
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.N. Gogin, M. HirvensaloON THE GENERATING FUNCTION OF DISCRETECHEBYSHEV POLYNOMIALSAbstra
t. We give a 
losed form for the generating fun
tion ofthe dis
rete Chebyshev polynomials. The 
losed form 
onsists ofthe Ma
Williams transform of Ja
obi polynomials together with abinomial multipli
ative fa
tor. It turns out that the desired 
losedform is a solution to a spe
ial 
ase of the Heun di�erential equation,and that the 
losed form implies 
ombinatorial identities that appearquite 
hallenging to prove dire
tly.
§1. Introdu
tionThe dis
rete Chebyshev polynomials belong to the ri
h family of orthog-onal polynomials (see [9℄ for a general treatise on orthogonal polynomialsand [2℄ for a previous work of the authors). The inner produ
t asso
iatedto the dis
rete Chebyshev polynomials is de�ned with a dis
rete weightfun
tion, and hen
e the ve
tor spa
e PN of polynomials having degree atmost N forms a natural referen
e for the orthogonal polynomials dis
ussedin this arti
le.The sum and the s
alar produ
t in PN are de�ned pointwise, the s
alarprodu
t being de�ned as
〈p; q〉w = N∑l=0 wlp(l)q(l): (1.1)The Krawt
houk polynomials (see [6℄) K(N)0 ;K(N)1 ; : : : , K(N)N (of order N)are orthogonal with respe
t to the weight fun
tion wl = (Nl ), and thedis
rete Chebyshev polynomials D(N)0 ; D(N)1 ; : : : ; D(N)N of order N , withrespe
t to the weight fun
tion given by wl = 1 for every l. In additionto orthogonality, we have deg(K(N)k ) = deg(D(N)k ) = k for every k ∈

{0; 1; : : : ; N}.Key words and phrases: orthogonal polynomials, dis
rete Chebyshev polynomials,Krawt
houk polynomials, Ma
Williams transform, generating fun
tion, Heun equation.Supported by the V�ais�al�a foundation. 124



ON THE GENERATING FUNCTION 125As (orthogonal) polynomials with in
reasing degrees, the dis
rete Che-byshev polynomials form a basis of PN , and hen
e any polynomial p ofdegree at most N 
an be uniquely represented asp = d0D(N)0 + d1D(N)1 + : : :+ dND(N)N ; (1.2)where dl ∈ C. The 
oeÆ
ients dl in (1.2) are 
alled the dis
rete Chebyshev
oeÆ
ients of p. Sin
e the dis
rete Chebyshev polynomials are orthogo-nal with respe
t to a 
onstant weight fun
tion, they have the followingproperty important in approximation theory: with respe
t to the norm
||p− q||2 = N∑l=0(p(l) − q(l))2, the best approximation of p in PM 
an befound by simply takingM+1 �rst summands of (1.2) (see [4℄, for instan
e).

§2. Preliminaries2.1. The dis
rete Chebyshev polynomials. There are various waysto 
onstru
t polynomials orthogonal with respe
t to the s
alar produ
t(1.1) with the weight fun
tion wl = 1 so that deg(D(N)k ) = k.We 
hoose a 
onstru
tion analogous to that of the Legendre polynomials[9℄. We �rst de�ne the di�eren
e operator � by �f(x) = f(x+1)− f(x),the binomial 
oeÆ
ient (xk) = 1k!x(x − 1) : : : (x− k + 1), and, �nally,D(N)k (x) = (−1)k�k ((xk)(x−N − 1k )) : (2.1)It is straightforward to see that the polynomialsDk (hereafter, we omit thesupers
ript N if there is no danger of 
onfusion) de�ned above form a basisof PN orthogonal with respe
t to the s
alar produ
t (1.1) with wl = 1.Moreover, 
learly, deg(Dk) = k, sin
e one appli
ation of � de
reases thedegree of a polynomial by one, see [3℄.In this arti
le, we regard (2.1) as the de�nition of the dis
rete Chebyshevpolynomials, but it is also easy to see that the following expli
it expressionshold (see [3℄): D(N)k (x) = k∑l=0(−1)l(kl)(N − xk − l )(xl)= k∑l=0(−1)l(k + lk )(N − lk − l)(xl): (2.2)



126 N. GOGIN, M. HIRVENSALOAlso, it is rather easy to verify that the dis
rete Chebyshev polynomialssatisfy the following re
urren
e relation:k2Dk = (2k − 1)D1Dk−1 − (N + k)(N − k + 2)Dk−2; (2.3)D0 = 1, D1 = N − 2x (see [3℄). The re
urren
e (2.3) also extends thede�nition of Dk to k > N .The method of using generating fun
tions is among the 
ornerstones ofvarious areas of mathemati
s, and does not need any further introdu
tion.We merely fo
us on the very simple form of the generating fun
tion of theKrawt
houk polynomials (see [6℄):(1 + t)N−x(1− t)x = ∞∑k=0K(N)k (x)tk : (2.4)In fa
t, when studying the binomial distributions, it is quite natural tode�ne the Krawt
houk polynomials via (2.4).On the other hand, the quest for the generating fun
tion of the dis
reteChebyshev polynomials seems to be a more 
ompli
ated task. In whatfollows, we give a 
losed form for the generating fun
tion
∞∑k=0D(N)k (x)tk: (2.5)It should be noti
ed, however, that some useful 
losed-form expressions
arrying information about the dis
rete Chebyshev polynomials have beenfound before. For instan
e, in [5℄, the expression(1 + t)k(1 + s)N−x(1− st)x (2.6)having the property that the 
oeÆ
ient of sktk equals D(N)k (x) is given.2.2. A di�erential equation for Ja
obi polynomials. For a nonneg-ative integer n, the Ja
obi polynomial P (�;�)n (x) is, up to a 
onstant fa
tor,the unique entire rational solution to the di�erential equation (for Ja
obipolynomials)(1− x2)y′′ + (� − �− (� + � + 2)x)y′ + n(n+ �+ � + 1)y = 0 (2.7)(see [1℄).In this arti
le, we are interested in the Ja
obi polynomials with parame-ters � = 0, � = −(N+1), whereN > 0 is a �xed integer. We also substitutex for n and t for x in Eq. (2.7), and denote J (N+1)x (t) = P (0;−N−1)x (t). We



ON THE GENERATING FUNCTION 127usually omit the supers
ript N + 1 and denote Jx(t) = J (N+1)x (t). ThenJx(t) satis�es the di�erential equation(1− t2)J ′′x (t)− (N + 1− (N − 1)t)J ′x(t) + x(x −N)Jx(t) = 0: (2.8)Re
all that in this 
ontext, x is a �xed nonnegative integer. The polynomialJx(t) 
an be expressed asJx(t) = 12x x∑k=0(xk)(x−N − 1k )(t− 1)k(t+ 1)x−k (2.9)(see [1℄). Sin
e (2.8) is 
learly invariant under the substitution x← N −x,we have the symmetry JN−x(t) = Jx(t) (2.10)(see [1℄).2.3. The Ma
Williams transform. TheMa
Williams transform of or-der x for a polynomial P is de�ned asP̂x(t) = (1 + t)xP(1− t1 + t): (2.11)As de�nition (2.11) shows, the Ma
Williams transform is a spe
ial 
aseof the M�obius transformation together with the fa
tor (1 + t)x. If thesubs
ript x is 
lear by the 
ontext, we may omit it. It is also straightforwardto see that if x is an integer su
h that deg(P ) ≤ x, then P̂ is again apolynomial. In this arti
le, we will, however, fa
e situations with nonintegervalues of x, and it is worth noti
ing already here that (2.11) shows that ift > −1, then P̂x(t) is a uniquely de�ned di�erentiable fun
tion of the realvariable x.In what follows, Ĵx(t) stands for the Ma
Williams transform of Jx oforder x. It is then straightforward to un
over a representation for Ĵx(t):Ĵx(t) = (̂Jx)x(t) = x∑k=0(−1)k(xk)(x−N − 1k )tk: (2.12)The symmetry (2.10) implies straightforwardly thatĴN−x(t) = (ĴN−x)N−x(t) = (1 + t)N−xJN−x(1− t1 + t )= (1 + t)N−2x(1 + t)xJx(1− t1 + t ) = (1 + t)N−2xĴx(t):



128 N. GOGIN, M. HIRVENSALOThe equality ĴN−x(t) = (1 + t)N−2xĴx(t) (2.13)thus obtained will be important in understanding the alternative represen-tation of the generating fun
tion introdu
ed in Se
. 5.
§3. The Heun equationA di�erential equation for the Ma
Williams transform of Jx(t) 
an befound easily. For short, we denote J(t) = Jx(t) and Ĵ(t) = Ĵx(t) in thefollowing lemmas.Lemma 1. The fun
tion Ĵ(t) satis�es the di�erential equationt(1 + t)Ĵ ′′(t) + (Nt+ 1− 2t(x− 1))Ĵ ′(t) + x(x −N − 1)Ĵ(t) = 0: (3.1)Proof. By 
omputing the derivatives of Ĵ(t) = (1 + t)xJ( 1−t1+t ), we 
anrepresent Ĵ(t), Ĵ ′(t), and Ĵ ′′(t) in terms of J( 1−t1+t ), J ′( 1−t1+t ), and J ′′( 1−t1+t ).A dire
t 
al
ulation allows us also to reverse the representations to getJ(1− t1 + t ) = (1 + t)−xĴ(t); (3.2)J ′(1− t1 + t ) = 12x(1 + t)−x+1Ĵ(t)− 12(1 + t)−x+2Ĵ ′(t); and (3.3)J ′′(1− t1 + t ) = 14x(x − 1)(1 + t)−x+2Ĵ(t)

−
12(x− 1)(1 + t)−x+3Ĵ ′(t) + 14(1 + t)−x+4Ĵ ′′(t): (3.4)Repla
ing t with 1−t1+t in (2.8) and substituting (3.2){(3.4) into (2.8) givesus the 
laim.Another way to prove the lemma is to use (2.12) and verify by dire
t
al
ulations that the di�erential equation (3.1) is satis�ed. �Lemma 2. Let T (t) be de�ned as T (t) = (1 + t)N−2xĴ(−t2). Then T (t)satis�es the di�erential equation(t3 − t)T ′′(t) + (2t(N − 2x) + 3t2 − 1)T ′(t)+ (N − 2x− tN(N + 2))T (t) = 0: (3.5)



ON THE GENERATING FUNCTION 129Proof. As in the previous lemma, we 
an express T (t), T ′(t), and T ′′(t)in terms of Ĵ(−t2), Ĵ ′(−t2), and Ĵ ′′(−t2), and then reverse the represen-tations to getĴ(−t2) = (1 + t)2x−NT (t); (3.6)Ĵ ′(−t2) = 12t(N − 2x)(1 + t)2x−N−1T (t)− 12t (1 + t)2x−NT ′(t); (3.7)Ĵ ′′(−t2) = 14t3 (N − 2x)(1 + t)2x−N−2(t(N − 2x+ 2) + 1)T (t)
−

14t3 (2t(N − 2x) + t+ 1)(1 + t)2x−N−1T ′(t)+ 14t2 (1 + t)2x−NT ′′(t) (3.8)by dire
t 
al
ulations. By substituting −t2 for t in (3.1) and using (3.6){(3.8), we get the di�erential equation (3.5) after some dire
t 
al
ulations.
�The di�erential equation (3.5) 
an be easily rewritten in standard nat-ural form for the Heun di�erential equationt(t− 1)(t− q)y′′(t) + (
(t− 1)(t− q) + d · t(t− q)+ (a+ b+ 1− 
− d)t(t − 1))y′(t) + (abt− �)y(t) = 0(see [8℄) by taking q = −1, a = −N , b = N + 2, 
 = 1, d = N − 2x + 1,and � = 2x−N . So, the generalized Riemann s
heme (see [8℄), des
ribingthe lo
al 
hara
teristi
 properties of this equation, is as follows:




1 1 1 10 1 −1 ∞ ; t0 0 0 −N ; 2x−N0 2x−N N − 2x N + 2 
 :

§4. The generating fun
tionBy (2.12), the fun
tion T (t) = (1 + t)N−2xĴx(−t2) 
an be representedas T (t) = (1 + t)N−2x x∑k=0(xk)(x−N − 1k )t2k: (4.1)If t ∈ (−1; 1), we should keep in mind that Ĵx(−t2) = (1+ t2)xJ( 1+t21−t2 ) 
anbe straightforwardly de�ned for any real values of x. Hen
e for t ∈ (−1; 1),



130 N. GOGIN, M. HIRVENSALOalso T (t) = (1 + t)N−2xĴx(−t2) 
an be de�ned for an arbitrary real valueof x, even though (4.1) is meaningful only for integer values of x (be
auseof the summation upper bound). Another way of generalizing (4.1) evento 
omplex values of x is to expand (4.1) straightforwardly to see that ifwe write T (t) = ∞∑k=0 �k(x)tk ; (4.2)then �k(x) = ∑0≤l≤k=2(N − 2xk − 2l )(xl)(x−N − 1l ) (4.3)is a polynomial of degree k. For any �xed x, the fun
tion T (t) is an ana-lyti
 fun
tion of t in the dis
 |t| < 1 (we 
an use the prin
ipal bran
h ofthe logarithm to de�ne the power), and hen
e it has a unique Ma
laurinexpansion (4.2) 
onvergent when |t| < 1.That (4.2) 
onverges for |t| < 1 
an also be veri�ed by using the ra-tio test, but estimating |�k+1(x)=�k(x)| as k tends to in�nity is not verystraightforward. On the other hand, the re
urren
e from the next lemmareveals that limk→∞
|�k+1(x)=�k(x)| = 1.Remark 1. The polynomials �k(x) for small values of k are easy to �ndby using formula (4.3). For instan
e, �0(x) = 1, �1(x) = N − 2x, and�2(x) = 3x2 − 3Nx+ 12N(N − 1).Lemma 3. For k ≥ 2, the polynomials �k(x) satisfy the re
urren
e relationk2�k(x) = (2k − 1)(N − 2x)�k−1(x)− (N + k)(N − k + 2)�k−2(x): (4.4)Proof. This is a general property for a generi
 solution to the Heun equa-tion, see [8℄. Re
urren
e (4.4) 
an also be obtained by di�erentiating andsubstituting (4.2) to Eq. (3.5). �Remark 2. From (4.4) it follows that�k(x)�k−1(x) = (2k − 1)(N − 2x)k2 −

(N + k)(N − k + 2)k2 �k−2(x)�k−1(x) ;whi
h shows that the relation limk→∞ |�k+1(x)=�k(x)| = ∞ 
annot hold.Sin
e, 
learly, �k(x) is a rational expression in k, the limit exists and is�nite. Now the equation�k(x)�k−1(x) · �k−1(x)�k−2(x) = (2k − 1)(N − 2x)k2 ·
�k−1(x)�k−2(x) − (N + k)(N − k + 2)k2



ON THE GENERATING FUNCTION 131shows that limk→∞
|�k+1(x)=�k(x)| = 1.We are now ready to state the main result.Theorem 1. The fun
tionTN;x(t) = (1 + t)N−2xĴx(−t2) (4.5)is the generating fun
tion of the dis
rete Chebyshev polynomials, that is,�k(x) = Dk(x) for every k ≥ 0.Proof. By (2.3), the dis
rete Chebyshev polynomials satisfy the same re-
urren
e relation (4.4) as the polynomials �k(x). Sin
e the initial 
onditions�0(x) = D0(x) and �1(x) = D1(x) hold by Remark 1, we have the equality�k(x) = Dk(x) for every k. �Remark 3. It may be useful to 
ompare formulas (4.5) and (2.4). LetIx(u) = 1 = u0. Then, by (2.11),Îx(t) = (1 + t)x(1− t1 + t)0 = (1 + t)x;so the generating fun
tion of the Krawt
houk polynomials 
an be writtenas (1 + t)N−x(1− t)x = (1 + t)N−2x(1− t2)x = (1 + t)N−2xÎx(−t2);whereas the generating fun
tion of the dis
rete Chebyshev polynomials is(1 + t)N−2xĴx(−t2);where Jx(u) = 12x x∑k=0(xk)(x−N − 1k )(u− 1)k(u+ 1)k:Note also that formula (2.13) is (trivially) valid for I as well as for J .Moreover,Ix(u) = 1 = 12x ((1− u) + (1 + u))x = 12x x∑k=0(xk)(1− u)k(1 + u)x−k;whereasJx(u) = 12x x∑k=0(−1)k(x−N − 1k )((xk)(1− u)k(1 + u)x−k)= 12x x∑k=0(N + k − xk )(xk)(1− u)k(1 + u)x−k:



132 N. GOGIN, M. HIRVENSALOIn addition, the sum of the 
oeÆ
ients is equal tox∑k=0(N + k − xk ) = x∑k=0((N − x) + k(N − x) ) = (N + 1x ):
§5. Con
luding remarksExample 1. Expression (4.5) shows that if x is an integer not ex
eedingN=2, then TN;x(t) is a polynomial in t of degree N − 2x+ 2x = N . Thuswe 
an �nd expressions TN;x(t) = N∑n=0D(N)n (x)tnby simply evaluating Dn(N)(x) for n ∈ {0; 1; : : : ; N} by via (2.3) or (4.3).For example, N = 6 givesT6;0(t)=1 + 6t+ 15t2 + 20t3 + 15t4 + 6t5 + t6=(1 + t)6;T6;1(t)=1 + 4t+ 0 · t2 − 20t3 − 35t4 − 24t5 − 6t6=(1 + t)4(1− 6t2);T6;2(t)=1 + 2t− 9t2−20t3 + 5t4 + 30t5+ 15t6=(1 + t)2(1− 10t2+ 15t4);T6;3(t)=1− 12t2 + 30t4 − 20t6;whi
h is in full a

ordan
e with (4.5) and (2.12). For x ∈ {4; 5; 6}, thepower 6 − 2x of 1 + t in (4.5) is no longer positive, so it is not 
learanymore whether T6;x(t) would be a polynomial. But if T6;x were nota polynomial for x ∈ {4; 5; 6}, then there would be a rather mysteriousasymmetry between x ≤ 3 and x > 3. Fortunately, it is easy to showthat TN;x(t) is indeed a polynomial for ea
h x ∈ {0; 1; : : : ; N} and theasymmetry a
tually vanishes via the trivial equality 1− t2 = (1+ t)(1− t).Theorem 2. The generating fun
tion TN;x(t) 
an also be represented asTN;x(t) = (1− t)2x−N ĴN−x(−t2): (5.1)Proof. Equality (2.13) impliesĴN−x(−t2) = (1− t2)N−2xĴx(−t2) = (1− t)N−2x(1 + t)N−2xĴx(−t2);and the 
laim follows immediately. �



ON THE GENERATING FUNCTION 133Example 2 (Example 1 
ontinued). Sin
e, by Theorem 2, the expressionsT6;x(t) are polynomials in t of degree 6, we 
an evaluate their values forx ∈ {4; 5; 6} asT6;4(t)=1− 2t− 9t2+ 20t3+ 5t4− 30t5+ 15t6=(1− t)2(1− 10t2+ 15t4);T6;5(t)=1− 4t+ 0 · t2 + 20t3 − 35t4 + 24t5 − 6t6 = (1− t)4(1− 6t2);T6;6(t)=1− 6t+ 15t2 − 20t3 + 15t4 − 6t5 + t6 = (1− t)6:This is again in full a

ordan
e with (5.1) and (2.12).Combining Theorems 1 and 2 into a single presentation is straightfor-ward.Theorem 3 (expli
it polynomial form for x ∈ {0; 1; : : : ; N}). The gener-ating fun
tion TN;x(t) 
an be presented as a polynomial in t of degree N :TN;x(t) = (1 + t · sign(N − 2x))|N−2x|Ĵ (N)min{x;N−x}(−t2):Remark 4. Theorem 1 implies that (2.2) and (4.3) are equal, i.e.,
∑0≤l≤k=2(N−2xk−2l )(xl)(x−N−1l )= k∑l=0(−1)l(kl)(N−xk−l )(xl): (5.2)A dire
t 
ombinatorial proof of (5.2) appears to be 
hallenging, for in-stan
e, the te
hniques of [7℄ seem to be powerless in this 
ase. Theorem 2implies an identity similar to (5.2).Referen
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