
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.S. KorotkikhTHE MALLOWS MEASURES ON THEHYPEROCTAHEDRAL GROUPAbstrat. The Mallows measures on the symmetri group Sn forma deformation of the uniform distribution. These measures are om-monly used in mathematial statistis, and in reent years theyfound appliations in other areas of mathematis as well.As shown by Gnedin and Olshanski, there exists an analog ofthe Mallows measure on the in�nite symmetri group. These newmeasures are di�use, and they are quasi-invariant with respet tothe two-sided ation of a ountable dense subgroup.The purpose of the present note is to extend the Gnedin{Olshan-ski onstrution to the in�nite hyperotahedral group. Along theway, we obtain some results for the Mallows measures on �nite hy-perotahedral groups, whih may be of independent interest.
§1. IntrodutionFor positive q, the Mallows measure on a �nite symmetri group isde�ned as the probability measure whose value at a permutation � isproportional to qinv(�), where inv(�) denotes the number of inversions of�. This measure was introdued by Mallows in [1℄, and it an be extendedto a probability measure on the in�nite symmetri group, as desribedin [2℄.The Mallows measures an also be de�ned on other Weyl groups. Weanalyze the Mallows measure on the �nite hyperotahedral group { theWeyl group of the root systems Bn and Cn, and extend it to a probabilitymeasure on the in�nite hyperotahedral group.

§2. Finite hyperotahedral groupsThe hyperotahedral group Hn is the semidiret produt Sn⋉ (Z=2Z)n,where Sn denotes the group of permutations of {1; : : : ; n}.Let S̃2n denote the group of permutations of {−n; : : : ;−1; 1; : : : ; n}.We will regard Hn as a subgroup of S̃2n, formed by the permutationsKey words and phrases: in�nite hyperotahedral group, Young diagrams, quasi-invariant measures on groups. 151



152 S. KOROTKIKHommuting with the involution i 7→ −i; suh permutations will be alledsymmetri.The �nite hyperotahedral group an also be regarded as the Weylgroup of the root systems Bn and Cn, whih are dual to eah other. If
{e1; : : : ; en} is the anonial orthonormal basis of R

n, then Bn onsists ofthe vetors ±ei (of length 1) and the vetors ±(ei±ej) for i 6= j (of length√2). The vetors e1; e2 − e1; : : : ; en − en−1 form a base � for this system,and the orresponding fundamental Weyl hamber C(�) is formed by thepoints (x1; : : : ; xn) ∈ R
n with 0 < x1 < x2 < · · · < xn. The Weyl groupis generated by the transformations xi ←→ xi+1 (i = 1; : : : ; n − 1) andx1 7→ −x1, whih are the reetions in the hyperplanes orthogonal to thevetors ei+1 − ei and e1, respetively. This gives an isomorphism betweenthe Weyl group and the hyperotahedral group Hn. The elements of Hnthat orrespond to these transformations are denoted by �i;i+1 and "1,respetively.The ation of the Weyl group of Bn on R

n gives us a realization of Has the group of linear operators on R
n preserving the set {±e1; : : : ;±en}.In the basis {e1; : : : ; en}, these operators are given by the n× n matrieswith exatly one nonzero number in eah row and olumn, this nonzeronumber being ±1. Given a symmetri permutation �, the orrespondingoperator on R

n, also denoted by �, is given by�ei = sign(�(i))e|�(i)|:Let us onsider the ation of Hn on Weyl hambers of Bn indued bythe above isomorphism. Two Weyl hambers are said to be separated bythe hyperplane P� orthogonal to a root � if these hambers lie in di�erentonneted omponents of R
n \ P�.De�nition 1. An inversion of the �rst type of � ∈ Hn is a hyperplaneorthogonal to a root of length √2 and separating C(�) and �:C(�). Aninversion of the seond type of � ∈ Hn is a hyperplane orthogonal to aroot of length 1 and separating C(�) and �:C(�).Let inv1(�) denote the number of inversions of � of the �rst type, andinv2(�) denote the number of inversions of � of the seond type.Proposition 2. Let � ∈ Hn. Then inv1(�) = inv1(�−1) and inv2(�) =inv2(�−1).Proof. The ation on R

n by �−1 gives a one-to-one orrespondene be-tween the hyperplanes separating C(�) and �:C(�) and the hyperplanes



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 153separating �−1:C(�) and C(�). Moreover, this ation preserves the rootsystem and the salar produt, hene the images of hyperplanes orthogonalto roots of length l are again hyperplanes orthogonal to roots of length l.So this gives a one-to-one orrespondene between the inversions of � andinversions of �−1 whih preserves the type of inversions. �Proposition 3. Let � be an element of Hn. There is a one-to-one orre-spondene between the inversions of � of the �rst type and the pairs (i; j)suh that −n 6 i < j 6 n, |i| < |j|, and �(i) > �(j). Also, there is aone-to-one orrespondene between tne inversions of � of the seond typeand the pairs (i; j) suh that −n 6 i < j 6 n, |i| = |j|, and �(i) > �(j).Proof. Proposition 2 yields a bijetion between the inversions of � and�−1. Then the desired orrespondene is provided by the ation of Hn on
R
n.The image of e1 + 2e2 + · · · + nen ∈ C(�) under the ation by �−1 is�(1)e1 + · · ·+ �(n)en ∈ �−1:C(�). Thus, the hyperplane orthogonal to eiis an inversion of the seond type if and only if �(i) < 0, and this givesthe seond orrespondene. As to the �rst orrespondene, the pairs (i; j)suh that −n 6 i < j 6 n, |i| < |j|, and �(i) > �(j) are either pairs (i; j)suh that 0 < i < j and �(i) > �(j) or pairs (−i; j) suh that 0 < i < jand �(i) + �(j) < 0. Then a pair from the �rst group gives an inversionof the �rst type orresponding to the reetion in Pei−ej , and a pair fromthe seond group gives an inversion of the �rst type orresponding to thereetion in Pei+ej , and all inversions of the �rst type are given by thisorrespondene. �

§3. A desription of Hn using Young diagramsLet �nsym denote the set of symmetri Young diagrams of length 6 n.We will onstrut a bijetion Hn → Sn × �nsym using the onstrutiondesribed in [3℄.Aording to [3℄, there is a bijetion S̃2n → Sn × �n × Sn, where �ndenotes the set of partitions � of length 6 n with �1 6 n. It maps apermutation � ∈ S̃2n to a triple (�+; �(�); �−), where the permutations �+and �− are obtained by taking the subsequenes of positive and negativeterms in (�(−n); : : : ; �(n)). As for the diagram �(�), the length of its ithrow is, by de�nition, the number of negative terms in (�(−n); : : : ; �(n))that are to the right of the ith leftmost positive number.



154 S. KOROTKIKHProposition 4. The orrespondene � 7→ (�+; �(�)) de�ned above deter-mines a bijetion between Hn and Sn × �nsym.Proof. The embedding Hn ⊂ S̃2n gives rise to an embedding
Hn → Sn × �n × Snwhih maps � to the triple (�+; �(�); �−). Sine � is a symmetri per-mutation, we have �+ = �−. Moreover, aording to [3, Part 3℄, we have�(�) = �(�)′, so � is symmetri. On the other hand, if �− = �+ and �(�)is symmetri, then � is a symmetri permutation.Thus, the image ofHn in Sn×�n×Sn is the set of triples (!1; �; !2) suhthat !1 = !2 and � = �′. The projetion onto the �rst two omponents,whih maps (!1; �; !2) to (!1; �), provides a one-to-one orrespondenebetween these triples and Sn × �nsym. Hene, the omposition� 7→ (�+; �(�); �−) 7→ (�+; �(�))gives a one-to-one orrespondene from Hn to Sn × �nsym. �This desription gives a way to ompute the number of inversions of� ∈ Hn.Proposition 5. Let � ∈ Hn. Then we haveinv1(�) = inv(�+) + |�(�)| − d(�(�))2 ; (1)inv2(�) = d(�(�)); (2)where inv(�+) denotes the number of inversions of �+ and d(�) denotesthe number of diagonal squares of the Young diagram of �.Proof. We begin with (2). Aording to the de�nition of �(�), we see that�(�)i is the number of negative integers to the right of the ith positiveinteger in the sequene (�(−n); : : : ; �(n)). Thus, to the right of the ithpositive number there are n − i + �(�)i numbers. It follows that the ithpositive number is in the left half of the sequene if and only if n − i +�(�)i > n. The number of inversions of the seond type is equal to thenumber of positive numbers in the left half of the sequene, whih is equalto the number of i suh that �(�)i > i, whih is equal to d(�(�)).Let us prove (1). Given � ∈ Hn, we onsider its ordinary inversions,i.e., pairs i < j suh that �(i) > �(j) (where i; j ∈ {−n; : : : ;−1; 1; : : : ; n}).Let Inv(�) denote the number of ordinary inversions of �. We ount thisnumber in two ways.



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 155On the one hand, by Proposition 3, eah inversion (i; j) of � of the �rsttype determines two ordinary inversions, (i; j) and (−i;−j), while eahinversion of the seond type determines a single ordinary inversion of theform (i;−i). Moreover, all ordinary inversions are obtained in this way,whih gives the equalityInv(�) = 2inv1(�) + inv2(�):On the other hand, eah ordinary inversion (i; j) is either positive in thesense that �(i) > �(j) > 0, or negative in the sense that 0 > �(i) > �(j),or else sign-hanging, meaning that �(i) > 0 > �(j). Both the number ofpositive and the number of negative inversions are equal to the number ofinversions of �+, while the number of sign-hanging inversions is equal to
|�(�)| by the de�nition of �(�). So we haveInv(�) = 2inv(�+) + |�(�)| = 2inv1(�) + inv2(�):Sine inv2(�) = d(�(�)) by (2), we get (1). �

§4. The Mallows measures on HnIn the remainder of the paper we �x two real numbers q1 and q2 suhthat 0 < q1; q2 < 1. We will also use the standard q-notation:[n℄q = 1 + q + · · ·+ qn−1; [n℄q ! = [1℄q[2℄q : : : [n℄q;(x; q)n = (1− x)(1− xq) : : : (1− xqn−1):De�nition 6. The Mallows measure on Hn is the probability measure �nsuh that for any � ∈ Hn�n(�) = −1n qinv1(�)1 qinv2(�)2 ;where n is a normalization onstant.Proposition 7. The onstant n is given byn = [n℄q1 !(−q2; q1)n:Proof. Sine �n is a probability measure on Hn, we haven = ∑�∈Hn qinv1(�)1 qinv2(�)2 :



156 S. KOROTKIKHUsing the desription via Young diagrams, we haven = ∑�∈Hn qinv(�+)+ |�(�)|−d(�(�))21 qd(�(�))2= ∑!∈Sn qinv(!)1 ·
∑�∈�nsym q |�|−d(�)21 qd(�)2 :This is the produt of two sums. The �rst one an be omputed by indu-tion, and the result is [n℄q1 !. The seond sum an be rewritten using theFrobenius notation (�|�) for a symmetri partition �:

∑�∈�nsym q |�|−d(�)21 qd(�)2 = ∑(�|�)∈�nsym q|�|1 ql(�)2 = ∑(�|�)∈�nsym l(�)∏i=1 q�i1 q2:For elements from �nsym, the numbers �i are distint and less than n. Sowe have
∑(�|�)∈�nsym l(�)∏i=1 q�i1 q2 = n−1∏i=0 (1 + qi1q2):Hene n = [n℄q1 ! n−1∏i=0 (1 + qi1q2) = [n℄q1 !(−q2; q1)n. �The desription via Young diagrams also gives a way to write the Mal-lows measure on Hn as the produt of the Mallows measure on Sn and themeasure on �nsym with the value q |�|−d(�)21 qd(�)2 (−q2; q1)−1n at a partition �.Proposition 8. The Mallows measure is invariant under the inversionmap g → g−1.Proof. This follows from Proposition 2. �Given k < n and a k-tuple � = (�1; : : : ; �k) of numbers from the set

{−n; : : : ;−1; 1; : : : ; n} suh that |�i| 6= |�j | for i 6= j, we de�neCnk (�) = Cnk (�1; : : : ; �k) = {� ∈ Hn|�(i) = �i}:Subsets of this form will be alled elementary ylinders.Theorem 9. The Mallows measure �n on Hn is uniquely determined bythe following properties:(a) �n is a probability measure;



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 157(b) for any elementary ylinder Cnk (�1; : : : ; �k) and any i 6 k−1 suhthat �i < �i+1, one has�n(Cnk (�1; : : : ; �i; �i+1; : : : ; �k)) = q−11 �n(Cnk (�1; : : : ; �i+1; �i; : : : ; �k));() for any elementary ylinder Cnk (�1; : : : ; �k) with �1 > 0, one has�n(Cnk (�1; : : : ; �k)) = q−12 �n(Cnk (−�1; : : : ; �k)):Proof. Let � be a probability measure with properties (b) and (). For� ∈ Hn we have Cnn ((�(1); : : : ; �(n))) = {�}:The right multipliation by the elementary transposition �i;i+1 swaps �(i)and �(i+1), while the right multipliation by "1 hanges the sign of �(1).Take � ∈ Hn. If �(i) < �(i+ 1) for some i, we haveinv1(��i;i+1) = inv1(�) + 1; inv2(��i;i+1) = inv2(�); (3)and if �(1) > 0, we haveinv1(�"1) = inv1(�); inv2(�"1) = inv2(�) + 1: (4)All these identities an be proved using Proposition 3. Then, using prop-erties (a){(), we obtain that�(��′) = �(�)qinv1(��′)−inv1(�)1 qinv2(��′)−inv1(�)2 ; (5)where �′ is either �i;i+1 or "1. Sine these elements generate Hn, we andedue by indution that (5) holds for any �′ ∈ Hn. Taking � = e, we get�(�′) = �(e)qinv1(�′)1 qinv2(�′)2 :It follows that � = �n.Also, from (3) and (4) we see that the properties from the statement ofthe theorem hold for �n. �For elements of the hyperotahedral group there is one more desription.For every � ∈ Hn, the sequene (�(−n); : : : ; �(n)) determines a linearordering of the set {−n; : : : ;−1; 1; : : : ; n} (namely, a ≻ b if a is to theright of b). This ordering is symmetri in the sense that a ≻ b entails −a ≺
−b. Let Osymn denote the set of suh orderings of {−n; : : : ;−1; 1; : : : ; n}.There is a natural projetion ~�n : Osymn → Osymn−1, de�ned by restritingthe ordering to the subset {−n + 1; : : : ; n − 1}. We denote by �n theorresponding projetion �n : Hn → Hn−1.



158 S. KOROTKIKHProposition 10. The pushforward of the Mallows measure �n under �nis �n−1.Proof. This an be heked by a simple omputation. For � ∈ Hn−1,onsider the sequene � = (�(1); : : : ; �(n − 1)). Then the orrespondingsequenes for elements in the preimage of � should have � as a subsequene,and all absolute values should be distint. So we should insert in � eithern or −n. If we insert n in the ith position, then we add n − i inversionsof the �rst type to the inversions of �. If we insert −n in the ith position,then we add n− 1 + i− 1 inversions of the �rst type and one inversion ofthe seond type. It follows that�n�−1n (�) = ( n∑i=1 qn−i1 + n∑i=1 qn+i−21 q2) [n− 1℄q1 !(−q2; q1)n−1[n℄q1 !(−q2; q1)n �n−1(�)= ([n℄q1 + [n℄q1qn−11 q2) 1[n℄q1(1 + q2qn−11 )�n−1(�) = �n−1(�):�
§5. The Mallows measure on HNow we fous on the in�nite hyperotahedral group H = S⋉ (Z=2Z)∞,where S denotes the group of all permutations of N. As in the �nite ase,we regard H as the group of symmetri permutations of Z\{0}.Next, we introdue two subgroups of H. One is

H′ = S ⋉ (Z=2Z)∞�n;where (Z=2Z)∞�n denotes the subset of (Z=2Z)∞ onsisting of the elements(g1; g2; : : : ) with �nitely many nonidentity elements. In other words, H′is the subgroup of symmetri permutations with �nitely many hanges ofsign, that is, �nitely many i's suh that sign(i) 6= sign(�(i)). The seond,smaller, subgroup is
H�n = S�n ⋉ (Z=2Z)∞�n;where S�n ⊂ S denotes the set of �nitary permutations. In other words,

H�n is the set of �nitary symmetri permutations.The desription via Young diagrams an be extended to the subgroup
H′, giving a bijetion H′ → S×�sym. For ! ∈ S and � ∈ �sym, let �(!; �)denote the preimage of (!; �).For a k-tuple (�1; : : : ; �k) of nonzero integers with distint absolutevalues, onsider the elementary ylinderCk(�1; : : : ; �k) = {� ∈ H|�(i) = �i}:



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 159It an be heked that suh ylinders form a base for a topology on H. Inthis topology, elementary ylinders are open and losed. In what follows,all measures on H are assumed to be Borel measures.Reall that �i;i+1 ∈ H is the elementary transposition swapping i andi+ 1, and "1 is the elementary transposition swapping −1 and 1.De�nition 11. A measure � on H is said to be right (q1; q2)-exhangeableif the following properties hold:(a) For every i > 1, the pushforward �i;i+1 of the measure � underthe transformation � 7→ ��i;i+1 is equivalent to �, and the valueof the Radon{Nikodym derivative d�i;i+1d� at � ∈ H is equal toqsign(�(i+1)−�(i))1 .(b) The pushforward �−1;1 of the measure � under the transformation� 7→ �"1 is equivalent to �, and the value of the Radon{Nikodymderivative d�−1;1d� at � ∈ H is equal to qsign(�(1))2 .We an similarly de�ne the left (q1; q2)-exhangeability by replaing rightshifts by left shifts and imposing the relationsd�i;i+1d� = qsign(�−1(i+1)−�−1(i))1 ; d�−1;1d� = qsign(�−1(1))2 :Remark 12. The property of right (respetively, left) (q1; q2)-exhan-geability is equivalent to that of quasi-invariane with respet to the right(respetively, left) ation of the dense ountable subgroup H�n ⊂ H witha ertain speial 1-oyle.The next proposition is an obvious reformulation of the right (q1; q2)-exhangeability in terms of elementary ylinders.Proposition 13. A probability measure � on H is right (q1; q2)-exhan-geable if and only if the following properties hold:(1) For a sequene of nonzero integers (�1; : : : ; �k) suh that�i < �i+1 for some i, we have�(Ck(�1; : : : ; �i; �i+1; : : : ; �k)) = q−11 �(Ck(�1; : : : ; �i+1; �i; : : : ; �k)):(2) For a sequene of nonzero integers (�1; : : : ; �k) suh that �1 > 0,we have�(Ck(�1; : : : ; �k)) = q−12 �(Ck(−�1; : : : ; �k)):



160 S. KOROTKIKHTheorem 14. There exists a unique right (q1; q2)-exhangeable probabilitymeasure on H, whih we all the Mallows measure. Moreover, this measureis left (q1; q2)-exhangeable, it is supported by H′, and it is invariant underthe inversion map � → �−1.We begin with onstruting the required measure �. Let �sym be theq1-exhangeable measure on S (as desribed in [2℄) and �� be the measureon �sym de�ned by ��(�) = (−q2; q1)−1∞ q |�|−d(�)21 qd(�)2 :Set �′ := �sym ⊗ �� (this is a measure on S × �sym = H′) and de�ne� as the pushforward of �′ under the embedding H′ → H. Thus, � isonentrated on H′ ⊂ H.Lemma 14.1. The measure � is right (q1; q2)-exhangeable.Proof. We use Proposition 13. Take � suh that �i < �i+1 for some i. If�i and �i+1 have the same sign, then their transposition does not hangethe partition, while �sym(�+) is multiplied by q1. If they have di�erentsigns, then �+ is unhanged and the new partition has the same lengthof the diagonal but two more squares. Then the required fator q1 resultsfrom the transformation of ��.To prove the seond property, we observe that the hange of the signof �(1) does not a�et �+, while �(�) aquires one diagonal box, whihresults in the multipliation by q2, as desired. �Let Seq be the set of �nite sequenes of nonzero integers with distintabsolute values.Lemma 14.2. The measure � is left (q1; q2)-exhangeable.Proof. We begin with the left shift by �i;i+1. Take (�1; : : : ; �k) ∈ Seqsuh that i = |�j | and i + 1 = |�j+s| for some positive j and s. Let �denote the subsequene of � onsisting of the integers between �j and�j+s, while l denote the subsequene to the left of �j and r denote thesubsequene to the right. Note that the absolute values of integers in �,l, and r are not equal to i or i+1. We examine four ases depending onthe signs of �j and �j+s.In the �rst ase, we have �j ; �j+s > 0. Let a denote the number ofelements of � greater than i+1, and b denote the number of elements less



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 161than i. Then, using the right (q1; q2)-exhangeability, we have�(Ck(l; i; �; i+ 1; r)) = qa−b1 �(Ck(l; i; i+ 1; �; r))= qa−b−11 �(Ck(l; i+ 1; i; �; r)) = q−11 �(Ck(l; i+ 1; �; i; r)):In the seond ase, we have �j ; �j+s < 0. Similarly, let a denote thenumber of elements of � greater than −i, and b denote the number ofelements less than −i− 1. Then we have�(Ck(l;−i; �;−i− 1; r)) = qb−a1 �(Ck(l;−i;−i− 1; �; r))= qb−a+11 �(Ck(l;−i− 1;−i; �; r)) = q1�(Ck(l;−i− 1; �;−i; r)):In the third ase, we have �j < 0 and �j+s > 0. Let  denote the numberof elements of l greater than i+ 1, and d denote the number of elementsof l with absolute value less than i + 1, while e denote the number ofelements of l less than −i− 1. We have (using the result of the �rst ase)�(Ck(l;−i; �; i+ 1; r)) = q+d−e1 �(Ck(−i; l; �; i+ 1; r))= q+d−e1 q2�(Ck(i; l; �; i+ 1r)) = q2d1 q2�(Ck(l; i; �; i+ 1; r))= q2d−11 q2�(Ck(l; i+ 1; �; i; r)) = q+d−e−11 q2�(Ck(i+ 1; l; �; i; r))= q+d−e−11 �(Ck(−i− 1; l; �; i; r)) = q−11 �(Ck(l;−i− 1; �; i; r)):In the fourth ase, we have �j > 0 and �j+s < 0. Using the samenotation as in the third ase and applying the result of the seond ase,we have�(Ck(l; i; �;−i− 1; r)) = q−d−e1 �(Ck(i; l; �;−i− 1; r))= q−d−e1 q−12 �(Ck(−i; l; �;−i− 1r))= q−2d1 q−12 �(Ck(l;−i; �;−i− 1; r))= q−2d+11 q−12 �(Ck(l;−i− 1; �;−i; r))= q−d−e+11 q−12 �(Ck(−i− 1; l; �;−i; r))= q−d−e+11 �(Ck(i+ 1; l; �;−i; r))= q1�(Ck(l; i+ 1; �;−i; r)):These arguments imply that � behaves as desired under the left shift by�i;i+1.Consider the left shift by "1. The image of Ck(l; 1; r) under the leftshift by "1 is Ck(l;−1; r). Let a denote the number of positive elements



162 S. KOROTKIKHof l, and b denote the number of negative elements of l. We have�(Ck(l; 1; r)) = qa−b1 �(Ck(1; l; r))= qa−b1 q−12 �(Ck(−1; l; r)) = q−12 �(Ck(l;−1; r)):This ompletes the proof. �Now we turn to the uniqueness. As in the �nite ase, we an de�ne theset of symmetri linear orderings on Z\{0}, whih is denoted by Osym
∞ .For eah element of H there is a symmetri ordering, de�ned in the sameway as in the �nite ase. Thus we obtain an embedding � : H ,→ Osym
∞(however, it is not surjetive). For eah n there is a natural projetion ̃n : Osym

∞ → Osymn , whih is de�ned as the restrition to {−n; : : : ; n}. Let n denote the orresponding projetion H → Hn.Lemma 14.3. Assume that � is a right (q1; q2)-exhangeable probabilitymeasure on H, and denote by �n its pushforward under the projetion n : H → Hn. Then �n oinides with the Mallows measure.Proof. We introdue partial orderings on Seq as follows: � � � if � is asubsequene of �, and � �n � if � � � and any integer in � that does notbelong to � has absolute value greater than n. We prove that �n is theMallows measure using the de�ning properties from Proposition 9.Take � ∈ Seq of length k, and let N be a positive integer greater thanthe absolute values of all integers in �. For any n > N we have�n(Cnk (�)) = �( −1n (Cnk (�))):If � ∈  −1n (Cnk (�)), then the subsequene of (�(1); �(2); : : : ) onsisting ofthe elements with absolute value not greater than n begins with �. Thenwe an take l suh that h = (�(1); : : : ; �(l)) �n �. On the other hand, iffor some � ∈ H the sequene (�(1); �(2); : : : ) begins with h �n �, then� ∈  −1n (Cnk (�)). Hene −1n (Cnk (�)) = ⋃h�n�Cl(h)(h):Moreover, if for any � we take the minimum l suh that h �n �, then wehave �(l) = hl = �k, and thus −1n (Cnk (�)) = ⊔h�n�hl(h)=�k Cl(h)(h);



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 163�n(Cnk (�)) = ∑h�n�hl(h)=�k �(Cl(h)(h)):Assume that for some i we have �i < �i+1. To prove that�n((Cnk (�)) = q−11 �n((Cnk ((i; i+ 1):�));it is enough to prove that for any h �n � we have�(Cl(h)(h)) = q−11 �(Cl(h)(~h));where ~h denotes the sequene h with the transposed integers �i and �i+1.Take h �n �, and let (�1; : : : ; �t) be the subsequene of integers between�i and �i+1, while l and r be the subsequenes to the left of �i and tothe right of �i+1. Then |�j | > n, so either �j > �i; �i+1 or �j < �i; �i+1.Let a be the number of positive �j 's and b be the number of negative �j 's.Then �(Cl(h)(h)) = �(Cl(h)(l; �i; �1; : : : ; �t; �i+1; r))= qb−a1 �(Cl(h)(l; �; �i; �i+1; r))= qb−a−11 �(Cl(h)(l; �; �i+1; �i; r))= q−11 �(Cl(h)(l; �i+1; �; �i; r)) = q−11 �(Cl(h)(~h)):The seond property an be proved similarly. �The uniqueness of a right (q1; q2)-exhangeable measure on H followsfrom its embedding into Osym
∞ , whih is the projetive limit of the sets

Osymn . Using the lemma above and the Kolmogorov extension theorem, wesee that this measure should be the limit of the Mallows measures on Hn.Lemma 14.4. The measure � is invariant under the inversion map.Proof. This follows from the uniqueness of a right (q1; q2)-exhangeableprobability measure and the left (q1; q2)-exhangeability of �. Note that thepushforward image of a left (q1; q2)-exhangeable measure is right (q1; q2)-exhangeable. So the image of � is right (q1; q2)-exhangeable, and thus itis equal to �. �Thus � satis�es all the properties from the theorem.It is worth noting that varying q2 with �xed q1 gives a family of equiv-alent measures on H′.
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