates on A™:

t = (to,. .. tan) 2> (lo(t), ... 1n(1), li(t) = %o + alty + - - - + a2tap,.

We wish to compute the pullback A*w" of the hth power of the curvature
(or transgression) form (26) in the standard coordinates tg,t1,...,tan—1
on A%". Denote by s(A) the sum of the maximal minors of the matrix A.

Lemma 6.3.
A*wl = (=1)"nls(A)dto Adty A --- Adtap, 1.
Proof. We compute the summands in the sum

> dliy (8) A dliy (8) - - A dliy, (£) (36)
0<iy <ip< - <iap <N

from (26) corresponding to all (2h) x (2h 4 1) submatrices of A, and then
we apply the identity of Lemma 6.2. To describe a summand, we first
assume that n = 2h — 1 and compute dlo(t) Adla - - A dlap—1(t). Let 07 A,
j =0,...,2h, be the square 2h x 2h matrix obtained from A by deleting
the jth column. We denote 6}'-‘dt =dto ANdtj_1 Ndtjq1 A --- Adtap. Then,
by the Grassmann algebra rules,

2h
dlo(t) Adly(t) -+ Adlyp 1 (t) =Y det(85 A)d7dt.
j=0
Substituting top, =1 —tg — - - - — to—1 into the right-hand side, we obtain

dlo(t) N de(t) JANEERIA dlgh_l(t)

= (Z(—l)j det(&}‘A)) dto A\ -+ A dizp—1.

J

(37)

Now we assume that n > 2h and apply (37) to each summand of (36).
Finally, using Lemma 6.2 in the odd case and keeping in mind the condition
that the sums of elements in columns of A are equal to 1 (and hence the
denominator in expression (34) for the matrix parity is equal to 1), we
obtain the desired expression for A*w”. O
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§7. PROOF OF THEOREM 4.1

We check that PC?" satisfies the definition of a rational simplicial local
formula from p. 8.

26. First, we check that PC?" is a rational simplicial 2h-cocycle on ﬁ%c(g)
Let 91 be the semi-simplicial set of isomorphism classes of necklaces. Then
My (see p. 12) is the set of isomorphism classes of all finite necklaces with
beads colored by [k]. The boundary map 9} is induced from the corre-
sponding boundary on words, i.e., by deleting all beads with color i. Let
K2 (D% Q) be the rational simplicial cochain complex of 9. Then for a word
w € CWyy, (ie., an “odd word,” a word in the alphabet of 2k + 1 letters),
the rational parity P(w) is an invariant of the isomorphism class of the
oriented “odd necklace” defined as the cyclic orbit of w. Therefore, the ra-

tional parity of odd necklaces is a function (a2, L Q) € K%("; Q). The
rational cochain P?" is a simplicial cocycle, this follows from Lemma 6.2
(even case) applied to the matrix representation of the rational parity
function (12) and the matrix representation of the boundary of a word,
see p. 13. Associating the necklace N(¢) to an elementary s.c. bundle e
(see p. 16) sends the isomorphism class of the bundle to the isomorphism
class of the necklace and the boundary to the boundary. Hence it defines

a map of semi-simplicial sets 9‘{"’(?) N, 9. So we get the pullback 2h-co-

cycle P2R(N(=)) € K2"(%¢;Q). The 2h-chain PC?" (33) is proportional to

the cocycle P?"(N(—)); therefore, it is a rational simplicial 2h-cocycle on
—

RE(S).

27. We need to prove that for a s.c. bundle R P, B the pullback of 2C2" by
the map &, is a simplicial cochain on B representing c"(p). For the first
Chern class, the formula can be guessed and then checked on the Madahar—
Shakaria triangulation of the Hopf bundle [24]. For higher classes, we can
be sure only that PC?" are some universal cocycles. We are not, sure about
the homotopy class of 91 or 9‘{0(?), we have no good series of examples of
triangulated circle bundles to check. The latter fact is related to the well-
known problem of triangulating the complex projective spaces CP". It is
very hard to triangulate CP™ ([29]), it is much harder to triangulate Hopf
circle bundles over them. Also, it is diffucult to compare the formulas with
the simplicial cup product of the first class; this is related to well-known
problems on formulas for the cup product.
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28. What we can do now, is to use the Chern—Weil homomorphism for
Kontsevich’s connection form « on metric polygons and then use de Rham’s
theorem. To this end, we have discussed cyclic bundle geometry in Sec. 5
and linear algebra in Sec. 6.

(1)

(2)

The piecewise differential Chern—Weil homomorphism for piece-
wise differential principal bundles exists as a byproduct of the
Chern—Weil homomorphism for simplicial manifold principal bun-
dles ([5])-

We choose a system Sy of 0-sections of elementary s.c. subbundles
of p, and obtain the cyclic diagram of words W(p,So) on B (see
p. 18).

We choose the geometric proportions metric gp on |€|. The nor-
malized matrix of a word L(W(R = (k),Sp)) of an elementary
bundle ¢ with fixed combinatorial section Sy applied as a linear
operator to a point of the base simplex A* produces the vector of
distances between the 0-sections of |2R| in the metric gp ordered
by the orientation (see p. 21). Changing the section Sy results in a
cyclic permutation of this vector. This is a point of communication
between simplicial and cyclic geometry.

With W(p,So) we associate the PD circle bundle T9?(W(&, Sy))
on |B| defined as a diagram of trivial bundles over simplices and
transition gauge transformations defined by changing combinato-
rial sections (see p. 22). The circle bundle T9” (W(p, Sp)) is canon-
ically triangulated by |p].

In p. 24 we obtained the bundle T9?(W(p, So)) as a diagram pull-
back

T (W(p, Sy)) = TC

of the universal cyclic bundle diagram T'C' over the cyclic semi-co-

simplex AC. The diagram morphism |B| ~ AB LWES), A

on the simplex A(U*) of the base is a linear operator
Here py is the elementary s.c. subbundle of p over U and SY is
its fixed section, while n + 1 is the number of combinatorial 0-
sections of py, the same as the total number of letters in the word

W(pUa S(g])
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(6)

The cyclic invariance of Kontsevich’s connection o on T'C' (Lem-
ma 6.1) means that its indivdulal pullbacks

ay = L(W(py, S5 ) e € Q' (T (W(pu, S ); Q)
~ QYT x AF;Q), U eB,

are invariant under changing the fixed section SY and, therefore,
under all transition gauge transformations. Hence the pullbacks
ay, U € 9B, assemble into a rational PD connection on the PD cir-
cle bundle T9?(W(p, Sp)) invariant under all gauge tranformations
caused by changing systems of sections Sg. We can apply the PD
Chern—Weil homomorphism and deduce that the powers

wly = L(W(pu, SY)*w" € O*(AU; Q)

of the curvature wy = day € Q?(AU;Q) assemble into a rational
PD form in Q%"(|%B|; Q) representing the rational h-power of the
first Chern class
2h (ngp . _ 2h. 2h .
i (TP (W(p,S0)); Q) = ¢ (p; Q) € H*(|B; Q).

We can now apply the de Rham—Weyl-Dupont—-Sullivan homotopy
between Qpp(|B]; Q) and Ka(B;Q), obtaining the simplicial co-
cycles representing ¢’ (p; Q), by integrating the forms w{} over the
base simplices. This gives zero if the dimension of the base simplex
is not equal to 2h. Thus we arrive at computing the pullbacks of
the universal cyclic characteristic form

W"(W(e, So)) = L(W(e, So)) "wy,

for an elementary c.s. bundle ¢ over 2h-simplices having n + 1
0-sections and integrating them over the base simplices. The form
wh(W(e, Sp)) is invariant under changing the base section Sp, there-
fore, the resulting number is an invariant of the necklace Nf(e).
The pullback of the cyclic form w” by the matrix map on A%" was
computed in Lemma 6.3 of p. 25 using the sum of minors Pfaffian
identity. The result is
wh(W(e, So)) = (71)hh'S(Z(W(€, So))dto VARERIVAN dtghfl.

Here s(L(W(e, Sp)) is the sum of the maximal minors of the nor-
malized matrix of an odd word. This number is equal to the ratio-
nal parity of the necklace (12):

s(L(W(e, So)) = P(N(e)).



232 N. MNEV, G. SHARYGIN

The factor h! appears from the power of the Grassmann quadratic
form, and (—1)" comes from the change of coordinates rule for
the universal cyclic connection. What remains is to integrate the
constant 2h-form over the 2h-simplex, which adds the volume %h,
of the standard 2h simplex as a factor, and the promised local

simplicial expression (13) for ¢! (p; Q) as PC(¢) is ready.

§8. NOTES

29. Here we swept under the carpet an appropriate version of PL simpli-
cial bundle theory. Although we need it only in an elementary form and
in the one-dimensional case, it still requires space for the setup. Simplicial
bundle theory is a parametric extension of the simple homotopy theory
of families of simple maps. It was presented in [31] and commented on in
the lectures [22]. Simple maps pop up in the description of the bound-
ary of an elementary s.c. bundle (see p. 17) and in the one-dimensional
case relate simplicial bundle combinatorics to cyclic category, this is what
we are actually investigating. In our case, the adequate variant would be
semi-simplicial, which has not yet been fixed. A semi-simplicial bundle is
a singular map of semi-simplicial sets (the same as a map of “n.d.c. sim-
plicial sets” of [26], or a “trisps map” of [20]). The semi-simplicial circle
bundles on a given base are in a one-to-one correspondence with the cyclic
decorations of the base by words.

30. Modulo the hidden semi-simplicial setup, we can formulate a couple
of facts which we hope to write out somewhere in future.

Since Chern classes are integer classes, the corresponding simplicial
cochains, represented by any rational local formulas, should have integer
simplicial periods, i.e., they are integrated to integer numbers over all in-
teger 2h-simplicial cycles in the base. When the base is some triangulation
of an oriented closed surface, this is a version of the combinatorial Gauss—
Bonnet theorem. This fact coupled with the simple expressions PC (¢) pro-
vides some understanding which bundles have or have not a triangulation
over a particular simplicial base:

Let |B| be an oriented two-dimensional closed surface tri-
angulated by a classical simplicial complex B, and let the
complex B have F' triangles. In this situation, F' is always
even. Then the Chern number of a classically triangulated
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circle bundle over |%B| having B as the base complex be-
longs to the integer interval [-2F +1,...,1F —1].
Moreover, the Chern numbers of semi-simplicially tri-
angulated circle bundles over || having B as the base
complex fill the entire integer interval [f%F, cee %F] In
this situation, % can be assumed to be a finite semi-
simplicial set, and |B|is a “A-complex” in the sense of [10].

The only concrete example of a triangulated circle bundle observable in
the literature is the triangulation of the Hopf bundle over the boundary of
the tetrahedron A3, constructed in [24]. The parity local formulas allow
one to deduce that the cited result is the best possible. From the above
statement one may conclude that over JA® one can triangulate only the
trivial bundle and the Hopf bundle using a map of classical simplicial com-
plexes. If one can use semi-simplicial triangulations, then over OA® one can
additionally triangulate the circle bundle associated to the tangent bundle
of the 2-sphere, and this is the complete list of circle bundles allowing a
triangulation over A3. Classical triangulations are fundamental, but have
their own additional degree of interesting arithmetical complexity relative
to semi-simplicial triangulations, see [16]. The semi-simplicial category is
related to the classical simplicial category by functorial double normal (=
double barycentric) subdivision.

There is a somewhat strange more general statement which requires as
a premise an integer combinatorial formula for the first Chern class:

If a circle bundle p has a triangulation with a simpli-
cial locally ordered base 9B, then ¢;(p) can be represented
by a simplicial 2-cocycle on B having values 0 and 1 on
2-simplices. The inverse is true for semi-simplicial trian-
gulations of circle bundles and not true for triangulations
by classical simplicial complexes.
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