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CALCULATING AND DRAWING BELYI PAIRS

ABSTRACT. The article contains a survey of the current state of the
constructive part of the theory of dessin d’enfants. Namely, it is de-
voted to the actual establishing the correspondence between Belyi
pairs and their combinatorial-topological representation. This corre-
spondence is established in terms of the categorical equivalences, for
which the necessary categories are introduced. Several connections
with arithmetic are discussed. A section is devoted to one of the
possible generalizations of the theory, in which the 3 branch points,
allowed for the Belyi functions, are replaced by 4. Several direction
of further research are presented.

0. INTRODUCTION

We agree (more or less) in this conference, what kinds of embedded
graphs deserve our attention. Some of us prefer to paint vertices, or edges,
or both, some consider distinguished elements, some embed graphs into
non-oriented or bordered surfaces, etc. All these classes of objects are
rather close to each other and are very well classified and counted.

However, since dessins d’enfants is one of the topics of the conference,
I’ll concentrate on the embedded graphs as illustrations of other structures
that at the first glance belong to totally different mathematics — that is,
of Belyi pairs in several versions.

According to Grothendieck, ...il y a une identité profonde entre la com-
binatoire des cartes finies d’une part, et la géometrie des courbes algébri-
ques définies sur des corps de nombres, de l'autre. Ce résultat profond,
joint a linterprétation algébrico-géométrique des cartes finies, ouvre la
porte sur un monde nouveau, inexploré — et a porté de main de tous qui
passent sans le voir [18]. This monde nouveau is several decades old now,
and I'll give an incomplete overview of some of its inhabited parts, con-
centrating mostly on the identité profonde itself.

Key words and phrases: dessins d’enfants, Belyi pairs, Riemann surfaces, absolute
Galois group.
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After [18] was generally accepted by the community as a mathematical
text® (though of a highly non-standard form), the interested mathemati-
cians split roughly in two groups. The representatives of the “abstract”
one started developing the general ideas from [18] (anabelian geometry,
Grothendieck-Teichmiiller tower,...), and we do not discuss these subjects
in the present paper. The other “down-to-Earth” group started the actual
case-by-case (family-by-family...) realization of the identité profonde, i.e.
studying the correspondence between dessins d’enfants and Belyi pairs.

In the late 80-s and early 90’s just several people around the globe
devoted themselves to this activity; all of us seem to have known each
other personally at that time. Nowadays it is a well-developed branch of
mathematics with hundreds of active researchers (including physicists);
see, e.g., the overview [51] with 156 references within.

The outline of the paper is as follows. In section 1 several categories
are introduced and the equivalencies between them constructed; this sec-
tion can be skipped by those who hate abstract nonsense (with just some
general perspective lost). Section 2 is in certain sense a central one: the
problem of object-by-object correspondence is discussed there both for-
mally and informally. Section 3 is devoted to a more special problem of
studying the Galois orbits of dessins. Section 4 contains somewhat random
examples of calculations that highlight certain problems of the general the-
ory; an attempt was made to follow a chronological order, and the genus-0
case is discussed in some detail. In section 5 some catalogs of dessins, Belyi
pairs and related objects are listed. Section 6 contains a discussion of a
further possible development of the theory, where the Belyi restriction on
the number of branch points (< 3) is replaced by weaker conditions. We
close by brief concluding remarks in section 7.

I am deeply grateful to the participants of my MSU seminar for many
years of cooperation and understanding — both professional and human.
Thanks go to N. Adrianov, Yu. Kochetkov and S. Natanzon for the con-
sultations on various mathematical subjects treated in this paper. I am
indebted to N. Adrianov, S. Dawydiak, A. Zvonkin and the referee for the
critical comments on its preliminary versions.

1. CATEGORIES OF DESSINS D’ENFANTS AND OF BELYI PAIRS

We introduce two versions of categories of both types.

!The author became involved as a participant of I. M. Gelfand’s Moscow seminar,
where [18] was analyzed line by line.
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1.1. The category DESS. The objects of DESS are dessins d’enfant in
the sense of [18] , i.e. such triples of topological spaces

Xo C X3 CXz,

that Xy is a non-empty finite set, whose elements are called vertices, X, is
a compact connected oriented surface and X; is an embedded graph, which
means that the complement X; \ Xy is homeomorphic to a disjoint union
of real intervals, called edges. We demand as well that the complement
X, \ X; is homeomorphic to a disjoint union of open discs, called faces.
The difference between dessins and two-dimensional cell complexes lies in
the concepts of morphisms.

In order to give a short definition of morphisms in DESS, we add
X_1 = @ to each triple as above and call a continuous mapping of surfaces
admissible, if it respects the orientation, is open? and respects the differ-
ences, i.e. such a mapping of triples f : (X2,X;,Xp) — (Y2, Y1, Yo) should
satisfy

FANXG) S Y\ Y,
for —1 < j < ¢ < 3. The two admissible mappings are called admissibly
equivalent, if they are homotopic in the class of admissible mappings, and
the morphisms in DESS are defined as classes of admissible equivalence
of admissible mappings.

1.2. The category DESS;3. The objects of DESS3 are the tricolored
dessins, i.e. the dessins Xy C X; C Xs endowed with a coloring mapping

cols : X1 — {blue, green,red},

constant on the edges. It is demanded that

(0) any vertex is incident to edges of only two colors;

(1) any edge has two vertices in its closure;

(2) any face has three edges in its closure, colored pairwise differently.

Taking into account the assumption (0), we color every vertex by the
(only remaining) color, that is different from the colors of incident edges.
Due to the assumption (2) the connected components of Xy \ X; will be
called (topological) triangles. It can be deduced from the orientability of
X, that these triangles can also be colored, now in black and white, in such

2According; to the somewhat forgotten theory, developed by S. Stoilow, any open
mapping of Riemann surfaces is locally topologically conjugated to a holomorphic one,
see [53].
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a way that the neighboring triangles — i.e., having a common edge — will
be colored differently.
So the coloring mapping cols can be extended to

cols : Xy — {black, blue, green, red, white},

with exactly two choices of black/white coloring, corresponding to the ori-
entations of Xo. We agree that the positive-counter-clockwise orientation
of the white triangles corresponds to the blue-green-red-blue cyclic order of
the colors of edges in its closure; this choice will be motivated below.

The objects of DESS3 will be called colored triangulations; we note,
however, that there is precisely one object of this category, that is not a
triangulation of a surface in the usual sense; this object is formed by a
pair of black and white triangles with colored edges after identifying edges
with the same color.

The morphisms in DESS3 are defined in the same way as in DESS with
the additional assumption of color-respecting’.

1.3. The category BELP(k) over a field k. We assume that k is alge-
braically closed. The objects of BELP(k) then are the Belyi pairs (X, ),
where X is a complete irreducible smooth curve over k and /5 is a (normal-
ized) Belyi function, i.e. a non-constant separable morphism /5 : X — Py (k)
with a no more than three-element set of branch points

bran(s) C {0, 1, cc}.

In the main case of our concern, that is, under the assumption char(k) =
0, it means simply* that #371°(c) = deg 3 for all ¢ € Py (k) \ {0, 1, 00}.

A morphism in BELP (k) from (X, ) to (X', ') is defined as such a
morphism f: X — X’ of curves that the diagram

3The “same” category was considered in [28] under the name oriented hypermaps;
our vertexes of three colors were called hypervertices, hyperedges and hyperfaces.

41 use the notation —1° for the compositional inverse in order to distinguish it from
the algebraic inverse; e.g., tan—'° = arctan while tan™! = cot.
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XI

P (k)

commutes.

1.4. The category BELP» (k) over a field k. It is a full subcategory®
of BELP(k). A Belyi pair (X, ) is an object of BELP, (k) iff 8 is clean,
i.e. all the ramification indices over 1 are precisely 2. In other words, for
any P € X the equality S(P) = 1 implies 8 — 1 € m% \ m%,, where mp is
the (only) maximal ideal of the local ring Op of the rational functions on
X that are regular in P.

1.5. Functors. The obvious ones are
e the inclusion of a full subcategory

BELPy (k) — BELP(k);
e the color-forgetting functor
DESS3 — DESS.
The most important are
draw : BELP5(C) — DESS

and
paint : BELP(C) — DESSs;
in both cases to a Belyi pair (X, ) a dessin d’enfant with
Xy = top(X)
is assigned; here top means the forgetful functor that assigns to a complex
algebraic curve (= Riemann surface) the underlying topological oriented

surface.
For (X, ) € BELP2(C) we define

Xy = B71°([0,1]) and X, == 8L ({0}).

5See, e.g., [35] for the standard categorical concepts.
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The condition on the ramification of 8 over 1 implies that while P € X,
moves along some edge (a connected component of X; \ Xj) from one
vertex (an element of Xg) to another, the point 5(P) moves from 0 to 1
and back, the edge being folded in the point of 371°(1); a local coordinate
z centered at this point can be chosen so that 8 = 1 + 22 in its domain.

In order to define the functor paint, we introduce the Belyi sphere
P, (C)B which is the colored Riemann sphere P1(C). Decomposing

P,(C) = C[[{oe},
we define this coloring as
col?® : P1(C) — {black, blue, green, red, white} :
black if z € C\ R and Imz < 0,
white if z € C\ R and Imz > 0,
Z blue if z € Reg or z =1,
green if z € (0,1) or z = oo,
red if z € Rs1 or z = 0.

The choice of colors is motivated as follows. The black and white for the
lower and the upper parts is quite traditional (hell and heaven...), while the
real line is colored in such a way that blue (symbolizing cold) corresponds to
negative numbers, while red (symbolizing hot) corresponds to positive ones.
The green is just in between and is assigned no meaningful association. The
vertices of the colored topological “triangle” Py (R) have the same color as
the opposite side.

Furthermore, the colors of the pieces of the real line occur in the alpha-
betical order. The above-promised motivation of the choice of “colored’ ori-
entation can be given now: the traditional counter-clockwise detour around
the white triangle correspond to moving along the real line form —oo to oo.

The Belyi pair

(P1(C)®¥, identity)

can be considered as the (colored) final object of the category BELP(C).

Now we can finalize the definition of the functor paint: for a Belyi pair
(X, ) the surface X, := top(X) is colored by cols := B*col?® i.e. the
points of the surface are colored according to the colors of their images
under the Belyi mapping: for any P € X,

cols (P) := col?(B(P)).
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Obviously, the set X; turns out to be the closure of the union of the green
edges and Xy the set of isolated red points.

1.6. Intermediate category equivalences. The following result is a
step towards [identité profonde.

Theorem. The functors
draw : BELP,(C) — DESS

and
paint : BELP(C) — DESS;

define the equivalences of categories.

Sketch of proof. The detailed proof (straightforward but tedious) is writ-
ten up in [78]; some elements of it can be found in [19]. Similar formulations
are contained in many papers, see, e.g., [51]. We just present some neces-
sary constructions.

The functor DESS; — BELP(C), that is inverse to paint, is con-
structed in the following way.

Given a surface Xy with a coloring function cols on it, create the sets B
and W of black and white open triangles. Since each triangle has exactly
three neighboring ones of the opposite color and since each neighbor is
defined by the color of the common edge in the closures, we have three
involutions

bgr:B[[W = B][W,
each one defined by “crossing” the edge of the corresponding color. Thus
the set B]][ W is acted upon by the group

(b) * (g) * (r) = Ca * Cy * Cy,

where * means the amalgamated product and C, is a cyclic group of or-
der 2. Its elements, the words in the alphabet {b,gr} without repeated
letters, should be thought of as itineraries of vertex-avoiding trips around
X5, where each letter tells the color of the current edge to be crossed.

The introduced action of Co % Cy % Cy on (B[ W) is transitive because
of the connectedness m of Xo.

Fixing an arbitrary “base” triangle ty € W, we introduce a discrete
analog of the fundamental group of a dessin. By definition, it is a stationary
group

I1; (X, cols; to) := (Ca * Ca x Ca)gy;

in the above terms it corresponds to round trips, starting and ending at tg.
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This group is isomorphic to a true fundamental group:
Hl (Xz, C015; to) >~ (Xz \ Xo,*),

where x € ty is an arbitrary point.

The index (Cy x Co * Co : II; (X2, col5;tp)) is finite and equal to the
number of triangles # (B ][ W). Moreover, due to the orientability of X,
resulting in the black and white coloring of the triangles, the “fundamen-
tal” group II; (X, cols; o)) consists of words of even length. The subgroup
of such words in C,*Cy % Cy has index 2 and is isomorphic to the free group
with two generators. Fix

Z xZ ~ Freey = (gb,rb) < Cy % Cy * Cy;

the reason for this choice will be explained soon.

Now define the universal colored triangulation as a tessellation of the
hyperbolic plane H := {7 € C | Im7 > 0} by the ideal triangles, formed
by iterations of reflections across the sides, starting, say, from the ideal
triangle

1 e
tO::{T€H|O<ReT<1,ImT>\/Z(Reri) }

Choose tg to be white. Consider the only conformal equivalence of its
interior with the upper half-plane

Int(tg) — H

that sends 0 to 0, 1 to 1 and oo to oco. Identifying the just introduced H
(different from the one containing t¢) with the upper Belyi hemisphere

H =P1(C)55,,. — P1(C)®

color the boundary of t¢ according to this identification; the side ReT =0
will turn out to be blue, the side (Rer — 1)? + (Im7)? = } will be green
and the side Re7 = 1 will be red. The coloring of the whole tessellated
H D tg is defined by the following rule: any reflection preserves the colors
of sides and changes the colors of triangles.

The reflections against the sides of to are given by the following anti-

holomorphic involutions
b: 7+ —T,
=
27 -1’
rIT—2-—T.

g 7T



190 G. SHABAT

Therefore their compositions are the fractional-linear transformations
T
b:7+— ———
Tk
th: 77— 7+ 2,

or, using the correspondence between fractional-linear transformations and

matrices,
1 0 1 2
gb<—>:|:<2 1>,rb<—>j:<0 1),

where for a matrix M € SLy(Z) we denote by £M its image in
SL»(2)

(o0 )(v 5

The group I'(2) := < + (1 0) , (1 2) >, generated by the images of

PSLQ(Z) =

2 1 0 1
gb and rb, is called the principal congruence subgroup; it consists of the
matrices with odd elements on the principal diagonal and the even ones off
it. It is known that there is no relations between the above generators, so

['(2) ~ Free; ~ 1, (C),
where the notation € := C\ {0,1} is used. Moreover, the holomorphic
mapping
H .
H —~C
I
is the universal cover; it can be realized as the extension (by the symme-
try principle) of the above conformal mapping Int(to) — P1(C)Be., . We
introduce for this cover a nonstandard notation

. :H—C.

Note that it is a “world constant” — does not depend on any arbitrary
choices. Unfortunately, our (easily memorizable) normalizations are a bit
inconsistent with the classical notations; e.g., according to [24],

1

ﬁoo =1- ﬁ;

where k? is defined by the beautiful formula
2n—1)7ri7':| ]

‘ o 11— el
O | e
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Our notation ﬂoo looks more natural if we interpret the doubly punctured
affine line as the triply punctured projective line

€ =:Pi(C):=P,(C)\{0,1,00}
and for a Belyi pair (X, 3) denote X := 37!°(P1(C)); then we consider
the non-ramified covering
=Bl : X — P1(C).
We can call (X, 3) an affine Belyi pair. Then

is the universal affine Belyi pair. According to the functorial properties of
coverings, any affine Belyi pair (X, 3) can be included into the commuta-
tive diagram

/m(X)

P1(C).
The horizontal arrow means factorization over the group

71(X) < PSLy(Z) < PSLy(R) = Aut™M.

Now we are ready to complete the restoration of a Belyi pair (X, 3) from
the colored dessin (X, cols), associated to it by the functor paint.
Due to the above-mentioned isomorphism

7T1(X2 \Xo) ~ Hl (X27(3015) — Free2 ~ F(2) — AutH

and taking into account the equality top(X) = X5 \ Xp, we obtain the
inclusion m; (X) < I'(2) and restore

) GENNLEE

o Hl (X27CO15)

and
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The Belyi pair (X, ) is restored as the compactification of the affine Belyi
pair (X, ).

Note that in addition to the equivalence of the categories DESS3 and
BELP(C) we've got the equivalence of both to the seemingly simpler cat-
egory of finite homogeneous Frees-sets (whose objects are usually under-
stood as pairs of permutations generating a transitive group), perfectly
suited for computer operations.

The equivalence between DESS and BELP,(C) is established in the

similar manner.

1.7. Arithmetic geometry enters. Though the preceding considera-
tions seem to belong to combinatorial topology and complex analysis,
arithmetic is very close.

Theorem. The obvious category inclusions

BELP(Q) — BELP(C)
and

BELP,(Q) — BELP,(C)

are category equivalences.

Only the density of the inclusion functors — every complex Belyi pair is
isomorphic to a Belyi pair, defined over algebraic numbers — deserves dis-
cussion; but with the help of the constructions of the previous subsection,
it can be easily deduced from the known results, see, e.g., [5].

However, Grothendieck was strongly impressed by the fact that any
dessin is related to a curve over a field of algebraic numbers; his testimony
([18]) concerning the only comparable impact — hearing the definition of a
circle at the age of 12, before which its rotondité parfait seemed au dela
des mots —is widely quoted in the modern mathematical literature.

As for the arithmetic geometry, Belyi’s theorem states that all the
curves over Q are in the game. It was proved in [62] and improved in [63].
Now many detailed expositions are available, see, e.g., [33] or [17].

1.8. Ultimate category equivalences. Collecting the above construc-
tions and results together, we get the following category equivalences:

DESS —— BELP,(Q)|,

DESS; — BELP(Q) |
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All the objects of these categories are defined by finite amounts of informa-
tion; the rest of the paper is devoted to discussion of the explicit realization
of the boxed equivalences.

Naturally, the left-to-right realization is calculation, while the right-to-
left one is drawing; cf. the title of the paper.

2. OBJECT-BY-OBJECT CORRESPONDENCE: DREAMS AND GOALS

In this section we discuss several reasons for establishing explicit corre-
spondences between dessins d’enfants and Belyi pairs.

2.0. Fun. This reason is easily observable: lots of people from different

countries are engaged in calculations of Belyi pairs and obviously enjoy it;

the fun is often mentioned explicitly. Brian Birch called results of cal-

culations beautiful “ballet of numbers” [3]. I devoted decades to these

calculations, involving numerous students who found them amazing.
However, I will try to present more serious reasons.

2.1. Transferring structures. The objects of the categories of dessins
d’enfants and of Belyi pairs look quite dissimilar; the individual objects of
each category — as well as morphism sets and moduli (= sets of classes of
isomorphic objects) — carry obvious additional structures that are hidden
in the corresponding objects of the other one. Transferring these structures
can be interesting and productive.

From DESS to BELP. We give two examples related to objects and
one related to moduli.

(a) Edge contraction. This operation is clear in terms of dessins

~ X

but mysterious in terms of Belyi pairs.

It needs a marked edge that has no obvious meaning related to the
corresponding Belyi pairs (unlike vertices and cells corresponding to zeros
and poles of the Belyi functions). However, according to empirical evidence
and certain theoretical results, one can predict that the sets of primes of
bad reduction (see below) of Belyi pairs do not change drastically under
edge contractions of the corresponding dessins.
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(b) Flip. It is another operation on dessins with marked edge

that has no clear meaning in terms of Belyi pairs.

However, when dessins are used as the labels of cells of moduli spaces
M, (C) of pointed complex curves®, the flips correspond to jumping to
the neighboring cells.

(c) Enumeration. A remarkable activity in the enumeration of various
combinatorial objects, including dessins d’enfants, can be noticed during
several last years; the corresponding results are well represented in our
conference.

From the viewpoint of my talk, the decisive step was made in Zograf’s
paper [55]; it’s main recursion is perfectly suited for the enumeration of
(classes of isomorphic) objects of DESSs.

No corresponding techniques is known for BELP. If it appears, hope-
fully, it will be related to the Shafarevich’s finiteness conjecture [80], proved
by Faltings, see [14]. For the time being the arithmetico-geometrical finite-
ness results, unlike their combinatorial-topological part, are very far from
being constructive.

From BELP to DESS. The general dream is to visualize the objects of
arithmetic geometry. Here is the minimal wish list.

e Primes of bad reduction. A prime p is good for a Belyi pair (X, )
if (X, ) can be defined over the ring O of integers of some number field
in such a way that its reduction (X, 8) over some prime ideal p <O with
% D [, is a Belyi pair over F,, and the genus of X, equals that of X and
deg f, = deg 3.

e Finite sets of dessins, corresponding to GALOIS ORBITS of Belyi
pairs (see the next section; the bold capitals are used because initially
the problem of describing these orbits was one of the main motivations of
developing Grothendieck’s program).

e Fields of definition. As soon as the Galois orbits of dessins are defined,
every dessin acquires a finite-index stabilizer in the absolute Galois group,

61t is a long story not to be discussed here; see [32] and [44] for the original con-
structions and, say, [11] for the detailed exposition.
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that corresponds by the Galois theory to a certain number field that I call
the field of definition” of a dessin.

e Discriminants of fields of definition. Since the number fields of large
degree are not described easily, their discriminants constitute the natural
observable quantities.

2.2. Defining and comparing complexities. Both classes of objects
are definable by finite amounts of information; the complexity of such an
object informally means the (logarithm of) the length of the shortest de-
scription of an object. This idea is formalized in the theory of Kolmogorov
complexity; see [68] for the original introduction and [37] for a modern
discussion in the broad scientific context.

The general question is: are the complexities of the corresponding ob-
jects related? Put plainly, if one has a short enough description of a dessin,
does it imply the possibility to write equations of the corresponding Belyi
pair in terms of small enough coefficients of reasonable size, and vice versa?

The naive answer seems to be negative; we’ll present in the section 6 a
4-edged dessin of genus 1, corresponding to the Belyi pair, supported on
the elliptic curve with a terribly long j-invariant.

However, certain theoretical results exist. On the dessins side, the nat-
ural measure of complexity is the number of edges of graphs; the known
methods of describing dessins — say, in terms of the finite-index subgroups
of Freey — provide descriptions of the length, uniformly bounded in terms
of number of edges. The above-mentioned recent progress in the enumera-
tion of dessins gives beautiful expressions for the (weighted by the orders
of symmetry groups, that are generically trivial) numbers of dessins with
a prescribed genus and number of edges, the asymptotic of these numbers,
etc.

Many years ago my teacher Yu. I. Manin drew my attention to the
similarity between Kolmogorov complexity and heights in arithmetic ge-
ometry [36]. These functions (both defined up to bounded ones) cannot
coincide, since heights are algorithmically computable, while Kolmogorov
complexity is not, but Kolmogorov complexity of objects of arithmetic
geometry can very well be upper-bounded by heights.

It took decades of my mathematical life to find an appropriate context
for developing this idea: it is exactly the one we are discussing. The list

7Many authors call this field the field of moduli; 1 avoid this term, because, as it was
mentioned above, the dessins can be understood as labels of cells in the moduli spaces
of curves, and confusion is possible.
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of classical heights is naturally extended by the Belyi one — for the time
being defined only on the moduli spaces of curves

hgel : My (Q) — N: X +— min{deg 8 | (X, 8) € BELP(Q)}.
This function is well-defined because of Belyi’s theorem; we do not assume
the cleanness of ’s because of the implication

(X, ) € BELP(Q) = (X,4B(1 — §)) € BELP:(Q).
The relation between the Belyi height and the other known heights has
been studied in the recent literature. According to [25], the Faltings height
is polynomially upper-bounded by the Belyi one:

—1log(27)g < hra(X) < 13- 10 - hpe(X)°.

The problem of finding upper bounds for Belyi height (given an algebraic
curve over Q, how do we practically find a Belyi function on it?) is more
delicate. The estimate in [26] is given in terms of the first move in the
Belyi gamé®
hga(X) < (4mHy )™ 2" ™ deg(9),

where X is curve of genus g defined over K, a rational non-constant function
¢ € K(X) is arbitrary with a set A of finite critical values, Hy is the
maximal value of Weil heights of elements of A and m = 4Hy - (K :
Q)(degp +g — 1)*

Perhaps, better estimates can be based on the methods of [63]; see the
discussion in [33].

3. GALOIS ORBITS OF DESSINS

As it was mentioned, the action of the absolute Galois group on dessins
is one of the oldest and the most exciting objects of the theory.

3.0. The group. Denote the absolute Galois group®

I = Aut(Q).
This group is quite mysterious. It is profinite, i.e. best observable by means
of its finite factors. However, nobody knows whether every finite group

8This term has been coined because of the original method of demonstration of Belyi
theorem in [62]: starting with an arbitrary ¢ € Q(X) \ Q, Belyi reduced step by step
its set of finite critical values A := CritVal(¢). The move in this game is defined by a
polynomial P € Q[z]; it replaces ¢ by P o ¢ and A by P(A)J CritVal(P).

9There are lots of other notations: Gq,Gal(Q), etc. I use Grothendieck’s one.
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appears among the factors of [' — this question is called the inverse Galois
problem, see, e.g., [27]. It should be noted that Belyi has first proved his
theorem in [62] as a tool for solving the inverse Galois problem for certain
series of Chevalley groups.

Considering Q as a subfield of C, we could ask which elements of [ act
on Q continuously. It turns out that only two: the identity and the complex
conjugation. It is quite difficult to specify any other element of ['; usually
only their images in the factors of I" are discussed.

3.1. The action. Introduce four countable sets of classes of isomorphic
objects

DESS := D‘SSS, DESS; := %883,

~ ~
~

BELP := w, BELP, := m.

The above-discussed category equivalences define the bijections
DESS < BELP,

and
DESS; «— BELP

The group [ acts on BELP, and hence on BELP>, in an obvious manner:
we take any realization of a pair (X, 3) over Q and act by [ on the coeffi-
cients of defining equations of X and on the coefficients of 5 and then check
immediately that the result does not depend on the realization. Hence the
bijections just introduced provide the actions

- DEss]

and [ : DESS3; the latter is less popular.

3.2. Properties. We are considering the action of a profinite group (of
cardinality continuum) on the countable set; the orbits of this action are
obviously finite (all the algebraic numbers, defining a certain Belyi pair,
lie in some number field, and there is a finite-index subgroup of I, fixing
all the elements of this field).

The sizes of [-orbits of dessins have obvious combinatorial upper bounds.
Since the valencies of vertexes are the orders of zeros of Belyi function
and the valencies of faces are the orders of poles, both are [-invariant;
therefore the [-orbit of any dessin belongs to the set of dessins with the
same valency lists, called passports. Unfortunately, the recent progress in
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the dessins enumeration seems not to provide explicit expressions for the
numbers of dessins with a given passport.

The striking feature of the action of I' on Dess is its faithfulness. A
simple proof can be found in [46], where it is shown that this action is
faithful already on plane trees.

Thus dessins theoretically can give us the ability to see the whole of T;
unfortunately, for the time being our vision is quite limited. We know for
sure how the complex conjugation looks like; some images related to the
[-orbits of the quasiplatonic dessins, defined over the cyclotomic fields,
were clarified in [29]. Hopefully, considering further examples (as well as
developing new concepts) will improve our arithmetic visual acuity.

4. EXAMPLES OF CALCULATIONS

Lots of Belyi pairs have been calculated since Grothendieck’s Esquisse
was generally accepted by the mathematical and physical communities;
some turned out to be calculated before it appeared. The impressively
complete recent survey can be found in [51]; lots of other sources are avail-
able. The choice of examples in this section is rather random, correspond-
ing to the author’s interests and to the problems discussed in the present

paper.

4.0. Pre-Grothendieck era. Platonic solids are, of course, the most
classical dessins d’enfants. The corresponding Belyi pairs (P (C), ) — or,
rather, the multi-valued functions $71°, studied in terms of Schwartzian
differential equations, are thoroughly discussed in the famous Klein’s
“Icosahedron” [30].

Highly symmetric curves of positive genera were intensively studied in
the nineteenth century. Such a curve X usually defines a Belyi function

f:X— ~ Py(C).

AutX
Among these curves we find, e.g., Klein quartic (see [12] for a comprehen-
sive exposition), Bring curve (see [57] with an interesting discussion of
certain variations), Fricke-Macbeath curve (see [21] for a dessin-theoretic
discussion).

To draw the corresponding dessins is a very beautiful task; all of us see
Fricke-Macbeath curve at our conference poster.
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Another gem of nineteenth century mathematics came not from alge-
braic geometry, but from group theory and combinatorics. The Cayley
graphs are closely related to dessins d’enfants, see [52] and [66].

4.1. Grothendieck era. I just recall few examples that promoted some
understanding. The first ones seem very simple now. We are considering
only the objects of DESS and clean Belyi pairs.

(a) 5- and 6-edged trees. There are two plane trees with the list of
vertex valencies (3,2,2,1,1,1):

When in the early 1990’s Voevodsky and me started to calculate the
corresponding Belyi functions'®, we first supposed naively that these trees
coustitute a Galois orbit over a quadratic field (a real one since the trees
are not mutually mirror-symmetric). So we were surprised to find out that
they are defined over Q, the corresponding (non-normalized) polynomials
being (see [50])

23(z — 1)? and 23(92% — 152 + 40)
— it is assumed that Belyi functions § are expressed in terms of the normal-
ized (with critical values +1) tree polynomials P by the formula 8 = 1—P2.

The similar guess concerning 6-edged trees was confirmed. There are
three of them with the list of vertex valencies (3,2,2,2,1,1,1):

H—.—I—.—' and

ONow they are called Shabat polynomials.

?
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This triple is really defined over the cubic field: the corresponding polyno-
mials are z®(z + 1)%(z + a), where a run through the roots of polynomial'!
25a® — 12a” — 24a — 16 = 0.

The explanation of the definability of the above 5-edged trees over Q is
given by a hidden'? T-invariant: the bicolored structure of a plane tree.
The trees

—< ==

have different bicolored valency lists (3,2 | 2,1,1,1) and (3,1,1 | 2,2,1),
therefore they are the only elements in thelr r- orb1ts, whlle

have the same bicolored valency list (3,2,1 | 2,2,1,1) and constitute the
3-element [-orbit.

?

(b) Leila’s flower. A much more enigmatic case was found soon by Leila
Schneps, see [46]. Denote by IV,,,,. p, the plane tree of diameter 4, i. e.
an abstract tree with the bicolored valency list (k,1,...,1| p1,p2,---,Dk),
embedded in the plane in such a way that the paracentral (white) vertexes
of valencies py, pa, ..., pr go counterclockwise around the (black) center of
valency k. If all the white valencies are different, there are (k — 1)! cyclic
orders on the set of paracentral vertexes, and the resulting (k — 1)! plane
trees constitute a good candidate for a Galois orbit. However, when Leila
considered the simplest non-trivial example IV23456, it turned out that the
24-element set of the corresponding plane trees is split by [-action into
the two 12-element orbits (corresponding to the parity of permutations).

LLAs it was noticed by Drinfel’d and his student Pushnya, the substitution a = — %
turns the minimal polynomial for a into b% — 2.

12Hidden in the early 1990’s, and now very well known.
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Later Kochetkov (see [69]) found other examples with the same kind
of splitting. The “explanation” of Leila’s phenomenon emerged: the sum
times product of paracentral valencies 2-3-4-5-6-(2+3+4+5+6)
turned out to be a square. The theoretical explanation was provided soon
by Zapponi, see [54]; further generalizations can be found in [71].

(c) Mathieu trees. The edge rotation group of a bicolored plane tree is
a transitive group of permutations of its edges, generated by two elements:
rotations around black vertexes and around the white ones. It is a highly
non-trivial Galois invariant - see, e.g., [16].

The plane tree

with the bicolored valency list (4,4,1,1,1 1 2,2,2,2,1,1,1) is one of ten
plane trees with the same valency list; however, it is the only one (to-
gether with its mirror reflection) whose edge rotation group is the Math-
ieu group My, see [60]. Those who do not remember (rather cumbersome)
standard definitions of this group can define it as the edge rotation group
of the above tree; its order is 7920.

So this tree and its mirror image are supposed to constitute the Galois
orbit, and the calculations show (see [1,76]) that they are really defined

over Q(v/—11).
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The similar phenomenon can be observed with the trees
o

OoO—e—O o

related to the Mathieu group Mss that can again be defined as the edge
rotation group of these trees; its order is 10 200 960.

These trees and their mirror images constitute just 4 out of 60 060 with
the same bicolored valency list (see, e.g., [58]), whose edge rotation group
is the Mathieu group Mas; the edge rotation group of all the remaining
60056 trees is the alternating one Ay (see, e.g., [13]).

So there is a chance to write down a Shabat polynomial explicitly only
for the 4 exceptional trees among this huge amount. It is a difficult prob-
lem, first solved by Matiyasevich in [38], where it was shown that all the

four are defined over Q(y/—% — 21/—23). The detailed modern treatment

can be found in [13].

It was shown in [60] that no other Mathieu group can be realized as the
edge rotation group of a plane tree; however, they can be realized as the
monodromy groups of more general Belyi mappings, see [56].

(d) Fields of realizations vs field of definition. In the case of Be-
lyi pairs of genus 0 we would like to have all of them ”written down” as
explicitly as possible — after all, over C they are parametrized just by spher-
ical graphs. However, on the way to the desired explicitness we encounter
several obstacles, one of which will be discussed now.

Return to an arbitrary algebraically closed field k and consider the set

Bel(k) C k(z)
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of all the clean Belyi functions. According to the main theorems above,
this set is an infinite union of three-dimensional quasi-projective varieties,
acted upon by the group PSLa(k) of fractional linear transformations of
the argument z. The countable set

== Bp
PSLZ (|k) PEPassgen
is the union of finite sets Bp of PSLy(k)-orbits of pure Belyi functions.

These sets are labeled by passports, i.e., lists

a2 0
p_| @ 2 7
Qy 2y

of multiplicities of the corresponding Belyi function over (0, 1, 00); in the
case of a function of degree 2n they satisfy

al_l_..._l_av:2+...+2:f)/1+...+7f:2n (deg)
and'?
v—n+ f=2. (Euler)
Any orbit has the form Bp = [Blpsi,) = {80 T | T € PSLy(k)},
where a rational function 8 € k(z) satisfies
(z =A™ ... (2 — Ay)>

b=k e =Co

and
(z—B1)?...(z — By)?
(z—=Ci)n...(z=Cp)s’
Taking the difference, we obtain a polynomial equation
ko-(z— A1) ... (z—A)* — k1 - (2 — B1)*...(2 — B,)*
=@=-C)"... (2 —=Cp)
in the unknowns

ko,kl Eﬂ(;Al,...,AU;Bl,...,Bn;Cl,...,Cf EPl(lk),

f—-1=k

(%)

Bifa passport originated from the true spherical dessin, just use the Euler formula;
if it is a table of multiplicities of an algebraically defined £, then consider the degree of
the divisor div(dg).
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this equation basically comprises the whole theory of Belyi pairs in genus
0 over an arbitrary field.
As a system of scalar equations (%) is underdetermined:

#unknowns — #equations =(geg) 2+ v +n + f — (2n + 1) =(guler) 3-

This number is in perfect agreement with the existence of the rational
action of PSLz(k) on the set of solutions of (¥); in the case of k = C
this action corresponds to moving the vertexes, “midpoints” of the edges
and “centers” of the faces by the common conformal transformation of the
Riemann sphere.

Some remarks concerning the system (%) are in order.

(I). We mean P;(k) ~ k][{oc}, and (%) makes sense literally only un-
der the additional assumption that all the points Ay, ..., Cy are finite and
hence considered as numbers, i.e. elements of k. However, it is often con-
venient to put some of these points to oo (traditionally it is C; with the
maximal multiplicity), and in this case the system (3 ) should be modified
by crossing out the corresponding factor (say, (z — C1)") — it is obvious
if we rewrite the system in a more careful way, using the homogeneous
coordinates on Pq (k). The number of unknowns then reduces by one and
the group PSLa(k) of fractional-linear transformations, acting on the set
of solutions, is replaced by the 2-dimensional group Aff; (k) =~ k* x k* of
affine transformations z — pz + q.

(II). The above rational PSLy(k)-action on the set of solutions of (¥) can
pdg 4 — ALt

be seen directly: applying the transformation z =

rz’/+s? T rAl4sr
. - . . .. . - 1 —A]
with ps — ¢r = 1 and using the identities like z — 4; = AT s We

find that all the three terms of (%) are multiplied by

Const ﬁ 1 Constg
sCon = -
0 T (rz’ + s)® (rz’ + s)2n

and alike.

(III). Generically the irreducible components of the set of solutions of (¥)
are principal homogeneous PSL;(k)-spaces, i.e. are birationally isomorphic
to PSLy (k). However, in special cases of existence of non-trivial symmetries,
when the group

Aut(Py (), 8) := {T € PSLy(k) | fo T71° = 38}
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is non-trivial, the components are the orbifolds PSLa(k)/Aut(Py(k), 3).
Of course, in the latter case the groups belong to a well-known restricted
list.

(IV). The points Ay,...,Cy should be all different, otherwise a solution
of (%) is called parasitic, see [74,75]. The number of non-parasitic compo-
nents of set of solutions of (%) has a clear combinatorial meaning (at least
in case of char(k) = 0): it is the number of dessins d’enfants with a pre-
scribed passport. However, the author is unaware of the complete study of
this direct relation between the polynomial algebra and the combinatorial
topology.

Now we turn to the point of our discussion. Suppose that for a given
passport we are interested not only in the general picture of orbits but
want to see an explicit representative of each orbit. Informally we’d like to
choose this representative as concise as possible.

From now on let k=Q. In order to formulate the precise problem, recall
the definition of a field of realization: for any solution {ko, k1, A1, ..., Cf cQ
it is the field, generated by the coefficients of

v n f
ko H(Z — Ai)ai, kl H(Z — Bi)2 and H(Z — Ci)ci.
i=1 i=1 i=1

The problem is to find representatives of the orbits that minimize the
degree of their field of realization. Here the absolute Galois group I" enters:
this time not as an object of study but as a tool.

For a Belyi function 3 € Q(z) and v € [ denote 73 the result of
coefficientwise application of an automorphism. Denote [ g the stationary
group of the Belyi pair (P;(Q), 3) with respect to the above-defined action
of [ on Belyi pairs; denote

ID;B and I]—B
the field of algebraic numbers, corresponding to the subgroup according to
Galois theory and remind that we call it the field of definition of a dessin
(P1(Q), 8) (unlike most writers who call it the field of moduli of a dessin).
By definition, for any v € [’ there exists an isomorphism

([Pl(Q)a ’Yﬁ) = ([Pl(ﬁ)aﬁ)a

which means that there exists a transformation T, € PSLy(Q) such that

"8=H0T,.
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This transformation is uniquely defined if (P1(Q),3) has no non-trivial
automorphisms, and we assume it from now on.
One checks that for any v, € ['g

B =0Ty
= 7(®8)= "(BoTs) = "Bo "Ts=f0T,0 Ty,
from which by our no-automorphism assumption we deduce
Vy,0 € T3[Ty5 =T, 0 7Ty],

which means that we have just associated the non-commutative PSLy(Q)-
valued 1-cocycle
(v T,) € Z}(5,PSL(Q)

of the stationary group [z of any Belyi!* function 3 € Q(z), see [47].

Note that actually any Belyi function 8 € Q(z) belongs to a smaller
field 5 € K(z); we have called any such K a field of realization of 8 and
counsider only the cases (K : Q) < co. Our goal is to choose K as small as
possible, and by definition we have a lower bound

K 2 Dg.

In the fortunate cases K = Dg there is no need of the correcting transfor-
mations Tpg, since for all v € ['g the functions 73 and /S not only define
the isomorphic Belyi pairs but are equal. Moreover, if it is possible to find

such a y-independent correction t € PSL2(Q) that
(Bot)=Bot
for all v € ['g, then ot € Dg, and in this case the problem of minimization
of a field of realization is solved. Now we translate this condition to the
cohomological language (see [47]). B
The action of PSLy(Q) on Z!(I's, PSL2(Q)) is defined by
PSL>(Q) x Z' (T3, PSL(Q)) — 21 (T3, PSLa(@)) = (£, T) = £+ T,
where
t-T:0g — PSLy(Q) : v+ (t-T)y :=toTo”t 1
the cohomology set is defined as a set of orbits

I (5, PSL(@) 1= S,

MWe did not use the assumption that a rational function f is a Belyi one.
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It does not carry a structure of a group and only has a distinguished
element, corresponding to cohomologically trivial cocycles of the form
v+ to7t 71 with a fixed t € PSL»(Q). The above formula 7(fot) = Bot is
equivalent in our notations to the statement that the corresponding cocycle
T, =t 07 t71° is cohomologically trivial. Hence

the obstruction to the realization of a Belyi function B over its field of
definition Dg lies in the cohomology set H* (T3, PSL2(Q)).

The examples of spherical dessins, for which this obstruction is non-
trivial, were constructed in 1990’s:

in [8] and in [77].

The first of these dessins is defined over Q and can be realized over Q(i),
while the second (together with its [-partner) is defined over Q(v/5) and
is realizable over Q(v/5,/—2). It is proved in both papers [8] and [77] that
for any spherical dessin its field of realization can be chosen as no more
than a quadratic extension of the field of definition.

A nice list of 14 new examples can be found in [23]; the example
from [77] can be found there under the label F11. A simple example of
similar (properly defined) phenomenon in the case of positive genus has
been constructed in [9, Section 2.5].

Summarizing, we have some amount of beautiful examples, showing
that the impossibility of realizing a Belyi pair over its field of definition is
a well-hidden Galois invariant; however, to the best of my knowledge, we
are far from a complete understanding of this phenomenon — e.g., of the
combinatorial nature of the corresponding cohomological obstruction.

5. CATALOGS

One of the most straightforward approaches to understanding the rela-
tion between dessins d’enfants and Belyi pairs is to create complete lists of
objects of bounded complexity and establish the corresonding bijections.
Calling these lists with bijections catalogs, I list'® some of the ones I am
aware of,

L5The catalogs are ordered according to the date of publication, possibly in the
preprint form; some (e.g., Birch’s) were created long before the publication.
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1991, Shabat: dessins with < 3 edges < clean Belyi pairs (X, /) with
deg B < 6, [48].

1992, Bétréma, Péré, Zvonkin: plane trees with < 8 edges <+ Shabat poly-
nomials of degree < 8, [7].

1994, Birch: Belyi pairs (X, ) with deg 8 < 5, [3].

2008, Beukers, Montanus: rational Belyi functions of degree 24 that are
the j-invariants ¢t — j(E;) of families 7 : E — Py, where E is a K3-surface
fibered into elliptic curves E; := 77'°(¢); under certain assumptions'®
there are 112 of them, [2].

2009, Adrianov, Amburg, Dremov, Kochetkov, Kreines, Levitskaya, Nas-
retdinova, Shabat: dessins with < 4 edges < clean Belyi pairs (X, ) with
deg B < 8, [61].

2009, Kochetkov: plane trees with 9 edges < Shabat polynomials of de-
gree 9, [73].

2012, Hoeij, Vidunas: uniform'”-with-4-exceptions spherical dessins (there
are 366 [-orbits of them) < the corresponding rational Belyi functions of
degree < 60, [23].

2013, He, McKay, Read: 33 torsion-free, genus zero congruence subgroups
of PSLy(Z) < the corresponding dessins and 112 Beukers—Montanus fam-
ilies < quintuples of generators of the corresponding (with the exception
of 9, non-congruence) subgroups of PSLy(Z), [22].

2014, Kochetkov: plane trees with 10 edges < Shabat polynomials of de-
gree 10 in the cases of decomposable Galois orbits, [31].

What did we learn from all these lists of (sometimes terribly long) for-
mulas and complicated drawings? Here are some answers.

e The calculation skills has advanced considerably, both in terms of com-
puter technologies and mathematically meaningful tricks.

e Certain new phenomena have been found and some of them explained.
e We are close to the bounds of degrees d for which the calculation of
all the Belyi pairs (X, ) of certain types with deg/ < d is practically
possible, and we know what bounds us: it is the complexity of Belyi pairs
(not the number of dessins/Belyi pairs and not the complexity of dessins).

16Bausicaully equivalent to the existence of precisely 6 singular fibers of Kodaira type
I, see [39].

L7A tricolored dessin d’enfant is called uniform if its valencies of a given color are
constant.
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Indeed, the authors of catalogs often have to omit the explicit expression
for the Belyi pair (or refer to special sites) because of their length, but
always draw the corresponding dessins.

e Moreover, compiling the catalogs demand the clarification of the concept
of explicit calculation of a Belyi pair. E.g., among the Kochetkov’s 9-trees
we find a Galois orbit of 30 trees; they are labeled by the roots of the poly-
nomial from Z[a] of degree 30 that occupies about a page. There seems to
be no psychologically comfort and traditional way to specify these roots;
however, they can be naturally labeled by plane trees that are actually
drawable!

e Some evidence has been collected concerning the generic behavior of the
Galois orbits of dessins: the orbit of a random one will probably consist of
all the dessins with the same passport. The special behavior (i.e., the split-
ting of this set into smaller Galois orbits) is in most cases explained either
in categorical terms (existence of automorphisms or of morphisms onto
the smaller dessins) or by a special invariant: cartographic ~ monodromy
~ edge rotation group. The rare remaining cases (like Leila’s flower and
other trees of diameter 4) are explained in more special ways.

Summarizing, if we consider catalogs as dictionaries we see that the two ba-
sic languages related by them are highly asymmetric. The ”pictographic”
language of dessins turns out to be considerably more compact and hence
informative. Unfortunately, for the time being our vision is weak: we hardly
see the most superficial structures, e.g. symmetries. The non-archimedean
geometry of Belyi pairs, also encoded in dessins, remains in the dark.

6. RELAX THE BRANCHING?

This section is devoted to the last method of calculating Belyi pairs
among the ones considered in this paper.

6.0. Hurwitz spaces. Any Belyi pair (X, ) over a field k corresponds
to a point of the Hurwitz space

{(X, f) [ X e My(K), f € k(X),deg f = d}

~
~

HUR, 4(K) :=

unfortunately, there is no common notation for this space, and the authors
often mean by H, 4 a set of pairs with the simplest branching of a function
— see, e.g., [45]. This assumption implies the mazimal possible number of
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the branch points, while we are interested in precisely the opposite case,
when there are only 3 of them.

We are not going into the details of definitions of Hurwitz spaces, since
we will discuss just certain finite subsets of them and certain curves con-
necting the points of these subsets, so a serious foundational work is not
needed for it. These finite subsets are Belyi pairs of a given genus and a
given degree; the goal of this section is to introduce the curves obtained
by the minimal relaxing of the branching assumptions.

So we suggest the following modification of the definition of Belyi pairs:
replace
e 3 by 4;

e Belyi by Fried (see [15]);
e curves by families.

The latter modification is related to the fact that the covers X — P;
with 4 branch points acquire the continuous parameter: the cross-ratio of
these points.

6.1. Fried families. The formal definition of a Fried family is as fol-
lows: it is a (smooth complete connected) surface X together with two
morphisms

1) 7 : X — B onto a (smooth complete connected) base curve B such that
a generic fiber X, := 7 1°(b) is a smooth connected curve;

2) @ : X — Py such that for a generic b € B the restriction

<I>|Xb : Xb — P1

is a cover with 4 branch points. The Belyi pairs occur as restrictions of ®
to special fibers, where the branch points collide.

For a given Fried family, defined by a quadruple (X, B, w, ®) the set of
generic pairs {(Xp, ®|x,) | b € B}, constitute an algebraic curve in the
appropriate Hurwitz space; for a fixed pair (d, g) the set of curves of this
kind in HUR 44 is finite (over C such a curve is defined by the conjugate
class of monodromy 71 (P (C) \ 4 branch points) — S; and a point on it
locally — by a cross-ratio of these points). The union of these curves can be
called the Fried net; its projections to the moduli space M, also deserves
this name.

The author believes that geometry and arithmetic of Fried nets need a
thorough study; see [10]. A beautiful class of examples is delivered by the
above-mentioned catalogs in [2] and [22]; see also [42].
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6.2. Five Belyi pairs on one curve. In the present paper, however,
Fried families are mentioned just as a tool for calculating Belyi pairs as
special fibers in the families with relaxed branching, and this tool will be
illustrated by just one example. It is related to the calculation of the Belyi
pairs (E, 3), corresponding to the 4-edged toric clean dessins with only one
face, see catalog [61].

There are 11 of them, but six are easy — either centrally symmetric
or bicolorable, hence with the square 1 — 8 (it is the statement of Dremov
lemma, see [79]).

The remaining five

521|8; 52148}1 52118,

611|8; 611(8;;

(where the opposite sides of the squares are identified), can be called the
hard ones. However, these five ”live together”: all of them are special fibers
of one family! Here is a brief explanation.

By Dremov’s lemma for none of them 1 — § is a square: all have loops
hence are not bicolorable. Now, since the dessins are clean,

div(l — 8) = 2(B1 + B2 + B3 + B,) — 80x

for some By, ..., By € E and the neutral element Og € E chosen to be the
pole of 3. So By + B> + B3 + By —40x is a point of order 2 in the jacobian
Jac(E) ~ E. But this point of order 2 is non-trivial, because otherwise
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1 — 3 would be a square (by Abel’s theorem and Riemann-Roch). Hence
we have a distinguished non-trivial point of order 2, so the appropriate
form for a defining equation of all our five E’s is

Eup:y? = (z — 1)(az® + bz — 1),

where (z = 1,y = 0) is the above distinguished point and (z =0,y = 1) is
the zero of  of maximal valency. As it was just explained, (z — 1)(1 — 3)
is a square, so all the desired 3’s are defined by the relation
(z-1)(1-p) = (P+Qy)?

where P and @) are polynomials in z of degrees 2 and 1. Considering z = 1,
we see that P is divisible by « — 1, so the coefficients of § are polynomial
in the coefficients of - and Q. These coefficients are determined by the
condition that 8 has a zero of order 4 in (x = 0,y = 1), and we get the
family of functions on E, 3, generically paramerized by the points of the
affine (a, b)-planes. The condition of further colliding of the branch points
defines the affine algebraic curve (rather messy , see [79]) which is the base
of the desired family.

The dessins 611|8; and 611|8;; constitute a Galois orbit over Q(v/2);
the corresponding values of parameters are

3 3 1 1
(a——6—4:|:3—2\/§,b—1¥1\/§).
The dessins 521|8; and 521|8f1 constitute a cubic Galois orbit. The corre-
sponding parameters are the roots of the polynomials
65536 a® — 238080 a” + 216425 a + 14000

and
64 0% — 27207 + 1427 b — 344.

6.3. Brief discussion. The minimal cubic polynomial, the roots of which
are the j-invariants of all the three curves, corresponding to the dessins of
the orbit, is
564950498000000000000004°
—3156295609222853500000000005*
+748295885321347996073297265625 5
—564055135320668135938721399828128.

So the arithmetic height of these elliptic curves is far from being small,
while the (clean) Belyi height is 4, one of the smallest possible.
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The leading coefficient of the polynomial is, as usual, the product of big
powers of small primes:

56495049800000000000000 = 21454710,

which indicates a terribly bad reduction over 2,5 and 7=2+5. The author
is unaware of the clear theoretical explanation of this phenomenon that is
encountered very often.

This method can be applied in many other cases, see [10]. An infinite
family of interesting (at least from the viewpoint of the Inverse Galois
Problem) Fried families over Q was constructed in [20].

7. CONCLUDING REMARKS
I briefly mention some issues that did not fit into this paper.

7.0. The advanced methods of calculation of Belyi pairs. Most of
the known ones seem to be reviewed in [51]. They include

e reductions over good primes p (preferably over very good p which means
that if a Galois orbit of a dessin is parametrized by the roots of a poly-
nomial P € Z[a] then the polynomial P mod p € F,la] decomposes into
linear factors'®) with the subsequent lifting to p-adics and using Q < Q,;
e Direct computer algebra methods;

e Approximate calculations (circle packing [6], multidimensional Newton
method, ...;

e Using modular forms.

One can add using the Mulase-Penkava operator 3 — B(((iﬁ_);) (see [41,

49,54,67]) and post-composing with the Jukovsky function 3 — (8 + %)
that rises the degree but allows to reduce the genus because of the acquired
symmetry (see, e.g., [64]).

7.1. Hopes related to the discrete complex analysis. This domain
on the border of pure and applied mathematics is actively developing dur-
ing the last decades together with the discrete riemannian and differential
geometry — see [4,40] and many other papers. In particular, the theory of
discrete period matrices has been constructed. This theory can be directly

18The ”probability” that a random prime p has this property is (by Frobenius’
theorem) a positive rational number whose denominator is the order of the Galois
group of P, see [34].



214 G. SHABAT

applied to the equilateral triangulations, which by [50] is just a version of
the dessins d’enfants theory.

Hopefully, somebody will use this powerful tool to calculate (at least
approximately) the jacobians of the curves carrying dessins, which suffices
by Torelli theorem to restore the curves.

7.2. Drawing. Nothing has been said in the main body of this paper
(but in the title...) about practical realizations of the functors draw and
paint. At least by typographical reasons we mention only drawing.

The problem can be understood in the two ways: combinatorially and
metrically. As for the combinatorial drawing the powerful computer tools
have been developed, see, e.g., [22] and [59].

The problem of drawing a dessin in its true shape can be posed in two
cases: plane trees and toric dessins —in a latter case dessin is to be drawn
as a doubly-periodic infinite graph on the universal covering of an elliptic
curve. I give just a couple of remarks, trying to express my feeling that
these true shapes constitute a huge domain of unexplored geometry.

The collection of true shapes of trees was first presented in [7]. One
of the arising questions was: can the edges have inflections? The direct
inspection of the computer-produces pictures did not give an immediate
answer. However, an inflection was found, see [72]. This paper, as well as
the earlier one [70], contains a number of interesting observations, ques-
tions and conjectures.

As for the toric dessins, mention just one case. The publication of the
catalog [61] was delayed for a couple of years since nobody was able to
calculate a Belyi pair, corresponding to

O

Finally Volodya Dremov managed it, see [67]; since then it was called
the Dremov’s pan. However, it turned out that this dessin can not be drawn
in its true shape realistically: Dremov has found that “his” pan is about a
hundred times smaller than the ambient parallellogram.

7.3. Open problems. Some were formulated in the main text. I add just
three.
eFamilies. We perceive certain countable sets of dessins as families. The
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simplest examples among the plane trees are chains, stars and double
stars, corresponding to the polynomials T,,(z) = cos(n arccos z), z" and
2™(1—z)™. There are much more interesting ones, like propellers Y 45 and
crosses Xaped, see [43].

Can anybody give a precise mathematical definition of a family?
eCohomology of critical strata. Introduce for ¢g,d,b € N the set of
(isomorphism classes of)) the curves of genus g over k, on which the rational
functions of degree d with no more than b critical values exist

Myap(K) = {X € M,(k) | 3f € k(X) : deg f = d, #CritVal(f) < b}.

These sets are(usually reducible) quasi-projective subvarieties of the mod-
uli spaces M, (k). It is known that for d > 2¢g + 1

My = Mgap(arg)—2 2 Mgaa(dg)—3 2 - 2 Mgiaa O Mg s,

the last two strata corresponding to the finite set of curves carrying the
degree-d Belyi functions and the above-defined Fried net.

What can we say about the (appropriately defined) cohomology of
Mg.a5(k), of their components and the closures of components in the
Deligne-Mumford compactification? What is the intersection behavior of
the components? How do these structures depend on k?

The last question is related to the following one.

e The categories BELP(F,). Can we visualize Belyi pairs in positive
characteristic? How “close” are the categories BELP(F,) and BELP(Q)?
Do they become “closer” after adding stable and wild Belyi pairs?
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