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ON THE RING OF LOCAL UNITARY INVARIANTS
FOR MIXED X-STATES OF TWO QUBITS

ABSTRACT. Entangling properties of a mixed two-qubit system can
be described by local homogeneous unitary invariant polynomials
in the elements of the density matrix. The structure of the cor-
responding ring of invariant polynomials for a special subclass of
states, the so-called mixed X-states, is established. It is shown that
for the X -states there is an injective ring homomorphism of the quo-
tient ring of SU(2) x SU(2)-invariant polynomials modulo its syzygy
ideal to the SO(2) x SO(2)-invariant ring freely generated by five
homogeneous polynomials of degrees 1,1,1,2,2.

§1. INTRODUCTION

e Motivation e In this paper, we consider a bipartite quantum system
composed of two qubits, whose state space P x is a special 7-dimensional
family of so-called X-states [1]. Our interest to this subspace of a generic
two-qubit space B is due to the fact that many well-known states, e.g., Bell
states [2], Werner states [3], isotropic states [4], and maximally entangled
mixed states [5,6], are particular subsets of X -states. Since their introduc-
tion in [1], many interesting properties of X-states have been established.
In particular, it was shown that for a fixed set of eigenvalues, the states of
maximal concurrence, negativity, or relative entropy of entanglement are
X-states.!

e Content e Here we pose the question of studying the algebraic structure
of the algebra of local unitary polynomial invariants corresponding to the
X -states. More precisely, the fate of the ring of generic SU(2) x SU(2)-in-
variant polynomials [8—11] under the restriction of the total two-qubit state
space B to its subspace Px will be discussed. The quotient structure of

Key words and phrases: mixed two-qubit systems, X-states, entanglement,
ring of unitary invariant polynomials, fundamental invariants, syzygy ideal, ring
homomorphism.

IFor a detailed review of X-states and their applications, we refer to the recent
article [7].



108 V. GERDT, A. KHVEDELIDZE, YU. PALII

the ring obtained as the result of this restriction will be determined. Fur-
thermore, we establish an injective homomorphism between this ring and
the invariant ring R[J3 X]So(z) x50(2) of local unitary invariant polynomials
for two-qubit X-states. In doing so, we show that the latter ring is freely
generated by five homogeneous invariants of degrees 1, 1, 1, 2, 2.

§2. FRAMEWORK AND SETTINGS

In this section, a collection of main algebraic structures associated with
a finite-dimensional quantum system is given.

2.1. General algebraic settings and conventions. Hereafter, we use

the standard notation R[zy, ..., z,] for the ring of polynomials in n vari-
ables x1,...,z, with coefficients in R. Given a polynomial set
F={fi,- .., fm} €Rlz1,..., 2], (1)
generating the subring
R[F] :=R[f1,..., fm] CR[z1,...,%4], (2)
we will consider the polynomial ring R[y,...,ym] associated with R[F],
where y1, ...,y are variables (indeterminates).

Note that R[F] differs from the ideal Ir = (F) C R[zy,...,z,] gener-
ated by F":

i=1

The polynomial set F' determines a real affine variety V' C R™. The
radical ideal I(V) := /I of I, i.e., the ideal such that f € /I if and
only if f™ € I for some positive integer m, yields the coordinate ring of
V' as the quotient ring

Rlz1,...,zp]/I(V). (4)
A nonzero polynomial g(y1,...,Ym) € Rly1,-..,ym] such that
g(fi,-, fm) =0
in R[zy,...,z,] is called a syzygy, or a nontrivial algebraic relation among

fi,--+5 fm- The set of all syzygies forms the syzygy ideal
Ir:={seRy,...,ym] | s=0in R[zy,...,2,]}.
The following ring isomorphism holds (cf. [12, Chap. 7, Proposition 2]):
R[F] = R[y1, ..., ym]/Ip. (5)
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Given an ideal Ir in (3), a subset X C {z1,...,2, } of indeterminates is
called independent modulo Ir if Ir N R[X] = {}. Otherwise X is called
dependent modulo Ir. The affine dimension of Iy, denoted by dim(Ir), is
defined to be the cardinality of a largest subset independent modulo Ip.
If Ir = Rlz1,...,z,] = (1), then the affine dimension of I is defined to
be —1.

The ring of elements in R[z1,...,z,] invariant under the action of a
group G on {zy,...,x, } will be denoted by R[zy,...,z,]%.

2.2. Settings for quantum systems. The mathematical structures as-
sociated with finite-dimensional quantum systems, in particular, with mul-
ti-qubit systems, can be described as follows.

e The quantum state space e Introducing the space of nxn Hermitian
matrices Hy,, one can identify the density operators of an individual qubit
and of a pair of qubits with a certain variety of Hy and H,, respectively.
In general, for an n-dimensional quantum system, this variety, the state
space PB(H,), is given as the subset of elements from H,, that satisfy the
semipositivity and unit trace conditions:

m(Hn)::{QEHn|Q>Oa trg:l}.

e The unitary symmetry of the state space e The traditional
guiding philosophy to study physical models is based on the symmetry
principle. In the case of quantum theory, the basic symmetry is realized in
the form of the adjoint action of the unitary group U(n) on H,:

(9.0) — gog',  geU(n), o€ Hy. (6)

Owing to this global unitary symmetry, the correspondence between states
and physically relevant configurations is not one-to-one. All density ma-
trices along the unitary orbit

0, = {gog', g € SU(n)}

represent one and the same physical state. The symmetry transforma-
tions (6) establish the equivalence relation o ~ gog’ on the state space
B(H,,). This equivalence defines the factor space P(H,,)/ ~ and allows one
to “reduce” the above-outlined “redundant” description of a quantum sys-
tem by passing to the global unitary orbit space B(H,)/U(n). The global
unitary orbit space accumulates all physically relevant information about
the system as a whole. Characteristics of B(H,,)/U (n) as an algebraic vari-
ety are encoded in the center of the universal enveloping algebra LU(su(n)),



110 V. GERDT, A. KHVEDELIDZE, YU. PALII

and can be described in terms of the algebra of real SU (n)-invariant poly-
nomials in P(H,,).

e Composite quantum systems e If the space H,, is associated with
a composite quantum system, then another symmetry comes into play,
the so-called local unitary group. Restricting ourselves to the case of a
two-qubit system, the local unitary group is identified with the subgroup
G = SU(2) x SU(2) c SU(4) of the global unitary group SU(4). In
contrast to the global unitary symmetry, the local unitary group establishes
an equivalence between states of a composite system that have one and
the same entangling properties. The algebra of corresponding local unitary
G-invariant polynomials can be used for quantitative characterization of
entanglement. Having in mind the application to a two-qubit system, it
is convenient to introduce a Z3-grading in this algebra of local unitary
G-invariant polynomials. This can be achieved by considering the algebra
15u(4) from the elements of Hy:

1
0=y [I4 + 1su(4)], I, is the identity 4 x 4 matrix,

and decompositing the latter into the direct sum of three real spaces
Vi =wsu(2) ® I, Vo = I @15u(2), V3 =1su(2) @ 1su(2), (7)

each representing a G-invariant subspace. Note that if a basis for the al-
gebra su(2) in each subspace V is chosen using the Pauli matrices o =
(01,09,03), the above G-invariant Z3-grading gives

3 3 3
1
Q:Z[IQ®IQ+Zaigi®I2+ZbiI2®Ui+Zcijai@gf]' (8)

i=1 i=1 i,j=1

This representation of a two-qubit state is known as the Fano decompo-
sition [13]. The real parameters a;,b;, and c¢;j, i,j = 1,2,3, are subject
to constraints coming from the semipositivity condition imposed on the
density matrix:

0>0. (9)
Explicitly, the semipositivity condition (9) reads as a set of polynomial in-

equalities in the fifteen variables a;, b;, and ¢;; (see, e.g., [11] and references
therein).
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§3. APPLYING INVARIANT THEORY

The entangling properties of composite quantum systems admit a de-
scription within the general framework of the classical theory of invariants
(see [14,15] and references therein).

As mentioned above, for the case of a two-qubit system, the local unitary
group is G = SU(2) x SU(2). The adjoint action (6) of this group on the
two-qubit density matrix p induces transformations on the space W defined
by the 15 real Fano variables? (8):

W= {(a;,bj,crr) €R™ | i, 5, k,1=1,2,3}; (10)

and the corresponding G-invariant polynomials accumulate all relevant
information on the two-qubit entanglement.

Now we will give some known results on the structure of the ring of
G-invariant polynomials. It is worth noting that most of these results are
applicable to linear actions of compact groups on linear spaces and thus
cannot be directly used for a description of quantum systems, due to the
semipositivity of the density matrix (9). However, for a moment we relax
the semipositivity constraints on the Fano parameters and identify the
space W with R'5. The positivity of density matrices can be written in a
G-invariant form and, therefore, can be taken into account later.

e The ring of G-invariant polynomials e Let

R[W] :=R[z1, 72, .., 715]

be the coordinate ring of W (with the ideal I(W) = {0} in (4)), and let
R := R[W]Y C R[W] be the subring of polynomials invariant under the
above-mentioned transformations on W. The ring of invariant polynomi-
als R has the following important properties [10,15].

e The ring R is a graded algebra over R, and, according to the clas-
sical Hilbert theorem, there is a finite set of homogeneous funda-
mental invariants generating R as an R-algebra.

e The invariant ring R is Cohen—Macaulay, that is, R is a finitely
generated free module over R[F}] (Hironaka decomposition):

R= @ [RIF,

fr€Fs

2More precisely, in correspondence with the above-mentioned Z3-grading, the
space W is the space of irreducible representations of the form D; x Do, Do X Dy,
and D1 x Di of SU(2) x SU(2), respectively.
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where F), is a set of algebraically independent primary invariants,
or homogeneous system of parameters [15], sometimes called an
integrity basis, and Fj is a set of linearly independent secondary
invariants. Here 1 € F,, and the set Fj, U F; generates R.

e Let Ry be the subspace spanned by all homogeneous invariants in
R of degree k. If this subspace has dimension dj, then the corre-
sponding Molien series

M) = dig* (1)
k=0

generated by the Molien function M(g) contains information on
the number of primary and secondary invariants and their degrees
(see formula (12) in the next section).

e Orbit separation: for any u,v € W such that G - u # G - v there
exists p € R such that p(u) # p(v).

Because of the G-invariance of polynomials in R, their orbit separation
property, and the Noetherianity of R, the use of fundamental invariants is
natural in the description of the orbit space of a linear action of a compact
Lie group and, in particular, of the G-invariant entanglement space of
two-qubit states.

e Computational aspects e Constructive methods and algorithms for
computing homogeneous generators of invariant rings are the main research
objects of computational invariant theory [15,16]. There are various algo-
rithms known in the literature, together with their implementation in com-
puter algebra software, e.g., MAPLE, SINGULAR, MAGMA (see [15, Chaps. 3
and 4] and [17]). But, unfortunately, constructing a basis of invariants for
SU(2) x SU(2) is too hard computationally for all those algorithms ori-
ented to some rather wide classes of algebraic groups, and an integrity
basis together with the secondary invariants for this group have been con-
structed (see [10] and references therein) by methods exploiting its special
properties. We will use this basis in the next sections. Moreover, even our
attempts to verify the algebraic independence of the primary invariants,
that is, to check that the variety in C defined by the polynomial set F}, is 0,
by using the standard Grobner basis technique for algebraic elimination
failed because of too large computer resources required.
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3.1. A basis of the ring of SU(2) x SU(2)-invariants. For two qubits,
a basis of the polynomial ring R[IW]SV()*SU) was constructed in [10].
An explicit form of its elements will be presented below.

As mentioned above, the space of polynomials in the fifteen variab-
les (10) is decomposed into irreducible representations of SO(3) x SO(3).
Furthermore, it inherits the Z3-grading from Hy, since the space of homo-
geneous polynomials of degree s,t, ¢ in a;, b;, ¢;j (4,5 = 1,2, 3), respectively,
is invariant under the action of SU(2) x SU(2). All such invariants C can
be classified according to their degrees s,t,q of homogeneity in a;, b;, c;;.
Following Quesne’s construction [8], we will denote them by C*t%9). The
degrees of homogeneous polynomials can be controlled from the knowledge
of the Molien function. The Molien function for mixed states of two qubits
(see [8-10]),

M(q) _ 1+q4+q5+3q6+2q7+2q8+3q9+q10+q11 +q15

(1-a)(1—¢*)3(1—¢*)*(1 —¢*)*(1 — ¢ ’
shows that an integrity basis of the invariant ring consists of 10 primary
invariants of degrees 1,2,2,2,3,3,4,4,4,6, and there are 15 secondary in-
variants, whose degrees are 4,5,6,6,6,7,7,8,8,9,9,9,10,11,15. Quesne’s
invariants represent the source of such primary and secondary invariants.
Explicitly, Quesne’s invariants are as follows:

(12)

3 invariants of the second degree
C0) = ¢jjei;, O =aia;,  CO =bby,

2 invariants of the third degree

1
0(003) = geijkeagvcmcjgckv, C(lll) = aicijbj,

4 invariants of the fourth degree

Co CiaCiBCjaCiBs

C%) = gaiciaCja,

C9%) = bybsciacis,

1

o2 = 3 €ijk€aBribaCiaChy,

1 invariant of the fifth degree
0(113) = aiCiQCQQngbj,
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4 invariats of the six degree

CU%) = ¢;51bicajancsrcaibs,
0(204) = @iCiaCjaCipCkB ALk,
0(024) = bicaicajcﬁjcﬂvkbk’
C213) — ibicyjCsj

= €apyAaCpibicyjcsjas,

2 invariants of the seventh degree
C214)
C124)

= €jjrbiCajancarcaicyiar,
= €a8,0aCajbjCyrCsiCsibI,
2 invariants of the eights degree
125
CU%) = €,14biCajCatbiCALCHMCymay
215
CD) = €5 00C3iCs5105C1Cok Cotbl,
2 invariants of the ninth degree
306
CB%) = €15,00C3iC5105C;CoiCok Caklo,
036) _
C(036) — €ijkbiCajCatbicsrcamCymCysbs.

In the above formulas, summation over all repeated indices from one to
three is assumed.

§4. CONSTRUCTING THE RING OF INVARIANT POLYNOMIALS FOR
X-STATES

Now we will discuss the fate of the ring of SU(2) x SU(2)-invariant
polynomials when the state space of two qubits is restricted to the subspace
of X-states. We start with a very brief description of characteristics of
X -states.

4.1. X-states. Consider the subspace Px C PB(R!®) of X-states. Their
name is due to the visual similarity of the density matrix, whose nonzero
entries lie only on the main and minor (secondary) diagonals, with the
Latin letter “X”:

oi1 O 0 o4
0 022 023 O
= . 13
ox 0 o032 o033 0 (13)
os1 O 0 ou
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In (13), the diagonal entries are real numbers, while the elements of the
minor diagonal are pairwise complex conjugate, gi4 = 014 and ga3 = 035.

Comparing this with the Fano decomposition (8), one can see that
X-states belong to the 7-dimensional subspace Wx of the vector space
W from (10) defined as

Wx::{’wEW|013:CQ3:C31:C32:0, ai:bizo, i:1,2}.

X -matrices represent density operators that do not mix the subspaces cor-
responding to the matrix elements with indices 1,4 and 2,3 of elements of
the Hilbert space H4. This can easily be verified by using the permutation
matrix

O O =

Py =

(e

= o O O
O = O O
o O = O

that corresponds to the permutation
(1 2 3 4
=\ 4 3 2)
X-states can be transformed into the 2 x 2 block-diagonal form:

oi1 o014 O 0

_ 041 o044 O 0
ox = I 0 0 033 032 Pr. (14)

0 0 023 0922.

4.2. The restriction of Quesne’s invariants to the subspace of
X-states. Now we consider the restriction of Quesne’s fundamental in-
variants C'**%) introduced above to the subspace Wx. A straightforward
evaluation shows that the set of fundamental invariants restricted to Wx
reduces to 12 nonzero invariants:

P = {0200, 0020, 0002,0111, 0003, 0202,

0022, C004, C112, C113, 0204’ 0024}_ (15)

An explicit form of these invariants as polynomials in seven real variables,
coordinates on

Wx = {(a,B,7,c11,C12,¢21,C22) € R? 1, (16)
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is given by the following formulas:

deg = 2, C*0=a? C"=p4, C" =ci+cly+c3+cn+77,
deg = 3, C'"' = aBy, C° =q(ci1ca0 — c1aca1),

deg = 4, C?? = o2, 0% = 3%4%, C'"™ = af(cricam — c12621),

2 2 2 2 \2 2 4
(¢l + iz + 651 + 35) — 2(cr1ca2 — craen)” + 97,

0004

deg=5,  C'""=apy’,
deg =6 0204 — 042’)/4 0024 — B2’Y4-
Now, having the set of polynomials P in (15), one can consider the poly-

nomial ring R[P] C R[Wx] generated by P.?

4.3. The syzygy ideal in R[P]. According to the isomorphism (5) men-
tioned in Sec. 2.1, the subring R[Py, ..., Pi2] can be written in the quotient
form

R[Pl,...,Pu] %R[yl,yQ...ylg]/Ip, (17)
with the syzygy ideal Ip for P given by
I’P = {hGR[yla"'ayl2] | h(P1,---,P12):0 in R[wla"'aw7]}'

The syzygy ideal can be determined by applying the well-known elimi-
nation technique [16]. Following this method, we compute a Grébner basis
of the ideal

Jp =(P1 —y1,...,Pi2 —y12) € Jp C Rlwy,...,wr,y1,Yy12]
for the lexicographic ordering
Cl1 > Cl2 > Ca1 = Cop = >= B =y =
= Y12 = Y11 > Y10 = Ys = Yo = Y7 = Y6 7 Y5 = Ya = Y3 > Y2 - Y.

The intersection of the obtained Grébner basis with R[yi, ..., y12] forms a
lexicographic Grébner basis of the syzygy ideal Ip. This basis consists of

3Hereafter, slightly abusing notation, we will write R[W] and R[Wx] for the coordi-
nate ring of the variety W in (10) and its subvariety W, respectively. To save space, the
coordinate ring of Wx will be denoted by Rlwi,...,wr] = Rla, 8,7, c11, c12, €21, ¢22].
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the following 37 polynomials:

Ip

(Y296 — yi, Yiyr — yia —Y1Y2Ys + Y4Yo, —Y1Y4Y5 + Y6Yo,

—Yaya¥s + Y1, —Y1Y293 + Y1yays + 2ysys — 2Yeyr + 205,

—YTy3Ya + Yiyays + 205 Usyo + 201Y3Yaye — 2yays,

—Y3Y3Ys + Y3yays + 293Ysyo + 2y2ysyayr — 2yay7,

2yty2y3 — Y1yays + n1yiys + 2usYiye — 205Y7,

219392 — Y2yaYi + Y20aYs + 2UsYiyr — 296y,

21929395 — Y3Yi + 2ysyiveyr + Yiys — 2yeys,

2075 — yiy3ve + Yiveys + 2y1ysYs — 24,

252 — y3uayr + Ysyrys + 22395 — 203,

Y1Y10 — Y4Ye,Y10Y2 — Y4Y7,Y10Y4 — Ye6Yr,

Y1Y3Ya — Y1YaYs — 201590 — 2Y3YaYe + 2Y10Ys,

Y2y3ya — Y2yays — 2Y2ysYo — 2y3yayr + 21097, —Y1Ys + Y10Yo,
—2y1293 + Y3Ys — 2ysYeYr — Ya¥s + 2Y10, V1YL — Y, Y11¥2 — Y6YT,
Y1Y3Ys — Y1yays — 251Y5Ys — 2y3Yals + 2y11Ya,

—2y7Y3 + Y1u5U6 — V1Yels — 2ysYs + 2Y11Ys,

—2y1y292 + Y3Ys — 2YsYeYr — YiYs + 2y11y7, —YayYsye + Y119,

Y1Y3Ys — Y1Y3YaYs — 2U1YsYsYo — 2Y1Y4Y5 — Y3YaYe — YaYeYs + 2Y10Y11,
—27Ysy3 + Y1Y3Ys — Y1YsYeYs — 201936 — Y3Ys — Yaus + 2u51,

Y1Y12 — Y6YT, Y12Y2 — Y3, Y2Y3Ys — Y2yays — 2Y2YsYo — 2Ysyayr + 2Y12Y4,
—2y1y292 + Y3Ys — 2YsYeYr — Y1Ys + 2Y12Vs,

—203Y3 + Y2u3Yr — Y2YrYs — 2YsYF + 2y12Y7, —YaYsy7 + Y12V,

Yo3Ya — Y2Ysyays — 2Y2Y3YsYo — 2Y2yaYs — YaYaYr — Yayrys + 210912,
—2y1Y2Y3Ys + Y5YZ — Y3YeYr — Y3YiYs — 2YiV3 — YeyrYs + 2y11Y12,
—2y5Y3Y3 + Y21yt — Y2ysYrys — 2Y2Y3YT — Y3Y5 — Y3Ys + 250 ).
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Both MAPLE and MATHEMATICA compute this basis in a few seconds on
a PC. The ideal Ip has dimension 5. It can be computed by the command
HilbertDimension in MAPLE or using a code available on the Mathe-
matica Stack Exchange Web page http://mathematica.stackexchan-
ge.com/questions/37015/.

If one uses the maximal independent set of variables { y1,y2,¥3,Y4, ys }
as parameters, the other variables, due to the above list of algebraic re-
lations, are easily expressible in terms of the five parametric variables by
applying the command Solve in MAPLE or MATHEMATICA:

2 2
] Y
Ys = _47 yr = _47
Y2 Y1
_ 207302 + yiyayays — 2v1y2usys + 248 18
Ys = 2 2 92 ) ( )
Y1Y394
_ Y1Y20s s Ui _ i
Yyo=—"" Yo=—H Y11= —35, Y12 = 5 -
Ya Y1Y2 Y1Ys Y1Y2

This structure of the ring R[y1,y2 ... y12]/Ip indicates that the polyno-
mial invariants obtained from the rational relations (18) by clearing their
denominators form a Grébner basis of the syzygy ideal Ip in the ring of
polynomials in yg, . . ., y12 over the parametric coefficient field R(y1, ..., ys)
of rational functions.

The determined properties of the ring R[Py,...,P12] are in partial
agreement with the initial structure of R[W]5U()*SU®) Indeed, the five
Quesne polynomials C'(200) ¢(020) (002) ‘o(111) " and C(093)  which rep-
resent a subset of algebraically independent invariants, survive after the
restriction to the subspace Wx and correspond to the variables y;, ¥y,
Y3, Y4, Y5, which are independent modulo I». While the restrictions of the
other Quesne invariants represent variables that are dependent modulo Ip.

4.4. Mapping R[P] to a freely generated ring. Now we establish an
injective homomorphism between the ring R[P] and a certain subring of
the coordinate ring R[Wx] which is freely generated by polynomials of
degrees 1,1,1,2,2. The latter subring is defined as follows. Consider the
following set of polynomials on Wx:

fi=9 g1:=23+Ys, go: =73 — Y3, g3 =T, + T3, ga:=y; +¥3, (19)
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where the following variables are introduced:

r1 = cC11 — C22, Y1 = C11 + C22,
T2 = C12+cC21, Y2 = C12 — C21, (20)
T3 = a+ Ba Yys = 5 — Q.

It turns out that all twelve Quesne polynomials P in (15) can be expanded
over these 5 algebraically independent polynomials. An explicit form of
these expansions for all nonvanishing Quesne polynomials up to the 6th
order is given in Table 1.

Let us now introduce the ring R[fi, g1, g2, g3, ga], which is generated
by the set (19). The relation between the polynomials of P in the vari-
ables (19) and Quesne’s invariants, as shown in Table 1, defines a mapping

¢7 : ]R[ylay% . '7y12]/I'P — ]R[flaglag%g?ngll] (21)

between the quotient ring of SU(2) x SU (2)-invariant polynomials and the
ring R[f1, 91,92, 93, g4], which is an injective ring homomorphism. Indeed,
the mapping (21), obviously, satisfies the relations

o(p+q) = o) +0a), o) = d(p)o(q),
and
o(p) — p(q) =0 ifand only if p—q € Ip.

However, (21) is not an isomorphism. The linear invariants f, g1, g> have
no preimages in R[P], since the polynomial invariants (15) have degree
greater or equal to 2.

§5. CONCLUDING REMARKS

We conclude with a group-theoretic explanation of the algebraic results
obtained in the previous section. Note that the generic action of the group
SU(4) on the subspace Px C P moves its elements from Px. But one can
point out a 7-dimensional subgroup Gx C SU(4) that preserves the form
of X-states.

e The invariance of X-states ¢ One can easily construct a 7-parametric
subgroup Gx C SU(4) that preserves Px, i.e., satisfies

GxoxGY € Px.
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Table 1. Expansion of Quesne’s invariants for X-states.

L o 1 4 1 2
deg=2 || €200 = L g2 ooz _ L2 %2 = Lo gy + £
4 4 2
1 1
deg=3 || Cc!! = 1 g192f1 008 = 1 f1(94 — g3)
deaed || o202 _ L 242 o022 _ 1 22 004 _ l( o)+ 1 e
g 4 492 1 / 491 1 4 s 93 + 94 29394 1
ct1? = - 9192(94 — 93)
16
deg=5 || 113 = L g1gofd
79192/
deg—6 || 0204 = 1 24 co2a _ L 24
g ’ 1 9271 / 1 9171

Let us fix the following elements of the algebra* SU(4):

e1 = 03®o03,
e2 = 03®01, es=1®03, e =—02® 03,
€5 = 0'1®0'2, 66203®I, 67201®01.
The set of the elements eq,es, ..., er is closed under multiplication, i.e.,

they form a basis of the subalgebra gx := su(2) @ u(1) @ su(2) € su(q).
The exponentiation of the algebra gx gives the subgroup

Gx =exp(igx) € SU(4),
which is the invariance group of the space Px of X-states. Writing a
generic element of the algebra gx as iiwjej, one can verify that an
arbitrary element of G x can be represente(Ji in the following block-diagonal

form: ' |
B e 1 ST (2) 0
GX — P7r ( 0 | elmSU(Z)’ ) Pﬂ': (22)

4The choice of such a subgroup is not unique, and there is a 15-fold degeneration:
one can consider 15 different sets of seven generators that send X-states to each other,
see [18].



RING OF TWO-QUBIT X-STATES 121

where the two copies of SU(2) are parametrized as follows:
SU(2) =expi(wg +wr) o1 +i (we + ws) o2 + i (ws + wg) 03],
SU(2) = exp i (~ws +wr) o1 + i (~w2 +ws) 02 + i (w3 — we) 73]

Having the representation (22), one can find the transformation laws
for elements of X-matrices.

e The action of Gx on X-states e First of all, the group Gx leaves
the parameter ¢33 unchanged. Second, according to (22), the adjoint action
of the group X induces transformations of the Fano parameters that are
unitary equivalent to the following block-diagonal actions of two copies of
SO(3) on a pair of 3-dimensional vectors in W with coordinates (20):

T Ty
A 1sO@B) O |f=
zy | z3
vi B n

Y5 / Y2

V O |S0(3) )\
Thus we conclude that there are three independent polynomial G x-inva-
riants:

fri=css, foi=at+ai4ad, fai=yP R 4R

Similarly, the local transformations of X-states can be identified, and the
corresponding local unitary polynomial invariants can be determined.

e The local subgroup of Gx e One can easily verify that the local
subgroup of Gx is

Prexp(s %03) X exp(z%ag)P,r C Gx.

Its action induces two independent SO(2)-rotations of two planar vectors,
x := (r1, z2) and y = (y1, y2), by the angles p1 + 2 and 1 — 2,
respectively. Therefore, the five polynomials (19), used in the previous
section for expanding the SU(2) x SU (2)-invariants, represent algebraically
independent local invariants for X-states.

Concluding, our analysis of the two-qubit X-state space shows the ex-
istence of two freely generated polynomial rings, one related to the global
G x-invariance,

R[c?;Samay]GX = R[flaf27f3]7
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and another one corresponding to the local unitary symmetry of X-states,

R[CS?n T, y]SO(2)XSO(2) = R[fla g1, 92, 93, 94]7

generated by the linear invariants fi, g1, g> together with the quadratic
invariants gs, g4 of two planar vectors under the linear action of the group
S0(2) x SO(2).

Moreover, an injective homomorphism of the ring of local unitary poly-
nomial invariants R[W]5V(2)*SU(2) restricted to the subspace of two-qubit
X-states to the freely generated invariant ring
R[Wx]50()*SO?) introduced above has been established.
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