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ABEL PAIRS AND MODULAR CURVES

ABSTRACT. We consider rational functions on algebraic curves which
have a single zero and a single pole. A pair consisting of such a func-
tion and a curve is called Abel pair; a special case of an Abel pair
is a Belyi pair. In this paper, we study moduli spaces of Abel pairs
for curves of genus one. In particular, we compute a number of Be-
lyi pairs over the fields C and E. This approach could be fruitfully
used for the study of Hurwitz spaces and modular curves for fields
of finite characteristics.

§1. INTRODUCTION

In this paper we consider algebraic curves and rational function on
them with the divisor of a certain combinatorial type. More specifically,
we study pairs (X, ), where X is an algebraic curve and « is a function
on it with div(a) = nA —nC. We call such a pair an Abel pair. An Abel
function has two critical values, 0 and oo, of valency n; if it has only one
additional critical value it is also a Belyi function. One of the main results
of this paper is the calculation of the number of Abel-Belyi pairs of a given
degree and of genus 1 over C (Theorem 5.8) and F,, (Theorem 6.3).

The idea of the calculation is to include Abel-Belyi pairs in families
of Abel pairs. In these families the Abel-Belyi pairs correspond to zeros
of some function on the base of the family. Knowing the multiplicities of
these zeros and the degree of this function we count the Abel-Belyi pairs
of genus 1. This method also works in positive characteristic and for other
types of Belyi pairs. The families used in this construction are interesting
in their own right; the bases of these families are modular curves X;(n).

Similar considerations of such Belyi pairs can be found in [2].
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and fruitful discussions in carrying out this work. I also thank my reviewer

Key words and phrases: Belyi pairs; dessins d’enfants; Abel pairs; reduction to
positive characteristic; embedded graphs; modular curves; elliptic curves.

165



166 D. OGANESYAN
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§2. ABEL PAIRS

Definition 2.1. An Abel pair is a pair (X,«a), where X is a complete
smooth algebraic curve over an algebraically closed field k and a is a
rational function on it, whose divisor has the form div(a) = nA — nB,
where A, B are two different points of the curve X. Such a function a will
be called an Abel function.

Example 2.2. Consider a family of elliptic curves y* = (1 + kx)? — 423,
with j-invariant
Bk 24)°

= 21+ k3
where k € k\ {—3+V/1}. It is easy to check that « := 1 + kz — y is an Abel
function on it: dega = 3, div(a) = 3A — 3B, where z(4) =0, y(4) =1
and B is the infinite point.

How is this definition related to Abel? Abel described in [1] the type
of elliptic integrals of the third kind which can be expressed in terms
of elementary functions. These integrals are related to Abel pairs. For
Example 2.2 we obtain (with u = 1/z, v = y/z?):

(3u + k)du
(u? + ku)? — 4u
This integration is explained by the fact that the difference of the two
infinite points on the curve v? = (u? + ku)? — 4u has order 3.

=In(u(u+k)> =2+ (u+k)/(ku +u2)? — 4u) + C

Definition 2.3. Let f : Xy — A5 be a morphism of curves and A €
PSLa (k). We call a pair F = (f,\) a morphism from an Abel pair (X1, aq)
to an Abel pair (Xo, ) if Aoy = az o f, i.e., if the diagram

Xl#Xz

(Xll 052J/

Pl(k) —>— Pl(k)
1§ commutative.
Remark 2.4. So, pairs (X, «), (X, 5a) (for chark # 5) and (X,1/«) are
isomorphic.
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Definition 2.5. We call an Abel pair (X, a) an Abel-Belyi pair if it is
also a Belyi pair, i.e., if a has only three critical values.

The dessin d’enfant 371([0,1]) on X is associated with a Belyi pair
(X, B) over the field C. We color vertices in 871(0) black and vertices in
B7L(1) white, see [6].

The dessin corresponding to an Abel-Belyi pair has one black vertex
and one face.

§3. THE EMBEDDED GRAPH ASSOCIATED WITH AN ABEL PAIR
Let (X, a) be an Abel pair. Define
Ly o= Oéil(Rgo U {OO}) Cc X.

Proposition 3.1. If a has no critical values on the half-line R.q, then
Ly, o is embedded in X; this graph has two vertices and n = deg a edges.

This embedding is not necessarily a dessin because some of its faces
may not be simply-connected. For example, for the pair (X, a), where X
is given by the equation y*> = 3 +z and o = z, 'x , is not a dessin since
the complement X \ 'y , is homeomorphic to a cylinder.

Next we consider the combinatorics of these embedded graphs. The
semi-edges incident with the vertex a~1(0) are cyclically ordered, and the
same is true for a1 (00). The edges of this graph define a bijection between
two cyclically ordered n-element sets of semi-edges. By counting the num-
ber of such bijections we get the following proposition (where Abel-Belyi
pairs are counted with weight 1/# Aut):
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Proposition 3.2. The number of Abel-Belyi pairs of degree n is

B 1 _(n—=1)!
m(n) = Z #Aut(X, )~ n

deg a=n

In the above proposition we have counted all the Abel-Belyi pairs of a
fixed degree, and of all possible genera. Next we want to separate them
according to their genus and the list of their valencies. We also want to
establish similar formulae in positive characteristic, so we undertake some
algebraic considerations.

§4. DEFINING EQUATIONS OF ABEL CURVES

Let X be an irreducible algebraic curve over k and a € k[X] a function
on it, with deg @ = n and chark t n. Note that X may be singular.

Theorem 4.1. Suppose that « : X — Py(k) is a separable covering. If
(X, ) is an Abel pair of degree n then there exist ¢ € k[X] with degx = k,
and polynomials Py, P,,...,P,_1 € k[z] with deg P; < n, such that the
equation of the curve X can be written as

¥+ tP_i(z) + -+ aPy(z) + 2" = 0.

Proof. Let (X,a) be an Abel pair. Then k(X)/k(a) is a finite extension
of fields. By the primitive element theorem there is an element z such
that k(&) = k(a)(x). Let F' € k[a, t] be the minimal polynomial of z, i.e.,
k() = K(a)[1]/ ().

Let div(a) = nA — nB. By using a linear fractional transformation, we
may assume that x(4) =0 and z(B) = oc.

We thus obtain the equation of the curve F(a,z) = 0.

We expand F in powers of a: af P (z) + o* 1Py () + - - + aPy(z) +
Py(z). By considering the degree of a, we get deg P; < n. The condition
div(a) = nA — nB implies that Py(z) = «™ and P (z) = 1.

Conversely, from the form of the equation it is clear that « has the
divisor n4A — nB. O

Later in this article we will assume that X is a hyperelliptic curve. In
this case we obtain the following proposition:

Proposition 4.2. Suppose that chark # 2.
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(i) If (X,a) is an Abel pair of degree n then there exist x € C[X]
with degx = 2, and a polynomial P with deg P < n, such that the
equation of the curve X can be written as

F(a,z) = a* + aP(z) + 2" = 0.

(i) If the genus of X is I then deg P < %, and also in the case of even
n the leading coefficient of P is 2.

(iii) diva = nA —nB. Then A is a smooth point of X if and only if
P(0) #0.

(iv) Let (xo,p) be a point on X, with ap # 0. It is a critical point of
« if xo satisfies the equation

n2xd ™ — nP(xo) P (x0) + xo(P'(20))? = 0.

Proof. (i) Let us specify the coordinates (x,y) of X’ so that its equation
has the form y? = f(z) and z(B) = oo, so the Abel function takes the form
a = P(z) + Q(x)y. Then the equation of X takes the form a? + 2aP(z) +
" = 0.

(ii) & is elliptic, « = P(z) + Q(x)y and dega = n, so deg P < §. For
even n we have P2/4 — 2" = f(z)Q?(z) and deg f = 3, so the degree of
P?/4 — ™ is odd, and the leading coefficient of P? is 4.

(i) 2£ = o+ na" ! and £ =20+ P(z), 2(A) =0 and a = 0,50 A
is singular if and only if P(0) = 0.

(iv) ap is a critical value of « if and ounly if F(x,ao) has a multiple

root, i.e., F(zg,ap) = 0 and % — 0. But 8F§i’a) _
(wo,a0) (z0,00)

aoP'(x) + nzf™t = 0, ie, ap = —nzi /P (xo), so wg is a root of

F(z,—na" 1 /P'(z)). 0

Notation 4.3. We introduce the polynomials

Ry (2) = - (”fm) <ﬂ)

n n 1
= _21_5 ETn - )
! ( 2ﬁ)

where T}, is a Chebyshev polynomial. For example Ry (z) = —2, Ry (z) =
Ro(x) = 2z — 1, R3(z) = =3z + 1, Ry(x) = —22% + 4o — 1, Rs(x)
1— 5z + 5z, ...

L
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Proposition 4.4. (i) Let X be the algebraic curve over k defined by
an equation o + aP(z) + 2™ = 0 with deg P < n/2, and suppose
that chark t n. The curve X is rational if and only if P(x) =
C*=ngk R, 5, (C%x), where k < n/2 and C € k.

(ii) Let the pair (X, a) be defined by the equation o + az® Ry, o () +
x" = 0. Then there exists t € k(X) such that o = t"~*(—t — 1)*.

Proof. (i) Firstly, let P(0) # 0, so A is a smooth point of X. In the
notation of the preceding proof we obtain @ —z" = f(2)Q*(x), and X
is rational if and only if deg f < 2. Moreover, from deg;(PT2 —z") =n we
get deg f = 1 for odd n and deg f = 2 for even n.

Next we make a change of variables in the identity PTZ —z" = f(z)Q*(x);
let @ := 1/t2, so that (t" - P(1/t?)/2)? = f(1/t*)Q*(1/t?) - t*" + 1. From
this identity we see that t" - P(1/t?) is a Shabat polynomial, and we get
the valencies of its critical point. Thus we get t" - P(1/t?) = 2T,,(Const -t).

Secondly, let us consider the case P(0) = 0. We have P(z) = z* Py (z),
with P;(0) # 0. We reduce this to the previous case by the change of
variables a; = a/a".

(ii) We have

t_41+\ﬂf4x_42a+2Q+P
N 2 N 4Q

Then t(—t — 1) = z and t™ + (=1 — )™ = R,,(z), so a = zkt"=2k =
tnk(—t — 1)k O

€ k(X).

§5. ABEL PAIRS OF GENUS 1

5.1. The family of Abel pairs of genus 1. The modular curve Y;(n)
(see [4]) parametrizes the pairs (£, A — B), where £ is an elliptic curve and
A — B is a divisor on it of order exactly n. Let us recall that the order of a
divisor is its order as element of Jacobian variety J(&). The modular curve
X1(n) compactifies Y7 (n), i.e., stable curves are added at the punctures of
Y1 (n) -

An Abel pair of genus 1 is actually determined by an arbitrary elliptic
curve and two points A, B such that n(A — B) = 0. However, the true
order of the divisor (A — B) may be less than n, meaning that such an
Abel function is a power of another Abel function.

Next we will see that X;(n) is the base of a family of Abel pairs.
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Definition 5.1. An Abel pair (X, «) is called imprimitive if there exists
another Abel pair (X,ap) and a natural number k > 1 such that a = of.

Otherwise, the Abel pair is called primitive.

Theorem 5.2. (i) The parameter space of Abel pairs of genus 1 and
degree n has og(n) — 1 components, where oo(n) is the number of
divisors of n.

(ii) Each number d such that d | n and 1 < d corresponds to a compo-
nent of the parameter space of Abel pairs of genus 1 and degree n,
consisting of Abel pairs which are the n/d-th powers of primitive
Abel pairs of genus 1.

(iii) Y (n) is isomorphic to the space of parameters of elliptic primitive

Abel pairs.
Proof. See [3], Proposition 3.2. O
Theorem 5.3. (i) Besides 0 and oo, a generic Abel function a (ex-

cluding a finite set of Abel functions) on a curve of genus 1 has
exactly two more critical values: {ky,k2}.
(ii) The function

5 ki k2
. — k2 kl _ (kl - k2)2
" 4 4k ko

is a well-defined Belyi function on X1(n).

Proof. (i) Let ep be the ramification index of « at the point P. Then
by the Riemann-Hurwitz formula we get 2dega = > (ep — 1). However
Pex
div(a) =nA —nB,soeq =ep =n =dega.
Consequently 2 = > (ep — 1). Therefore, we have two possibil-
pPeXxX\{A,B}
ities: two points with ramification index 2 (call them C; and C3) or one
point with ramification index 3. Thus « has one or two critical values be-
sides 0 and oco. The cases with one additional critical value correspond to
Abel-Belyi pairs in which we assume that k; = ks. The Abel-Belyi pairs
with degree n constitute a finite set.
(ii) a(C1) = k1 and a(Cs) = ko are defined up to multiplication by a
ky ke
constant, common inversion and permutation, so k—l + k_z is a well-defined
2 K1
function on X (n), and hence so is .
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Define A(t) = (2 —t — 1/t)/4, so s, = A(k1/kz2). The critical values of
ki k.
the function | 2 — k_l - k—z /4 are either the critical points of A(t) or the
2 1
values of A at the critical values of kj/k2. The critical values of A are 0,
1 and oo. The critical values of k;/ks are 0, 1 and oo, because ky /ks is a
local parameter at any other point, so s, is a Belyi function. O

5.2. Abel-Belyi pairs of genus 1.

Proposition 5.4. The dessins on the torus corresponding to Abel-Belyi
pairs have sets of valencies (n|n|3,1,1,...,1) or (n|n|2,2,1,...,1).

Proof. For a torus dessin corresponding to an Abel-Belyi pair with the set

of valencies (n|n|ai,...,ar), we have k = n — 2 by the Riemann-Hurwitz
formula. Since a; + ...+ ar = n, we obtain the desired assertion. O
Proposition 5.5. (i) A dessin with a set of valencies (n|n|3,1,...,1) is

determined uniquely by a set (a,b,c), defined up to a cyclic permutation,
where a + b+ ¢ = n.
We denote this dessin by Ogp,c

< >

Flg 1. O4,23-

(ii) A dessin with a set of valencies (n|n|2,2,...,1) is uniquely defined
by a set (a,b,c,d), defined up to a cyclic permutation, where a+b+c+d =
n.

We denote this dessin by Qg p.c.d

Proof. (i) Let us consider a dessin with a set of valencies (n|n|3,1,...,1).
This torus dessin has one white vertex of valency 3, and the others have
valency 1, i.e., they are terminal vertices. Let us erase the terminal vertices
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4+

< >

Flg 2. O3,2,1,3-

and their incident edges, so that the valency list now takes the form (3|3|3).
The resulting dessin is unique, consisting of a hexagon with opposite sides
identified.

Next we return the previously erased white terminal vertices to this
dessin (3]3]3). They can each be added in one of three angles between the
three edges emanating from the black vertex of (3|3]3). Let the numbers
of vertices placed in these angles, read anticlockwise, be a — 1, b — 1 and
¢ — 1. These numbers define the original dessin O, 4 . uniquely.

The case of Og,p,c,q is treated in a similar way. O

Theorem 5.6. (i) A torus dessin Ogqp,c corresponds to a Belyi func-
tion which is an m-th power if and only if m divides gcd(a, b, ¢).
(ii) A torus dessin Ogpc.q corresponds to a Belyi function which is an
m-th power if and only if a = —b=c= —d (mod m).

Proof. See Theorem 3 in [2]. O

Notation 5.7. Let us denote by mg(n,k) and mg(n,k) the numbers
of Abel-Belyi pairs over k with sets of valencies (n|n|3,1,...,1) and
(nn|2,2,1...,1) respectively. Let mo(n, k) and mg(n,k) denote the num-
bers of such primitive pairs.

Recall that we count Abel-Belyi pairs (X,a) with the weight
1/] Aut(X, a)|.

For instance mg(6,C) = 3%. Indeed here is the list of Abel-Belyi pairs
over C with the set of valencies (6/6]3,1,1,1): O4,1,1, O3,2,1, O3,1,2 and
Os,2,2, the last one with an automorphism group of order 3. However
mo(6,C) = 3.
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Next, my(6,C) = 2%. The list of Abel-Belyi pairs over C with the set
of valencies (6|6]2,2,1,1) is O22,1,1, 03,1,1,1, O2,1,2,1, the last one with an

automorphism group of order 2. However mg(6,C) = 1, and only 02211

is primitive: O3,1,1,1 corresponds to a Belyi function which is a square, and
Os.1.2.1 corresponds to a cube.

Theorem 5.8. Ifn > 3 then
(1) mo (n7 (C) _ (n—l)ﬁ(n—Z) 7 mo (n7 (C) — (n—l)(n2—42)(n—3) :
(11) mo (n7 (C) = Z ﬁLO (d7 (C)z

1<d,d|n
sy~ p(n)y(n pn ~ n —6)p(n)y(n
(i) mo(n,0) = LN 20 gy = LD
p(n) . . : : .
5 where ¢ is the Euler function and 1 is the Dedekind psi

function ¥(n) =n [] (1 + %)
pln

Proof. (i) The number of O, . is the number of solutions of the equation
a + b+ c = n in positive integers, divided by 3 (because of rotations of the
hexagon), so mo(n,C) = (') /3. Similarly, mq(n,C) = (") /4.

(i) According to Theorem 5.6, an Abel-Belyi pair Ogp . is primitive
it and ounly if ged(a,b,c) = 1. Also, for all a,b, ¢,k we have aoka kb ke =
aémb’c. Every Abel-Belyi function agq .. is a power of a primitive Abel-
Belyi function, so the number mg(n,C) of all pairs is the sum of the
numbers of primitive pairs with degree d | n, i.e., mo(d, C).

(iii) Apply the Mdobius inversion formula mo(n,C) = > mo(d)u(n/d)

d|

to (ii). By using (i) we get

~ N~ @d-D(d—=2) ny _ pm)p(n)  p(n)
i 0 =3 0D, () vt ot
The formula for mg(n,C) is proved in the same way by more cumbersome

considerations. O

5.3. The dessin on X;(n) corresponding to s,. In the next proposi-
tion we classify the critical points of sz,.

Theorem 5.9. Let chark # 2,3, and chark { n. The critical points of s,
on Y1(n) belong to one of the following three types:
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(i) Each primitive Abel-Belyi pair of type Oqp,c corresponds to a zero
of multiplicity 3 of s,;

(ii) Each primitive Abel-Belyi pair of type Qg p,c corresponds to a zero
of multiplicity 2 of sy,

(iii) Other critical points of 3¢, correspond to the critical value ¢, =1
and have multiplicity 2.

Proof. Recall that

5 ki ko
. = ks ki — (kl — k2)2
" 4 4k ko

The function 1/4k; ks has no zeros or poles on Y;(n) so the zeros of s, are
those of (k; — k2)2. This function has its zeros on Y;(n) where k; = ks,
i.e., in the case of Abel-Belyi pairs.

Now we consider primitive pairs Og . and Ogpc. In the notation of
Theorem 5.3 (k1 — k2)? = (a(C1) — a(C2))?.

In the case Og,p,¢,q the critical points C; and C, are different. Locally
a(C1) and a(C>) are well-defined functions on the base and a(C;) — a(C>)
has a simple zero because it is a local parameter (chark # 2,3). Thus s,
has a zero of multiplicity 2 at Ogp,c,a-

In the case Oq.p,c the critical points C; and C coincide. Then the func-
tions (a(C1) — a(C))/(x(Cy) — z(Cs)) and z(Cy) — z(Cs) are local pa-
rameters on the base and have a simple zero at Ogp, € X1(n), s0 3, has
a zero of multiplicity 3 at Ogp,c-

By Theorem 5.3 the other critical points of s, correspond to the case
s, = 1. At such a point k; = —ko and ki /ks is a local parameter, so s,
has multiplicity 2. O

Corollary 5.10. Let O}, OF,... be the list of primitive Abel-Belyi pairs
with sets of valencies (n|n|3,1,1,...,1), and let OF, OY,... be the list of
primitive Abel-Belyi pairs with sets of valencies (n|n|2,2,1,...,1). Then

div(se,) = 3-(OF+05+.. ) +2(OF +05 +. . )+ (points from X1 (n)\Y1(n))

Theorem 5.11. Let chark # 2,3, chark { n. Any point of X1(n) \ Y1(n)
belongs to one of the following types.

(i) Points whose Abel-Belyi pairs have representatives a® + aRy(x) +
2™ = 0. There are @(n)/2 such points in X1(n) \ Y1(n). At these
points s, has simple zeros.
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Fig. 3. Dessin on X;(5) corresponding to ss.

(ii) Points whose Abel-Belyi pairs have representatives
a? + azf R, () + 2" = 0, where k satisfies the following condi-
tions: 0 < k < §, chark { k, chark { (n—k). There are p(ged(n, k))
such points in X1 (n)\ Y1 (n). At these points s, has poles of mul-
tiplicity k(n — k)/ ged(n, k).

(iii) Points whose Abel-Belyi pairs have representatives a? + 202 +
™ = 0. This case is possible only for even n, in which case there
are ©(n/2)/2 such points in X1(n)\Y1(n). At these points s, has
poles of multiplicity n/2.

(iv) Points whose Abel-Belyi pairs have representatives
a® + ar® R, _op(7) + 2" = 0, where chark > 0 and k satisfies
the conditions 0 < k < n, chark | k. There are p(gcd(n, k)) such
points in X1(n) \ Yi(n). At these points >, = 1 if k is odd, and
»n, = 0 if k is even. The multiplicity of >, at these critical points
is k(n — k) /p°d®) . gcd(n, k).

Proof. In case (i) the Abel pair, in the notation of Theorem 5.3, corre-
sponds to k; = ko = 1 and C; = (5, but this point is singular (a double
point). By Proposition 4.4(ii), after resolution of the singularity this Abel
pair takes the form (P!(k),t"); in this form the double point has two
preimages, at which ¢ takes values belonging to ¥/1. To count such pairs
we should choose two different points with ¢t € {/1 as the normalization of
preimages of C. Due to the rotations we have n/2 Abel pairs. Excluding
Abel pairs that lie over X;(d) where d | n, d < n, we have ¢(n)/2 pairs.
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(ii)-(iii) In these cases we have a pole of s, on Xi(n) \ Yi(n), ie.,
k1ks = 0.

By Proposition 4.4(ii), a = t"*(—t — 1)¥. To calculate the multiplicity
of this pole let us consider the locally critical value k; approaching zero.
We define z; = 2(C}). Locally at ¢t = 0 and ¢t = —1, a has the form At
or B(t+1)""* for some A, B € k. By changing variables back to = we get

= Adﬁi/k = Bmi/(nfk). This equation has k(n — k)/ ged(n, k) solutions
for x;, since chark 1 k and chark 1 (n — k), so the multiplicity of this pole
of s, is also k(n — k)/ ged(n, k). The calculation of the number of such
poles is the same as in case (i).

(iv) In this case let both k; and k2 go to 0. We want to calculate the
indeterminate form k;/ks. We define z1 = 2(C1), 2 = 2(C3). Locally we

have z; = —z4, 80 ko/k1 = (—1)%, i.e., at these points s, = 1 if k is odd,
and s, = 0 if k is even. Calculating the multiplicity and the number of
such points is the same as in cases (i) and (ii). O

Proposition 5.12. deg s, = np(n)d(n)/12.
Proof. From the preceding theorem,

plged(n, k), o _ np(n)p(n)
deg s, = = kz:; wcd(n, k) k(n—k) = 12 . O

To calculate the numbers mg and mo we need also to take into account
the imprimitive Abel pairs. We therefore consider all the components of
bases of families of Abel pairs, i.e., the curves X;(d) for 1 < d, d | n. The
function (2 — k—; - —) /4 is a well- deﬁned Belyi function on each of these
components. We denote it by 4.

Proposition 5.13. Ifd > 1 is a divisor of n, then sy, = (T}, /q0%a+1)/2.
Proof. By Theorem 5.2

n/d n/d
9 kl kz 9 _ ! Ky
ky k fi;‘/d K Ta(oa) + 1

%d,n = = = y

4 4 2

where k1 and ko are the critical points of an imprimitive Abel pair of
genus 1 and degree n/d. (]
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§6. THE NUMBER OF ABEL—BELYI PAIRS OF GENUS 1

Excluding statements concerning the lists of Abel-Belyi pairs of genus 1,
obtained by topological arguments, all the above statements are valid in
the case of positive characteristic (under the conditions chark { n, chark #
2,3).

We now find the number of Abel-Belyi pairs of genus 1 in positive
characteristic. Instead of topological considerations, which not available
now, we use algebraic arguments, especially the study of the divisor of s, .
We will use results 5.9 — 5.13.

Proposition 6.1.

(i) 2mg(n,C) +3mgo(n,C) = L(n/—J 1)(n —2)(n+ 3)/12.

(i) degs,(C) — deg 5¢,(F,) = k; £lectled) kp(n — kp).
(iii) 2mg(n,C) + 3mo(n,C) — 2mg(n,F,) — 3mo(n, F,)
Ln/p] Ln/2p] ok
= kp(n —kp) + 3. =5 (n — 2kp).
k=1 k=1

Proof. For (i) use Proposition 5.13:

S degran= Y Mdewm=n Yy AOUD _ nnZ Vot L)

1<d|n 1<d|n 1<d|n

By results 5.9 — 5.11 the function s ,, has ¢(d)/2 simple zeros, described
in Theorem 5.11(i), besides the points of X;(d) over which Abel-Belyi
pairs of genus 1 lie. By summing the numbers of all the simple zeros of the
functions s, we have > ¢(d)/2 = (n — 1)/2 simple zeros, so from

1<d,d|n
Corollary 5.10 we get |
Sy (n) + 3mo(n) = n(n 11)2(n+ ) n . 1_ (n 1)(n122)(n +3)

For (ii) we calculate the difference between the degrees of s, (C) and
3,(F,). Let us compare the list of poles of », over C and F,. By Theo-
rem 5.11(iii), in the case of F,, the poles of 5, of degree kp(n—kp)/ ged(k, n)
with 0 < k < n/p disappear.

For (iii), by Theorem 5.11(iv) in characteristic chark = p the list of zeros
of s, (E), as compared with the case of chark = 0, has additional zeros on
X1 (n)\Y1(n). The list of its multiplicities is 2k(n — 2kp) /p°*%*) ged(n, k),

where 0 < k < n/2p. By summing these multiplicities of zeros for s ,(F,)
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where 1 < d, d | n, and by (ii), we calculate the difference between the
numbers of zeros of »,(C) and »,(F,) on Y;(n). By Theorem 5.9 this is
2mp(n, C) + 3mo(n, C) — 2mg(n,Fpy) — 3mo(n, Fp). O

The previous theorem is insufficient to calculate mg(n,F,) and
mo(n,Fp). To calculate these quantities separately, we need one more
equation. We will use the genus of X (n).

Lemma 6.2.

genus(X (n, 7)) = genus (X, (n) = L9V @0)0@) 4y
Proof. For chark = 0 we can apply Theorems 5.8, 5.9, 5.11(i)—(iii) and
the Riemann-Hurwitz formula to the function s, on Xi(n). By Igusa’s

theorem for p { n the curve X;(n) has good reduction at p. See 8.6.1

in [4]. O
Theorem 6.3. i) mon,C) —mon,Fy) = > (n—kp).
0<k<n/p
) T/ DETI
(i) mg(n, C)—mg(n,Fp) = kZ = (n—kp)+ kZ gy (1 — 2kp).
=1 =1

Proof. We apply the Riemann—Hurwitz formula to s, (C) and s, (F,) to
calculate genus(X;(n,F,)) and genus(X;(n)). From the preceding lemma
genus(X;(n,F,)) = genus(X;(n,C)), so we consider the difference be-
tween these two formulae. We also sum these differences over all the di-
visors of n (as in proof of 6.1(iii)), and we get 2(mo(n) — mo(n,Fp)) +
(mo(n) —mo(n,Fy)) = B2 (n—p) + (p+1)(n — 2p) + 2B (n = 3p) +2(p+
1)(n—4p) + ...
By 6.1(iii) we get (ii) and

mo(n,Fy) =mo(n,C) —(n—p)—(n—2p) —.... O
Remark 6.4. Note that in the case p > n we have mg(n,F,) = mg(n,C)

and mqo(n,Fy) = mo(n, C).

§7. EXAMPLE

7.1. Method: Padé approximation. We describe our method for cal-
culating the Abel pairs of genus 1:
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Definition 7.1. The Padé approximant (see [5]) of order [n,m] of a real-
valued function f(z) € C"*™(U), where U C R is a neighborhood of 0, is

the ratio of two polynomials Ry, ;) = I;[["'"‘}Eg, with deg pry m)(z) < m and
deg qpn,m)(x) < n, for which f@(0) = R[(Qm] (0) foro0<i<m+n.

Let € be an elliptic curve. We want to find a € k(€) such that div(a) =
nA — nB. Let € be defined by the equation y? = 1+ ax + bx? + cz?, such
that (A) =0, y(4) = 1 and B is the infinite point.

Theorem 7.2. Let the rational function p(z)/q(z) be the Padé approz-
imant of the function /1 + ax + ba? + ca® of order [|n/2],[(n — 3)/2]].
Then for the function a = p(x) — q(x)y on & we have div(a) = (n — 1)A+
C — B, where C' is some point on E.

Proof. See [7]. O

The Padé approximants of the function f(x) are determined by the
Taylor coefficients of f(z) which are functions depending on a, b, c¢. The
condition A = C means that one more Taylor coefficient of f(z) and
p(z)/q(z) are equal. This gives us the algebraic equation on a, b, c.

7.2. The case n = 6. After a series of calculations we get an equation for
the family of primitive Abel pairs of degree 6 parametrized by a variable
t (i.e., X1(6) is rational):

a2+(—t(t—1)2—(3t+1)(t—1)1’—4&72-}-2:63)&-}-:66=0,

1 (9t—1)(81¢ — 272 +99¢—25)° (9¢ — 25)°

%6((:) = 7214 . 312 t5 (t - 1)4

Let us see what the zeros and poles of g are.

The poles of s are located at the points t =0, ¢ = 1 and ¢ = co. For
t = 0 the equation takes the form o® — xRy (z)a+x% = 0. At t = 1 we have
a® + 42 Ry (x/4)a + 28 = 0, and at t = co we have o? + 223a + 2% = 0.

The zeros of s are located at ¢ = 1/9, ¢ = 25/9 and at the roots
of the equation 81¢% — 27¢% + 99t — 25 = 0. At t = 1/9 we get the
equation a? + g—ERG(%IL‘)Oé + 2% = 0. At t = 25/9 we get the Abel-Belyi
pair O1,1,2,2, while the AbelfBelyi pairs Oq,1,1, 03,21 and O3,1,2 lie at the
roots of 813 —27¢2 4+ 99t — 25 = 0.
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We consider the reduction of this family of curves for characteristic 5.
Let us look at the zeros and poles of 5. The zero of s at t = 25/9 now
moves to t = 0, as does one of the roots of the equation 81t — 27¢% +
99¢ — 25 = 0. In the numerator of s we have t° - (t2 + 3t +4)% - (t + 1),
so the pole at ¢t = 0 disappears:

— (P 43t+4)°-(t+1)
#o(Fs) = = t—1)°

From this calculation we see that over F5 there are only two primitive
Abel-Belyi pairs with the set of valencies (n|3,1,...,1), unlike over C,
where exist three such pairs. Also over F5 there are no primitive Abel—
Belyi pairs whose set of valencies is (n|2,2,1...,1), unlike over C where
one such pair exists.

Thus mo(6,C) — mo(6,F5) = 1 and mg(6,C) — mg(6,Fs5) = 1, in
accordance with Theorem 6.3.
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