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THE MALLOWS MEASURES ON THE
HYPEROCTAHEDRAL GROUP

ABSTRACT. The Mallows measures on the symmetric group S, form
a deformation of the uniform distribution. These measures are com-
monly used in mathematical statistics, and in recent years they
found applications in other areas of mathematics as well.

As shown by Gnedin and Olshanski, there exists an analog of
the Mallows measure on the infinite symmetric group. These new
measures are diffuse, and they are quasi-invariant with respect to
the two-sided action of a countable dense subgroup.

The purpose of the present note is to extend the Gnedin—Olshan-
ski construction to the infinite hyperoctahedral group. Along the
way, we obtain some results for the Mallows measures on finite hy-
peroctahedral groups, which may be of independent interest.

§1. INTRODUCTION

For positive ¢, the Mallows measure on a finite symmetric group is
defined as the probability measure whose value at a permutation o is
proportional to ¢™¥(?) where inv(o) denotes the number of inversions of
o. This measure was introduced by Mallows in [1], and it can be extended
to a probability measure on the infinite symmetric group, as described
in [2].

The Mallows measures can also be defined on other Weyl groups. We
analyze the Mallows measure on the finite hyperoctahedral group — the
Weyl group of the root systems B,, and C},, and extend it to a probability
measure on the infinite hyperoctahedral group.

§2. FINITE HYPEROCTAHEDRAL GROUPS

The hyperoctahedral group H,, is the semidirect product S,, x (Z/2Z)",
where S,, denotes the group of permutations of {1,...,n}.

Let S», denote the group of permutations of {-n,...,—1,1,...,n}.
We will regard H,, as a subgroup of §2n, formed by the permutations
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commuting with the involution ¢ — —i; such permutations will be called
symmetric.

The finite hyperoctahedral group can also be regarded as the Weyl
group of the root systems B,, and (), which are dual to each other. If

{e1,...,ey} is the canonical orthonormal basis of R™, then B,, consists of
the vectors te; (of length 1) and the vectors £ (e; £ e;) for i # j (of length
\/5) The vectors ey, es —e1,...,e, —e,_1 form a base A for this system,

and the corresponding fundamental Weyl chamber €(A) is formed by the
points (x1,...,x,) € R™ with 0 < z; < 23 < -+ < x,. The Weyl group
is generated by the transformations z; «— z;41 (i = 1,...,n — 1) and
1 — —x1, which are the reflections in the hyperplanes orthogonal to the
vectors e;+1 — e; and ey, respectively. This gives an isomorphism between
the Weyl group and the hyperoctahedral group H,,. The elements of H,
that correspond to these transformations are denoted by o;;4+1 and e,
respectively.

The action of the Weyl group of B,, on R™ gives us a realization of H
as the group of linear operators on R™ preserving the set {tey,...,te,}.
In the basis {e1,...,e,}, these operators are given by the n x n matrices
with exactly one nonzero number in each row and column, this nonzero
number being +1. Given a symmetric permutation o, the corresponding
operator on R"”, also denoted by o, is given by

oe; = sign(o(i))e|q(|-

Let us consider the action of H,, on Weyl chambers of B,, induced by
the above isomorphism. Two Weyl chambers are said to be separated by
the hyperplane P, orthogonal to a root « if these chambers lie in different
connected components of R\ P,.

Definition 1. An inversion of the first type of o € H, is a hyperplane
orthogonal to a root of length v/2 and separating €(A) and 0.€(A). An
inversion of the second type of o € H, is a hyperplane orthogonal to a
root of length 1 and separating €(A) and 0.€(A).

Let invy (o) denote the number of inversions of ¢ of the first type, and
inva (o) denote the number of inversions of ¢ of the second type.

Proposition 2. Let 0 € H,. Then inv(c) = invi(c~!) and inve(c) =
: -1
inve(o™1).

Proof. The action on R™ by o~ ! gives a one-to-one correspondence be-
tween the hyperplanes separating €(A) and 0.€(A) and the hyperplanes
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separating 0~ 1.€(A) and €(A). Moreover, this action preserves the root
system and the scalar product, hence the images of hyperplanes orthogonal
to roots of length [ are again hyperplanes orthogonal to roots of length I.
So this gives a one-to-one correspondence between the inversions of o and
inversions of o~ which preserves the type of inversions. (I

Proposition 3. Let o be an element of Hy,. There is a one-to-one corre-
spondence between the inversions of o of the first type and the pairs (i, )
such that —m < i < j < n, |i| < |j], and o(i) > o(j). Also, there is a
one-to-one correspondence between tne inversions of o of the second type
and the pairs (i,7) such that —n < i < j < n, |i| =|j|, and (i) > o(j).

Proof. Proposition 2 yields a bijection between the inversions of ¢ and
o~ 1. Then the desired correspondence is provided by the action of H,, on
R™.

The image of e; + 2e3 + -+ + ne,, € €(A) under the action by o~ is
o(l)e; + -+ o(n)e, € 07 1.€(A). Thus, the hyperplane orthogonal to e;
is an inversion of the second type if and only if o(i) < 0, and this gives
the second correspondence. As to the first correspondence, the pairs (i, 7)
such that —n < i < j < n, |i| < |j|, and o(i) > o(j) are either pairs (3, j)
such that 0 < i < j and o(i) > o(j) or pairs (—i,7) such that 0 < i < j
and o(i) + o(j) < 0. Then a pair from the first group gives an inversion
of the first type corresponding to the reflection in P, _.,, and a pair from
the second group gives an inversion of the first type corresponding to the
reflection in P, .;, and all inversions of the first type are given by this
correspondence. O

§3. A DESCRIPTION OF H,, USING YOUNG DIAGRAMS

Let Af,, denote the set of symmetric Young diagrams of length < n.
We will construct a bijection H,, — Sp x Ag,, using the construction
described in [3].

According to [3], there is a bijection §2n — S, x A" x S,,, where A"
denotes the set of partitions A of length < n with Ay < n. It maps a
permutation o € Sap, to a triple (o4, A(c), o), where the permutations o
and o_ are obtained by taking the subsequences of positive and negative
terms in (o(—n),...,o(n)). As for the diagram A(o), the length of its ith
row is, by definition, the number of negative terms in (o(—n),...,o(n))
that are to the right of the ith leftmost positive number.
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Proposition 4. The correspondence o — (o1, (o)) defined above deter-

mines a bijection between Hy, and Sy X AL, .

Proof. The embedding H,, C Som gives rise to an embedding
H, — S, x A" x S,

which maps o to the triple (o4, A(0),0_). Since o is a symmetric per-
mutation, we have o, = o_. Moreover, according to [3, Part 3], we have
Ao) = A(o)’, so A is symmetric. On the other hand, if o_ = o1 and A(0)
is symmetric, then ¢ is a symmetric permutation.

Thus, the image of H,, in S, x A" x S,, is the set of triples (wq, A, ws) such
that w; = wy and A = X. The projection onto the first two components,
which maps (w1, A\,w2) to (w1, ), provides a one-to-one correspondence

between these triples and S, x Af,. Hence, the composition

o (U+7/\(U)707) = (U+7)‘(U))

3 n
gives a one-to-one correspondence from H,, to S, X Asym. O

This description gives a way to compute the number of inversions of
o € Hy.

Proposition 5. Let o € H,,. Then we have

invy (o) = inv(oy) + w, (1)

inve (o) = d(\ (o)), (2)

where inv(oy) denotes the number of inversions of oy and d(\) denotes
the number of diagonal squares of the Young diagram of A.

Proof. We begin with (2). According to the definition of A\(o), we see that
A(o); is the number of negative integers to the right of the ith positive
integer in the sequence (o(—n),...,o(n)). Thus, to the right of the ith
positive number there are n — i + A(0); numbers. It follows that the ith
positive number is in the left half of the sequence if and only if n — i +
A(o); = n. The number of inversions of the second type is equal to the
number of positive numbers in the left half of the sequence, which is equal
to the number of ¢ such that A(c); > ¢, which is equal to d(A(¢)).

Let us prove (1). Given ¢ € H,,, we consider its ordinary inversions,
i.e., pairs i < j such that o(i) > o(j) (wherei,j € {-n,...,—1,1,...,n}).
Let Inv(o) denote the number of ordinary inversions of o. We count this
number in two ways.
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On the one hand, by Proposition 3, each inversion (i, 7) of ¢ of the first
type determines two ordinary inversions, (4,7) and (—i,—j), while each
inversion of the second type determines a single ordinary inversion of the
form (i, —i). Moreover, all ordinary inversions are obtained in this way,
which gives the equality

Inv(o) = 2invy (o) + inva (o).

On the other hand, each ordinary inversion (i, 7) is either positive in the
sense that (i) > o(j) > 0, or negative in the sense that 0 > o (i) > o(j),
or else sign-changing, meaning that o (i) > 0 > ¢(j). Both the number of
positive and the number of negative inversions are equal to the number of
inversions of o4, while the number of sign-changing inversions is equal to
|A(0)| by the definition of A(c). So we have

Inv(o) = 2inv(o4) + |A(0)| = 2invy (o) + inva (o).
Since invy (o) = d(A(0)) by (2), we get (1). O

§4. THE MALLOWS MEASURES ON H,,

In the remainder of the paper we fix two real numbers ¢; and ¢» such
that 0 < ¢1,¢2 < 1. We will also use the standard g-notation:

[n]q:1+q+"'+qn_lv [n]y! = [1g[2]g - - - [nlgs

(#50)n = (1 —2)(1 - zq) ... (1 - z¢" ™).

Definition 6. The Mallows measure on H,, is the probability measure p,
such that for any o € H,

—1 invy(o) inva(o)

pn(0) =7, @ s ,

where 1, is a normalization constant.
Proposition 7. The constant v, is given by
Yo =[] (—q25 1 )n-

Proof. Since p, is a probability measure on H,,, we have

Y = Z qi1HV1(J)quHVZ(J)-
oc€H,
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Using the description via Young diagrams, we have

inv(oy ) REIdO@) 4oy
Y = Z g 3 q2( (0))
0EHR
. Al=d() d(A) d)\
2P L AR VR I
WESH AEAR

sym

This is the product of two sums. The first one can be computed by induc-
tion, and the result is [n],,!. The second sum can be rewritten using the
Frobenius notation (a|a) for a symmetric partition A:

I LD L LR o | [

ACALm (ala)err,, (ala)err,, =1
For elements from Ag,,, the numbers «a; are distinct and less than n. So
we have
l(a) n—1
> H at'q = [J (1 +dqiae).

(ala)eAr,,, =1 i=0
Hence yn, = [n]g,! H (1 + gigz) = [n]g /(—q25 q1)n- .

i=0

The description via Young diagrams also gives a way to write the Mal-

lows measure on H, as the product of the Mallows measure on S,, and the
A =d())

measure on Ag . with the value ¢; * q2( )(7QQ; q1),} at a partition \.

Proposition 8. The Mallows measure is invariant under the inversion
map g — g '.

Proof. This follows from Proposition 2. O
Given k < n and a k-tuple @ = (aq,...,a) of numbers from the set
{=n,...,=1,1,...,n} such that |a;| # |a;| for i # j, we define

CP(a) = Cf(ar, .., ax) = {7 € Halo (i) = s}
Subsets of this form will be called elementary cylinders.

Theorem 9. The Mallows measure p, on Hy is uniquely determined by
the following properties:

(a) pn is a probability measure;
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(b) for any elementary cylinder Cj*(ou, ..., ar) and any i < k—1 such
that a; < ajy1, one has
pn (O, -y, @iy -y ak)) = g5 i (CR (@, . - Qg1 gy -y O));
(c) for any elementary cylinder C (a1, ...,ar) with a; > 0, one has

pn(CR (. 0n)) = @y pn (CF (=, -, ).

Proof. Let v be a probability measure with properties (b) and (c). For
o € H, we have

Cp((e(1),...,0(n))) = {0}
The right multiplication by the elementary transposition o; ;11 swaps o (%)
and o (i + 1), while the right multiplication by &; changes the sign of o(1).
Take 0 € H,. If 0(i) < o(i + 1) for some 4, we have

invi(00;41) =invi (o) + 1, inve(00;i41) = inva(0); (3)
and if o(1) > 0, we have
invy (ce1) = invy (o), inva(oe1) =inva (o) + 1. (4)

All these identities can be proved using Proposition 3. Then, using prop-
erties (a)—(c), we obtain that
V(G’G’I) — V(O_)qilnvl(crcr')finvl (o) qi2nvz(a'cr')7inv1 (a), (5)
where ¢’ is either o; ;41 or £1. Since these elements generate H,,, we can
deduce by induction that (5) holds for any ¢’ € H,,. Taking o = e, we get
I/(O’l) — V(e)qilnvl(o/) ian(a-’).
It follows that v = p,,.
Also, from (3) and (4) we see that the properties from the statement of
the theorem hold for pi,,. O

For elements of the hyperoctahedral group there is one more description.
For every o € H,, the sequence (6(—n),...,0(n)) determines a linear
ordering of the set {—n,...,—1,1,...,n} (namely, a > b if a is to the
right of b). This ordering is symmetric in the sense that a > b entails —a <
—b. Let O™ denote the set of such orderings of {—n,...,—1,1,...,n}.
There is a natural projection 7, : O™ — O defined by restricting
the ordering to the subset {—n + 1,...,n — 1}. We denote by m, the
corresponding projection m, : H, — H,—1.
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Proposition 10. The pushforward of the Mallows measure p, under m,
1S fhp—1 -

Proof. This can be checked by a simple computation. For ¢ € H,_1,
consider the sequence a = (0(1),...,0(n — 1)). Then the corresponding
sequences for elements in the preimage of o should have « as a subsequence,
and all absolute values should be distinct. So we should insert in « either
n or —n. If we insert n in the ith position, then we add n — i inversions
of the first type to the inversions of o. If we insert —n in the ith position,
then we add n — 1+ ¢ — 1 inversions of the first type and one inversion of
the second type. It follows that

n n
“l(g) = n—i n+i—2 [n —1g (—q2; q1)n—1
HUn T o) = q + q q fin_1 (0
" (2 1 ; ' 2) [n]g ' (—ao5 @1)n 1(9)
1
(e (1 + a207 ™)

= ([n]lh + [n]lhq?ilq2) l//nfl(a) = [l/nfl(O’). O

§5. THE MALLOWS MEASURE ON H

Now we focus on the infinite hyperoctahedral group H = S x (Z/2Z)*,
where S denotes the group of all permutations of N. As in the finite case,
we regard H as the group of symmetric permutations of Z\{0}.

Next, we introduce two subgroups of H. One is

H =S (Z)22)E,,

where (Z/2Z)3 denotes the subset of (Z/2Z)* consisting of the elements
(91,92,...) with finitely many nonidentity elements. In other words, H’
is the subgroup of symmetric permutations with finitely many changes of
sign, that is, finitely many i’s such that sign(i) # sign(o(i)). The second,
smaller, subgroup is
Hen = San X (Z/27)8,,

where Sgn C S denotes the set of finitary permutations. In other words,
Hen is the set of finitary symmetric permutations.

The description via Young diagrams can be extended to the subgroup
H’, giving a bijection H' — S X Agym. For w € S and A € Agym, let o(w, )
denote the preimage of (w, A).

For a k-tuple (ai,...,ax) of nonzero integers with distinct absolute
values, consider the elementary cylinder

Ck(ala . '7ak) = {U € H|U(7’) = ai}'
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It can be checked that such cylinders form a base for a topology on H. In
this topology, elementary cylinders are open and closed. In what follows,
all measures on H are assumed to be Borel measures.

Recall that o; ;41 € H is the elementary transposition swapping ¢ and
i+ 1, and ¢ is the elementary transposition swapping —1 and 1.

Definition 11. A measure p on H is said to be right (g1, q2)-exchangeable
if the following properties hold:

(a) For every i > 1, the pushforward p; ;41 of the measure p under
the transformation o +— 00 ;41 is equivalent to u, and the value
of the Radon-Nikodym derivative %

qsign(a(i+1)70(i))

1 .

at ¢ € H is equal to

(b) The pushforward p—1 1 of the measure p under the transformation
o +— o is equivalent to u, and the value of the Radon—Nikodym

derivative d“d;u“ at o € H is equal to qgig“(a(l))‘

We can similarly define the left (g1, ¢2)-exchangeability by replacing right
shifts by left shifts and imposing the relations

dppijitr _ sign(o ™ (i+1)—o (i) dp—11 _ qsign(flu))
du ! ’ du 2 ’

Remark 12. The property of right (respectively, left) (g1, g2)-exchan-
geability is equivalent to that of quasi-invariance with respect to the right
(respectively, left) action of the dense countable subgroup Ha, C H with
a certain special 1-cocycle.

The next proposition is an obvious reformulation of the right (¢1,¢2)-
exchangeability in terms of elementary cylinders.

Proposition 13. A probability measure p on H is right (q1,q2)-exchan-
geable if and only if the following properties hold:

(1) For a sequence of mnonzero integers (ai,...,qn) such that
a; < iy for some i, we have

w(Crlar, ..y, ity oyar)) = g5 " w(Crlar, .oy Qig1, iy ).
(2) For a sequence of nonzero integers (ay,...,a) such that a; > 0,
we have

W(Crlon, ... o)) = a5 ' 1(Cr(—on, ..., ap)).
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Theorem 14. There exists a unique right (q1, g2)-exchangeable probability
measure on H, which we call the Mallows measure. Moreover, this measure
is left (q1,q2)-exchangeable, it is supported by H', and it is invariant under
the inversion map ¢ — o~ L.

We begin with constructing the required measure p. Let pgym be the
q1-exchangeable measure on S (as described in [2]) and ua be the measure
on Agym defined by

[A=d(X)

AN = (—ga)da * gd™,

Set p' 1= pigym ® pa (this is a measure on S X Agym = H’) and define
u as the pushforward of p’ under the embedding H' — H. Thus, p is
concentrated on H' C H.

Lemma 14.1. The measure p is right (q1, g=)-exchangeable.

Proof. We use Proposition 13. Take « such that a; < a;41 for some i. If
a; and ;41 have the same sign, then their transposition does not change
the partition, while usym(o4) is multiplied by ¢;. If they have different
signs, then o is unchanged and the new partition has the same length
of the diagonal but two more squares. Then the required factor ¢; results
from the transformation of .

To prove the second property, we observe that the change of the sign
of o(1) does not affect o1, while A(o) acquires one diagonal box, which
results in the multiplication by g2, as desired. O

Let Seq be the set of finite sequences of nonzero integers with distinct
absolute values.

Lemma 14.2. The measure p is left (q1, g2)-exchangeable.

Proof. We begin with the left shift by ¢;;41. Take (au,...,ax) € Seq
such that ¢ = |a;| and i + 1 = |aj4s| for some positive j and s. Let
denote the subsequence of a consisting of the integers between a; and
oj+s, while v; denote the subsequence to the left of a; and v, denote the
subsequence to the right. Note that the absolute values of integers in £,
v;, and 7y, are not equal to ¢ or ¢ + 1. We examine four cases depending on
the signs of a;; and orj4,.

In the first case, we have aj,aj;s > 0. Let a denote the number of
elements of f# greater than i+ 1, and b denote the number of elements less
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than 4. Then, using the right (g1, g2)-exchangeability, we have

,U(Ck(')/l,i,ﬂ,i + ]-777‘)) = qi‘_b:u(ck ('Ylaiai + 175777‘))
= ¢ " u(Ce(yy i+ 1,4, 8,7%)) = ¢ ' 1(Cr (i + 1, 8,1,7%)).

In the second case, we have aj,ajys < 0. Similarly, let a denote the
number of elements of [ greater than —i, and b denote the number of
elements less than —i — 1. Then we have

N(Ck (’717 77:757 —i— 17’77‘)) = qg_aﬂ(ck (’Yla 72’7 —i— 175777‘))
= qlljia+1u(ok(’n: —i— 17 _iaﬁa’YT‘)) = ql,u’(Ck(’Yla —1 — laﬁa —Za%))

In the third case, we have a; < 0 and a4, > 0. Let ¢ denote the number
of elements of v; greater than i + 1, and d denote the number of elements
of «; with absolute value less than i 4+ 1, while e denote the number of
elements of 7; less than —i — 1. We have (using the result of the first case)

,U,(Ck (’Yl, _iaﬁai + 17’)/7")) = qf+d_eu(0k(_i7’na/87i + 1777"))

= a7 " u(Cr (i, 7, B0+ 1%) = a1 %qep(Cr (1,6, 8,0 + 1,7))

= q%d_lq%u(ck ('7177: + laﬂaia'yr)) = qf+d_6_IQ2N(Ck(i + 17’7!7577:777“))
= qf+dieilu(ok(_i - la’ylaﬁaia’)/r‘)) = qflﬂ(ck(’na -1 — laﬁaia’yr‘))-

In the fourth case, we have o; > 0 and aj;, < 0. Using the same
notation as in the third case and applying the result of the second case,
we have

N(Ck(’)/laiaﬂa —i— 17’77‘)) = Qfdieﬂ(ck(iﬁlyﬁy —i— 17’77‘))
= qi‘_d_qulu(ok(_ia’ylaﬁa —i— 1’)/7"))
= "y w(Crln, =i, B, —i = 1,7))

= ¢ " gy u(Cr(y, —i = 1,8, —i, 7))
= qfidie+1q271u(ok(_i - 177[767 _’La’YT‘))

= q; " M (Cr i + 1,1, B, i, 7))
= fhﬂ(ck (’717 i+ ]-7 57 72’7 77‘))
These arguments imply that p behaves as desired under the left shift by
04,41
Consider the left shift by ;. The image of Ck(vi,1,7,) under the left
shift by &1 is Cr (v, —1,7,). Let a denote the number of positive elements
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of 7, and b denote the number of negative elements of ;. We have

1(Cr (v, 1,7)) = a u(Cr (1,7, 72))
=q7 gy " (Ch (=1, 7, %)) = a5 1(Cr (1, —1, ).
This completes the proof. O

Now we turn to the uniqueness. As in the finite case, we can define the
set of symmetric linear orderings on Z\{0}, which is denoted by O=™.
For each element of H there is a symmetric ordering, defined in the same
way as in the finite case. Thus we obtain an embedding 7 : H — O¥™
(however, it is not surjective). For each n there is a natural projection

Py O™ — O™ which is defined as the restriction to {—n,...,n}. Let
1, denote the corresponding projection H — H,,.

Lemma 14.3. Assume that v is a right (q1,q2)-exchangeable probability
measure on H, and denote by v, its pushforward under the projection
Yn : H — H,. Then v, coincides with the Mallows measure.

Proof. We introduce partial orderings on Seq as follows: o < g if a is a
subsequence of 3, and o <, 8 if @ < 8 and any integer in # that does not
belong to a has absolute value greater than n. We prove that v, is the
Mallows measure using the defining properties from Proposition 9.

Take o € Seq of length k, and let N be a positive integer greater than
the absolute values of all integers in a. For any n > N we have

va(Cg (@) = v(¥y " (CF (a)))-

If o € ¢, (C()), then the subsequence of (¢(1),0(2),...) consisting of
the elements with absolute value not greater than n begins with a. Then
we can take [ such that h = (¢(1),...,0(l)) =, «. On the other hand, if
for some o € H the sequence (o(1),0(2),...) begins with h >, «, then
o € Y, (Cf(a)). Hence

Y, (O () = U Ciny(h).
h>p,a

Moreover, if for any o we take the minimum [ such that h >, «, then we
have o(l) = h; = ay, and thus

U (CF (@) = |_| Cigny (h),
h>p,a
hyny=ak
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vn(Cp(@) = Y v(Cyny(h)).
h=na
hihy=ak

Assume that for some i we have a; < a;41. To prove that
vn((CR (@) = q7 'wa((CR (6,0 + 1).q0)),

it is enough to prove that for any h >, a we have
v(Cyny(h)) = Qfl’/(cl(h)(ﬁ)),

where h denotes the sequence h with the transposed integers «; and aq1.
Take h =, «, and let (81,...,0:) be the subsequence of integers between
a; and a1, while ; and «, be the subsequences to the left of a; and to
the right of a;11. Then |3;| > n, so either 3; > a;, ajp1 or §; < @y, iy,
Let a be the number of positive ;’s and b be the number of negative 3;’s.
Then

V(Cl(h) (h) = V(Cl(h) (Vs iy Buy - ooy Bry Qigr,Yr))

= qlf_a’/(cl(h) (71, B, @i, i1, 7))
= Q§7a71V(Cz(h) (1, By qtigr, iy vr)
= ;" v(Cyny (W, i1, By i, 1)) = a;  v(Ciny ().

The second property can be proved similarly. O

The uniqueness of a right (¢, g2)-exchangeable measure on H follows
from its embedding into O3Y™, which is the projective limit of the sets

Oy™ Using the lemma above and the Kolmogorov extension theorem, we
see that this measure should be the limit of the Mallows measures on H,,.

Lemma 14.4. The measure p is invariant under the inversion map.

Proof. This follows from the uniqueness of a right (¢i, g2)-exchangeable
probability measure and the left (g1, g2)-exchangeability of u. Note that the
pushforward image of a left (g1, ¢2)-exchangeable measure is right (q1,¢2)-
exchangeable. So the image of p is right (g1, ¢2)-exchangeable, and thus it
is equal to u. O

Thus pu satisfies all the properties from the theorem.
It is worth noting that varying ¢, with fixed ¢; gives a family of equiv-
alent measures on H’'.
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