
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.N. Gogin, M. HirvensaloON THE GENERATING FUNCTION OF DISCRETECHEBYSHEV POLYNOMIALSAbstrat. We give a losed form for the generating funtion ofthe disrete Chebyshev polynomials. The losed form onsists ofthe MaWilliams transform of Jaobi polynomials together with abinomial multipliative fator. It turns out that the desired losedform is a solution to a speial ase of the Heun di�erential equation,and that the losed form implies ombinatorial identities that appearquite hallenging to prove diretly.
§1. IntrodutionThe disrete Chebyshev polynomials belong to the rih family of orthog-onal polynomials (see [9℄ for a general treatise on orthogonal polynomialsand [2℄ for a previous work of the authors). The inner produt assoiatedto the disrete Chebyshev polynomials is de�ned with a disrete weightfuntion, and hene the vetor spae PN of polynomials having degree atmost N forms a natural referene for the orthogonal polynomials disussedin this artile.The sum and the salar produt in PN are de�ned pointwise, the salarprodut being de�ned as
〈p; q〉w = N∑l=0 wlp(l)q(l): (1.1)The Krawthouk polynomials (see [6℄) K(N)0 ;K(N)1 ; : : : , K(N)N (of order N)are orthogonal with respet to the weight funtion wl = (Nl ), and thedisrete Chebyshev polynomials D(N)0 ; D(N)1 ; : : : ; D(N)N of order N , withrespet to the weight funtion given by wl = 1 for every l. In additionto orthogonality, we have deg(K(N)k ) = deg(D(N)k ) = k for every k ∈

{0; 1; : : : ; N}.Key words and phrases: orthogonal polynomials, disrete Chebyshev polynomials,Krawthouk polynomials, MaWilliams transform, generating funtion, Heun equation.Supported by the V�ais�al�a foundation. 124



ON THE GENERATING FUNCTION 125As (orthogonal) polynomials with inreasing degrees, the disrete Che-byshev polynomials form a basis of PN , and hene any polynomial p ofdegree at most N an be uniquely represented asp = d0D(N)0 + d1D(N)1 + : : :+ dND(N)N ; (1.2)where dl ∈ C. The oeÆients dl in (1.2) are alled the disrete ChebyshevoeÆients of p. Sine the disrete Chebyshev polynomials are orthogo-nal with respet to a onstant weight funtion, they have the followingproperty important in approximation theory: with respet to the norm
||p− q||2 = N∑l=0(p(l) − q(l))2, the best approximation of p in PM an befound by simply takingM+1 �rst summands of (1.2) (see [4℄, for instane).

§2. Preliminaries2.1. The disrete Chebyshev polynomials. There are various waysto onstrut polynomials orthogonal with respet to the salar produt(1.1) with the weight funtion wl = 1 so that deg(D(N)k ) = k.We hoose a onstrution analogous to that of the Legendre polynomials[9℄. We �rst de�ne the di�erene operator � by �f(x) = f(x+1)− f(x),the binomial oeÆient (xk) = 1k!x(x − 1) : : : (x− k + 1), and, �nally,D(N)k (x) = (−1)k�k ((xk)(x−N − 1k )) : (2.1)It is straightforward to see that the polynomialsDk (hereafter, we omit thesupersript N if there is no danger of onfusion) de�ned above form a basisof PN orthogonal with respet to the salar produt (1.1) with wl = 1.Moreover, learly, deg(Dk) = k, sine one appliation of � dereases thedegree of a polynomial by one, see [3℄.In this artile, we regard (2.1) as the de�nition of the disrete Chebyshevpolynomials, but it is also easy to see that the following expliit expressionshold (see [3℄): D(N)k (x) = k∑l=0(−1)l(kl)(N − xk − l )(xl)= k∑l=0(−1)l(k + lk )(N − lk − l)(xl): (2.2)



126 N. GOGIN, M. HIRVENSALOAlso, it is rather easy to verify that the disrete Chebyshev polynomialssatisfy the following reurrene relation:k2Dk = (2k − 1)D1Dk−1 − (N + k)(N − k + 2)Dk−2; (2.3)D0 = 1, D1 = N − 2x (see [3℄). The reurrene (2.3) also extends thede�nition of Dk to k > N .The method of using generating funtions is among the ornerstones ofvarious areas of mathematis, and does not need any further introdution.We merely fous on the very simple form of the generating funtion of theKrawthouk polynomials (see [6℄):(1 + t)N−x(1− t)x = ∞∑k=0K(N)k (x)tk : (2.4)In fat, when studying the binomial distributions, it is quite natural tode�ne the Krawthouk polynomials via (2.4).On the other hand, the quest for the generating funtion of the disreteChebyshev polynomials seems to be a more ompliated task. In whatfollows, we give a losed form for the generating funtion
∞∑k=0D(N)k (x)tk: (2.5)It should be notied, however, that some useful losed-form expressionsarrying information about the disrete Chebyshev polynomials have beenfound before. For instane, in [5℄, the expression(1 + t)k(1 + s)N−x(1− st)x (2.6)having the property that the oeÆient of sktk equals D(N)k (x) is given.2.2. A di�erential equation for Jaobi polynomials. For a nonneg-ative integer n, the Jaobi polynomial P (�;�)n (x) is, up to a onstant fator,the unique entire rational solution to the di�erential equation (for Jaobipolynomials)(1− x2)y′′ + (� − �− (� + � + 2)x)y′ + n(n+ �+ � + 1)y = 0 (2.7)(see [1℄).In this artile, we are interested in the Jaobi polynomials with parame-ters � = 0, � = −(N+1), whereN > 0 is a �xed integer. We also substitutex for n and t for x in Eq. (2.7), and denote J (N+1)x (t) = P (0;−N−1)x (t). We



ON THE GENERATING FUNCTION 127usually omit the supersript N + 1 and denote Jx(t) = J (N+1)x (t). ThenJx(t) satis�es the di�erential equation(1− t2)J ′′x (t)− (N + 1− (N − 1)t)J ′x(t) + x(x −N)Jx(t) = 0: (2.8)Reall that in this ontext, x is a �xed nonnegative integer. The polynomialJx(t) an be expressed asJx(t) = 12x x∑k=0(xk)(x−N − 1k )(t− 1)k(t+ 1)x−k (2.9)(see [1℄). Sine (2.8) is learly invariant under the substitution x← N −x,we have the symmetry JN−x(t) = Jx(t) (2.10)(see [1℄).2.3. The MaWilliams transform. TheMaWilliams transform of or-der x for a polynomial P is de�ned asP̂x(t) = (1 + t)xP(1− t1 + t): (2.11)As de�nition (2.11) shows, the MaWilliams transform is a speial aseof the M�obius transformation together with the fator (1 + t)x. If thesubsript x is lear by the ontext, we may omit it. It is also straightforwardto see that if x is an integer suh that deg(P ) ≤ x, then P̂ is again apolynomial. In this artile, we will, however, fae situations with nonintegervalues of x, and it is worth notiing already here that (2.11) shows that ift > −1, then P̂x(t) is a uniquely de�ned di�erentiable funtion of the realvariable x.In what follows, Ĵx(t) stands for the MaWilliams transform of Jx oforder x. It is then straightforward to unover a representation for Ĵx(t):Ĵx(t) = (̂Jx)x(t) = x∑k=0(−1)k(xk)(x−N − 1k )tk: (2.12)The symmetry (2.10) implies straightforwardly thatĴN−x(t) = (ĴN−x)N−x(t) = (1 + t)N−xJN−x(1− t1 + t )= (1 + t)N−2x(1 + t)xJx(1− t1 + t ) = (1 + t)N−2xĴx(t):



128 N. GOGIN, M. HIRVENSALOThe equality ĴN−x(t) = (1 + t)N−2xĴx(t) (2.13)thus obtained will be important in understanding the alternative represen-tation of the generating funtion introdued in Se. 5.
§3. The Heun equationA di�erential equation for the MaWilliams transform of Jx(t) an befound easily. For short, we denote J(t) = Jx(t) and Ĵ(t) = Ĵx(t) in thefollowing lemmas.Lemma 1. The funtion Ĵ(t) satis�es the di�erential equationt(1 + t)Ĵ ′′(t) + (Nt+ 1− 2t(x− 1))Ĵ ′(t) + x(x −N − 1)Ĵ(t) = 0: (3.1)Proof. By omputing the derivatives of Ĵ(t) = (1 + t)xJ( 1−t1+t ), we anrepresent Ĵ(t), Ĵ ′(t), and Ĵ ′′(t) in terms of J( 1−t1+t ), J ′( 1−t1+t ), and J ′′( 1−t1+t ).A diret alulation allows us also to reverse the representations to getJ(1− t1 + t ) = (1 + t)−xĴ(t); (3.2)J ′(1− t1 + t ) = 12x(1 + t)−x+1Ĵ(t)− 12(1 + t)−x+2Ĵ ′(t); and (3.3)J ′′(1− t1 + t ) = 14x(x − 1)(1 + t)−x+2Ĵ(t)

−
12(x− 1)(1 + t)−x+3Ĵ ′(t) + 14(1 + t)−x+4Ĵ ′′(t): (3.4)Replaing t with 1−t1+t in (2.8) and substituting (3.2){(3.4) into (2.8) givesus the laim.Another way to prove the lemma is to use (2.12) and verify by diretalulations that the di�erential equation (3.1) is satis�ed. �Lemma 2. Let T (t) be de�ned as T (t) = (1 + t)N−2xĴ(−t2). Then T (t)satis�es the di�erential equation(t3 − t)T ′′(t) + (2t(N − 2x) + 3t2 − 1)T ′(t)+ (N − 2x− tN(N + 2))T (t) = 0: (3.5)



ON THE GENERATING FUNCTION 129Proof. As in the previous lemma, we an express T (t), T ′(t), and T ′′(t)in terms of Ĵ(−t2), Ĵ ′(−t2), and Ĵ ′′(−t2), and then reverse the represen-tations to getĴ(−t2) = (1 + t)2x−NT (t); (3.6)Ĵ ′(−t2) = 12t(N − 2x)(1 + t)2x−N−1T (t)− 12t (1 + t)2x−NT ′(t); (3.7)Ĵ ′′(−t2) = 14t3 (N − 2x)(1 + t)2x−N−2(t(N − 2x+ 2) + 1)T (t)
−

14t3 (2t(N − 2x) + t+ 1)(1 + t)2x−N−1T ′(t)+ 14t2 (1 + t)2x−NT ′′(t) (3.8)by diret alulations. By substituting −t2 for t in (3.1) and using (3.6){(3.8), we get the di�erential equation (3.5) after some diret alulations.
�The di�erential equation (3.5) an be easily rewritten in standard nat-ural form for the Heun di�erential equationt(t− 1)(t− q)y′′(t) + ((t− 1)(t− q) + d · t(t− q)+ (a+ b+ 1− − d)t(t − 1))y′(t) + (abt− �)y(t) = 0(see [8℄) by taking q = −1, a = −N , b = N + 2,  = 1, d = N − 2x + 1,and � = 2x−N . So, the generalized Riemann sheme (see [8℄), desribingthe loal harateristi properties of this equation, is as follows:




1 1 1 10 1 −1 ∞ ; t0 0 0 −N ; 2x−N0 2x−N N − 2x N + 2 
 :

§4. The generating funtionBy (2.12), the funtion T (t) = (1 + t)N−2xĴx(−t2) an be representedas T (t) = (1 + t)N−2x x∑k=0(xk)(x−N − 1k )t2k: (4.1)If t ∈ (−1; 1), we should keep in mind that Ĵx(−t2) = (1+ t2)xJ( 1+t21−t2 ) anbe straightforwardly de�ned for any real values of x. Hene for t ∈ (−1; 1),



130 N. GOGIN, M. HIRVENSALOalso T (t) = (1 + t)N−2xĴx(−t2) an be de�ned for an arbitrary real valueof x, even though (4.1) is meaningful only for integer values of x (beauseof the summation upper bound). Another way of generalizing (4.1) evento omplex values of x is to expand (4.1) straightforwardly to see that ifwe write T (t) = ∞∑k=0 �k(x)tk ; (4.2)then �k(x) = ∑0≤l≤k=2(N − 2xk − 2l )(xl)(x−N − 1l ) (4.3)is a polynomial of degree k. For any �xed x, the funtion T (t) is an ana-lyti funtion of t in the dis |t| < 1 (we an use the prinipal branh ofthe logarithm to de�ne the power), and hene it has a unique Malaurinexpansion (4.2) onvergent when |t| < 1.That (4.2) onverges for |t| < 1 an also be veri�ed by using the ra-tio test, but estimating |�k+1(x)=�k(x)| as k tends to in�nity is not verystraightforward. On the other hand, the reurrene from the next lemmareveals that limk→∞
|�k+1(x)=�k(x)| = 1.Remark 1. The polynomials �k(x) for small values of k are easy to �ndby using formula (4.3). For instane, �0(x) = 1, �1(x) = N − 2x, and�2(x) = 3x2 − 3Nx+ 12N(N − 1).Lemma 3. For k ≥ 2, the polynomials �k(x) satisfy the reurrene relationk2�k(x) = (2k − 1)(N − 2x)�k−1(x)− (N + k)(N − k + 2)�k−2(x): (4.4)Proof. This is a general property for a generi solution to the Heun equa-tion, see [8℄. Reurrene (4.4) an also be obtained by di�erentiating andsubstituting (4.2) to Eq. (3.5). �Remark 2. From (4.4) it follows that�k(x)�k−1(x) = (2k − 1)(N − 2x)k2 −

(N + k)(N − k + 2)k2 �k−2(x)�k−1(x) ;whih shows that the relation limk→∞ |�k+1(x)=�k(x)| = ∞ annot hold.Sine, learly, �k(x) is a rational expression in k, the limit exists and is�nite. Now the equation�k(x)�k−1(x) · �k−1(x)�k−2(x) = (2k − 1)(N − 2x)k2 ·
�k−1(x)�k−2(x) − (N + k)(N − k + 2)k2



ON THE GENERATING FUNCTION 131shows that limk→∞
|�k+1(x)=�k(x)| = 1.We are now ready to state the main result.Theorem 1. The funtionTN;x(t) = (1 + t)N−2xĴx(−t2) (4.5)is the generating funtion of the disrete Chebyshev polynomials, that is,�k(x) = Dk(x) for every k ≥ 0.Proof. By (2.3), the disrete Chebyshev polynomials satisfy the same re-urrene relation (4.4) as the polynomials �k(x). Sine the initial onditions�0(x) = D0(x) and �1(x) = D1(x) hold by Remark 1, we have the equality�k(x) = Dk(x) for every k. �Remark 3. It may be useful to ompare formulas (4.5) and (2.4). LetIx(u) = 1 = u0. Then, by (2.11),Îx(t) = (1 + t)x(1− t1 + t)0 = (1 + t)x;so the generating funtion of the Krawthouk polynomials an be writtenas (1 + t)N−x(1− t)x = (1 + t)N−2x(1− t2)x = (1 + t)N−2xÎx(−t2);whereas the generating funtion of the disrete Chebyshev polynomials is(1 + t)N−2xĴx(−t2);where Jx(u) = 12x x∑k=0(xk)(x−N − 1k )(u− 1)k(u+ 1)k:Note also that formula (2.13) is (trivially) valid for I as well as for J .Moreover,Ix(u) = 1 = 12x ((1− u) + (1 + u))x = 12x x∑k=0(xk)(1− u)k(1 + u)x−k;whereasJx(u) = 12x x∑k=0(−1)k(x−N − 1k )((xk)(1− u)k(1 + u)x−k)= 12x x∑k=0(N + k − xk )(xk)(1− u)k(1 + u)x−k:



132 N. GOGIN, M. HIRVENSALOIn addition, the sum of the oeÆients is equal tox∑k=0(N + k − xk ) = x∑k=0((N − x) + k(N − x) ) = (N + 1x ):
§5. Conluding remarksExample 1. Expression (4.5) shows that if x is an integer not exeedingN=2, then TN;x(t) is a polynomial in t of degree N − 2x+ 2x = N . Thuswe an �nd expressions TN;x(t) = N∑n=0D(N)n (x)tnby simply evaluating Dn(N)(x) for n ∈ {0; 1; : : : ; N} by via (2.3) or (4.3).For example, N = 6 givesT6;0(t)=1 + 6t+ 15t2 + 20t3 + 15t4 + 6t5 + t6=(1 + t)6;T6;1(t)=1 + 4t+ 0 · t2 − 20t3 − 35t4 − 24t5 − 6t6=(1 + t)4(1− 6t2);T6;2(t)=1 + 2t− 9t2−20t3 + 5t4 + 30t5+ 15t6=(1 + t)2(1− 10t2+ 15t4);T6;3(t)=1− 12t2 + 30t4 − 20t6;whih is in full aordane with (4.5) and (2.12). For x ∈ {4; 5; 6}, thepower 6 − 2x of 1 + t in (4.5) is no longer positive, so it is not learanymore whether T6;x(t) would be a polynomial. But if T6;x were nota polynomial for x ∈ {4; 5; 6}, then there would be a rather mysteriousasymmetry between x ≤ 3 and x > 3. Fortunately, it is easy to showthat TN;x(t) is indeed a polynomial for eah x ∈ {0; 1; : : : ; N} and theasymmetry atually vanishes via the trivial equality 1− t2 = (1+ t)(1− t).Theorem 2. The generating funtion TN;x(t) an also be represented asTN;x(t) = (1− t)2x−N ĴN−x(−t2): (5.1)Proof. Equality (2.13) impliesĴN−x(−t2) = (1− t2)N−2xĴx(−t2) = (1− t)N−2x(1 + t)N−2xĴx(−t2);and the laim follows immediately. �



ON THE GENERATING FUNCTION 133Example 2 (Example 1 ontinued). Sine, by Theorem 2, the expressionsT6;x(t) are polynomials in t of degree 6, we an evaluate their values forx ∈ {4; 5; 6} asT6;4(t)=1− 2t− 9t2+ 20t3+ 5t4− 30t5+ 15t6=(1− t)2(1− 10t2+ 15t4);T6;5(t)=1− 4t+ 0 · t2 + 20t3 − 35t4 + 24t5 − 6t6 = (1− t)4(1− 6t2);T6;6(t)=1− 6t+ 15t2 − 20t3 + 15t4 − 6t5 + t6 = (1− t)6:This is again in full aordane with (5.1) and (2.12).Combining Theorems 1 and 2 into a single presentation is straightfor-ward.Theorem 3 (expliit polynomial form for x ∈ {0; 1; : : : ; N}). The gener-ating funtion TN;x(t) an be presented as a polynomial in t of degree N :TN;x(t) = (1 + t · sign(N − 2x))|N−2x|Ĵ (N)min{x;N−x}(−t2):Remark 4. Theorem 1 implies that (2.2) and (4.3) are equal, i.e.,
∑0≤l≤k=2(N−2xk−2l )(xl)(x−N−1l )= k∑l=0(−1)l(kl)(N−xk−l )(xl): (5.2)A diret ombinatorial proof of (5.2) appears to be hallenging, for in-stane, the tehniques of [7℄ seem to be powerless in this ase. Theorem 2implies an identity similar to (5.2).Referenes1. H. Bateman, A. Erdelyi, Higher Transendental Funtions, Vol 2, MGraw-Hill,1953.2. N. Gogin, M. Hirvensalo, Reurrent onstrution of MaWilliams and Chebyshevmatries. | Fund. Inform. 116, No. 1{4 (2012), 93{110.3. M. Hirvensalo, Studies on Boolean funtions related to quantum omputing, Ph.Dthesis, University of Turku, 2003.4. A. N. Kolmogorov, S.V. Fomin, Introdutory Real Analysis, Dover, 1975.5. T. Laihonen: Estimates on the overing radius when the dual distane is known,Ph.D thesis, University of Turku, 1998.6. F. J. MaWilliams, N. J. A. Sloane, The Theory of Error-Correting Codes, North-Holland, 1977.7. M. Petkov�sek, H. S. Wilf, D. Zeilberger, A = B, A. K. Peters, Wellesley, 1996.
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