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ON THE GENERATING FUNCTION OF DISCRETE
CHEBYSHEV POLYNOMIALS

ABSTRACT. We give a closed form for the generating function of
the discrete Chebyshev polynomials. The closed form consists of
the MacWilliams transform of Jacobi polynomials together with a
binomial multiplicative factor. It turns out that the desired closed
form is a solution to a special case of the Heun differential equation,
and that the closed form implies combinatorial identities that appear
quite challenging to prove directly.

§1. INTRODUCTION

The discrete Chebyshev polynomials belong to the rich family of orthog-
onal polynomials (see [9] for a general treatise on orthogonal polynomials
and [2] for a previous work of the authors). The inner product associated
to the discrete Chebyshev polynomials is defined with a discrete weight
function, and hence the vector space Py of polynomials having degree at
most IV forms a natural reference for the orthogonal polynomials discussed
in this article.

The sum and the scalar product in Py are defined pointwise, the scalar
product being defined as

N
(. @)w =>_ wip(l)q(l). (1.1)
[=0

The Krawtchouk polynomials (see [6]) KSN),KfN), e KJ(VN) (of order N)
are orthogonal with respect to the weight function w; = (%), and the
discrete Chebyshev polynomials D(()N),DgN),...,Dg\,N) of order N, with
respect to the weight function given by w; = 1 for every [. In addition
to orthogonality, we have deg(K,gN)) = deg(D,gN)) = k for every k €
{0,1,...,N}.
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As (orthogonal) polynomials with increasing degrees, the discrete Che-
byshev polynomials form a basis of Py, and hence any polynomial p of
degree at most IV can be uniquely represented as

p=doD{™ +d; D™V + . +dyD, (1.2)

where d; € C. The coefficients d; in (1.2) are called the discrete Chebyshev

coefficients of p. Since the discrete Chebyshev polynomials are orthogo-

nal with respect to a constant weight function, they have the following

property important in approximation theory: with respect to the norm
N

llp—ql” = S (p(1) — q(1))2, the best approximation of p in Py can be
1=0
found by simply taking M +1 first summands of (1.2) (see [4], for instance).

§2. PRELIMINARIES

2.1. The discrete Chebyshev polynomials. There are various ways
to construct polynomials orthogonal with respect to the scalar product
(1.1) with the weight function w; = 1 so that deg(D,(cN)) = k.

We choose a construction analogous to that of the Legendre polynomials
[9]. We first define the difference operator A by Af(z) = f(z+ 1) — f(x),
the binomial coefficient (}) = #z(z —1)... (2 — k 4+ 1), and, finally,

DM (z) = (—1)kAk ((:) (“’ - ];f B 1)) . (2.1)

It is straightforward to see that the polynomials Dy, (hereafter, we omit the
superscript N if there is no danger of confusion) defined above form a basis
of Py orthogonal with respect to the scalar product (1.1) with w; = 1.
Moreover, clearly, deg(Dy,) = k, since one application of A decreases the
degree of a polynomial by one, see [3].

In this article, we regard (2.1) as the definition of the discrete Chebyshev
polynomials, but it is also easy to see that the following explicit expressions

hold (see [3]):
>0
> ()G 0)

[
B

DM (a)

ES|
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Also, it is rather easy to verify that the discrete Chebyshev polynomials
satisfy the following recurrence relation:

kE*Dy, = (2k —1)D1Dy_y — (N + k)(N — k +2)Dj_o, (2.3)

Dy =1, D1y = N — 2z (see [3]). The recurrence (2.3) also extends the
definition of Dy, to k > N.

The method of using generating functions is among the cornerstones of

various areas of mathematics, and does not need any further introduction.

We merely focus on the very simple form of the generating function of the
Krawtchouk polynomials (see [6]):

1+N (1 —t)" = iK,gm(x)tk. (2.4)
k=0

In fact, when studying the binomial distributions, it is quite natural to
define the Krawtchouk polynomials via (2.4).

On the other hand, the quest for the generating function of the discrete
Chebyshev polynomials seems to be a more complicated task. In what
follows, we give a closed form for the generating function

i DIV )tk (2.5)
k=0

It should be noticed, however, that some useful closed-form expressions
carrying information about the discrete Chebyshev polynomials have been
found before. For instance, in [5], the expression

1+ )1 +s)N "1 - st)® (2.6)
having the property that the coefficient of s¥t* equals D,(CN) (z) is given.

2.2. A differential equation for Jacobi polynomials. For a nonneg-

ative integer n, the Jacobi polynomial Pr(La’B) (z) is, up to a constant factor,
the unique entire rational solution to the differential equation (for Jacobi
polynomials)

(1-2®)y" +(B—a—(a+B+2)2)y +nn+a+B+1)y=0 (2.7)
(see [1]).

In this article, we are interested in the Jacobi polynomials with parame-
tersa =0, 8 = —(N+1), where N > 0is a fixed integer. We also substitute

x for n and ¢ for z in Eq. (2.7), and denote JQENH)(t) = P£07_N_1)(t). We
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usually omit the superscript N + 1 and denote J,(t) = JQENH)(t). Then
J.(t) satisfies the differential equation

(1—t)J"(t) — (N +1— (N - DO)J.(t) + 2(z — N)Jo(t) =0. (2.8

Recall that in this context, z is a fixed nonnegative integer. The polynomial
Jx(t) can be expressed as

n=5 3 (DY Ne-vrer o)

k=0
(see [1]). Since (2.8) is clearly invariant under the substitution z — N —z,
we have the symmetry
JNfz(t) = Jz(t) (210)

(see [1]).

2.3. The MacWilliams transform. The MacWilliams transform of or-
der z for a polynomial P is defined as

~

B a1t
P,(t)y=(1+1) P<1+t)' (2.11)
As definition (2.11) shows, the MacWilliams transform is a special case
of the Mdbius transformation together with the factor (1 + ). If the
subscript z is clear by the context, we may omit it. It is also straightforward
to see that if z is an integer such that deg(P) < =z, then P is again a
polynomial. In this article, we will, however, face situations with noninteger
values of z, and it is worth noticing already here that (2.11) shows that if
t > —1, then P, (t) is a uniquely defined differentiable function of the real
variable z. R

In what follows, J,(t) stands for the MacWilliams transform of .J, of
order z. It is then straightforward to uncover a representation for J, ():

7o) = 0,0 = S (1) D) e

k=0
The symmetry (2.10) implies straightforwardly that
— 1-—1t

Ina(t) = (Ina)n—2(t) = L+ N Ixa(77)

= (1+t)N (1 +t)%(1—+i) = (1+ N2 T, (b).
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The equality
In_o(t) = (1 + )N 727 T, (1) (2.13)

thus obtained will be important in understanding the alternative represen-
tation of the generating function introduced in Sec. 5.

§3. THE HEUN EQUATION

A differential equation for the MacWilliams transform of .J,(¢) can be
found easily. For short, we denote J(t) = J,(t) and J(t) = J,(¢) in the
following lemmas.

~

Lemma 1. The function J(t) satisfies the differential equation

t(+6)J"(#) + (Nt +1 -2tz — 1)) T (t) + z(x — N — 1)J(t) =0. (3.1)

~

Proof. By computing the derivatives of J(t) = (1 + #)*.J(1=%), we can

"
represent J(t), J'(t), and J”(t) in terms of J(15%), J'({5), and J" (i)
A direct calculation allows us also to reverse the representations to get
TG = (T (32)
1+t ’ '
7=ty = Lasogriw - ta sy ie), and  (3.3)
1+t 2 2 ’ '
1—-1 1 ~
1/ — - —1)(1 —z+2
TGy = ol - D+
1 5 1 =
— 5(:1: — D)1+t T @) + 1(1 + )T (). (3.4)

Replacing ¢t with }—:t: in (2.8) and substituting (3.2)—(3.4) into (2.8) gives
us the claim.

Another way to prove the lemma is to use (2.12) and verify by direct
calculations that the differential equation (3.1) is satisfied. O

Lemma 2. Let T(t) be defined as T(t) = (1 + t)N =22 J(—t2). Then T(t)
satisfies the differential equation
(& —t)T"(t) + (2t(N — 2z) + 3t> — 1)T"(¢)

+ (N =2z —tN(N +2))T(t) = 0. (3:5)
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Proof. As in the previous lemma, we can express T'(t), T'(t), and T"(t)
in terms of J(—t2), J'(—t%), and J”(—t2), and then reverse the represen-
tations to get

J(—#) = (1L+ 52N T (), (3.6)

7 (—t?) = %(N —2)(1 4+ 827N — %(1 F02NT), (3.7)

) = 2 (N = 22)(1 4+ 0 N2 (N — 20+ 2) + DT (1)
- 4—13(2t(N —22) +t 4+ 1) (1 + )2 N7 (¢)

by direct calculations. By substituting —¢> for ¢ in (3.1) and using (3.6)—
(3.8), we get the differential equation (3.5) after some direct calculations.
O

The differential equation (3.5) can be easily rewritten in standard nat-
ural form for the Heun differential equation

t(t— 1)t —q)y"(t) + (e(t —1)(t —q) +d - t(t — q)
+(a+b+1—c—d)tt—1))y(t)+ (abt — Ny(t) =0
(see [8]) by taking g = —-1,a =-N,b=N+2,c=1,d=N -2z +1,

and A = 2z — N. So, the generalized Riemann scheme (see [8]), describing
the local characteristic properties of this equation, is as follows:

1 1 1 1
0 1 -1 %) it
0 0 0 —-N ;2x—N

0 2c— N N-22z N+2

§4. THE GENERATING FUNCTION

By (2.12), the function T'(t) = (1 + £)N=22J,(—t2) can be represented

as
- ~-N-1
Tty =1 +N 23 (7} (F 2. 4.1
w=aro () (7] (1)
If t € (—1,1), we should keep in mind that J, (—t>) = (1+2)*J( ﬂ"éz) can

be straightforwardly defined for any real values of z. Hence for ¢t € (—1,1),
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also T(t) = (1 + t)N=22J,(—#) can be defined for an arbitrary real value
of z, even though (4.1) is meaningful only for integer values of z (because
of the summation upper bound). Another way of generalizing (4.1) even
to complex values of z is to expand (4.1) straightforwardly to see that if
we write

T(t) = i ()t (4.2)
k=0
then I (j\;_glx) (al;) (z - ]l\f — 1) (4.3)

0<I<k/2
is a polynomial of degree k. For any fixed z, the function 7T'(¢) is an ana-
lytic function of ¢ in the disc |t| < 1 (we can use the principal branch of
the logarithm to define the power), and hence it has a unique Maclaurin
expansion (4.2) convergent when |t] < 1.

That (4.2) converges for |t| < 1 can also be verified by using the ra-
tio test, but estimating |r41(z)/7k(x)| as k tends to infinity is not very
straightforward. On the other hand, the recurrence from the next lemma
reveals that klirrgo |Tkt1 (z) /T (x)] = 1.

Remark 1. The polynomials 74 (x) for small values of k are easy to find
by using formula (4.3). For instance, o(z) = 1, m(z) = N — 2z, and
To(z) =32 —3Nz + I N(N —1).

Lemma 3. For k > 2, the polynomials 1 () satisfy the recurrence relation
k1, (z) = 2k — 1)(N — 22) 731 (2) — (N + k) (N — k + 2)7%_a(z). (4.4)

Proof. This is a general property for a generic solution to the Heun equa-
tion, see [8]. Recurrence (4.4) can also be obtained by differentiating and
substituting (4.2) to Eq. (3.5). O

Remark 2. From (4.4) it follows that
71 () 2k —1(N —2z) (N+k)(N —k+2)no()

Th—1 () k2 k2 Th—1(z)’
which shows that the relation limg_, oo |T+1(2) /7 ()| = 0o cannot hold.
Since, clearly, 7 (z) is a rational expression in k, the limit exists and is
finite. Now the equation

mh(z) Th-i(z) k1N -2z) 7poa(z) (N+E)V-k+2)
Tr—1(2) Tp—2(x) k2 Tr—2(2) k2
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shows that klim |Tht1(x)/Th ()] = 1.
—00

We are now ready to state the main result.
Theorem 1. The function
Tra(t) = (L+ N2 Jo () (4.5)
is the gemerating function of the discrete Chebyshev polynomials, that is,
T (x) = Dy(x) for every k > 0.

Proof. By (2.3), the discrete Chebyshev polynomials satisfy the same re-
currence relation (4.4) as the polynomials 75, (). Since the initial conditions
To(x) = Do(z) and 71 (x) = D1 (z) hold by Remark 1, we have the equality
T (x) = Dy (x) for every k. O
Remark 3. It may be useful to compare formulas (4.5) and (2.4). Let
I,(u) =1 =u° Then, by (2.11),

Ly =a+07 (20 =@+

() =+ (755) =a+on,

so the generating function of the Krawtchouk polynomials can be written
as

L+ (=) = L+ )V A=) = A+ )V L(—1),
whereas the generating function of the discrete Chebyshev polynomials is
(L+ )N T, (—1%),

2190 ZB< )(”“" 1)(u1)k(u+1)k.

Note also that formula (2.13) is (trivially) valid for I as well as for J.
Moreover,

where

Lw=1= (- w+ (1+u>>z=2ixi(z)<1u)’“<1+u>”,
k=0
whereas
2 =5 S0 (7T T () a - wrae )

k=0

:2_mk <N+k x><)1u (1 +u)*.
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In addition, the sum of the coefficients is equal to
ZI: N+k—a _i: (N—z)+k\ (N+1
k N (N—-2) ) r )
k=0 k=0

§5. CONCLUDING REMARKS

Example 1. Expression (4.5) shows that if z is an integer not exceeding
N/2, then T () is a polynomial in ¢ of degree N — 2z 4+ 22z = N. Thus
we can find expressions

N
Tna(t) =Y DYV (@)t"
n=0

by simply evaluating D, (N)(z) for n € {0,1,..., N} by via (2.3) or (4.3).
For example, N = 6 gives

Ts0(t) =1+ 6t + 15t 4 20° 4+ 15t* 4+ 6t° + 5= (1 + 1)°,
Tea(t)=1+4t+0-1* — 20> — 35t — 244> — 6t° = (1 + t)*(1 — 6t%),
Ts(t) =1+ 2t — 9t2— 20> + 5t* + 30¢° + 15¢5 = (1 + )*(1— 10£* + 15t*),
Te3(t)=1—12¢* + 30t* — 20¢°,

which is in full accordance with (4.5) and (2.12). For = € {4,5,6}, the
power 6 — 2z of 1 4+ ¢ in (4.5) is no longer positive, so it is not clear
anymore whether Ts () would be a polynomial. But if T, were not
a polynomial for xz € {4,5,6}, then there would be a rather mysterious
asymmetry between z < 3 and x > 3. Fortunately, it is easy to show
that T ,(t) is indeed a polynomial for each z € {0,1,...,N} and the
asymmetry actually vanishes via the trivial equality 1 —2 = (1+¢)(1—1).

Theorem 2. The generating function Tn ,(t) can also be represented as
T () = (1 =) N JIy_o(—1?). (5.1)
Proof. Equality (2.13) implies
jN—x(_t2) =(1- tQ)N—sz‘m(_tQ) =(1- t)N—Qm(l + t)N—2x:];(_t2),

and the claim follows immediately. O
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Example 2 (Example 1 continued). Since, by Theorem 2, the expressions
T, (t) are polynomials in ¢ of degree 6, we can evaluate their values for
x € {4,5,6} as

To.a(t)=1— 2t — 924 2063 + 5t* — 30t° + 15t° = (1— t)*(1— 10>+ 15t*),
Tos(t)=1—4t +0- > +20t> — 35t* + 24t — 61° = (1 — 1)*(1 — 61?),
Tos(t)=1— 6t + 15t — 20> + 15t* — 6¢° + 1% = (1 — 1)S.

)

(
(
This is again in full accordance with (5.1) and (2.12).

Combining Theorems 1 and 2 into a single presentation is straightfor-
ward.

Theorem 3 (explicit polynomial form for z € {0,1,...,N}). The gener-
ating function Tn o (t) can be presented as a polynomial in t of degree N:

T ao(t) = (1+t-sign(N — 22)) V=217 0 (—).

Remark 4. Theorem 1 implies that (2.2) and (4.3) are equal, i.e.,

2 (O )5 O0D0 e

0<I<k/2

A direct combinatorial proof of (5.2) appears to be challenging, for in-
stance, the techniques of [7] seem to be powerless in this case. Theorem 2
implies an identity similar to (5.2).
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