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t. The Mallows measures on the symmetri
 group Sn forma deformation of the uniform distribution. These measures are 
om-monly used in mathemati
al statisti
s, and in re
ent years theyfound appli
ations in other areas of mathemati
s as well.As shown by Gnedin and Olshanski, there exists an analog ofthe Mallows measure on the in�nite symmetri
 group. These newmeasures are di�use, and they are quasi-invariant with respe
t tothe two-sided a
tion of a 
ountable dense subgroup.The purpose of the present note is to extend the Gnedin{Olshan-ski 
onstru
tion to the in�nite hypero
tahedral group. Along theway, we obtain some results for the Mallows measures on �nite hy-pero
tahedral groups, whi
h may be of independent interest.
§1. Introdu
tionFor positive q, the Mallows measure on a �nite symmetri
 group isde�ned as the probability measure whose value at a permutation � isproportional to qinv(�), where inv(�) denotes the number of inversions of�. This measure was introdu
ed by Mallows in [1℄, and it 
an be extendedto a probability measure on the in�nite symmetri
 group, as des
ribedin [2℄.The Mallows measures 
an also be de�ned on other Weyl groups. Weanalyze the Mallows measure on the �nite hypero
tahedral group { theWeyl group of the root systems Bn and Cn, and extend it to a probabilitymeasure on the in�nite hypero
tahedral group.

§2. Finite hypero
tahedral groupsThe hypero
tahedral group Hn is the semidire
t produ
t Sn⋉ (Z=2Z)n,where Sn denotes the group of permutations of {1; : : : ; n}.Let S̃2n denote the group of permutations of {−n; : : : ;−1; 1; : : : ; n}.We will regard Hn as a subgroup of S̃2n, formed by the permutationsKey words and phrases: in�nite hypero
tahedral group, Young diagrams, quasi-invariant measures on groups. 151
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ommuting with the involution i 7→ −i; su
h permutations will be 
alledsymmetri
.The �nite hypero
tahedral group 
an also be regarded as the Weylgroup of the root systems Bn and Cn, whi
h are dual to ea
h other. If
{e1; : : : ; en} is the 
anoni
al orthonormal basis of R

n, then Bn 
onsists ofthe ve
tors ±ei (of length 1) and the ve
tors ±(ei±ej) for i 6= j (of length√2). The ve
tors e1; e2 − e1; : : : ; en − en−1 form a base � for this system,and the 
orresponding fundamental Weyl 
hamber C(�) is formed by thepoints (x1; : : : ; xn) ∈ R
n with 0 < x1 < x2 < · · · < xn. The Weyl groupis generated by the transformations xi ←→ xi+1 (i = 1; : : : ; n − 1) andx1 7→ −x1, whi
h are the re
e
tions in the hyperplanes orthogonal to theve
tors ei+1 − ei and e1, respe
tively. This gives an isomorphism betweenthe Weyl group and the hypero
tahedral group Hn. The elements of Hnthat 
orrespond to these transformations are denoted by �i;i+1 and "1,respe
tively.The a
tion of the Weyl group of Bn on R

n gives us a realization of Has the group of linear operators on R
n preserving the set {±e1; : : : ;±en}.In the basis {e1; : : : ; en}, these operators are given by the n× n matri
eswith exa
tly one nonzero number in ea
h row and 
olumn, this nonzeronumber being ±1. Given a symmetri
 permutation �, the 
orrespondingoperator on R

n, also denoted by �, is given by�ei = sign(�(i))e|�(i)|:Let us 
onsider the a
tion of Hn on Weyl 
hambers of Bn indu
ed bythe above isomorphism. Two Weyl 
hambers are said to be separated bythe hyperplane P� orthogonal to a root � if these 
hambers lie in di�erent
onne
ted 
omponents of R
n \ P�.De�nition 1. An inversion of the �rst type of � ∈ Hn is a hyperplaneorthogonal to a root of length √2 and separating C(�) and �:C(�). Aninversion of the se
ond type of � ∈ Hn is a hyperplane orthogonal to aroot of length 1 and separating C(�) and �:C(�).Let inv1(�) denote the number of inversions of � of the �rst type, andinv2(�) denote the number of inversions of � of the se
ond type.Proposition 2. Let � ∈ Hn. Then inv1(�) = inv1(�−1) and inv2(�) =inv2(�−1).Proof. The a
tion on R

n by �−1 gives a one-to-one 
orresponden
e be-tween the hyperplanes separating C(�) and �:C(�) and the hyperplanes
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tion preserves the rootsystem and the s
alar produ
t, hen
e the images of hyperplanes orthogonalto roots of length l are again hyperplanes orthogonal to roots of length l.So this gives a one-to-one 
orresponden
e between the inversions of � andinversions of �−1 whi
h preserves the type of inversions. �Proposition 3. Let � be an element of Hn. There is a one-to-one 
orre-sponden
e between the inversions of � of the �rst type and the pairs (i; j)su
h that −n 6 i < j 6 n, |i| < |j|, and �(i) > �(j). Also, there is aone-to-one 
orresponden
e between tne inversions of � of the se
ond typeand the pairs (i; j) su
h that −n 6 i < j 6 n, |i| = |j|, and �(i) > �(j).Proof. Proposition 2 yields a bije
tion between the inversions of � and�−1. Then the desired 
orresponden
e is provided by the a
tion of Hn on
R
n.The image of e1 + 2e2 + · · · + nen ∈ C(�) under the a
tion by �−1 is�(1)e1 + · · ·+ �(n)en ∈ �−1:C(�). Thus, the hyperplane orthogonal to eiis an inversion of the se
ond type if and only if �(i) < 0, and this givesthe se
ond 
orresponden
e. As to the �rst 
orresponden
e, the pairs (i; j)su
h that −n 6 i < j 6 n, |i| < |j|, and �(i) > �(j) are either pairs (i; j)su
h that 0 < i < j and �(i) > �(j) or pairs (−i; j) su
h that 0 < i < jand �(i) + �(j) < 0. Then a pair from the �rst group gives an inversionof the �rst type 
orresponding to the re
e
tion in Pei−ej , and a pair fromthe se
ond group gives an inversion of the �rst type 
orresponding to there
e
tion in Pei+ej , and all inversions of the �rst type are given by this
orresponden
e. �

§3. A des
ription of Hn using Young diagramsLet �nsym denote the set of symmetri
 Young diagrams of length 6 n.We will 
onstru
t a bije
tion Hn → Sn × �nsym using the 
onstru
tiondes
ribed in [3℄.A

ording to [3℄, there is a bije
tion S̃2n → Sn × �n × Sn, where �ndenotes the set of partitions � of length 6 n with �1 6 n. It maps apermutation � ∈ S̃2n to a triple (�+; �(�); �−), where the permutations �+and �− are obtained by taking the subsequen
es of positive and negativeterms in (�(−n); : : : ; �(n)). As for the diagram �(�), the length of its ithrow is, by de�nition, the number of negative terms in (�(−n); : : : ; �(n))that are to the right of the ith leftmost positive number.



154 S. KOROTKIKHProposition 4. The 
orresponden
e � 7→ (�+; �(�)) de�ned above deter-mines a bije
tion between Hn and Sn × �nsym.Proof. The embedding Hn ⊂ S̃2n gives rise to an embedding
Hn → Sn × �n × Snwhi
h maps � to the triple (�+; �(�); �−). Sin
e � is a symmetri
 per-mutation, we have �+ = �−. Moreover, a

ording to [3, Part 3℄, we have�(�) = �(�)′, so � is symmetri
. On the other hand, if �− = �+ and �(�)is symmetri
, then � is a symmetri
 permutation.Thus, the image ofHn in Sn×�n×Sn is the set of triples (!1; �; !2) su
hthat !1 = !2 and � = �′. The proje
tion onto the �rst two 
omponents,whi
h maps (!1; �; !2) to (!1; �), provides a one-to-one 
orresponden
ebetween these triples and Sn × �nsym. Hen
e, the 
omposition� 7→ (�+; �(�); �−) 7→ (�+; �(�))gives a one-to-one 
orresponden
e from Hn to Sn × �nsym. �This des
ription gives a way to 
ompute the number of inversions of� ∈ Hn.Proposition 5. Let � ∈ Hn. Then we haveinv1(�) = inv(�+) + |�(�)| − d(�(�))2 ; (1)inv2(�) = d(�(�)); (2)where inv(�+) denotes the number of inversions of �+ and d(�) denotesthe number of diagonal squares of the Young diagram of �.Proof. We begin with (2). A

ording to the de�nition of �(�), we see that�(�)i is the number of negative integers to the right of the ith positiveinteger in the sequen
e (�(−n); : : : ; �(n)). Thus, to the right of the ithpositive number there are n − i + �(�)i numbers. It follows that the ithpositive number is in the left half of the sequen
e if and only if n − i +�(�)i > n. The number of inversions of the se
ond type is equal to thenumber of positive numbers in the left half of the sequen
e, whi
h is equalto the number of i su
h that �(�)i > i, whi
h is equal to d(�(�)).Let us prove (1). Given � ∈ Hn, we 
onsider its ordinary inversions,i.e., pairs i < j su
h that �(i) > �(j) (where i; j ∈ {−n; : : : ;−1; 1; : : : ; n}).Let Inv(�) denote the number of ordinary inversions of �. We 
ount thisnumber in two ways.



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 155On the one hand, by Proposition 3, ea
h inversion (i; j) of � of the �rsttype determines two ordinary inversions, (i; j) and (−i;−j), while ea
hinversion of the se
ond type determines a single ordinary inversion of theform (i;−i). Moreover, all ordinary inversions are obtained in this way,whi
h gives the equalityInv(�) = 2inv1(�) + inv2(�):On the other hand, ea
h ordinary inversion (i; j) is either positive in thesense that �(i) > �(j) > 0, or negative in the sense that 0 > �(i) > �(j),or else sign-
hanging, meaning that �(i) > 0 > �(j). Both the number ofpositive and the number of negative inversions are equal to the number ofinversions of �+, while the number of sign-
hanging inversions is equal to
|�(�)| by the de�nition of �(�). So we haveInv(�) = 2inv(�+) + |�(�)| = 2inv1(�) + inv2(�):Sin
e inv2(�) = d(�(�)) by (2), we get (1). �

§4. The Mallows measures on HnIn the remainder of the paper we �x two real numbers q1 and q2 su
hthat 0 < q1; q2 < 1. We will also use the standard q-notation:[n℄q = 1 + q + · · ·+ qn−1; [n℄q ! = [1℄q[2℄q : : : [n℄q;(x; q)n = (1− x)(1− xq) : : : (1− xqn−1):De�nition 6. The Mallows measure on Hn is the probability measure �nsu
h that for any � ∈ Hn�n(�) = 
−1n qinv1(�)1 qinv2(�)2 ;where 
n is a normalization 
onstant.Proposition 7. The 
onstant 
n is given by
n = [n℄q1 !(−q2; q1)n:Proof. Sin
e �n is a probability measure on Hn, we have
n = ∑�∈Hn qinv1(�)1 qinv2(�)2 :



156 S. KOROTKIKHUsing the des
ription via Young diagrams, we have
n = ∑�∈Hn qinv(�+)+ |�(�)|−d(�(�))21 qd(�(�))2= ∑!∈Sn qinv(!)1 ·
∑�∈�nsym q |�|−d(�)21 qd(�)2 :This is the produ
t of two sums. The �rst one 
an be 
omputed by indu
-tion, and the result is [n℄q1 !. The se
ond sum 
an be rewritten using theFrobenius notation (�|�) for a symmetri
 partition �:

∑�∈�nsym q |�|−d(�)21 qd(�)2 = ∑(�|�)∈�nsym q|�|1 ql(�)2 = ∑(�|�)∈�nsym l(�)∏i=1 q�i1 q2:For elements from �nsym, the numbers �i are distin
t and less than n. Sowe have
∑(�|�)∈�nsym l(�)∏i=1 q�i1 q2 = n−1∏i=0 (1 + qi1q2):Hen
e 
n = [n℄q1 ! n−1∏i=0 (1 + qi1q2) = [n℄q1 !(−q2; q1)n. �The des
ription via Young diagrams also gives a way to write the Mal-lows measure on Hn as the produ
t of the Mallows measure on Sn and themeasure on �nsym with the value q |�|−d(�)21 qd(�)2 (−q2; q1)−1n at a partition �.Proposition 8. The Mallows measure is invariant under the inversionmap g → g−1.Proof. This follows from Proposition 2. �Given k < n and a k-tuple � = (�1; : : : ; �k) of numbers from the set

{−n; : : : ;−1; 1; : : : ; n} su
h that |�i| 6= |�j | for i 6= j, we de�neCnk (�) = Cnk (�1; : : : ; �k) = {� ∈ Hn|�(i) = �i}:Subsets of this form will be 
alled elementary 
ylinders.Theorem 9. The Mallows measure �n on Hn is uniquely determined bythe following properties:(a) �n is a probability measure;
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ylinder Cnk (�1; : : : ; �k) and any i 6 k−1 su
hthat �i < �i+1, one has�n(Cnk (�1; : : : ; �i; �i+1; : : : ; �k)) = q−11 �n(Cnk (�1; : : : ; �i+1; �i; : : : ; �k));(
) for any elementary 
ylinder Cnk (�1; : : : ; �k) with �1 > 0, one has�n(Cnk (�1; : : : ; �k)) = q−12 �n(Cnk (−�1; : : : ; �k)):Proof. Let � be a probability measure with properties (b) and (
). For� ∈ Hn we have Cnn ((�(1); : : : ; �(n))) = {�}:The right multipli
ation by the elementary transposition �i;i+1 swaps �(i)and �(i+1), while the right multipli
ation by "1 
hanges the sign of �(1).Take � ∈ Hn. If �(i) < �(i+ 1) for some i, we haveinv1(��i;i+1) = inv1(�) + 1; inv2(��i;i+1) = inv2(�); (3)and if �(1) > 0, we haveinv1(�"1) = inv1(�); inv2(�"1) = inv2(�) + 1: (4)All these identities 
an be proved using Proposition 3. Then, using prop-erties (a){(
), we obtain that�(��′) = �(�)qinv1(��′)−inv1(�)1 qinv2(��′)−inv1(�)2 ; (5)where �′ is either �i;i+1 or "1. Sin
e these elements generate Hn, we 
andedu
e by indu
tion that (5) holds for any �′ ∈ Hn. Taking � = e, we get�(�′) = �(e)qinv1(�′)1 qinv2(�′)2 :It follows that � = �n.Also, from (3) and (4) we see that the properties from the statement ofthe theorem hold for �n. �For elements of the hypero
tahedral group there is one more des
ription.For every � ∈ Hn, the sequen
e (�(−n); : : : ; �(n)) determines a linearordering of the set {−n; : : : ;−1; 1; : : : ; n} (namely, a ≻ b if a is to theright of b). This ordering is symmetri
 in the sense that a ≻ b entails −a ≺
−b. Let Osymn denote the set of su
h orderings of {−n; : : : ;−1; 1; : : : ; n}.There is a natural proje
tion ~�n : Osymn → Osymn−1, de�ned by restri
tingthe ordering to the subset {−n + 1; : : : ; n − 1}. We denote by �n the
orresponding proje
tion �n : Hn → Hn−1.



158 S. KOROTKIKHProposition 10. The pushforward of the Mallows measure �n under �nis �n−1.Proof. This 
an be 
he
ked by a simple 
omputation. For � ∈ Hn−1,
onsider the sequen
e � = (�(1); : : : ; �(n − 1)). Then the 
orrespondingsequen
es for elements in the preimage of � should have � as a subsequen
e,and all absolute values should be distin
t. So we should insert in � eithern or −n. If we insert n in the ith position, then we add n − i inversionsof the �rst type to the inversions of �. If we insert −n in the ith position,then we add n− 1 + i− 1 inversions of the �rst type and one inversion ofthe se
ond type. It follows that�n�−1n (�) = ( n∑i=1 qn−i1 + n∑i=1 qn+i−21 q2) [n− 1℄q1 !(−q2; q1)n−1[n℄q1 !(−q2; q1)n �n−1(�)= ([n℄q1 + [n℄q1qn−11 q2) 1[n℄q1(1 + q2qn−11 )�n−1(�) = �n−1(�):�
§5. The Mallows measure on HNow we fo
us on the in�nite hypero
tahedral group H = S⋉ (Z=2Z)∞,where S denotes the group of all permutations of N. As in the �nite 
ase,we regard H as the group of symmetri
 permutations of Z\{0}.Next, we introdu
e two subgroups of H. One is

H′ = S ⋉ (Z=2Z)∞�n;where (Z=2Z)∞�n denotes the subset of (Z=2Z)∞ 
onsisting of the elements(g1; g2; : : : ) with �nitely many nonidentity elements. In other words, H′is the subgroup of symmetri
 permutations with �nitely many 
hanges ofsign, that is, �nitely many i's su
h that sign(i) 6= sign(�(i)). The se
ond,smaller, subgroup is
H�n = S�n ⋉ (Z=2Z)∞�n;where S�n ⊂ S denotes the set of �nitary permutations. In other words,

H�n is the set of �nitary symmetri
 permutations.The des
ription via Young diagrams 
an be extended to the subgroup
H′, giving a bije
tion H′ → S×�sym. For ! ∈ S and � ∈ �sym, let �(!; �)denote the preimage of (!; �).For a k-tuple (�1; : : : ; �k) of nonzero integers with distin
t absolutevalues, 
onsider the elementary 
ylinderCk(�1; : : : ; �k) = {� ∈ H|�(i) = �i}:



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 159It 
an be 
he
ked that su
h 
ylinders form a base for a topology on H. Inthis topology, elementary 
ylinders are open and 
losed. In what follows,all measures on H are assumed to be Borel measures.Re
all that �i;i+1 ∈ H is the elementary transposition swapping i andi+ 1, and "1 is the elementary transposition swapping −1 and 1.De�nition 11. A measure � on H is said to be right (q1; q2)-ex
hangeableif the following properties hold:(a) For every i > 1, the pushforward �i;i+1 of the measure � underthe transformation � 7→ ��i;i+1 is equivalent to �, and the valueof the Radon{Nikodym derivative d�i;i+1d� at � ∈ H is equal toqsign(�(i+1)−�(i))1 .(b) The pushforward �−1;1 of the measure � under the transformation� 7→ �"1 is equivalent to �, and the value of the Radon{Nikodymderivative d�−1;1d� at � ∈ H is equal to qsign(�(1))2 .We 
an similarly de�ne the left (q1; q2)-ex
hangeability by repla
ing rightshifts by left shifts and imposing the relationsd�i;i+1d� = qsign(�−1(i+1)−�−1(i))1 ; d�−1;1d� = qsign(�−1(1))2 :Remark 12. The property of right (respe
tively, left) (q1; q2)-ex
han-geability is equivalent to that of quasi-invarian
e with respe
t to the right(respe
tively, left) a
tion of the dense 
ountable subgroup H�n ⊂ H witha 
ertain spe
ial 1-
o
y
le.The next proposition is an obvious reformulation of the right (q1; q2)-ex
hangeability in terms of elementary 
ylinders.Proposition 13. A probability measure � on H is right (q1; q2)-ex
han-geable if and only if the following properties hold:(1) For a sequen
e of nonzero integers (�1; : : : ; �k) su
h that�i < �i+1 for some i, we have�(Ck(�1; : : : ; �i; �i+1; : : : ; �k)) = q−11 �(Ck(�1; : : : ; �i+1; �i; : : : ; �k)):(2) For a sequen
e of nonzero integers (�1; : : : ; �k) su
h that �1 > 0,we have�(Ck(�1; : : : ; �k)) = q−12 �(Ck(−�1; : : : ; �k)):



160 S. KOROTKIKHTheorem 14. There exists a unique right (q1; q2)-ex
hangeable probabilitymeasure on H, whi
h we 
all the Mallows measure. Moreover, this measureis left (q1; q2)-ex
hangeable, it is supported by H′, and it is invariant underthe inversion map � → �−1.We begin with 
onstru
ting the required measure �. Let �sym be theq1-ex
hangeable measure on S (as des
ribed in [2℄) and �� be the measureon �sym de�ned by ��(�) = (−q2; q1)−1∞ q |�|−d(�)21 qd(�)2 :Set �′ := �sym ⊗ �� (this is a measure on S × �sym = H′) and de�ne� as the pushforward of �′ under the embedding H′ → H. Thus, � is
on
entrated on H′ ⊂ H.Lemma 14.1. The measure � is right (q1; q2)-ex
hangeable.Proof. We use Proposition 13. Take � su
h that �i < �i+1 for some i. If�i and �i+1 have the same sign, then their transposition does not 
hangethe partition, while �sym(�+) is multiplied by q1. If they have di�erentsigns, then �+ is un
hanged and the new partition has the same lengthof the diagonal but two more squares. Then the required fa
tor q1 resultsfrom the transformation of ��.To prove the se
ond property, we observe that the 
hange of the signof �(1) does not a�e
t �+, while �(�) a
quires one diagonal box, whi
hresults in the multipli
ation by q2, as desired. �Let Seq be the set of �nite sequen
es of nonzero integers with distin
tabsolute values.Lemma 14.2. The measure � is left (q1; q2)-ex
hangeable.Proof. We begin with the left shift by �i;i+1. Take (�1; : : : ; �k) ∈ Seqsu
h that i = |�j | and i + 1 = |�j+s| for some positive j and s. Let �denote the subsequen
e of � 
onsisting of the integers between �j and�j+s, while 
l denote the subsequen
e to the left of �j and 
r denote thesubsequen
e to the right. Note that the absolute values of integers in �,
l, and 
r are not equal to i or i+1. We examine four 
ases depending onthe signs of �j and �j+s.In the �rst 
ase, we have �j ; �j+s > 0. Let a denote the number ofelements of � greater than i+1, and b denote the number of elements less
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hangeability, we have�(Ck(
l; i; �; i+ 1; 
r)) = qa−b1 �(Ck(
l; i; i+ 1; �; 
r))= qa−b−11 �(Ck(
l; i+ 1; i; �; 
r)) = q−11 �(Ck(
l; i+ 1; �; i; 
r)):In the se
ond 
ase, we have �j ; �j+s < 0. Similarly, let a denote thenumber of elements of � greater than −i, and b denote the number ofelements less than −i− 1. Then we have�(Ck(
l;−i; �;−i− 1; 
r)) = qb−a1 �(Ck(
l;−i;−i− 1; �; 
r))= qb−a+11 �(Ck(
l;−i− 1;−i; �; 
r)) = q1�(Ck(
l;−i− 1; �;−i; 
r)):In the third 
ase, we have �j < 0 and �j+s > 0. Let 
 denote the numberof elements of 
l greater than i+ 1, and d denote the number of elementsof 
l with absolute value less than i + 1, while e denote the number ofelements of 
l less than −i− 1. We have (using the result of the �rst 
ase)�(Ck(
l;−i; �; i+ 1; 
r)) = q
+d−e1 �(Ck(−i; 
l; �; i+ 1; 
r))= q
+d−e1 q2�(Ck(i; 
l; �; i+ 1
r)) = q2d1 q2�(Ck(
l; i; �; i+ 1; 
r))= q2d−11 q2�(Ck(
l; i+ 1; �; i; 
r)) = q
+d−e−11 q2�(Ck(i+ 1; 
l; �; i; 
r))= q
+d−e−11 �(Ck(−i− 1; 
l; �; i; 
r)) = q−11 �(Ck(
l;−i− 1; �; i; 
r)):In the fourth 
ase, we have �j > 0 and �j+s < 0. Using the samenotation as in the third 
ase and applying the result of the se
ond 
ase,we have�(Ck(
l; i; �;−i− 1; 
r)) = q
−d−e1 �(Ck(i; 
l; �;−i− 1; 
r))= q
−d−e1 q−12 �(Ck(−i; 
l; �;−i− 1
r))= q−2d1 q−12 �(Ck(
l;−i; �;−i− 1; 
r))= q−2d+11 q−12 �(Ck(
l;−i− 1; �;−i; 
r))= q
−d−e+11 q−12 �(Ck(−i− 1; 
l; �;−i; 
r))= q
−d−e+11 �(Ck(i+ 1; 
l; �;−i; 
r))= q1�(Ck(
l; i+ 1; �;−i; 
r)):These arguments imply that � behaves as desired under the left shift by�i;i+1.Consider the left shift by "1. The image of Ck(
l; 1; 
r) under the leftshift by "1 is Ck(
l;−1; 
r). Let a denote the number of positive elements



162 S. KOROTKIKHof 
l, and b denote the number of negative elements of 
l. We have�(Ck(
l; 1; 
r)) = qa−b1 �(Ck(1; 
l; 
r))= qa−b1 q−12 �(Ck(−1; 
l; 
r)) = q−12 �(Ck(
l;−1; 
r)):This 
ompletes the proof. �Now we turn to the uniqueness. As in the �nite 
ase, we 
an de�ne theset of symmetri
 linear orderings on Z\{0}, whi
h is denoted by Osym
∞ .For ea
h element of H there is a symmetri
 ordering, de�ned in the sameway as in the �nite 
ase. Thus we obtain an embedding � : H ,→ Osym
∞(however, it is not surje
tive). For ea
h n there is a natural proje
tion ̃n : Osym

∞ → Osymn , whi
h is de�ned as the restri
tion to {−n; : : : ; n}. Let n denote the 
orresponding proje
tion H → Hn.Lemma 14.3. Assume that � is a right (q1; q2)-ex
hangeable probabilitymeasure on H, and denote by �n its pushforward under the proje
tion n : H → Hn. Then �n 
oin
ides with the Mallows measure.Proof. We introdu
e partial orderings on Seq as follows: � � � if � is asubsequen
e of �, and � �n � if � � � and any integer in � that does notbelong to � has absolute value greater than n. We prove that �n is theMallows measure using the de�ning properties from Proposition 9.Take � ∈ Seq of length k, and let N be a positive integer greater thanthe absolute values of all integers in �. For any n > N we have�n(Cnk (�)) = �( −1n (Cnk (�))):If � ∈  −1n (Cnk (�)), then the subsequen
e of (�(1); �(2); : : : ) 
onsisting ofthe elements with absolute value not greater than n begins with �. Thenwe 
an take l su
h that h = (�(1); : : : ; �(l)) �n �. On the other hand, iffor some � ∈ H the sequen
e (�(1); �(2); : : : ) begins with h �n �, then� ∈  −1n (Cnk (�)). Hen
e −1n (Cnk (�)) = ⋃h�n�Cl(h)(h):Moreover, if for any � we take the minimum l su
h that h �n �, then wehave �(l) = hl = �k, and thus −1n (Cnk (�)) = ⊔h�n�hl(h)=�k Cl(h)(h);



THE MALLOWS MEASURES ON THE HYPEROCTAHEDRAL GROUP 163�n(Cnk (�)) = ∑h�n�hl(h)=�k �(Cl(h)(h)):Assume that for some i we have �i < �i+1. To prove that�n((Cnk (�)) = q−11 �n((Cnk ((i; i+ 1):�));it is enough to prove that for any h �n � we have�(Cl(h)(h)) = q−11 �(Cl(h)(~h));where ~h denotes the sequen
e h with the transposed integers �i and �i+1.Take h �n �, and let (�1; : : : ; �t) be the subsequen
e of integers between�i and �i+1, while 
l and 
r be the subsequen
es to the left of �i and tothe right of �i+1. Then |�j | > n, so either �j > �i; �i+1 or �j < �i; �i+1.Let a be the number of positive �j 's and b be the number of negative �j 's.Then �(Cl(h)(h)) = �(Cl(h)(
l; �i; �1; : : : ; �t; �i+1; 
r))= qb−a1 �(Cl(h)(
l; �; �i; �i+1; 
r))= qb−a−11 �(Cl(h)(
l; �; �i+1; �i; 
r))= q−11 �(Cl(h)(
l; �i+1; �; �i; 
r)) = q−11 �(Cl(h)(~h)):The se
ond property 
an be proved similarly. �The uniqueness of a right (q1; q2)-ex
hangeable measure on H followsfrom its embedding into Osym
∞ , whi
h is the proje
tive limit of the sets

Osymn . Using the lemma above and the Kolmogorov extension theorem, wesee that this measure should be the limit of the Mallows measures on Hn.Lemma 14.4. The measure � is invariant under the inversion map.Proof. This follows from the uniqueness of a right (q1; q2)-ex
hangeableprobability measure and the left (q1; q2)-ex
hangeability of �. Note that thepushforward image of a left (q1; q2)-ex
hangeable measure is right (q1; q2)-ex
hangeable. So the image of � is right (q1; q2)-ex
hangeable, and thus itis equal to �. �Thus � satis�es all the properties from the theorem.It is worth noting that varying q2 with �xed q1 gives a family of equiv-alent measures on H′.
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