
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 448, 2016 Ç.V. Gerdt, A. Khvedelidze, Yu. PaliiON THE RING OF LOCAL UNITARY INVARIANTSFOR MIXED X-STATES OF TWO QUBITSAbstrat. Entangling properties of a mixed two-qubit system anbe desribed by loal homogeneous unitary invariant polynomialsin the elements of the density matrix. The struture of the or-responding ring of invariant polynomials for a speial sublass ofstates, the so-alled mixed X-states, is established. It is shown thatfor the X-states there is an injetive ring homomorphism of the quo-tient ring of SU(2)×SU(2)-invariant polynomials modulo its syzygyideal to the SO(2)× SO(2)-invariant ring freely generated by �vehomogeneous polynomials of degrees 1; 1; 1; 2; 2.
§1. Introdution

• Motivation • In this paper, we onsider a bipartite quantum systemomposed of two qubits, whose state spae PX is a speial 7-dimensionalfamily of so-alled X-states [1℄. Our interest to this subspae of a generitwo-qubit spae P is due to the fat that many well-known states, e.g., Bellstates [2℄, Werner states [3℄, isotropi states [4℄, and maximally entangledmixed states [5,6℄, are partiular subsets of X-states. Sine their introdu-tion in [1℄, many interesting properties of X-states have been established.In partiular, it was shown that for a �xed set of eigenvalues, the states ofmaximal onurrene, negativity, or relative entropy of entanglement areX-states.1
• Content • Here we pose the question of studying the algebrai strutureof the algebra of loal unitary polynomial invariants orresponding to theX-states. More preisely, the fate of the ring of generi SU(2)×SU(2)-in-variant polynomials [8{11℄ under the restrition of the total two-qubit statespae P to its subspae PX will be disussed. The quotient struture ofKey words and phrases: mixed two-qubit systems, X-states, entanglement,ring of unitary invariant polynomials, fundamental invariants, syzygy ideal, ringhomomorphism.1For a detailed review of X-states and their appliations, we refer to the reentartile [7℄. 107



108 V. GERDT, A. KHVEDELIDZE, YU. PALIIthe ring obtained as the result of this restrition will be determined. Fur-thermore, we establish an injetive homomorphism between this ring andthe invariant ring R[PX ℄SO(2)×SO(2) of loal unitary invariant polynomialsfor two-qubit X-states. In doing so, we show that the latter ring is freelygenerated by �ve homogeneous invariants of degrees 1, 1, 1, 2, 2.
§2. Framework and settingsIn this setion, a olletion of main algebrai strutures assoiated witha �nite-dimensional quantum system is given.2.1. General algebrai settings and onventions. Hereafter, we usethe standard notation R[x1; : : : ; xn℄ for the ring of polynomials in n vari-ables x1; : : : ; xn with oeÆients in R. Given a polynomial setF := { f1; : : : ; fm } ∈ R[x1; : : : ; xn℄; (1)generating the subring

R[F ℄ := R[f1; : : : ; fm℄ ⊂ R[x1; : : : ; xn℄; (2)we will onsider the polynomial ring R[y1; : : : ; ym℄ assoiated with R[F ℄,where y1; : : : ; ym are variables (indeterminates).Note that R[F ℄ di�ers from the ideal IF = 〈F 〉 ⊆ R[x1; : : : ; xn℄ gener-ated by F : IF = { m
∑i=1 hifi | h1; : : : ; hm ∈ R[x1; : : : ; xn℄}: (3)The polynomial set F determines a real aÆne variety V ⊂ Rm. Theradial ideal I(V ) := √IF of IF , i.e., the ideal suh that f ∈

√IF if andonly if fm ∈ IF for some positive integer m, yields the oordinate ring ofV as the quotient ring
R[x1; : : : ; xn℄=I(V ): (4)A nonzero polynomial g(y1; : : : ; ym) ∈ R[y1; : : : ; ym℄ suh thatg(f1; : : : ; fm) = 0in R[x1; : : : ; xn℄ is alled a syzygy, or a nontrivial algebrai relation amongf1; : : : ; fm. The set of all syzygies forms the syzygy idealIF := { s ∈ R[y1; : : : ; ym℄ | s = 0 in R[x1; : : : ; xn℄ }:The following ring isomorphism holds (f. [12, Chap. 7, Proposition 2℄):

R[F ℄ ∼= R[y1; : : : ; ym℄=IF : (5)



RING OF TWO-QUBIT X-STATES 109Given an ideal IF in (3), a subset X ⊆ { x1; : : : ; xn } of indeterminates isalled independent modulo IF if IF ∩ R[X℄ = { }. Otherwise X is alleddependent modulo IF . The aÆne dimension of IF , denoted by dim(IF ), isde�ned to be the ardinality of a largest subset independent modulo IF .If IF = R[x1; : : : ; xn℄ = 〈1〉, then the aÆne dimension of IF is de�ned tobe −1.The ring of elements in R[x1; : : : ; xn℄ invariant under the ation of agroup G on { x1; : : : ; xn } will be denoted by R[x1; : : : ; xn℄G.2.2. Settings for quantum systems. The mathematial strutures as-soiated with �nite-dimensional quantum systems, in partiular, with mul-ti-qubit systems, an be desribed as follows.
• The quantum state spae • Introduing the spae of n×n Hermitianmatries Hn, one an identify the density operators of an individual qubitand of a pair of qubits with a ertain variety of H2 and H4, respetively.In general, for an n-dimensional quantum system, this variety, the statespae P(Hn), is given as the subset of elements from Hn that satisfy thesemipositivity and unit trae onditions:

P(Hn) := {% ∈ Hn | % > 0; tr % = 1}:
• The unitary symmetry of the state spae • The traditionalguiding philosophy to study physial models is based on the symmetrypriniple. In the ase of quantum theory, the basi symmetry is realized inthe form of the adjoint ation of the unitary group U(n) on Hn:(g; %) → g%g† ; g ∈ U(n); % ∈ Hn: (6)Owing to this global unitary symmetry, the orrespondene between statesand physially relevant on�gurations is not one-to-one. All density ma-tries along the unitary orbit

O% = {g%g†; g ∈ SU(n)}represent one and the same physial state. The symmetry transforma-tions (6) establish the equivalene relation % ∼ g%g† on the state spae
P(Hn). This equivalene de�nes the fator spae P(Hn)= ∼ and allows oneto \redue" the above-outlined \redundant" desription of a quantum sys-tem by passing to the global unitary orbit spae P(Hn)=U(n). The globalunitary orbit spae aumulates all physially relevant information aboutthe system as a whole. Charateristis of P(Hn)=U(n) as an algebrai vari-ety are enoded in the enter of the universal enveloping algebra U(su(n)),



110 V. GERDT, A. KHVEDELIDZE, YU. PALIIand an be desribed in terms of the algebra of real SU(n)-invariant poly-nomials in P(Hn).
• Composite quantum systems • If the spae Hn is assoiated witha omposite quantum system, then another symmetry omes into play,the so-alled loal unitary group. Restriting ourselves to the ase of atwo-qubit system, the loal unitary group is identi�ed with the subgroupG = SU(2) × SU(2) ⊂ SU(4) of the global unitary group SU(4). Inontrast to the global unitary symmetry, the loal unitary group establishesan equivalene between states of a omposite system that have one andthe same entangling properties. The algebra of orresponding loal unitaryG-invariant polynomials an be used for quantitative haraterization ofentanglement. Having in mind the appliation to a two-qubit system, itis onvenient to introdue a Z

3-grading in this algebra of loal unitaryG-invariant polynomials. This an be ahieved by onsidering the algebra{su(4) from the elements of H4:% = 14 [I4 + {su(4)℄ ; I4 is the identity 4× 4 matrix;and deompositing the latter into the diret sum of three real spaesV1 = {su(2)⊗ I2; V2 = I2 ⊗ {su(2); V3 = {su(2)⊗ {su(2); (7)eah representing a G-invariant subspae. Note that if a basis for the al-gebra su(2) in eah subspae V is hosen using the Pauli matries � =(�1; �2; �3), the above G-invariant Z3-grading gives% = 14[I2 ⊗ I2 + 3
∑i=1 ai�i ⊗ I2 + 3

∑i=1 biI2 ⊗ �i + 3
∑i;j=1 ij�i ⊗ �j]: (8)This representation of a two-qubit state is known as the Fano deompo-sition [13℄. The real parameters ai; bi, and ij ; i; j = 1; 2; 3, are subjetto onstraints oming from the semipositivity ondition imposed on thedensity matrix: % > 0: (9)Expliitly, the semipositivity ondition (9) reads as a set of polynomial in-equalities in the �fteen variables ai; bi, and ij (see, e.g., [11℄ and referenestherein).



RING OF TWO-QUBIT X-STATES 111
§3. Applying invariant theoryThe entangling properties of omposite quantum systems admit a de-sription within the general framework of the lassial theory of invariants(see [14, 15℄ and referenes therein).As mentioned above, for the ase of a two-qubit system, the loal unitarygroup is G = SU(2)× SU(2). The adjoint ation (6) of this group on thetwo-qubit density matrix � indues transformations on the spaeW de�nedby the 15 real Fano variables2 (8):W := { (ai; bj ; kl) ∈ R

15 | i; j; k; l = 1; 2; 3 }; (10)and the orresponding G-invariant polynomials aumulate all relevantinformation on the two-qubit entanglement.Now we will give some known results on the struture of the ring ofG-invariant polynomials. It is worth noting that most of these results areappliable to linear ations of ompat groups on linear spaes and thusannot be diretly used for a desription of quantum systems, due to thesemipositivity of the density matrix (9). However, for a moment we relaxthe semipositivity onstraints on the Fano parameters and identify thespae W with R
15. The positivity of density matries an be written in aG-invariant form and, therefore, an be taken into aount later.

• The ring of G-invariant polynomials • Let
R[W ℄ := R[x1; x2; : : : ; x15℄be the oordinate ring of W (with the ideal I(W ) = {0} in (4)), and letR := R[W ℄G ⊂ R[W ℄ be the subring of polynomials invariant under theabove-mentioned transformations on W . The ring of invariant polynomi-als R has the following important properties [10, 15℄.

• The ring R is a graded algebra over R, and, aording to the las-sial Hilbert theorem, there is a �nite set of homogeneous funda-mental invariants generating R as an R-algebra.
• The invariant ring R is Cohen{Maaulay, that is, R is a �nitelygenerated free module over R[Fp℄ (Hironaka deomposition):R = ⊕fk∈Fs fk R[Fp℄;2More preisely, in orrespondene with the above-mentioned Z

3-grading, thespae W is the spae of irreduible representations of the form D1 × D0, D0 × D1,and D1 ×D1 of SU(2)× SU(2), respetively.



112 V. GERDT, A. KHVEDELIDZE, YU. PALIIwhere Fp is a set of algebraially independent primary invariants,or homogeneous system of parameters [15℄, sometimes alled anintegrity basis, and Fs is a set of linearly independent seondaryinvariants. Here 1 ∈ Fs, and the set Fp ∪ Fs generates R.
• Let Rk be the subspae spanned by all homogeneous invariants inR of degree k. If this subspae has dimension dk, then the orre-sponding Molien seriesM(q) = ∞

∑k=0 dkqk (11)generated by the Molien funtion M(q) ontains information onthe number of primary and seondary invariants and their degrees(see formula (12) in the next setion).
• Orbit separation: for any u; v ∈ W suh that G · u 6= G · v thereexists p ∈ R suh that p(u) 6= p(v).Beause of the G-invariane of polynomials in R, their orbit separationproperty, and the Noetherianity of R, the use of fundamental invariants isnatural in the desription of the orbit spae of a linear ation of a ompatLie group and, in partiular, of the G-invariant entanglement spae oftwo-qubit states.

• Computational aspets • Construtive methods and algorithms foromputing homogeneous generators of invariant rings are the main researhobjets of omputational invariant theory [15, 16℄. There are various algo-rithms known in the literature, together with their implementation in om-puter algebra software, e.g.,Maple, Singular, Magma (see [15, Chaps. 3and 4℄ and [17℄). But, unfortunately, onstruting a basis of invariants forSU(2) × SU(2) is too hard omputationally for all those algorithms ori-ented to some rather wide lasses of algebrai groups, and an integritybasis together with the seondary invariants for this group have been on-struted (see [10℄ and referenes therein) by methods exploiting its speialproperties. We will use this basis in the next setions. Moreover, even ourattempts to verify the algebrai independene of the primary invariants,that is, to hek that the variety in C de�ned by the polynomial set Fp is 0,by using the standard Gr�obner basis tehnique for algebrai eliminationfailed beause of too large omputer resoures required.



RING OF TWO-QUBIT X-STATES 1133.1. A basis of the ring of SU(2)× SU(2)-invariants. For two qubits,a basis of the polynomial ring R[W ℄SU(2)×SU(2) was onstruted in [10℄.An expliit form of its elements will be presented below.As mentioned above, the spae of polynomials in the �fteen variab-les (10) is deomposed into irreduible representations of SO(3)× SO(3).Furthermore, it inherits the Z3-grading from H4, sine the spae of homo-geneous polynomials of degree s; t; q in ai; bi; ij (i; j = 1; 2; 3), respetively,is invariant under the ation of SU(2)× SU(2). All suh invariants C anbe lassi�ed aording to their degrees s; t; q of homogeneity in ai; bi; ij .Following Quesne's onstrution [8℄, we will denote them by C(s t q). Thedegrees of homogeneous polynomials an be ontrolled from the knowledgeof the Molien funtion. The Molien funtion for mixed states of two qubits(see [8{10℄),M(q) = 1 + q4 + q5 + 3q6 + 2q7 + 2q8 + 3q9 + q10 + q11 + q15(1− q)(1− q2)3(1− q3)2(1− q4)3(1− q6) ; (12)shows that an integrity basis of the invariant ring onsists of 10 primaryinvariants of degrees 1; 2; 2; 2; 3; 3; 4; 4; 4; 6, and there are 15 seondary in-variants, whose degrees are 4; 5; 6; 6; 6; 7; 7; 8; 8; 9; 9; 9; 10; 11; 15. Quesne'sinvariants represent the soure of suh primary and seondary invariants.Expliitly, Quesne's invariants are as follows:3 invariants of the seond degreeC(002) = ijij ; C(200) = aiai; C(020) = bibi;2 invariants of the third degreeC(003) = 13!�ijk���i�j�k ; C(111) = aiijbj ;4 invariants of the fourth degreeC(004) = i�i�j�j� ;C(202) = aiaji�j�;C(022) = b�b�i�i� ;C(112) = 12 �ijk���aib�j�k ;1 invariant of the �fth degreeC(113) = aii����jbj ;



114 V. GERDT, A. KHVEDELIDZE, YU. PALII4 invariats of the six degreeC(123) = �ijkbi�ja��k�lbl;C(204) = aii�j�j�k�ak;C(024) = bi�i�j�j�;kbk;C(213) = ���a��ibijÆjaÆ;2 invariants of the seventh degreeC(214) = �ijkbi�ja��k�llal;C(124) = ���a��jbjkÆkÆlbl;2 invariants of the eights degreeC(125) = �ijkbi�j�lbl�k�mma ;C(215) = ���a��iÆiaÆk%k%lbl;2 invariants of the ninth degreeC(306) = ���a��iÆiaÆj%j%k�ka�;C(036) = �ijkbi�j�lbl�k�mmsbs:In the above formulas, summation over all repeated indies from one tothree is assumed.
§4. Construting the ring of invariant polynomials forX-statesNow we will disuss the fate of the ring of SU(2)× SU(2)-invariantpolynomials when the state spae of two qubits is restrited to the subspaeof X-states. We start with a very brief desription of harateristis ofX-states.4.1. X-states. Consider the subspae PX ⊂ P(R15) of X-states. Theirname is due to the visual similarity of the density matrix, whose nonzeroentries lie only on the main and minor (seondary) diagonals, with theLatin letter \X": %X := 







%11 0 0 %140 %22 %23 00 %32 %33 0%41 0 0 %44 







: (13)



RING OF TWO-QUBIT X-STATES 115In (13), the diagonal entries are real numbers, while the elements of theminor diagonal are pairwise omplex onjugate, %14 = %14 and %23 = %32.Comparing this with the Fano deomposition (8), one an see thatX-states belong to the 7-dimensional subspae WX of the vetor spaeW from (10) de�ned asWX := {w ∈ W | 13 = 23 = 31 = 32 = 0; ai = bi = 0; i = 1; 2}:X-matries represent density operators that do not mix the subspaes or-responding to the matrix elements with indies 1; 4 and 2; 3 of elements ofthe Hilbert spae H4. This an easily be veri�ed by using the permutationmatrix P� = 







1 0 0 00 0 0 10 0 1 00 1 0 0that orresponds to the permutation� = (1 2 3 41 4 3 2) :X-states an be transformed into the 2× 2 blok-diagonal form:%X = P� 







%11 %14 0 0%41 %44 0 00 0 %33 %320 0 %23 %22: 







P�: (14)4.2. The restrition of Quesne's invariants to the subspae ofX-states. Now we onsider the restrition of Quesne's fundamental in-variants C(s t q) introdued above to the subspae WX . A straightforwardevaluation shows that the set of fundamental invariants restrited to WXredues to 12 nonzero invariants:
P = {C200; C020; C002;C111; C003; C202;C022; C004; C112; C113; C204; C024}: (15)An expliit form of these invariants as polynomials in seven real variables,oordinates on WX := { (�; �; ; 11; 12; 21; 22) ∈ R

7 }; (16)



116 V. GERDT, A. KHVEDELIDZE, YU. PALIIis given by the following formulas:deg = 2; C200 = �2; C020 = �2; C002 = 211 + 212 + 221 + 222 + 2;deg = 3; C111 = ��; C003 = (1122 − 1221);deg = 4; C202 = �22; C022 = �22; C112 = ��(1122 − 1221);C004 = (211 + 212 + 221 + 222)2 − 2(1122 − 1221)2 + 4;deg = 5; C113 = ��3;deg = 6; C204 = �24; C024 = �24:Now, having the set of polynomials P in (15), one an onsider the poly-nomial ring R[P ℄ ⊂ R[WX ℄ generated by P .34.3. The syzygy ideal in R[P ℄. Aording to the isomorphism (5) men-tioned in Se. 2.1, the subring R[P1; : : : ;P12℄ an be written in the quotientform
R[P1; : : : ;P12℄ ∼= R[y1; y2 : : : y12℄=IP ; (17)with the syzygy ideal IP for P given byIP := {h ∈ R[y1; : : : ; y12℄ | h(P1; : : : ;P12) = 0 in R[w1; : : : ; w7℄} :The syzygy ideal an be determined by applying the well-known elimi-nation tehnique [16℄. Following this method, we ompute a Gr�obner basisof the idealJP = 〈P1 − y1; : : : ;P12 − y12〉 ∈ JP ⊂ R[!1; : : : ; !7; y1; y12℄for the lexiographi ordering11 ≻ 12 ≻ 21 ≻ 22 ≻ � ≻ � ≻  ≻

≻ y12 ≻ y11 ≻ y10 ≻ y8 ≻ y9 ≻ y7 ≻ y6 ≻ y5 ≻ y4 ≻ y3 ≻ y2 ≻ y1:The intersetion of the obtained Gr�obner basis with R[y1; : : : ; y12℄ forms alexiographi Gr�obner basis of the syzygy ideal IP . This basis onsists of3Hereafter, slightly abusing notation, we will write R[W ℄ and R[WX ℄ for the oordi-nate ring of the varietyW in (10) and its subvarietyWX , respetively. To save spae, theoordinate ring of WX will be denoted by R[w1; : : : ; w7℄ ≡ R[�; �; ; 11; 12; 21; 22℄:



RING OF TWO-QUBIT X-STATES 117the following 37 polynomials:IP = 〈 y2y6 − y24 ; y1y7 − y24 ; −y1y2y5 + y4y9; −y1y4y5 + y6y9;
−y2y4y5 + y7y9; −y1y2y23 + y1y2y8 + 2y3y24 − 2y6y7 + 2y29 ;
−y21y23y4 + y21y4y8 + 2y21y5y9 + 2y1y3y4y6 − 2y4y26 ;
−y22y23y4 + y22y4y8 + 2y22y5y9 + 2y2y3y4y7 − 2y4y27 ;2y21y2y25 − y1y23y24 + y1y24y8 + 2y3y24y6 − 2y26y7;2y1y22y25 − y2y23y24 + y2y24y8 + 2y3y24y7 − 2y6y27 ;2y1y2y24y25 − y23y44 + 2y3y24y6y7 + y44y8 − 2y26y27 ;2y31y25 − y21y23y6 + y21y6y8 + 2y1y3y26 − 2y36;2y32y25 − y22y23y7 + y22y7y8 + 2y2y3y27 − 2y37;y1y10 − y4y6; y10y2 − y4y7; y10y4 − y6y7;y1y23y4 − y1y4y8 − 2y1y5y9 − 2y3y4y6 + 2y10y6;y2y23y4 − y2y4y8 − 2y2y5y9 − 2y3y4y7 + 2y10y7;−y24y5 + y10y9;
−2y1y2y25 + y23y24 − 2y3y6y7 − y24y8 + 2y210; y1y11 − y26 ; y11y2 − y6y7;y1y23y4 − y1y4y8 − 2y1y5y9 − 2y3y4y6 + 2y11y4;
−2y21y25 + y1y23y6 − y1y6y8 − 2y3y26 + 2y11y6;
−2y1y2y25 + y23y24 − 2y3y6y7 − y24y8 + 2y11y7; −y4y5y6 + y11y9;y1y33y4 − y1y3y4y8 − 2y1y3y5y9 − 2y1y4y25 − y23y4y6 − y4y6y8 + 2y10y11;
−2y21y3y25 + y1y33y6 − y1y3y6y8 − 2y1y25y6 − y23y26 − y26y8 + 2y211;y1y12 − y6y7; y12y2 − y27 ; y2y23y4 − y2y4y8 − 2y2y5y9 − 2y3y4y7 + 2y12y4;
−2y1y2y25 + y23y24 − 2y3y6y7 − y24y8 + 2y12y6;
−2y22y25 + y2y23y7 − y2y7y8 − 2y3y27 + 2y12y7;−y4y5y7 + y12y9;y2y33y4 − y2y3y4y8 − 2y2y3y5y9 − 2y2y4y25 − y23y4y7 − y4y7y8 + 2y10y12;
−2y1y2y3y25 + y33y24 − y23y6y7 − y3y24y8 − 2y24y25 − y6y7y8 + 2y11y12;
−2y22y3y25 + y2y33y7 − y2y3y7y8 − 2y2y25y7 − y23y27 − y27y8 + 2y212 〉:



118 V. GERDT, A. KHVEDELIDZE, YU. PALIIBoth Maple and Mathematia ompute this basis in a few seonds ona PC. The ideal IP has dimension 5. It an be omputed by the ommandHilbertDimension in Maple or using a ode available on the Mathe-matia Stak Exhange Web page http://mathematia.stakexhan-ge.om/questions/37015/.If one uses the maximal independent set of variables { y1; y2; y3; y4; y5 }as parameters, the other variables, due to the above list of algebrai re-lations, are easily expressible in terms of the �ve parametri variables byapplying the ommand Solve in Maple or Mathematia:y6 = y24y2 ; y7 = y24y1 ;y8 = 2y31y32y25 + y21y22y23y24 − 2y1y2y3y44 + 2y64y21y22y24 ; (18)y9 = y1y2y5y4 ; y10 = y34y1y2 ; y11 = y44y1y22 ; y12 = y44y21y2 :This struture of the ring R[y1; y2 : : : y12℄=IP indiates that the polyno-mial invariants obtained from the rational relations (18) by learing theirdenominators form a Gr�obner basis of the syzygy ideal IP in the ring ofpolynomials in y6; : : : ; y12 over the parametri oeÆient �eld R(y1; : : : ; y5)of rational funtions.The determined properties of the ring R[P1; : : : ;P12℄ are in partialagreement with the initial struture of R[W ℄SU(2)×SU(2). Indeed, the �veQuesne polynomials C(200); C(020); C(002); C(111), and C(003), whih rep-resent a subset of algebraially independent invariants, survive after therestrition to the subspae WX and orrespond to the variables y1, y2,y3, y4, y5, whih are independent modulo IP . While the restritions of theother Quesne invariants represent variables that are dependent modulo IP .4.4. Mapping R[P ℄ to a freely generated ring. Now we establish aninjetive homomorphism between the ring R[P ℄ and a ertain subring ofthe oordinate ring R[WX ℄ whih is freely generated by polynomials ofdegrees 1; 1; 1; 2; 2. The latter subring is de�ned as follows. Consider thefollowing set of polynomials on WX :f1 = ; g1 := x3 + y3; g2 := x3 − y3; g3 := x21 + x22; g4 := y21 + y22 ; (19)



RING OF TWO-QUBIT X-STATES 119where the following variables are introdued:x1 = 11 − 22; y1 = 11 + 22;x2 = 12 + 21; y2 = 12 − 21; (20)x3 = �+ �; y3 = � − �:It turns out that all twelve Quesne polynomials P in (15) an be expandedover these 5 algebraially independent polynomials. An expliit form ofthese expansions for all nonvanishing Quesne polynomials up to the 6thorder is given in Table 1.Let us now introdue the ring R[f1; g1; g2; g3; g4℄, whih is generatedby the set (19). The relation between the polynomials of P in the vari-ables (19) and Quesne's invariants, as shown in Table 1, de�nes a mapping� : R[y1; y2; : : : ; y12℄=IP −→ R[f1; g1; g2; g3; g4℄ (21)between the quotient ring of SU(2)×SU(2)-invariant polynomials and thering R[f1; g1; g2; g3; g4℄, whih is an injetive ring homomorphism. Indeed,the mapping (21), obviously, satis�es the relations�(p+ q) = �(p) + �(q); �(pq) = �(p)�(q);and �(p)− �(q) = 0 if and only if p− q ∈ IP :However, (21) is not an isomorphism. The linear invariants f; g1; g2 haveno preimages in R[P ℄, sine the polynomial invariants (15) have degreegreater or equal to 2.
§5. Conluding remarksWe onlude with a group-theoreti explanation of the algebrai resultsobtained in the previous setion. Note that the generi ation of the groupSU(4) on the subspae PX ⊂ P moves its elements from PX . But one anpoint out a 7-dimensional subgroup GX ⊂ SU(4) that preserves the formof X-states.

• The invariane of X-states • One an easily onstrut a 7-parametrisubgroup GX ⊂ SU(4) that preserves PX , i.e., satis�esGX%XG†X ∈ PX :



120 V. GERDT, A. KHVEDELIDZE, YU. PALIITable 1. Expansion of Quesne's invariants for X-states.deg=2 C200 = 14 g22 C020 = 14 g21 C002 = 12 (g3 + g4) + f21deg=3 C111 = 14 g1g2f1 C003 = 14 f1(g4 − g3)deg=4 C202 = 14 g22f21 C022 = 14 g21f21 C004 = 18 (g3 + g4)2 + 12 g3g4 + f41C112 = 116 g1g2(g4 − g3)deg=5 C113 = 14 g1g2f31deg=6 C204 = 14 g22f41 C024 = 14 g21f41Let us �x the following elements of the algebra4 SU(4):e1 = �3 ⊗ �3;e2 = �2 ⊗ �1; e3 = I ⊗ �3; e4 = −�2 ⊗ �2;e5 = �1 ⊗ �2; e6 = �3 ⊗ I; e7 = �1 ⊗ �1:The set of the elements e1; e2; : : : ; e7 is losed under multipliation, i.e.,they form a basis of the subalgebra gX := su(2) ⊕ u(1) ⊕ su(2) ∈ su(4).The exponentiation of the algebra gX gives the subgroupGX := exp(igX) ∈ SU(4);whih is the invariane group of the spae PX of X-states. Writing ageneri element of the algebra gX as i 7
∑j !jej , one an verify that anarbitrary element of GX an be represented in the following blok-diagonalform: GX = P� ( e−i!1SU(2) 00 ei!1SU(2)′ )P�; (22)4The hoie of suh a subgroup is not unique, and there is a 15-fold degeneration:one an onsider 15 di�erent sets of seven generators that send X-states to eah other,see [18℄.



RING OF TWO-QUBIT X-STATES 121where the two opies of SU(2) are parametrized as follows:SU(2) = exp [i (!4 + !7)�1 + i (!2 + !5)�2 + i (!3 + !6)�3℄;SU(2)′ = exp [i (−!4 + !7)�1 + i (−!2 + !5)�2 + i (!3 − !6)�3℄:Having the representation (22), one an �nd the transformation lawsfor elements of X-matries.
• The ation of GX on X-states • First of all, the group GX leavesthe parameter 33 unhanged. Seond, aording to (22), the adjoint ationof the group X indues transformations of the Fano parameters that areunitary equivalent to the following blok-diagonal ations of two opies ofSO(3) on a pair of 3-dimensional vetors in W with oordinates (20):
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:Thus we onlude that there are three independent polynomial GX -inva-riants: f1 := 33; f2 := x21 + x22 + x23; f3 := y21 + y22 + y23 :Similarly, the loal transformations of X-states an be identi�ed, and theorresponding loal unitary polynomial invariants an be determined.
• The loal subgroup of GX • One an easily verify that the loalsubgroup of GX isP� exp({ '12 �3)× exp({'22 �3)P� ⊂ GX :Its ation indues two independent SO(2)-rotations of two planar vetors,x := (x1; x2) and y := (y1; y2), by the angles '1 + '2 and '1 − '2,respetively. Therefore, the �ve polynomials (19), used in the previoussetion for expanding the SU(2)×SU(2)-invariants, represent algebraiallyindependent loal invariants for X-states.Conluding, our analysis of the two-qubit X-state spae shows the ex-istene of two freely generated polynomial rings, one related to the globalGX -invariane,

R[33;x;y℄GX = R[f1; f2; f3℄;



122 V. GERDT, A. KHVEDELIDZE, YU. PALIIand another one orresponding to the loal unitary symmetry of X-states,
R[33;x;y℄SO(2)×SO(2) = R[f1; g1; g2; g3; g4℄;generated by the linear invariants f1; g1; g2 together with the quadratiinvariants g3; g4 of two planar vetors under the linear ation of the groupSO(2)× SO(2).Moreover, an injetive homomorphism of the ring of loal unitary poly-nomial invariants R[W ℄SU(2)×SU(2) restrited to the subspae of two-qubitX-states to the freely generated invariant ring
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