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S. Korotkikh

DUAL MULTIPARAMETER SCHUR Q-FUNCTIONS

ABSTRACT. For the Schur Q-functions there is a Cauchy identity,
which shows a duality between the Schur P- and Q-functions. We
will be interested in the multiparameter Schur Q-functions, which
were introduced by V. N. Ivanov, and we will give dual analogs
of the multiparameter Schur Q(P)-functions, with a corresponding
multiparameter Cauchy identity.

§1. INTRODUCTION

The Schur Q-functions were introduced by Schur and are useful to de-
scribe the projective representations of the symmetric group. These super-
symmetric polynomials are enumerated by the strict partitions, and differ
by a scalar factor from the Hall-Littlewood polynomials with t = —1. The
latter are sometimes called the Schur P-polynomials (for strict partitions).
As described in [2, Chap. 3], we have the following identity, which is called
the Cauchy identity:
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It shows the duality between the Schur Q- and P-functions.

Similarly to other series of symmetric functions, the Schur Q(P)-func-
tions have interpolation analogs introduced by V. N. Ivanov in [1] and
called the multiparameter Schur Q-functions. For an infinite sequence
(a0 = 0,a1,as,...) and a strict partition X of length [, we have

9! ! N Tu(i) + Tu(j)
@@n~wM@:aﬁjT§:Iy%W@1 |

" weS(N) i= i<licj<n Tw(i) ~ Tu(l)

where by (z|a)® we denote the generalized power (z — ag) ... (z — ap_1)-
These functions have a lot of properties that can be regarded as multi-
parameter versions of corresponding properties of the Schur Q-functions,
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and at the same time they have an interpolation property that introduces
another method of working with these functions and proving some combi-
natorial identities.

We give dual analogs of the multiparameter Schur Q-functions, which
we call the dual multiparameter Schur Q-functions and denote by @ A. For
a strict partition A\ of length [/, we define

R 9! ! 1 tw(y) + bt
Qx(tl,...,t}da):i —_— i) - et ,
(K —1)! %;(K) 1;[1 (tu(plra)t ig,,g@ bu(i) — tu(i)

where 7a is the shifted sequence (a1 ,as,. . . ). We will prove a multiparameter
analog of the Cauchy identity, which holds in Clzy,...,zn][[t; -, t&]]:

~ ti+x
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For K < 2, an equivalent identity was proved in [1, Sec. 8] with the usage
of an interpolation property. We will follow another method, proving the
parameter independence of the left-hand side of (2).

The results of this work can be regarded as a projective analog of some
results from Molev’s paper [3], where multiparameter analogs of the ordi-
nary Schur functions are considered. Even earlier, in the case of the shifted
Schur functions, dual Schur functions and a corresponding Cauchy identity
appeared in [4].

I am grateful to Grigori Olshanski for many valuable remarks.

§2. DUAL MULTIPARAMETER SCHUR Q-FUNCTIONS

Let a = (aop, a1, -..) be an infinite sequence of parameters, with ag = 0.
Let (z|a)* denote the generalized powers (z —ap) - .. (z —ag_1). Following
Ivanov, we define functions P,(z1,...,zx|a) and Q4 (z1,...,zN|a) for an
arbitrary sequence of positive integers of length [ < N.

Definition 1. Let a = (o, ..., q;) be a sequence of positive integers and
N > 1. Then the multiparameter Schur P- and Q-functions are defined by

1 ! o T; +Tj
Pa(xla"-axN|a):m Z g(H(aﬁ”(l)l H .’Ei—wj),

" 0eS(N) i=1 i<,

Qu(z1,...,2N|0) = 2lPa(a:1, .. N|a),
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where a permutation o acts by permuting the variables z;. If [ = 0, we set
P, = Py =1.For N <1, set Py(z1,...,zn|a) = Qa(z1,...,2N]a) =0.

For partitions of length [, this definition coincides with Ivanov’s defini-
tion. Moreover, for strict partitions of length [ and a = 0, this definition
gives the Schur P- and Q-functions.

Let 7 denote the shift operator acting on the space of infinite sequences
by Ta = (a1, as,...).

Definition 2. Let o = (o, ..., q;) be a sequence of positive integers and
K > 1. The dual multiparameter Schur P- and Q-functions with index «
are defined by

_ 1 Lo tj+t;
Palbi,.txla) = ey 2 U<HW H tj—ti)’

" 0eS(K) i=1 i<,
i<j<K
Qulty,. .. txla) = 2'Py(ty,. .., txla),
where ¢ acts by permuting the variables ¢;. If | = 0, we define P, = Py = 1.
For K <1, set Py(t1,...,txla) = Qa(t1,...,txla) = 0.

For a = 0 and a strict partition A of length I, we have Py (t1,...,txla) =
PA(tl_l, .. .,tl_{l), where Py(y1,-.-,yK) denote the Schur P-function.

Proposition 3. For w € S(l) and a sequence « of length I, one has

Poo(x1,...,zN|a) = e(w)Py(z1,...,xN]a),
Poa(ti,... txla) = (w)Pa(ti,. .., txla),
where e(w) is the sign of w and wa = (171, - - -, Ay-1(1))-

Proof. We will prove the assertion for P,, the proof for ﬁa is similar. If
[ > N, both sides are 0, so we assume that | < N. Since any permutation
from S(N) can be written in the form ow~!, we have

Pyo(z1,...,2N]|a)
l
1 1 a1 Ti +;
=N D ¥ (H(ma) o I 2
(N=DF S0 i=1 i<, T
i<j<N
l
1 ( o Tw-1(i) ¥ T ()
=~ ol | [(zo-10la)™ e :
(N — l)' 06%(:]\[) zl;[l zI;IL xwfl(i) — a:wq(j)

i<j<N
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Since w™! permutes only the first [ variables, the first product is the same
as in the definition of P,. As to the second product, the numerator is also
the same, but the denominator behaves as the Vandermonde determinant,
so the action of w™! on it produces the desired factor e(w™?!) = e(w). O

Corollary 4. If fori # j we have a; = avj, then Py, = Qo = P, = Qa =0.

Proposition 5.
(1) Pr(ty,...,tx|a) is an element of Clity ..., ' ]] of degree —|)|.
(2) The (—|A|)th homogenous component of Px(ty, ..., tx|a) is

Pty Y.
Proof. Rewrite the definition of ]3,\ as
ﬁx(tl, - ,tK|a)
l ittt (3)

1 1
“w-n, 2 7 | U 1 t =t

T g€S(K) i=1 i<,
i<j<K

Then A=V(t;Y,...,t))Pa(t1, . .., tx|a)is an element of C[[t7 ", ..., %],
where V(z1,...,21) denote the Vandermonde determinant. At the same
time, A is skew-symmetricin ¢;,... ,tl_(l, S0 ]3,\(t1, ...,tKla) is also an ele-
ment of C[[t;",..., tl_(l]]. The degree with respect to the variables ¢y, ..., tx
of each summand in (3) is —|A|, so the degree of Py (t1,...,tx|a) is also
—|A|l. Moreover, the highest degree terms of each summand give the defi-
nition of Py(t; ', ... ,tl}l), thus the second claim follows. O

Proposition 6 (stability condition). For K > [ and «a of length [, we have
Pa(t1, ... tx—1,000a) = Paltr, ... tr_1la).
Proof. From the definition we have
l
~ 1 1 i+t
P,(ty,...,t = — SLERLAN
a( 1 ) Kla’) (K*l)' Z U(H(tih_a)ai H tgtz)
c€S(K) i=1 i<,
i<j<K
As ti tends to infinity, the only surviving terms on the right-hand side will
be those that correspond to permutations o € S(K) such that o ~1(K) > I.
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Any such permutation can be written in the form wog where o¢ = (i, K)
for i > 1 and w € S(K — 1) permutes {1,..., K — 1}. Hence we have

~

Py(t1,...,tk—1,00|a)

1
S, 2 ““0(

" oeS(K)

l

2

1 1—[ tj +1t;
(ti|7'a)°‘i ; t]' —t;

1 <,
i<jSK-1

1 1 tj +1t;
= w _—
R (i Gy
i<j<K-1
= Py(ty,...,tx_1]a). O

The next formula can be thought of as a multiparameter analog of
formula (2.14) in [2, Chap. 3] for the Schur P-functions.

Proposition 7. For N > 1> 1 and a of length l, one has

N
Po(zla) = (wila)* gi(x) Ps(]a), (4)
i=1
. N . .
where = (x1,...,zN), D =(x1,...,Zi_1,Tit1,-- -, ZN), gi(x)=]] it—ﬁj,

j#i
and B = (aa,...,q1),

Proof. Each element ¢ € S(N) can be uniquely written as oqw, where
oo = (1,7) and w € S(N — 1) acts on 2,..., N. Then one has

1 ! o T; + T
Pa($|a)=m Z UO“’(H(m“)lH a:ixj)

" ceS(N) i=1 i<,
i<jKN

l
1 @ o T; +T;
e IO O (CIUCT § ) (CI00 | e
(V=D == D)_&=, 2 asic, BT

i<jKN
N

= Z(l,l) ((x1|a)alglpa27“'7al (1‘2, s 7xN|a)) )

i

which is equivalent to (4). O
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§3. INDEPENDENCE OF THE PARAMETERS AND THE
MULTIPARAMETER CAUCHY IDENTITY

We will say that an expression f(z,t,a) is independent of the param-
eters, or independent of a, if for every pair of infinite sequences a and o’
beginning with 0 we have f(z,t,a) = f(z,t,a’). A basic and important
example of an expression independent of a is

Z (a:|a)" _r—a _ ¥ . (5)

po (t|Ta)t t—x t—x

In the particular case a = (0,1,2,...) this identity reduces to formu-
la (12.5) in [5], and in the general case it can be checked in exactly the
same way.

If an expression f is independent of a, then f(z,t,a) = f(z,t,0). We
will use this idea to prove a multiparameter Cauchy identity.

Let Y denote the set of all partitions, Y; denote the set of partitions of
length [, and Y; denote the set of strict partitions of length I.

Theorem 8 (multiparameter Cauchy identity). For N, K > 1 one has

727109, (]a) O () HHZ s (6)

AEY i=1j=1
Proof. We will prove that the left-hand side of (6) is independent of a.
For that we will need several lemmas. For a sequence a = (ay,...,qq), let

(tla)® denote (t1|a)** ... (t/|a)*.

Lemma 8.1. For arbitrary integers N > 1 > 0, the expression

Z Pa(ajl,...,ﬂme) (7)

al,...,al>1 (t|7_a)a

is independent of a.

Proof. We prove this by induction on [. For [ = 1 we have
N .
Piy(z1,...,onla) = (jla)'g;
j=1
Hence, using (5), we can rewrite (7) as
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which is independent of a.
Agsume that we have already proved the lemma, for [. Then for N > [+1
we have from (4)

N i
i Pa($1,...,$N|a) :Z i gi ($i|a)a1 P(a27---7041+1)(x()|a)
(t|ra)” & & (fra)er (bfra)e . (f [ra)o
jE[1,141]

(=ila)* - Plas.....crpr) (@D]a)
_Zgl< Z t1|7'(1) ><a Z (t2|7‘(],)042_‘_(tl+1|7—a)al+1>.

a1 >1 2004121

Both sums in the parentheses are independent of a, the first one is (5)
and the second one is (7) for I, both independent of a. Then the whole
expression is independent of a. O

Lemma 8.2. For arbitrary integers N, K > 1 > 1, the expression

ZP)\(.’El,...,.’L”N|a)ﬁ)\(t1,...,t](|a) (8)
AEY;

is independent of a.

Proof. By the definition of P and Corollary 4, we have that (8) is equal
to

1 : tj+1;
S e S o e 1115,

s €S(K) i=1 i,
1<j<K

where oy acts on tq, ..., tx. Consider the quotient S(K)/S(l), and for each
wt € S(K)/S(l) choose an arbitrary element w{ € w;. Then any permuta-
tion oy € S(K) can be uniquely written in the form wf¢;, where ¢; € S(I)
permutes only {1,...,1} and w; € S(K)/S(I). As in the proof of Lemma 3,

acting by ¢; on ] % gives us the multiplication by &(¢;), so we
i<Li<j<K !
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have that (8) is equal to

l
ZZZ <(¢t)PA($1,...,a:N|a)H

1 tj-l-ti)
ol | s
o) i<t b=t

we s AGY/ i=1 (t¢t(i)|T
i<j<K
!
— 1 0 tj +ti
—(szwt( > Y ceonela [[——— ] £
wt $:€S(1) AeY] i=1 t|TG e Wik, Y ¢
I<j<K

1 Py, \(x]a) ti+t;
(X X 1)

6+ €5(1) AeY] i<,
i<j<K
1 0(( Pa(a:|a)) t; +ti>
= — w _— -
(K —1)! ; ¢ a@%#a. (t|Ta)> g ti—ti)’
’ i<j<K

which is independent of a by Lemma, 8.1 (the sums coincide by Corollary 4).
So (8) is independent of a. O

From the previous lemma we derive that the left-hand side of (6) is
independent of a. Hence it suffices to prove (6) for a = 0. But in this case
the desired identity is the Cauchy identity for the Schur Q-polynomials
with y; = ;' O
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