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ON THE DISTRIBUTION OF POINTS WITH
ALGEBRAICALLY CONJUGATE COORDINATES IN A
NEIGHBORHOOD OF SMOOTH CURVES

ABSTRACT. Let ¢ : R — R be a continuously differentiable function
on a finite interval J C R, and let & = (a1, @2) be a point with al-
gebraically conjugate coordinates such that the minimal polynomial
P of a1, a2 is of degree < n and height < Q. Denote by M2 (Q,, J)
the set of points a such that |p(a1) — a2| < c1Q 7. We show that
for 0 < v < 1 and any sufficiently large @ there exist positive values
c2 < ec3, where ¢; = ¢;(n), i = 1,2, that are independent of @ and
such that cp - QT < #M2(Q,7,J) < c3- Q"1 77,

§1. INTRODUCTION

First of all, let us introduce some useful notation. Let n be a positive
integer and @@ > 1 be a sufficiently large real number. Consider a polyno-
mial P(t) = a,t™ + ...+ a1t +ag € Z[t]. Denote by H(P) =  max |a;| the

IIxN

height of the polynomial P, and by deg P the degree of the polynomial P.
We define the following class of integer polynomials with bounded height
and degree:

Po(Q) := {P € Z[t] : deg P < n, H(P) < Q).

Denote by #5 the cardinality of a finite set S and by uxS the Lebesgue
measure of a measurable set S C R¥ &k € N. Furthermore, denote by
c¢;j > 0 positive constants independent of (). We are also going to use the
Vinogradov symbol A <« B, which means that there exists a constant ¢ > 0
such that A < ¢- B. We will also write A <x B if A < B and B <« A. Now
let us introduce the concept of an algebraic point. A point a = (g, as)
is called an algebraic point if ay and ao are roots of the same irreducible
polynomial P € Z[t]. The polynomial P of the smallest degree n > 2 with
relatively prime coefficients such that P(a;) = P(az) = 0 is called the
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minimal polynomial of the algebraic point c. Denote by deg(a) = deg P
the degree of the algebraic point e and by H(a) = H(P) the height of
the algebraic point a. Define the following set of algebraic points:

A2(Q) = {acC?: dega < n, H(a) < Q}.

Further, denote by A2(Q, D) := A2(Q)N D the set of algebraic points lying
in some domain D C R2. Problems related to calculating the number of
integer points in shapes and bodies in R* can be naturally generalized to
estimating the number of rational points in domains in Euclidean spaces.
Let f : Jo — R be a continuously differentiable function defined on a finite
open interval Jy in R. Define the following set:

Ny (Q,7,J) == { (p1/q, p2/q) € Q*:

0<q<Q mlaed, |f(pi/))—pld<Q7},

where J C Jp and 0 < v < 2. In other words, the quantity #N;(Q,~,J)

denotes the number of rational points with bounded denominators lying

within a certain neighborhood of the curve parametrized by f. The problem

is to estimate the value #N¢(Q,~,J). In [7], Huxley proved that for func-

tions f € C?(J) such that 0 < ¢4 := 1é1§ If"(z)] < e5:= sup |f"(z)] < o0
zeJo

EASH)
and an arbitrary constant € > 0, the following upper bound holds:

#N(Q, v, J) < Q¥

An estimate without ¢ in the exponent was obtained in 2006 in a paper
by Vaughan and Velani [14]. One year later, Beresnevich, Dickinson, and
Velani [1] proved a lower estimate of the same order:

#N;(Q,7,7) > Q*7.
This result was obtained using methods of metric theory introduced by
Schmidt in [9]. In this paper, we consider a problem related to the dis-
tribution of algebraic points @ € AZ(Q) near smooth curves, which is a
natural extension of the same problem formulated for rational points. Let
¢ : Jo — R be a continuously differentiable function defined on a finite
open interval Jy in R satisfying the conditions

sug) | (z)] := ¢ < 00, #{rx e dy:p(x) =2} :=cr <oo. (1.1)
z€Jo

Define the following set:
Mg(Qa’Ya J) = {a € A%L(Q) oy € J7 |(p(0¢1) - Cl2| < le_’Y} )
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where ¢; = (3 +¢g) - s and J C Jo. This set contains algebraic points
with bounded degree and height lying within some neighborhood of the
curve parametrized by . Our goal is to estimate the value #MS(Q, v, J).
The first advancement in solving this problem for 0 < v < % was made
in 2014 in the paper [5]. We are going to state it in the following form:
for any @ > Qo(n,J,p) there exists a positive value c¢g > 0 such that
#MZ(Q,v,J) > co - QM7 for 0 < v < % However, it should be noted
that this result is not the best possible, since for the quantity #Mg(@, v, J)
an upper bound of order Q"= can be proved for 0 < v < 1. In this
paper, we are going to fill this gap in the result of [5] by obtaining lower
and upper bounds of the same order for 0 < v < 1. Our main result is as
follows.

Theorem 1. For any smooth function ¢ satisfying conditions (1.1) there
exist positive values co,c3 > 0 such that

C2 - Qn+177 < #Mg(Qa’Ya J) <c3- Qn+17ﬁy
for @ > Qo(n, J,¢,7), sufficiently large ¢1, and 0 < v < 1.

The proof of Theorem 1 is based on the following idea. We consider
the strip L2(Q,7,J) :== {x e R? : 21 € J, |p(x1) — 22| < ¢1Q 7} and fill
it using squares II = I} x I with sides of length uy I} = pui1ls = cgQ 7.
In order to prove Theorem 1, we need to estimate the number of algebraic
points lying in such a square II. It should be mentioned that these esti-
mates are highly relevant to several other problems in the metric theory
of Diophantine approximation [6, 15]. Let us consider a more general case,
namely, the case of a rectangle I = I; x Iy, where puI; = cg@Q~ . We
are now going to give an overview of results related to the distribution
of algebraic points in rectangle II. First of all, let us find the value of
the parameter y; + 2 such that a rectangle II does not contain algebraic
points a € A2(Q). The following Theorem 2 answers this question. The
one-dimensional case of this problem was considered in [4].

Theorem 2. For any fived p,q € N with p < 2q there ezists a rectangle
Mo of size polly = ci0(p,q,n) - Q™ where

010(p7Q7n) = (2p(2q + 2p)n(n + 1))_1 ' qn+1,
such that #A2(Q, 1) = 0.
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Proof. Consider the rectangle II, with sides given by Iy = (0; %) and

Ipy = (%; % + c1o - Q_1>. To prove Theorem 2, assume that there exists

an algebraic point a € A2 (Q,IIp) with minimal polynomial P;. Consider
the resultant R(P;, P») of the polynomials P; and P»(t) = gt — p. Since
ar # 2 and ap # £, we have |R(Py, P»)| > 1. On the other hand, from
Feldman’s lemma (Lemma 5) and the assumption a € Iy we obtain that
|R(Pi, P,)| < %. This contradiction completes the proof. O

This simple result implies that if the size of a rectangle II is sufficiently
large, that is, oI > @', then we have #A2(Q,II) # 0, and we can
consider lower bounds for this quantity. A bound of this type was obtained
in [5]; it has the form

#AZ(Q,T0) > ¢11 - Q" oI (1.2)

In this paper, we obtain an upper bound for #A2 (Q,II). It is of the same
order as estimate (1.2), which demonstrates that estimate (1.2) is asymp-
totically the best possible.

Theorem 3. Let Il = I} x I be a rectangle with midpoint d and sides
wl; =cgQ7 7, i =1,2. Then for 0 < v1,v <1 and Q > Qo(n,~,d), the
estimate

#A2(Q,TI) < c12- Q"M oIl

holds, where
e12= 22, (dy) o (dy)|dy |~ and pa(@) = ((Ja] +1)" 1) Ja| .

It follows from Theorem 2 that for 1 < 71 + 792 < 2 we cannot obtain
estimate (1.2) for all rectangles II. In particular, it is easy to show that
certain neighborhoods of algebraic points of small height and small degree
do not contain any other algebraic points a € AZ%(Q). This leads us to
the definition of a set of small rectangles that are not affected by these
“anomalous” points. Now let us introduce the concept of a (v, v2)-special
square.

Definition 1. Let I1 = I, x Iy be a square with midpoint d, di # d,
and sides py1 Iy = pi1ly = cgQ ™" such that % < v < 1. We will say that
the square II satisfies the (I,v1,v2)-condition if vi + vo = 1 and there
ezist at most §° - 2T3QIT2M 41, T polynomials P € P2(Q) of the form
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P(t) = ast® + a1t + ag satisfying the inequalities

|P($07i)| < h-Q_Ui, 1= 1,2,
QM+ < as| < QM

for some point xo € TI, where § = 27 "71Th=2 . (dy — dy)?, L = {372@,

and
1—1)(1—
1- N0 <l <L+,
N=4qy—-1, 1=L+2, (1.3)
0, I>L+3.

Definition 2. A square I1 = I} x Iy with sides 1y = p1ls = cg@ "
such that % < v < 1 is called a (v1,v9)-special square if it satisfies the
(1,v1,v9)-condition for all l with 1 <1< L+ 2.
The following theorem can be proved for (v, vs)-special squares.
Theorem 4. For all (%, %)—special squares 11 = Iy x Iy with midpoints
1

d, di # dz, and sides Iy = pl> = cgQ~7, where 5 < v < 1 and

cs > co(n,d), there exists a value c13 = c13(n,d,y) > 0 such that
#A2(Q,11) > c13- Q" oIl
for @ > Qo(n,d, 7).

§2. AUXILIARY STATEMENTS

For a polynomial P with roots aq, ..., ay, let

<jsn

S(a) == {:I: eER: |z —ay| = 1r<n_in |z — aj|} .
Furthermore, from now on, we assume that the roots of the polynomial P
are sorted by the distance from a; = a; 1:
lain — o] <la —ais| < ... < it — dinl
Lemma 1. Let z € S(a;). Then
|z — as| <n|P(2)| - [P'(2)| 7!, |z —ail <2°7YP(2)] - [P (e)| 7,
(

7~ < min (2" |P@)] - [P(an)| " ais — o]y — ai
=<J=
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The first inequality follows from the inequality

n

|P'(@)| - |[P(@)| " <Y | — iyt < mfo— i

Jj=1
For a proof of the second and the third inequalities, see [8, 3].
Lemma 2 (see [2]). Let I C R be an interval, and let A C I be a measur-

able set, yu A > TpyI. If for all x € A the inequality |P(z)| < c14 - Q™"
holds for some w > 0, then

|P(z)| < 6"(n+1)" ! . cpq- QY
for all points © € I, where n = deg P.

Lemma 3 (see [16]). Let §, n1, n2 be real positive numbers, and let
P, P, € Z[t] be irreducible polynomials of degrees at most n such that
max (H(P,),H(P,)) < K. Let J; C R, i = 1,2, be intervals of sizes
pwi1J; = K=" If for some 11,7 > 0 and for all x € J; X J5 the inequalities
max (|Py (z;)], | P (x;)|) < K~ hold, then

T+ 72+ 2+ 2max(ry +1—n1,0) + 2max(me + 1 —12,0) < 2n+4 (2.1)
for K > Ky(6).
Lemma 4 (see [8]). Let P € Z][t] be a reducible polynomial, P = P, - Ps,
deg P =n > 2. Then
H(P)H(P;) < H(P).
Lemma 5 (see [10]). For any subset of roots a,,...,a;,, 1 < s <n, of a
polynomial P(t) = ant™ + ...+ ait + ag, we have

[Tles| < (n+ 12" HP) - faal 7

j=1

Lemma 6. Let G = G(d,K), where |dy — dz| > &1 > 0, be a set of points
b = (b1,bo) € Z? such that

byd; +bo| < Ky, i=1,2. (2.2)

Then
#G < (467K +1) - (4K> + 1)
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Proof. Without loss of generality, we assume that K; > K>. Consider the
system of equations

bidi +bo=1;, 1=1,2, (23)
in two variables. It is clear that for |/;| < K; any solution of the system (2.3)
satisfies (2.2). Thus, our problem is reduced to estimating the number of
integer solutions of the system (2.3) with different values |I;| < K;,i =1,2.
Let us consider the difference of the equations (2.3): by (dy — do) =11 — .
Then for |I;| < K1 we obtain

b1 < (|| + [l2]) - |di — do| ™! < 267 K.
This inequality implies that all possible values of b; lie in the interval
Ji = (—2e7'K1,2e7 " K1). Let us fix the value of by € J; and consider the
system (2.3) for two different combinations (b1, by ) and (b1, bo,;). In this
case, the system (2.3) can be transformed as follows:

|bo,o — boj| = [l1,0 — l,j] <2K;, i=1,2.
These inequalities imply that for a fixed by, all possible values of by lie in the
interval J()(bl) = (b070 — 2K, b070 + 2K2). Remembering that by,by € Z,
we have

#G < (i +1) - (mdo+1) = (4e7 ' K1+ 1) - (4K + 1) O

§3. PROOF OF THEOREM 3

Assume that #A2(Q,II) > c12 - Q" upIl. Taking an algebraic point
a € A2(Q,II) with minimal polynomial P, let us construct an estimate
for the polynomial P at points di,d>. Since a; € I;, we have

j! j— n!
PO ()| < 3 i -l - ol < s - pu(ds) - @,
i=k
for1 <k <nand@ > Qo- From these estimates and the Taylor expansion
of P in the intervals [;, ¢ = 1,2, we obtain the following inequality:

|P(di)] < |#HP® (o) (di — ci)* |
k=1

n (3.1)
<Y 27 (M) puldi) - Quals < 2"pu(di) - Qua i
k=1
Let us fix the vector A; = (ap,...,a2), where a,,...,as are the coefli-

cients of the polynomial P € P,(Q). Denote by P,(Q,A;) C P,(Q) the
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subclass of polynomials P that have the same vector of coefficients A; and
satisfy (3.1). The number of subclasses P, (Q, A1) is equal to the number
of vectors A1, which can be estimated as follows for @ > Qo:

#{A1} =20 +1)" <2"- Q" (3.2)

It should also be noted that every point of the set A2(Q,II) corresponds
to a polynomial P € P, (Q) that satisfies (3.1). On the other hand, every
polynomial P € P,,(Q) satisfying (3.1) corresponds to at most n? points
of the set AZ(Q,II). This allows us to write

e QM Tl < #A2(Q,T) < 12 > #Pn(Q, Av).
Ay

Thus, by estimate (3.3) and Dirichlet’s principle applied to vectors A; and
polynomials P satisfying (3.1), there exists a vector A o such that

#P,(Q, A1,0) = cr2 - 2_”n_2Q2p2H. (3.3)

Let us find an upper bound for the value #P,(Q, A1 ). To do this, we
fix some polynomial Py € P,,(Q, A1) and consider the difference between
the polynomials Py and P; € P,(Q, A1) at points d;, i = 1,2. From
estimate (3.1) it follows that

|Po(d;) — Pj(d;)| = [(ao,1 — aj,1)di + (a0, — aj0)] < 2" pn(di) - Qua L.

Thus the number of different polynomials P; € P,(Q, A1) does not ex-
ceed the number of integer solutions of the following system:

bid; + bo| < 2" pu(di) - Quuli, i=1,2.

Now let us use Lemma, 6 for K; = 2"t1p, (d;)-QuiI;. Since pui I; = cg@Q ™"
and v; < 1, we have K; > 2" p, (d;)cs - Q177 > max{eq, 1} for Q@ > Qo.
This implies that

§ <228 dy — do| " pp(di) pu(dz) - Qo Tl

It follows that #P,(Q,A1,0) < 22""8|dy — da| pn(dy)pn(dz) - Q*poIl,
which contradicts inequality (3.3) for

cio = 227002 p, (di) pr(da)|dy — do| 1.
This leads to the estimate
#A2(Q, 1) < cr12 - Q" po 11
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§4. PROOF OF THEOREM 4

4.1. The main lemma.

Lemma 7. Let I1 = I} x Iy be a square with midpoint d, d; # ds, and
sides p1ly = p1ly = cgQ~7, where % <v<1andcg > co(n,d). Given
positive values vi,ve such that vi +vy =n — 1, let L = Ly(Q,0,,v, )
be the set of points x € 11 such that there exists a polynomial P € P,(Q)
satisfying the following system of inequalities:

{|P(332)| < h, - Q7Y (4.1)

mln{|Pl(xl)|} < 6n : Qa i = 1727

where by, = £/ 3(|ds] + |dal) - max (1, 3]s, 3|de)"™ . If I is a (7272 )-

n—17?n—1
special square, then

poL < - poll
fOT’ 671, < 6O(n’d) and Q > Qo(navada’}/)'

Proof. Since d; # d>, we may assume that for @@ > Qg the inequality
di—d
|CE1 — .’172| >e1 = % (42)

is satisfied for every point x € II. Let us introduce some additional nota-
tion. For a polynomial P, let A(P) denote the set of roots of P. Denote
by L; and Ly the sets of points x € II such that there exists an irreducible
polynomial P € P,(Q) satisfying (4.1) and the condition |P’(z1)| < §,Q
or |P'(z2)] < §,Q, respectively, and let Lz denote the set of points x € II
such that (4.1) is satisfied for some reducible polynomial P € P,(Q).
Clearly, we have L = Ly ULy U L3. The case of irreducible polynomials will
be the most difficult one and requires the largest part of the proof. Let us
start by considering this case, deriving estimates for the measures p; L
and g1 Lo. Without loss of generality, let us assume that |P'(z1)] < 6,Q,
i.e., consider the set L;. In this case, the main idea is to split an interval T,
which contains all possible values of P’ at points x € II, into subintervals
Tin, Ti2, Ti3 and to estimate the measure of the set of solutions of the
system (4.1) for |P'(z;)| € Tix, k = 1,2,3. This splitting is performed as



ON THE DISTRIBUTION OF POINTS 23

follows: for ¢ = 1,2,

(n—2)vy

QF Emn g, Q) :
Q

(n—2)vgy

2 Y g (dy) - Q) ’

where (n) = 0if n < 3 and 8(n) = 1 if n > 3. Without loss of generality,
let us assume that |d;| < |dz|. We would like to verify that if a polynomial
P € P,(Q) satisfies the condition

P ()] > 215 - Q% (4.3)
then the values |P’(a;)| can be estimated as follows:
LP' (@) < [P'(as)] < 2P (@), i=1,2, (4.4)

where z; € S(a;) and c15 = 2" 'n(n — 1) - max{hy,, 1} -max{1, p,_1(d2)}.
Let us write the Taylor expansion of P’

P’(zz) = P/(Oéi)+P//(Oéi)($i—Oéi)+. . _{_ﬁp(n) (ai)(wi—ai)”_l. (45)

Using Lemma 1 and estimates (4.1), (4.3), we obtain

v+l v+l

|7, — ] <nhpels Q7 2 <Q 2, oy <zl + 4 <|do] +1

for @ > Qo. Let us estimate every term in (4.5) in the following way:
[t - PO (@i (@i — )t < (571) - nln— Dpna(dr) - @3,

for @ > Qo and 2 < k < n. Thus, we can write

n

> it PO (o) (s — )t

k=2

<2 im0~ Dp(d) - Q4

< 4P/ (@)

Substituting this inequality into (4.5) yields estimates (4.4). This means
that for |P'(z;)| € T;3 and |P'(x;)| € T;2 we have |P'(a;)| € T3 and
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|P’(v;)| € T} 2, respectively, where

- (n—2)v

T173 — [%Q%_ 2(n71)_1 .9(n); 26n . Q) )

. 1 (n=2)vy

Tuo < [J0 50, 250000-0),

i (n—2)v;

Tio = [015 QiTF; 2. Q%f 2(n=1) '9(")) , i=1,2.

Let us consider the case |P'(a;)| € T3, i = 1,2. We are going to use
induction on the degree of polynomials P.

The base of the induction: polynomials of the second degree. Let us con-
sider the system (4.1) for n = 2. For given us 1,u22 > 0 satisfying the
condition us 1 + uz 2 = 1, let L' = Ly(Q, 2, uz,II) be the set of points
x € II such that there exists a polynomial P € P5((Q) satisfying the sys-
tem of inequalities

{'P ()] < B - QU2

min{|P'(z;)[} < & Q, i=1,2. (4.6)

Let us prove that for all (us,1,u2,2)-special squares II satisfying the condi-
tions of Lemma 7, the estimate

,LL2LI < i - eIl

holds for d; < dp(d,v) and @ > Qo(uz,~,d). Let P(t) = ast? + ait + ao.
First, note that the definition of a (uz,1,uz 2)-special square implies that
for Q > Qo there exists at most

5232 < 23 2Q T < 1

polynomials P € P5(Q) satisfying |as| < 6Q7~2 and (4.6). Therefore, from
now on we are going to assume that |as| > 6Q7_%. By the third inequality
of Lemma 1, for every polynomial P satisfying the system (4.6) at a point
x € II, we have the following estimates:
1 2y+2ug ;-1

s — il < (IP(a)llaal™")® < 6'2RY2 QT = <2, (47
where @ > Qo and z; € S(«;), i = 1,2. Thus, from (4.7) and (4.2) we
obtain that the distance between the roots a; and as of the polynomial P
satisfies

|a17a2| > |$17$2|7|ﬂ?170¢1|7|$2*&2| >%'51.
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This leads to the following lower bound for |P’(a;)|:
|P'(ai)| = |as| - la1 — az| > § -1 - Jas]. (4.8)

An upper bound for |P’/(«a;)| can be obtained from the Taylor expansion
of the polynomial P’:

[P ()| < [P'(wa)| + [P (@i)] - |wi — | < [P'(@i)| + F - |aa-
Hence, by (4.8) and (4.6) we have
las| < dert - min{|P(z;)|} < 40267 - Q. (4.9)

Now let us turn to the estimation of usL’. From Lemma 1 and the esti-

mates (4.8) it follows that L’ €  |J op, where
PeP2(Q)

op={xecTl: |z;—a; <2hoe;'Q “i|az|™, i=1,2}. (4.10)

Simple calculations show that for cg > 2%hoe;'d~ ! and |ag| > 5Q7% we
have

Let P2(Q,1) C P2(Q) be a subclass of polynomials defined as follows:
Po(Q,1) ={P € P2(Q) : 6QN* < |az| < 5QM},

where ), is defined by (1.3) and 6 = 2-L=17h;2 . (d; — do)?, L = [3;2’1}

1—y
Thus, by (4.9) it follows that for |ay| > 6Q72 and &, = i—f we have

L+1

pl' <p ) op<d D> mop.

PeP2(Q) =1 PeP2(Q))

From the definition of a (uz,1,u2,2)-special square it follows that the num-
ber of polynomials P € P5(Q,1) satisfying (4.6) does not exceed

63 . 2 TBQIT2 A 1T (4.11)

Hence, by estimates (4.10) and (4.11) we have

L+1
H’?L? < 285;2}}%56271”21-[ . Z 2l+3Q1+2)\l+1*2/\z+1 < i . H’?H
=1
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The induction step: reduction of the degree of the polynomial. Let us return
to the proof of Lemma 7. For |P'(a;)| € T3, ¢ = 1,2, we consider the
following system of inequalities:

|P(z;)| < hp-Q7, i=1,2,

(n—2)v
Q=50 P ()] < 20, - Q, (4.12)
1_(n—=2)vgy

5Q7 30 Y <P (a2)] < 21 (d) - Q-
Denote by L3 3 the set of points x € II such that there exists a polynomial
P € P,(Q) satisfying the system (4.12). By Lemma 1, it follows that

Lssc U U op(a), where
PEP,(Q) x€A2(P)

op(a) = {xell: |z —a]<2" 'h,Q "

Pllog)|", i=1,2}.
(4.13)
This means that the following estimate for ps L3 3 holds:

poLls 3 < o U U op(a) < Z Z p20p ().
Pe?,(Q) acA2(P) PeP,(Q) acA2(P)

Together with the sets op(a), consider the following expanded sets:

o (@) = Oy (1) X 0 (02)

4.14
={xell: |z;—a< clﬁQ_“"’"*1|P'(ai)|_1} , (414)
where u;p_1 = ("7:_2%“, i = 1,2. It is easy to see that the measure of

the expanded set op () is smaller than the measure of the square II for

@ > Qo. Using (4.13) and (4.14), we find that the measures of the sets
op(a) and o () are connected as follows:

p2op(a) <22 *hierd - Q7 paop(a). (4.15)
For a fixed a, let P,(Q,a) C P,(Q) denote the subclass of polynomials
with the leading coefficient a:

Pr(Q,a) ={P € Pp(Q) : P(t) =at"+ ...+ ap}.
Since —Q < a < @, the number of subclasses P,,(Q,a) is equal to
#{a} =2Q +1. (4.16)

We are going to use Sprindzuk’s method of essential and nonessential do-

mains [8]. Consider a family of sets op (), P € P,(Q,a). A set op (c1)
is called essential if for every set o), (a2), P> # P1, the inequality

piz (o'p, (1) Nop, (a2)) < 5 - p20p, (1)
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is satisfied. Otherwise, the set o, (cv1) is called nonessential.

The case of essential sets. From the definition of essential sets we imme-
diately have that

Z Z p20p (@) < 211 (4.17)
PePn(Q,a) acA?(P):
os () is essential
Then inequalities (4.15), (4.16), and (4.17) for c16 = 2"*°h,, allow us to
write

2. D X mor(e

a PePn(Q,a) acA®(P):
o () is ess.

<270 T ) mop(e) < g pell
PePn(Q,0) acA?*(P):
o () is ess.

(4.18)

The case of nonessential sets. If a set o (cv1) is nonessential, then the
family contains another set o, (ct2) such that

pi2 (0, (@1) N o, (@2)) > G207 (1)
Consider the difference R = P, — P;, which is a polynomial of degree
deg R < n — 1 and height H(R) < 2Q. Let us estimate the polynomials
R and R’ at points X € (0, (a1) N oy, (r2)). From the Taylor expansions
of the polynomials P; in the intervals o', ;(a1,:)) N o, ;(a2,), i,j = 1,2,
estimates (4.12), (4.14), and the equality u; 1 = % we have

k
|Pj($i)| < Z ‘Hpj( )(Oéj7i)($i — Ozj7i)k‘
k=1
<35 - pucks - Q71 < pulda) (14 1) - QM
k=1

for Q > Q. Now we can write
|B(z:)| < |Pr(xi)| + [P2(:)] < 2pn(d2)(1 4 c16)" - Q771 (4.19)

Similarly, the Taylor expansions of the polynomials P]{ ,J = 1,2, in the
intervals o'p, ;(a1,:) Nop, ;(az,i), estimates (4.12), (4.14), and the equality

—2) .
Uip—1 = % allow us to write

|Pj(@i)| < n?pu(d2)(1+c16)" " - [Pf(aza)l.
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From these estimates and inequalities (4.12), it easily follows that
min {|R/(x;)|} < 4n?pn(d2)(1 + c16)" 0, - Q. (4.20)
(2

Inequalities (4.19) and (4.20) hold for every point x € o (1) Nop, (az2).
Since (0}17i(041,i) N 0}271»(042,1)) > %ula}gl,i(al’i) for i = 1,2, from Lem-
ma 2 it follows that for every point x € o', (a1) the inequalities

|R(x;)| < e17 - Q%im—1, miin {|R (z;)|} < c186n - Q (4.21)

hold, where c17 = 6"(n + 1)1 - 2p,,(d2)(1 + c16)™ and
cig = 6"(n + 1) - 202 pp (do) (1 + ¢16)"

Denote by L’ the set of points x € IT such that there exists a polynomial
R € P,,_1(Q) satisfying the following system of inequalities:

|R(z)| < crohn—1-Q7 """, tgn_1 >0,

min{|R'(z;)[} < dn-1- Q1

Ul,n—1 + U2,n—1 =N — 27 i = 17 27
where Q1 = 2Q, ci9 = m;@x{Q“i’”’l}cnhr_lil, and 6,1 = 2¢i5 - O0p. It
should be mentioned that if a polynomial R(t) = a1t — ag is linear, then
by Lemma 1 we obtain

LE U< =12,

T
ZT; a1

for Q1 > Qo. Hence, we immediately have |z; — x2| < €, which contradicts
condition 2 for the polynomial II. Estimates (4.21) imply that the inclusion

U U op(a) C L'
PePn(Q,a) acA*(P):
o'n () is noness.

is satisfied for all a. Thus, by the induction assumption, we obtain that
S Y Y s <ml < ghoml (422)

a PeEPn(Q,a) acA®(P):
o'n(a) is noness.
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for a sufficiently small constant d,, and @ > (). Then estimates (4.18) and
(4.22) allow us to write

M2L3,3<Z Z Z paop(c)

@ PePn(Q,a) acA?(P):
o () is ess.

+ Z Z Z paop(e) < g7 - poll.

a PeP,(Q.,a) «acA?(P):
0’5 () is noness.

The case of the subintervals Ty, and Ty,,. For |P'(a;)| € Tio, i = 1,2,
we have the following system of inequalities:
|P(z;)] < hyp - Q7Y
’ L v " PR TTIPT (4.23)

c15- Q272 K |P’(al)| <2Q2 2D , t=1,2.
Denote by Ls » the set of points x € II such that there exists a polynomial
P € P,(Q) satisfying (4.23). By Lemma 1, the set L o is contained in the
union | U op(a), where

Pe?,(Q) acA?(P)

v+l

opla) = {x €M |z — oy < 2" Yhped Q™ 2, Q= 1,2}. (4.24)

In this case, we cannot use induction, since the degree of the polynomial
cannot be reduced. Let us estimate the measure of the set Ly » by a different
method. Without loss of generality, we may assume that v; < v2. Let us
cover the square Il by a system of disjoint rectangles Il = Jy1 X J 2,

v

where p11Jg,; = Q7 ;1“2'1', i = 1,2. The number of rectangles Il can be

estimated as follows:

k< 4max{ mh ,1} .max{ ke ,1}
1 Ji w1 Jk,2

4@ e T,y < L

= 4Q v22+1 —52‘2111[2, v 2 'U12+1 .

We will say that a polynomial P belongs to Il if there is a point x € Il
such that inequalities (4.23) are satisfied. Let us prove that a rectangle
I, cannot contain two irreducible polynomials P € P, (Q). Assume the
converse: the system of inequalities (4.23) holds for some irreducible poly-
nomials P; at some point x; € I, j = 1,2. This means that for @ > Qo

(4.25)
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and all points x € Iy, the estimates

v, vi+1

+1
|zi—ay| < lwi—zj|+ |z —azl <2-.Q7 72 TR < QTR TR (4.26)

are satisfied, where z;; € S(a;;). Let us estimate the absolute values
|P; ()], i,j = 1,2, where x € II. From the Taylor expansions of P; in
the interval Jy ; and estimates (4.23), (4.26) we obtain that

|P;(z:)| < pn(da)3" - Q—vi+—2(i’i1>+(n—1)€2,i < Q_U"+—2(nvil)+n62'i’

for @ > Qo and e2; < 2(;’—71) Applying Lemma 3 for n; = UTH
T = v; — 2(;’—71) —n-egy4,1=1,2and ey ; = S(Z—il) leads to the inequality

- 252,i7

AT A242(n+1l-m)+2(+1—m)>2n+ 1.

This contradiction shows that there is at most one irreducible polynomial
P € P,(Q) that belongs to the rectangle II;,. Hence, by inequalities (4.26)
and (4.25) for Q@ > Qo, we can estimate the measure of the set Lso as
follows:

p2La o < Z,uwp(a) L Q2 Il < 7 - pollL
g

The case of a small derivative. Let us discuss the case where |P'(z;)|€T; 1,
i = 1,2. In this case, we can show that if for some polynomial P and a
point x € II inequalities (4.1) are satisfied for |P’(z;)| € T;1, then by
Lemma 1 we have

v1

P”(ai)(a:i - Oéi) +...+ ﬁ . P(n) (al)(a:l — ai)nil < 015Q%77.

Using the Taylor expansion of the polynomial P’ and this estimate, we
obtain

|P/(0)] < Bews - Q2 7,
which contradicts our assumption. Denote by L ; the set of points x € II
such that there exists a polynomial P € P,(Q) satisfying

{|P<a:i>| <hy-Q7,

4.27
IP'(0s)| < ders - Q3 %, i=1,2. (4.27)

The polynomials P € P,,(Q) will be classified according to the distribution
of their roots and the size of the leading coefficient. This classification was
introduced by Sprinzuk in [8]. Let €3 > 0 be a sufficiently small constant.
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For every polynomial P € P,(Q) of degree m with 3 < m < n, we define
numbers p; ; and p2 ;, 2 < j < m, as solutions of the following equations:

la,1 — 5] = Q7 laz,1 — g, | = Q779

Let us also define vectors k; = (ki2,...,kim) € Z™ ! as solutions of the
inequalities

(ki’j — 1) €3 < Pij < ki’j -e3, 1=1,2, j5=2,m.

Clearly, we have m(m — 1) pairs of vectors ki,ks that correspond to a
polynomial P € P,(Q) of degree m with 2 < m < n depending on the
choice of the roots a;; and ay 2. Let us define subclasses of polynomi-
als P, (Q, ki, ka,u) C P,(Q) as follows. A polynomial P of degree m
with 2 < m < n belongs to the subclass P, (Q, ki, ko, u) if (1) the
pair of vectors (ki,ks) correspond to the polynomial P for some pair
of roots aq,as; (2) the leading coefficient of P is bounded as follows:
Qv < |am| < Q¥Te*, where u € Z - £3. Let us estimate the number of
different subclasses P,,(Q,k1,ko,u). Since 1 < |an| < @, the follow-
ing estimate holds: 0 < u < 1 — €3. On the other hand, we can write
Q > |aj, —aj,| > H(P)™™! > Q=™ where aj,,q; , are roots of the
polynomial P, which leads to the estimate —i +1< ki < ms—gl Thus,

. _ m—1
an integer vector k; = (ki 2, ..., ki n) can assume at most (ms3 t_ 1)

values. Now, the number of subclasses P, (@, k;,ko,u) can be estimated
as follows:

#{m, ki, ko, u} <ncly - (e5' +1), (4.28)
n -
where ¢30 = 3 (ie5 ' — 1)Z ' Define values pij, i = 1,2, as follows:
i=2
pij = (kij+1 + - +kim) - €3, 1 <j<m—1, (4.20)
pi,j = 0, J] =m.

Consider polynomials P belonging to the same subclass P, (Q, k1, ko, u).
For these polynomials, we can write the following estimates for their deriva-
tives at a root «;:

QU P <P ()| =lam| - ey — o] . Jai g —aim| SQUTPRTTE,
|PYD (ay)| < WLJJ)' L Qupigtmes,

(4.30)

Since we are concerned only with polynomials satisfying the system (4.27),
we may assume that the following inequalities hold for at least one value
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of [:
QU—p1,i < |P'(al)| < 4015Q%_%, 1= 1,2.
This condition implies that
pa>u+t poy >ut 2 (4.31)

Now let us estimate the measure of the set L; ;. From Lemma 1 it follows

that Ly, ¢ U U U op(a), where
mkikz,u PEP ., (Q ki1 ,ka,u) aEA2(P)

op(a) = {x elIl: |z; — ay

PR 1/j
. 2" i, QY .
< R L A PV ol s .. = X
) 2<II]1'1<1'1 ( TP (i1)] lovin — 2| fain aw|> y b 1,2}

This, together with the earlier notation (4.29) and estimates (4.30), yields
. —u—vi+pj
op(a) == {XEH |zi— o] <L min ((thn)l/f Qi ) i=1, 2}
2<j<m

for P € ?,,(Q,k1,ks,u). The numbers j = m; and j = my in the formula
above provide the best estimates for the roots a; and as, respectively, if
the following inequalities are satisfied:

—u—=v;+Pi m, —u—v;4+p; &
3

(2mhn)1/mi ~Q7mi L < (thn)l/k . Qi,

(4.32)
1<k<m, i=12
Then
,u,vieri,Mi
op(a) ::{xGH:|xi—ai|<%-(2mhn)1/mi-Q ™ , 1=1,25.
(4.33)

Cover the square II by a system of disjoint rectangles IL,;,, yn, = Jmy X Sy,
utvi—P;i m,

where p1Jpm; = Q" ™ *24 The number of rectangles IL,,, ., can be
estimated as follows:

utv1 =Pl mg + u+v2—P2 moy

#Hmhmg <4Q ™ m2 e - oIl (434)

Let us show that a rectangle II,,, n, cannot contain two irreducible poly-
nomials belonging to the same subclass P, (@, k1, ko, u). Assume the con-
verse: let inequalities (4.27) hold for some irreducible polynomial
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P; € Pn(Q,ki,ko,u) and some point x; € Iy, m,, j = 1,2. Then for
all points x € IL,;, ., We obtain

|zi—a ;| < |zi—zj|+|z)i—aj| < 2~Q_HW+W+E4 < CQ_quvi’:‘%-‘_QE4
i dil X | N 4,0 il X )

(4.35)
where z;; € S(a;;) and @ > Qo. Let us estimate |Pj(z;)|, ¢,j = 1,2,
where x € II,;,, m,. From the Taylor expansions of the polynomials P; in
the intervals J,,, and inequalities (4.30), (4.35), (4.32) for @ > Qo we
obtain that

[Py < pun(da) - 3™ - QI MEEMES < @akm )it

Apply Lemma 3 for n; = W% —2¢4 and 7; = v; — (M + 1)eg — mes,
1

i1 =1,2. Then for e3 = o and €4 =

we have
m )

I
4(3m+1
+7+2=(n—-1)+2-2mes —2mes =n+1— ¢ —2(m + 1)ey,

2ri+1—n) =20; +2— L — 2wtvipimi) o, o

Let us estimate the expression 2(7; + 1 — ;) using inequalities (4.31):

2pi,m;
m

vi+2—u+
vi+17%72ms4, m; =1,

— = 2mey, my; =2,

2 +1—m;) > {
>vi+1—%—2m-54.
Substituting these expressions into (2.1) yields

7_1+T2+2+2(T1+1—7]1)+2(TQ+1—7]2)>2m+%,

which is a contradiction. This means that there is at most one irreducible
polynomial P € P, (Q, ki1, ks, u) belonging to the rectangle II,p,, y,,. Now,
by inequalities (4.28) and (4.33) for @ > Qo, the measure of the set Ly ;
can be estimated as follows:

oLy 1 < Z Z poop K Q7% . koIl < %2 - po I

m,ky, k2, uIlmy mgy

Mized cases. All mixed cases have the same structure and can be proved
using Lemma 3 and the ideas described above, see [17]. Thus, we have

Ly c U Ljj, which leads to the following estimate:
18,53

p2Ly < Z poLi; <9« 17 - poll = 15 - poll.

1<6,j<3
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Similarly, pus Lo < 11—6 -p2I1. These estimates conclude the proof of Lemma, 7
in the case of irreducible polynomials.

The case of reducible polynomials. In this section, we are going to estimate
the measure of the set Ls. Clearly, the results of Lemma 3 do not apply
directly to this case. Let a polynomial P of degree n be a product of
several (not necessarily different) irreducible polynomials P, Ps, ..., Ps,
s > 2, where deg P, =n; > 1 and n1 + ... + ns = n. Then, by Lemma 4,
we have

H(Pl) H(P2) e H(Ps) < ClgH(P) < Cng.

On the other hand, by the definition of height, we have H(P;) > 1, and
thus H(P;) < ¢190Q, ¢ = 1,...,s. Denote by Ls3(k,e5) the set of points
x € II such that there exists a polynomial P € Pi(Q;) satisfying the
inequality

|[R(z1)R(w2)| < hpQ "=, (4.36)
If a polynomial P satisfies inequalities (4.1) at a point x € II, we can write

|P(21)P(x2)| = [P (x1) Py (22)| - ... - [Ps(a1) Ps(m2)| < By Q"

Since n =ny +...+ns and s > 2, it is easy to see that at least one of the
inequalities
) < hEQ™™TY, n; > 2, (4.37)

|P;(z1) P;(z2)| <
Py(m)| <RLQ77Y, mi=1, i=1,...,s,

| Pi(z1) P (

is satisfied at the point x. Hence, x € Lz (nj,7v) for n; > 2 or x €
L3 (1,1 — ), and we have

T3
T2

n—1

L; C < U Lg(k,7)> ULs(1,1—7).

k=2

Let us estimate the measure of the set L3(k,v), 2 < k < n — 1. Denote by
Li(k,t) the set of points (z1,72) € II such that there exists a polynomial
P € Pi(Q1) satisfying the inequalities

{|P(a:1)| <hZQY, |P(x2)| < h2QyFHE,

min {|P'(as)|} < 0xQ1, i€ Sai), i=1,2 (4.38)
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and by L2(k,t), the set of points (x1,72) € II such that there exists a
polynomial P € P (Q1) satisfying the inequalities

Cpp ity

P()| < B2Q1,  |Po)| <h2Q, 7,
|P/(Oéi)| > (Sle, x; € S(Oéi), 1=1,2.

By the definition of the set Ls(k,7), it is easy to see that

Ny N>
Ls(k,v) C (U Ly(k,1—i(1 —7))> U (U L3(k,1—i(1 - 37)/2)> :

i=0 i=0

(4.39)

where Ny = {Hlf—;q and Ny = [%73;27} The system (4.38) is a system

of the form (4.1). Furthermore, since the polynomials P € P (Q;) are
irreducible and k < n, we can apply the above arguments for a sufficiently
small constant d; and Q1 > Qo to obtain the following estimate:

poLy(k,t) < m - po 1L (4.40)
Now let us estimate the measure of the set L2(k,t). From Lemma 1 it fol-
lows that L2(k,t) is contained in a union  |J U op(a,t), where
PePi(Q) acA?(P)
|1 —ar| <287MhG - QT [P (an)| T,
t) = IT: n N
op(a,t) {X € |5 — an| < 2K-1h2 . Q—k—i—%—t P ()|

Let us estimate the value of the polynomial P at the central point d of
the square II. The Taylor expansion of the polynomial P can be written
as follows:

P(d;) = P'(a;)(di — o) + P (i) (di — a)* + ...+ 7 - P () (di — )"

(4.41)
If the polynomial P satisfies (4.39), it follows that
|dy — 1] < |dy — 20| + |20 — 0] < prly + 2k71h%5k—1 QU
_ _ — kg
|do — | < |da — @o 2| + |T02 — 2| < paln + 2k 1h%5k 'Q, AR
(4.42)

Without loss of generality, let us assume that t > —k + HT” — t. Then we
can rewrite estimates (4.42) as follows:

021'/11[1, t<1—’y,
|dy —aq] < _ |do — | < a1,
T lea QU 1-y<t<1, h
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where co1 = 28"1h26,7! + cs. Using these inequalities and expression (4.41)
allows us to write

c2- Q1 -, t<1—7,
P(d,)| < P(ds)| < cas - -~ Is.
|P(dy)] {022~Q§, | y<i<l, [P(d2)| < €22+ Q- palz
(4.43)
Fix a vector A, = (ag,. .., az2), where ag, . .., as will denote the coefficients

of the polynomial P € P;(Q1). Consider the subclass Pr(A;) of polyno-
mials P that satisfy (4.39) and have the same vector of coefficients Aj.
For Q1 > Qo, the number of such classes can be estimated as follows:

#{A} = (2Q, + DT < 2kQF (4.44)

Let us estimate the value #P;(A4). Take a polynomial Py € Pi(A) and
consider the difference between the polynomials Py and P; € P;(A;) at
points d;, i = 1,2. By (4.43), we have

|Po(di) — Pj(di)| = [(ao,1 — aj,1)di + (@00 — ajp)l

< 2022 . Qlﬂllla t < 1 —’)/,
) 2620 - Q1 1—y<t<1,

|Po(d2) — Pj(d2)| = |(@01 — aj1)d2 + (aoo — ajo)| < 2¢22 - Q1 I>.

This implies that the number of different polynomials P; € P1(A4) does
not exceed the number of integer solutions to the system

|b1di+b0| < K; 1=1,2,

where K2 = 2022 . Qllj,lfg and K1 = 2022 . Qlﬂljl if ¢ < 1- Y and
Ki = 2c92-Q% if 1 —y <t < 1. It is easy to see that K; > 2022-Q177 > Q5
for Q1 > Q- Thus, by Lemma 6, we have

275;1 : Q% ’ H’2H7 t<1- s

Pr(Aq) <
#Pk(A1) {27511-Qi+1'11112, I-y<t<L

This estimate and inequality (4.44) mean that the number N of polynomi-
als P € P (Q1) satisfying the system (4.39) can be estimated as follows:

{2k+751‘1 QYT L, t<1 -7,
~

N < 4.45
Tt QM L, 1y <t <L (4.45)
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On the other hand, the measure of the set op(a, t) satisfies the inequality

I 14y
p o t<1-7,

p2op(a,t) < e l_pa ity
22bpds2 . QUM T L L, 1—y <t <L

(4.46)

Then, by estimates (4.45) and (4.46), for Q1 > Qo we can write
_l=a
paL3 (k1) < 225778, 2 hie QT pell < gy - eIl (447)

Inequalities (4.40) and (4.47) lead to the following estimate for the measure
of the set L3(k),2<I<n—1:

N1 N2
paLa(k,7) <D paLy(k, 1—i(1=7)) + > pali(k,1—i(1—-37)/2)
i=0 i=0
< o7 - pell.

Now let us estimate the measure of the set L3(1,1 — +). For every point
x € L3(1,1 — v) there exists a rational point ¢¢ such that

a0

< hRQy |72

a
‘$2_ﬁ

Since |z1 — 2| > €1, one of the values , 4 =1,2,is greater than 3.

ag
T, — 20
2 a1

Thus we consider the sets

o; (ap/ar) := {x ell:

—TY
ZT; a1

< 2his;1Q;”|a1|—2}, i=1,2. (4.48)
Simple calculations show that for cg > 4h2e; " we have

120 (ag/ar) < 4h2ey ' esQy Y < poll

Let us define the following sets:

o; = U oi(ao/a1), i=1,2.
1<ao,a1<Q1
It is easy to see that L3(1,1 —~) C o1 U oy and we need to estimate the
measure of the sets o; and o5. For a fixed value aq, let us consider the
set N(a1) :={ap € Z: 0; (ap/a1) # @}. The cardinality of this set can be
estimated in the following way:

3nl; - ||~ (L) < | < Qu,
<

#N (1) < {2, 1< ] < (i)



38 V. BERNIK, F. GOTZE, A. GUSAKOVA

These inequalities together with (4.48) imply that

pooi < Y N(ar) - paoi (ag/ar)
1<]a1|<@Q1

< 8h2egetQTY > lai|~?
1<]ar|<(pa 1) 1
F2R2eQ el Y ] < 2n%eshe Q)
(m1 1) 7 '<lar[<@Q1
+12h2e7' Q7" In Quoll < 51 - poll

for Q1 > Qo and cg > 96n7w2h2e;t. Then
paL3(1,1 =) < 137 - poll,
and, finally,

n—1

p2Ls < ZN2L3(7€,7) + paLs(1,1— ) <251 ppll < 5 - oIl
k=2

This proves Lemma 7 in the case of reducible polynomials. Combining the
obtained estimates for the different cases yields the final estimate
pol < oLy + poLo 4 paLg < % - polIl. 0

Remark. Note that in the case of reducible polynomials we do not use
the inequality min {|P’(z;)|} < 6,Q. This means that the set L3 is the set
k3

of points x € II such that there exists a reducible polynomial P € P,(Q)
satisfying the inequalities

|P(z;)] < hn@Q™%, i=1,2.

4.2. The final part of the proof. Let us use Lemma 7 to conclude the
proof. Consider the set By = I\ Ly (Q, 6, v, II) for n > 2, vy = vy = 251,
@ > Qo, and a sufficiently small constant J,,. From Lemma 7 it follows
that

Now we will prove that for every point x € II there exists a polynomial
P € P,(Q) such that

IP(z)| <ha- Q™ "%, i=1,2,
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By Minkowski’s linear forms theorem [9], for every point x € II there exists
a nonzero polynomial P(t) = ant™ + ...+ a1t + ap € Z][t] satisfying
n—1 n—
|P(x)| <hn-Q "2, aj| < max(1,3]di,3|do)) " - Q,
i=1,2, 2<j<n.
One can easily verify that |a;| < @ and |ag| < @; hence P € P, (Q). Then,

by the remark after Lemma 7, we can say that for every point x; € B
there exists an irreducible polynomial P; € P, (Q) such that

1Py (z13)| < hn - Q™ "2,
|P{(z15)] >0 -Q, i=1,2.

Consider the roots a1, as of the polynomial P; such that z1; € S(a;). By
Lemma 1, we have

|.’1717i — Oéil < nhnéng_"TH, 1= 1, 2. (450)

Let us prove that aq,as € R. Assume the converse: let a; € C, then the
number @; complex conjugate to «; is also a root of the polynomial P,
and z; ; € S(@;). Hence, from estimates (4.50) and Lemma 5 we have

n—1
[P'(ei)| < lanlf@i — il S cas- Q7 7.

On the other hand, the Taylor expansion of the polynomial P; in the
interval S(«;) implies that
|P' ()| > %6n - Q.

These two inequalities contradict each other. Let us choose a maximal
system of algebraic points T' = {~v,,...,7,} C A2(Q) satisfying the con-
dition that the rectangles o(v;) = {|z; — V,i| < néng_"TH, i =1,2},
1 < k < t, do not intersect. Furthermore, let us introduce the expanded
rectangles

o' (7,) = {|zi — kil < 20hadT QTR Q= 1,2}, k=T, (4.51)
and show that

By C | o'(vp)- (4.52)
k=1

To prove this fact, we are going to show that for any point x; € B; there
exists a point v, € I' such that x; € o’(v,,). Since x; € By, there is a
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point « satisfying inequalities (4.50). Thus, either @ € T and x; € ¢/(),
or there exists a point =, € I satisfying
i = il < mhad'QTIE, =12,
which implies that x; € ¢’(7,,). Hence, from (4.49), (4.51), and (4.52) we
have
t
3 Tl < paBy < k; 201 (vy,) < t-2°07h00.2Q "1,
which yields the estimate
#AL(Q,I) >t > cr3- Q" poll

§5. PROOF OF THEOREM 1

Now we can prove Theorem 1, which is the main result of the paper.
Consider the set

Ly(Q,v,J) = {x eER?:z € J, |o(z1) — 22| < le_V}.

Clearly, M(Q,v,J) = L,(Q,v,J) N A}(Q), and our problem is reduced
to estimating the number of algebraic points in the set A2 (Q) lying within
the strip L,(Q, 7, J).

5.1. The lower bound. The lower bound for 0 < v < % was obtained in
[5], which allows us to consider only the case where + < v < 1. Note that
the distance between algebraically conjugate numbers is bounded from
below, meaning that a certain neighborhood of the line ¢, () = x must be
excluded from consideration. Let us consider the set

Do:={zeJ:|px)—z|<Z},

where €1 > 0 is a small positive constant. Since the number of points

x € J such that ¢(z) = =z is finite, for a sufficiently small constant e;

we have p1 Dy < i/ll J. Instead of the interval .J, let us consider the set

J\ Do =k, k < c5 + 1. The measure of this set is larger than %mJ.
k

For every interval J = [bj.1,bk2], let us consider the strip L, (Q,~, Jk)
and estimate the cardinality of the set L, (Q,~, Jr) NAZ(Q). Let us divide
the strip L, (Q,~, Jx) into subsets E; as follows:

E; := {x eER?:z; € Jej, |e(@) —z2| < le_”’},
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where Ji ;j = [yj—1,Y;], Yo = br1, and yj+1 = y; + cs@ 7. The number ¢
of subsets E; can be estimated in the following way:

tr = 1 J - (/j,ljkd)il —-1> % -Cng’Yule. (5.1)

Forp; = % < max ¢(z) + min go(a:)), consider the squares defined as

r€Jy,; r€Jy,;
Hj = {X c R2 1x € Jkﬂ', IQJ — 272‘ < %CsQ_’Y}.

Since the function ¢ is continuously differentiable on the interval J, and
max |’ (z)| < cg, we obtain by the mean value theorem that
EAS

max ¢(z) — min p(x)| < cs-czQ 7,

zE€Jp,; €Ik 5

which implies that the square II; is contained in the subset F;. Thus, every
set E; defines the respective square IT; =1I; 1 x I » of size pu2Il; =c3Q~27.
Let us estimate the number of (1, 1)-special squares II;. To obtain this
estimate, let us derive an upper bound on the number of squares II; satis-
fying the (l, %, %)—condition for 1 <1< L+ 2. For polynomials P € P»(Q)

of the form P(t) = ast? + a1t + ap satisfying the conditions
SQMH < Jas| < 6QN, |P(zi)| < h-Q72, i=1,2, (5.2)

denote by P»(Q,1, D) the subclass of polynomials P € P2(Q) satisfying
inequalities (5.2) at some point x € D C R?. By definition, if a square II;
satisfies the (l, %, %) -condition, then the following inequality holds:

#TQ(Qa l7 H]) g 63 : 2l+3Q1+2>\1+1u2H]’.

Jat+T(0)
Consider the expanded sets E; = |J E; composed of T'(I) subsets Ej,
i=js
where
T() = c2aQ ™™, cog =167z (|di| + |do| + 1) - min {cg,e; '},

(5.3)
and j1 = 1, jo41 = js + T() + 1. By inequality (5.1), the number of
expanded sets can be estimated as follows:

S < tk 'T(l)il < CgT(l)ilQV,ule.

Now let us show that at least (1 — 27/=3)-T'(l) squares II; C Ej satisfy the

(l, %, %)-condition. By the definition of the set Es, for every point x € F;
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we obtain
x, € I, wl =cs- 024Q7Al. (54)
On the other hand, since ¢ is continuously differentiable on the interval J
and max |¢'(2)| < cg, we have Eg CII, where II=1; x I, and p1 > = cgur I
fAS

Thus #P2(Q,1, Es) < #P2(Q,1,II), and we only need to estimate the
quantity #P2(Q, 1, II). By the third inequality of Lemma 1, for every poly-
nomial P € P5(Q,1,1I) satisfying the system (5.2) at a point xo € II, the
inequalities

w0 — il < (1P(zo)] - oo ™) T < h}-Q F <2 (55)
are satisfied for @) > Qo and zo; € S(a;). From (5.5) and the condition
|z1 — x2| > €1, we obtain the following lower bound for |P’(w;)|:

[P'(ai)| = las| - |1 — az| > § -1 - Jas. (5.6)
Moreover, from inequalities (5.5) we have
|P'(z0,0)] < laz| - (Jar — wo,i| + Jaz — @o.l) < (ldu| + |d2| + 3e1) - |az],
where d is the midpoint of the rectangle II. Let us estimate the polynorgigli

P € P5(Q,1, 1) at a point d € II. From the Taylor expansion of the
polynomial P in the interval I; and inequalities (5.2), (5.8) we have

|P(di)| < (du] + |d2] +&1) - |az| - pa L. (5.8)

Fix a number a and consider the subclass of polynomials P with the same
leading coefficient:

fPQ(Q,l,H,a,) = {P S iPQ(Q,l,H) tay = a}.

It is clear that the inequality #P2(Q,[,1I,a) > 0 holds only if condi-
tions (5.2) are satisfied. Hence, the number of classes under consideration
can be estimated as follows:

#{a} <oQM. (5.9)

Now let us estimate the number of polynomials in subclass P2(Q, 1,11, a).
Choose a polynomial Py € P2(Q,!,11,a) and consider the differences be-
tween the polynomials Py and P; € P2(Q,[,II,a) at the point d. From
estimates (5.8) it follows that

|Po(di) — Pj(z0,i)| = |(a0,1 — aj1)di + (a0,0 — aj0)| < 2¢25 - |a| - pa I,
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where co5 = |di| + |da| 4+ €1. Thus, the number of different polynomials
P; € P2(Q,1,1I,a) does not exceed the number of integer solutions of the
following system:

|b1dz + bol < 295 - |a| sy, 1 =1,2.
Let us apply Lemma 6 with K; = 2c¢o5 - |a| - u1 ;. From estimates (5.2)

and (5.4), we can easily verify that 47 'K; < 1 and 4K, < 1, which leads
to the inequality

#P,(Q,1,11,a) < 1. (5.10)
Hence, from inequality (5.9) we obtain the estimate
#Po(Q,1,T) = #P5(Q,1,11,a) < 5QM. (5.11)

Let us consider the case where 1 <1 < L + 1. Assume that the inequality
#?2(Q’ l’ H]) > 63 . 2l+3Q1+2)\l+1u2Hj (512)

holds for 27/=3.T'(I) squares II;. By Lemma 1, for a polynomial P € P3(Q)
the set of points x satisfying (5.2) is contained in the following set:

op = {|zi — @il <hQTH - |P(e:)| ", wi€S(an), i=1,2}.

From (5.2) and (5.6) it is easy to see that the measure of the set op is at
most half the size of II; for 1 <1 < L+ 1 and cg > hé'e;*. Therefore,
no polynomial P € P5(Q) satisfies inequalities (5.2) at three points that
lie inside three different squares II;. Since II; C E; C E C II, we have
(JUII; C II. Then, by our assumption and the inequality #P2(Q,,II;) > 0,
J

we get
Jjs+T(1)
#P2(Q LT > Y #Po(Q,1,TL) > 5 - T(1) - #P2(Q, 1, T0)).
i=Js

From inequalities (5.3) and (5.12) for 1 < ! < L, we obtain:
#92(627171_[) 2 02463 : C% ! Q1—7+2>\l+1—>\1 > 5Q>\la
for cs > 86 legs - (min {cﬁ,sfl})_l. This inequality contradicts esti-

mate (5.11). For [ = L + 1, we can use inequalities (5.3) and (5.12) to
obtain

C240° - 2 LQYTAEL > 5Qv—1+1%”'[3112$]

3—2y 1—v

QYT > 6Q7,

#92(627171_[)

>
>
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for ¢ > 86 tey5 - (min {06,6;1})71. On the other hand, estimates (5.11)
imply that

3—2y 3—2y

#in(Q,l,H) < 5Qz\L+1 = 5Q1*1%"[ T—v ] < 5Q1* 3 = 5@%% < 5Q%

for v < 1, which contradicts the previous inequality. This argument proves
that the number of squares II; C E; satisfying the ([, 1, 1)-condition for
1 <1< L+ 1islarger than (1—27'73) . T(l). The case [ = L + 2 needs
to be treated differently. From Lemma 1 and inequalities (5.6) it follows
that the set of points x satisfying inequalities (5.2) for some polynomial P

is contained in the set
_ _1 _ .
op = {|zi—ai| <her' Q7o !, i=1,2}

and the measure of the set op is larger than the size of the square II;.
This means that a single polynomial can belong to a large number of dif-
ferent sets P»(Q, !, I1;). Let us estimate this number for a fixed polynomial
P € P5(Q,1,T). Since the side of the square op is larger than the width
of the strip L,(Q,7, Ji), we have

#{IL; : P € Po(Q,1,10,)} < 2hey ezt - Q7% - |as| .

Now, from inequalities (5.11) and estimates (5.10) we can obtain that

#  J (I PePuQLI)}<2hertest - Q2 Y Jag| !

PeP2(Q,L,II)
<2'erhes! (Y- 3)Q7TENQ < gk - T(),

for v < 1 and @ > Q. This implies that the inequality #P>(Q,,II) > 0
can only be satisfied for 27/=2 - T'(I) squares II; C Ej, and, therefore, the

number of squares II; C E; satisfying the (l, %, %)-condition forl=L+2

is larger than (1 —27'73) - T(1). Now it follows from inequality (5.1) that

the number of squares IT; € L,(Q,, Ji) satisfying the (l, %, %)-condition

for 1 <1< L+ 2 is larger than (1 — ﬁ) - tx. Thus, we have

—1
1<|az|<6Q7 ™ 2

L+2
Sz ) (1-oh) = (L+2- 1+ 52) e > (L + D)ty
P; ,l: P; satisfy =1
(1,1/2,1/2)-condition
Assume that the number of squares II; C L,(Q,7,J;) that satisfy the

(l, %, %)-condition for all [ with 1 <1 < L + 2 is smaller than % - tr. Then
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we have
i<t oty (D42 + 5t (L+D) = (L+ 1) 14,
P; ,l: P; satisfy
(1,1/2,1/2)-condition

which contradicts the previous estimate. Thus, there exist at least % - tg
(%, %)-special squares II; C L,(Q,7, Ji,). These squares satisfy the condi-
tions of Theorem 4, allowing us to write the following estimate:

#A2(Q,11;) > c13Q" poll; = c13cg - Q™27

Inequality (5.1) and the upper bound on the number of (3,1)-special
squares imply that

# (Lo(Q,7, Jk) NAL(Q)) = 3ci5cd - ty, - Q=2

Z %clgcg QY g

These inequalities, in turn, lead us to the following lower bound on the
cardinality #M,(Q, J,7):

#Mp(Q,J,7) = Seizes - QMY i
k
> Leiges - QU = - QUTITY.

5.2. The upper bound. As in the previous section, let us divide the set
L,(Q,v,J), J = [bi,bs], into subsets E;, 1 < j < t:
E; := {X eR?:z € Ji, e(@r) — x| < (% +06) .ch*‘Y} :
where
Ji =ity wo=b1, yir1=yj+(3+3c6) Q7

and the number of subsets E; satisfies the inequality
- -1
t<md (umJ) < (2+3e) QM (5.13)

Once again, for p; = % ( max () + min go(a:)) let us consider the squares
zeJ; zeJ;

0 :={xcR?:a € J;, [§; 2| < (}+3c5) csQ}.

Since the function ¢ is continuously differentiable on the interval J, and
max |’ (z)| < cg, it is easy to see that each subset E; is contained in the
TE
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re

spective square II;: F; C II;, 1 < 5 < t. Note that the squares II; satisfy

the conditions of Theorem 3. Therefore, we have

2 —
#A%(Q’ II;) < ch”“MHj = 01202 (% + %06) LM

These inequalities, together with estimate (5.13), lead to the following
upper bound for #M,(Q,I,7):

10.

11.

12.

13.
14.

t
#HM,(Q,J,7) <D #ML(Q,T) < ciocs (5 + 3e5) - T - Q"7

i=1
=c3- Q"

REFERENCES

. V. Beresnevich, D. Dickinson, S. Velani, Diophantine approximation on planar
curves and the distribution of rational points (with an appendix “Sums of two
squares near perfect squares” by R. C. Vaughan). — Ann. Math. 166, No. 2 (2007),
367-426.

. V. 1. Bernik, A metric theorem on the simultaneous approzimation of zero by values
of integer polynomials. — Izv. Akad. Nauk SSSR Ser. Mat. 44, No. 1 (1980), 24-45.

. V. 1. Bernik, Application of the Hausdorff dimension in the theory of Diophantine
approzimations. — Acta Arith. 42, No. 3 (1983), 219-253.

. V. 1. Bernik, F. Gotze, Distribution of real algebraic numbers of arbitrary degree
in short intervals. — Tzv. Math. 79, No. 1 (2015), 18-39.

. V. Bernik, F. G6tze, O. Kukso, On algebraic points in the plane near smooth curves.
— Lithuanian Math. J. 54, No. 3 (2014), 231-251.

. Y. Bugeaud, Approzimation by Algebraic Numbers, Cambridge Univ. Press, Cam-
bridge, 2004.

. M. N. Huxley, Area, Lattice Points, and FExponential Sums, Oxford Univ. Press,
New York, 1996.

. V. G. Sprindzuk, Mahler’s Problem in Metric Number Theory, Amer. Math. Soc.,
Providence, RI, 1969.

. W. M. Schmidt, Diophantine Approzimation, Lect. Notes Math. 785, Springer,

Berlin, 1980.

N. I. Fel’dman, The approzimation of certain transcendental numbers. I. Approz-

imation of logarithms of algebraic numbers. — Izv. Akad. Nauk SSSR, Ser. Mat.

15, No. 1 (1951), 53-74.

K. Mahler, An inequality for the discriminant of a polynomial. — Michigan Math.

J. 11 (1964), 257-262.

J. F. Koksma, Uber die Mahlersche Klasseneinteilung der transzendenten Zahlen

und die Approzimation komplexer Zahlen durch algebraische Zahlen. — Monatsh.

Math. Physik 48 (1939), 176-189.

B. L. van der Waerden, Algebra, Springer-Verlag, Berlin—Heidelberg, 1971.

R. C. Vaughan, S. Velani, Diophantine approzimation on planar curves: the con-

vergence theory. — Invent. Math. 166, No. 1 (2006), 103-124.



ON THE DISTRIBUTION OF POINTS 47

15. V. I. Bernik, M. M. Dodson, Metric Diophantine Approzximation on Manifolds,

Cambridge Univ. Press, Cambridge, 1999.

16. N. A. Pereverzeva, The distribution of vectors with algebraic coordinates in RZ. —
Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk 4 (1987), 114-116, 128.

17. V. Bernik, F. Gotze, A. Gusakova, On points with algebraically conjugate coordi-
nates close to smooth curves. — Moscow J. Combin. Number Theory 6, Nos. 2-3

(2016); arXiv:1602.01631.

Institute of Mathematics

of the National Academy

of Sciences of Belarus,

Surganov str. 11, Minsk 220072, Belarus

E-mail: bernik@im.bas-net.by

Department of Mathematics,
University of Bielefeld,
Postfach 100131,

33501, Bielefeld, Germany

FE-mail: goetze@math.uni-bielefeld.de

Institute of Mathematics

of the National Academy

of Sciences of Belarus,

Surganov str. 11, Minsk 220072, Belarus

FE-mail: gusakova.anna.0@gmail.com

ITocTtymmno 25 oxktabpsa 2016 r.



