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RECENT PROGRESS IN ENUMERATION OF
HYPERMAPS

ABSTRACT. We enumerate the isomorphism classes of hypermaps of
a given genus ¢ < 6 and a given number of darts d. The hypermaps
of a given genus ¢ are distinguished up to orientation preserving
isomorphisms. Our results depend on recent progress in counting
rooted hypermaps, in particular by P. Zograf, M. Kazarian, A. Gior-
getti and T. Walsh. These results can be interpreted as an enumer-
ation of conjugacy classes of subgroups of the free Fuchsian group
of rank two with a genus restriction.

§1. INTRODUCTION

An oriented map is a 2-cell decomposition of a closed orientable surface
with a fixed global orientation. Oriented hypermaps are generalisations of
oriented maps. While maps are 2-cell embeddings of graphs, hypermaps
can be viewed as embeddings of hypergraphs in closed orientable surfaces.
Walsh in [30] considered a model of a hypermap, where the underlying
hypergraph is described via the corresponding bicoloured bipartite graph
B. In his paper a hypermap is represented as a map with the underlying
graph B.

In the context of algebraic geometry, hypermaps are called dessins, see
[16]. Automorphisms of a hypermap are map isomorphism preserving the
2-colouring and orientation. The darts of a hypermap are identified with
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the edges of the corresponding bipartite bicoloured map. A hypermap is
rooted if one of its darts, an edge in the bipartite model, is distinguished as
a root. The automorphism group of a rooted map is by definition trivial.

The map enumeration problem has a long history, with origins dating
back to 1963 when Tutte derived a closed formula for the number of rooted
spherical maps [27]. Another significant point in the development of map
enumeration was the formula counting unrooted spherical maps (up to
isomorphism), derived by Liskovets about 20 years later [17]. For more
recent results on map enumeration we refer the reader to [21,22].

In what follows we consider the following two enumeration problems:
Problem 1. Given a genus g > 0 and an integer d, determine the number
hg(d) of rooted hypermaps of genus g with d darts.

Problem 2. Given a genus g > 0 and an integer d, determine the number
U,(d) of isomorphism classes of hypermaps (unrooted hypermaps) of genus
g with d darts.

Walsh solved Problem 1 in [30] by determining the number ho(d) of
spherical hypermaps with d darts. The solution of Problem 2 for the sphere
can be obtained from a result by Bousquet—-Mélou and Schaeffer counting
planar 2-constellations [3].

The toroidal instance of Problem 1 was solved by Arqueés in [2] by deter-
mining the numbers h; (d). The numbers of isomorphism classes of toroidal
hypermaps, that is, the numbers U;(d), are determined in [23]. Recently
Kazarian and Zograf [14] have determined the generating functions for
hg(d) up to unknown coefficients of a polynomial of degree 5g — 5. In fact,
their method gives an algorithm for determining the missing coefficients,
which can be applied provided g is small. In a personal communication [32]
Zograf gave explicit descriptions of the generating functions for the coeffi-
cients ha(d) and hz(d), the cases of genus 2 and 3. Independently, Giorgetti
and Walsh [7] used a different approach and derived the generating func-
tions for hy(d) in another equivalent form.

A method introduced in [22,23], in combination with the new results
on enumeration of rooted hypermaps, allows us to solve the problem of
counting unrooted hypermaps (dessins) of small genera: here we present
formulae for all genera up to six. More precisely, by [22,23] the number
of unrooted oriented hypermaps of a given genus g with d darts can be
determined explicitly whenever the the numbers h,(m) are known for each
m dividing d and each v < g (see Theorem 5 for details). Since the numbers
h,(m) are known, we are able to determine the numbers U, (d) for g < 6.
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The respective formulae are presented below in Theorems 8-12. Tables 2-7
containing the numbers hy(d) and U,y (d) for g < 6 and d < 36 can be found
at the end of the paper. The formulae giving U, (d) for 2 < g < 6 are new.
The results we have derived can also be expressed in group theoretical
language. Specifically, hg4(n) gives the number of subgroups of index d and
genus ¢ in a free Fuchsian group of rank two, regarded as the universal
triangle group A(oo,00,00) = (z,y, 2 | zyz = 1) acting on the hyperbolic
plane H* while U,(d) gives the number of conjugacy classes of such sub-
groups. Note that the number of subgroups of a given index in the free
group of rank two was computed in a classical paper by M. Hall [12], while
the conjugacy classes of subgroups of a given index in the free group were
enumerated by Liskovets [36] (also see [15,20,26]). These results determine
the numbers of rooted and of unrooted hypermaps counted regardless of
genus. More details on the correspondence between subgroups of the free
group of rank two and hypermaps will be given in the next section.

§2. HYPERMAPS ON ORBIFOLDS

Hypermaps on surfaces. An oriented combinatorial hypermap is a triple
H = (D; R, L), where D is a finite set of darts (also called brins, blades
or bits) and R, L are permutations of D such that (R, L) is transitive
on D. The orbits of R are called hypervertices, the orbits of L are called
hyperedges and the orbits of RL are called hyperfaces. The degree of a
hypervertex (hyperedge, hyperface) is the size of the respective orbit.

Let |D| = d. Denote by v, e and f the numbers of hypervertices, hyper-
edges and hyperfaces. Then the genus g of H is given by the Euler-Poincaré
formula, as follows:

v+e+f—-d=2-2g.

Given hypermaps H; = (D;; R;, L;) for i = 1,2, a mapping ¢ : Dy — Dy
such that Ryt) = ¢ Ry and Loty = 1Ly is called a morphism (or a covering)
‘H1 — Hs. Note that each morphism between hypermaps is by definition
an epimorphism. If ¢ : H; — Hy is a bijection, ¢ is an isomorphism.
The isomorphisms H — H form a group Aut(H) of automorphisms of H.
It is easily seen that Aut(H) acts semiregularly on D; equivalently, the
stabiliser of a dart is trivial. A hypermap H is called rooted if one element
x of D is chosen to be a root. Morphisms between rooted hypermaps take
roots onto roots. It follows that a rooted hypermap admits no non-trivial
automorphisms.
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By a surface we mean a connected, orientable surface without bound-
ary. A topological map is a 2-cell decomposition of a surface. Usually, maps
on surfaces are described as 2-cell embeddings of graphs. Oriented com-
binatorial maps are hypermaps (D; R, L) such that L is a fixed-point-free
involution. Walsh observed that oriented hypermaps can be viewed as par-
ticular maps. Namely, he demonstrated a one-to-one correspondence [30,
Lemma 1] between hypermaps and (oriented) 2-coloured bipartite maps.
This means that one of the two global orientations of the underlying sur-
face is fixed, and, moreover, we assume that the colouring of vertices, say
by black and white colours, is preserved by morphisms between maps. The
correspondence is given as follows. Let M be a 2-coloured bipartite map on
an orientable surface S with a fixed global orientation. We let D be the set
of edges of M. The orientation of S induces at each black vertex v of M a
cyclic permutation R, of the edges incident with v. In this way a permuta-
tion R = [[ R, of D is defined. Similarly, the orientation of S determines
a cyclic permutation L, at each white vertex u. Set L = [] L,. We then
have a unique hypermap (D; R, L) corresponding to M. Conversely, given
a hypermap (D; R, L) we first define a bipartite 2-colored graph X whose
edges are elements of D, black vertices are orbits of R and white vertices
are orbits of L. An edge z € D is incident with a (black or white) ver-
tex u if x € u. The permutations R and L induce local rotations of arcs
outgoing from black and white vertices, respectively. It is well known (see
Gross and Tucker [8, Section 3.2]) that the system of rotations determines
a 2-cell embedding of X into an orientable surface. The surface S is defined
by taking the cycles of the product RL as the boundary walks of faces of
the underlying map: S can be explicitly obtained by gluing a 2-cell to each
such boundary walk. By its construction S is endowed with an orientation
consistent with the way R and L permute the darts at vertices. It is worth
mentioning that the idea of describing maps by means of rotations dates
back to the 19th century, and can be traced in works of Hamilton and
Heffter.

In a similar way, an oriented 2-coloured bipartite map is called rooted
if one of the edges is selected to be a root. Morphisms between rooted
2-coloured bipartite maps take a root onto a root.

There is yet another way to describe hypermaps. Let H = (D; R, L) be
a hypermap. Clearly, the permutation group (R, L) is an epimorphic image
of the free product A = C'«C = (p) * (A) of two infinite cyclic groups. The
group A acts on D via the epimorphism taking p — R and A — L. Thus by
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using some standard results in permutation group theory each hypermap
can be described by a subgroup F' < A [6,11,28,29]. The subgroup F, called
a hypermap subgroup, can be identified with the stabiliser of a dart in the
action of A on D. Since the action of A on D is transitive, the number
of darts |D| = d coincides with index [A : F] of F in A. Given F < A
the corresponding hypermap can be constructed as an algebraic hypermap
H(A/F) = (D;R,L), where D = {zF | € A} is the set of left cosets of F’
in A, and the action of R, L on D is defined by R(zF) = (px)F, L(zF) =
(Ax)F. Note that the group A is sometimes called a universal group. More
precisely, A is identified with the triangle group T'(co, 00, 00) = (x,y, 2 |
xyz = 1) acting on the hyperbolic plane H? by orientation-preserving
isometries (see G. Jones, D. Singerman [11]). In this case H? /A is a thrice
punctured sphere and H? /F' is a punctured orientable surface whose genus
g coincides with the genus of the corresponding hypermap. In what follows
we will refer to g as the genus of the subgroup F'.
We summarise the above discussion in the following propositions.

Proposition 1. The following objects are in one-to-one correspondence:

(1) rooted 2-coloured bipartite maps of genus g with d edges,
(2) rooted hypermaps (D; R, L) of genus g with |D| = d,
(3) subgroups of the group A =T (00, 00,00) of index d and genus g.

Part (1) < (2) follows from Walsh [30]. Part (2) < (3) is in ([5,11]).

It is well known that isomorphic hypermaps have conjugate hypermap
subgroups. Hence isomorphism classes of hypermaps correspond to conju-
gacy classes of subgroups.

Proposition 2. The following objects are in one-to-one correspondence:

(1) isomorphism classes of 2-coloured bipartite maps of genus g with
d edges,

(2) isomorphism classes of hypermaps (D; R, L) of genus g with |D|=d,

(3) conjugacy classes of subgroups of index d and genus g in the group
A =T(00, 00,00).

Remark. Following Belyi [34] and Grothendieck [9] we know that a 2-
coloured bipartite map, viewed as a topological realisation of a hypermap,
can be endowed with the structure of a Riemann surface. In this context
2-coloured bipartite maps are called dessins.

Regular coverings. Let ¥ : Hy — H, be a morphism of hypermaps.
The covering transformation group consists of the automorphisms « of H;
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satisfying the condition ¢ = poa. A morphism 1 : H; — Ho will be called
regular if the covering transformation group acts transitively on the fibre
¥ ~1(z) over a dart = of Hs. All regular morphisms defined on a hypermap
‘H = (D; R, L) can be constructed by taking a semi-regular subgroup G <
Aut(H) and letting D be the set of orbits of G, with R[z] = [Rz] and
L[z] = [Lx]. Then the natural projection z — [z] defines a regular covering
H — ‘H, where H = (D, R, L). When we replace combinatorial hypermaps
with their associated bipartite maps, a morphism between two hypermaps
extends to a branched covering between the underlying surfaces, possibly
with branch points at the vertices and faces. Thus morphisms between
hypermaps are also called coverings.

Maps and hypermaps on orbifolds. Given a regular covering ¢ : H —
K, let « be a hypervertex, hyperface or hyperedge of . Let H be of genus
g, let KC be of genus v and let G < Aut(H) be the covering transformation
group. Denote by S, the underlying surface associated with H. The ratio
of degrees b(z) = deg(z)/deg(x), where & € ¢~1(z) is a lifting of = along
1, will be called the branch index of x. By transitivity of the action of
the group of covering transformations, the branch index is a well-defined
positive integer independent of the choice of the lift Z. Hence © — b(x),
xz € V(K)UE(K)U F(K), is well defined on the union of the sets of
hypervertices, hyperedges and hyperfaces. Writing all the values b(z) > 1
in non-decreasing order we get an integer sequence mjy,ms,...,m,. In
this way a quotient orbifold S,/G with signature [y;mi,mo,...,m,] is
defined. For our purposes we define a topological 2-dimensional orbifold
O = O[y;my,...,m;] to be a closed orientable surface of genus v with a
distinguished (finite) set of points B, called branch points, and an integer
function assigning to each z € B an integer b(z) > 2. A 2-coloured bipartite
map of genus 7y is a map on the orbifold O provided the following two
conditions are satisfied:

(1) no branch point z € B lies on an edge,
(2) each face contains at most one branch point z € B.

The signature of an orbifold associated with a regular covering of hy-
permaps coincides with the signature of an orbifold determined by the
corresponding regular covering of Walsh’s 2-coloured bipartite maps. Note
also that a regular covering ¢ : H — K extends (uniquely) to a regular
covering S, — S;/G, where g is the genus of H and G is the group of
covering transformations. The concept of a map on an orbifold naturally
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generalises the concept of a map on a (closed) surface, because ordinary
maps are just maps on orbifolds with an empty set of branch points.

Let O be an orbifold with signature [y;mq,ma,...,m;]. The orbifold
fundamental group m (O) is a Fuchsian group

m(M,0) = Fly;my,ma,...,my]
Yy T
= <alyblya27627'"7a’yab’yael>"'7er | H[aiabi] Hej = ]-7
=1 j=1

e = ... = el = 1>. (2.1)

Let H — H/G = K be a regular covering between hypermaps with
a covering transformation group G, and suppose that H is finite. Let the
signature of the orbifold corresponding to I = H/G be [y;m1, ma, ..., my].
Then the Euler characteristic of the underlying surface of H is given by
the Riemann—-Hurwitz equation:

X=|G|(2—2fy—i(1—mii)>. (2.2)

§3. GENERAL COUNTING FORMULA

A group epimorphism is called order-preserving if it preserves the or-
ders of elements of finite order. Given a closed orientable surface S, of
genus g and a cyclic orbifold O = S;/Z; we denote by Epi, (71 (0), Z)
the number of order-preserving epimorphisms 7 (0) — Z;. The follow-
ing theorem gives a general counting formula for the numbers of unrooted
hypermaps of given genus. Based on an approach from [20], the following
general counting formula is derived in [23].

Theorem 3. Let S, be a closed orientable surface of genus g. Let ho(d)
be the number of rooted hypermaps with d darts on a cyclic orbifold O =
Sy/Zy.

Then the number of unrooted hypermaps of genus g having n darts is

Uy =5 30 S hold)Epi(m(0), Z0),

ln O€Orb(S/Ze)

where the second sum runs through all cyclic orbifolds Sy /Z;.
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The numbers of rooted hypermaps on cyclic orbifolds can be expressed
in terms of numbers of rooted hypermaps on surfaces. Let H be a rooted
hypermap on an orbifold O such that H = H/Z, = (D; R, L) is a quotient
of a finite map H on a surface S,. Thus O = S,/G, where G = Z; is a
discrete cyclic group of orientation-preserving symmetries of S, of order £.
It follows that each branch index of the branched covering Sy — O is a
divisor of £. We can write O = O[vy;2%,...,£%], where ¢; > 0, and j%
indicates that there are g; branch points of index j for each j = 2,...,4.
The genera v and g are related by the Riemann-Hurwitz equation

1

22g:€(227iqj(1 ;)>.

We use the convention k. (d) = hiy; z1(d) denoting the number of rooted
hypermaps with d darts on a closed surface of genus g. Clearly, the expo-
nential notation O = O[y; 242, ..., £%] can be used for any oriented orbifold
(not necessarily cyclic) provided the indices of branch points are bounded
by £.

Given integers x1,2,...,%4 and y > 1 + 22 + - - - + 4 we denote by

Yy _ y!
1, T z,) a4 ’
) R ] Z

Tzl ozl (y — D wj)!
Jj=1

the multinomial coefficient.

Proposition 4. [23] The number of rooted hypermaps with d darts on an
orbifold

0 = O[y;2%,..., 0]
18
d+2—2y
q2,493,.-.,4¢

hd@z( )mw. (3.1)

Combining Proposition 4 and Theorem 3 one gets the following theorem,
see [23].
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Theorem 5. The number of unrooted hypermaps with n darts on a closed
surface Sy of genus g is given by

vm==% 3 Epiom(()),zz)( d+2-2y )h7<d>,

tn 0corb(5/2,) 42,43, ---,4¢
td=n 0=0[;292,393,..., e9e]

(3.2)
where the second sum runs through all cyclic orbifolds Sy /Z;.

The numbers Epi,(71(0), Z;) were computed by the authors in [22]
in terms of some standard arithmetical functions. The following section
surveys results on Epi,(71(0), Zy).

§4. NUMBER OF EPIMORPHISMS FROM A FUCHSIAN GROUP ONTO
A CYCLIC GROUP

As one can see from Theorems 3 and 5, to derive an explicit formula
for the number of unrooted hypermaps with a given genus and a given
number of darts, one needs to deal with the number Epi, (71 (0),Z;) of
order-preserving epimorphisms from m; (O) onto a cyclic group Z;. These
numbers are calculated using some number-theoretical machinery in [22].
In what follows we recall some relevant results used in later computations.
An arithmetic function, called by Liskovets the orbicyclic arithmetic func-
tion [18], is a multivariate integer function defined in [22] by

1 m
E(my,ma,...,my) = — > @k, my) - Bk, my) ... 2(k, m,),
k=1

where ®(k, m) is the Von Sterneck function defined by

Blmn) = ¢E’1i?3)> ()

(z,n) is the greatest common divisor of z and n, and ¢ and p are, respec-
tively, the Euler and Mgbius functions. It was shown by O. Holder that
®(z,n) coincides with the Ramanujan sum

2ikx
> (7).
n
1<k<n
(k, n)=1

see Apostol [1, p. 164] and [24]. For more information about the Ramanujan
sum the reader is referred to [19].
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Recall that the Jordan multiplicative function ¢y (n) of order k can be

defined as follows: "
orn) = > (%) d".
d|n

The following proposition, generalising a statement of Harvey [10], is
proved in [22].

Proposition 6. Let ' = Flg;my,...,m,]| be a Fuchsian group of signa-
ture [g;m1,...,my]. Denote by m = l.c.m.(mq,...,m,) the least common
multiple of mq,...,m, and let m divide . Then the number of order-
preserving epimorphisms from the group I' onto a cyclic group Zy is given
by the formula

Epio(ra Zl) = ng(lsZg (Z/m)E(mla mz,..., mr)'
In particular, if I' = F|g; @] is a surface group of genus g we have
Epio (T, Z;) = ¢24 ().

For practical use it is sometimes more convenient to use the multiplica-
tive form of the function E(my,ma,...,m,) derived in [18] as follows.

First let us assume that all periods m; are powers p® of the same
prime p. Since E is a symmetric multivariate function, we may assume
that the exponents form a non-increasing sequence:

A1 = A3 =" =0As = Q> Agp] 2 Qg2 2 " 2 Q.
,

Set v = > (a;j —1), so in particular v = 0 if r = 1. In [18] Liskovets proved

j=2
that
B(p®,p™,...,p") = (p— 1) Hp’ (=) + (1)
p
Now let us consider general case. Set m = l.c.m.(my,ma,...,m;). For

any prime p dividing m define E,(m1,ma,...,m,) = E(p**,p*,...,p%),
where p% is the highest power of p which divides mj, for j = 1,2,...,r.
Then by [18, p. 160]

E(my,ma,...,m;) = H Ey(my,ma,...,m;).

plm
p prime

Hence one can easily determine the numbers Epi, (7 (0O), Z;) for sur-
faces of genera at most 3, compare with [4,35]. The numbers Epi, (71 (0), Z;)
have been determined up to genus 101 by Karabas [13]. An orbifold O =



RECENT PROGRESS IN ENUMERATION OF HYPERMAPS 149

O[y;m1,...,m,] will be called g-admissible if it can be represented as a
quotient orbifold O = S;/Z;, where S, is an orientable surface of genus g
surface and Z; is a cyclic group of automorphisms of S,.

Proposition 7 ( [13]). The admissible cyclic orbifolds O of genus at
most 3 and the corresponding numbers of order preserving epimorphisms
m1(0) — Z; are summarised in Table 1.

Table 1.
genus L Orbifold O | Epig(71(0), Zy) genus L Orbifold O | Epig(71(0), Zy)
1 ¢ | [159] $2(0) 3 2 | [2,9] 15
1 2 | [0;2%] 1 3 2 | [1;2%] 4
1 3 | [0;3%] 2 3 2 | [1;2%)] 1
1 4 | [0;42,2] 2 3 3 | [1;3%] 18
1 6 | [0;6,3,2] 2 3 3 | [0;3%] 10
2 1 | [2;2] 1 3 4 | [1;2%] 12
2 2 | [1;22] 4 3 4 | [0;23,42) 2
2 2 | [0;29] 1 3 4 | [0;4%] 8
2 3 | [0;3%] 6 3 6 | [0;2,32,6] 2
2 4 | [0;22,42] 2 3 6 | [0;22,62%] 2
2 5 | [0;5%] 12 3 7 | [0;22,7%] 30
2 6 | [0;22,32] 2 3 8 | [0;4,82] 8
2 6 | [0;3,6%] 2 3 9 | [0;3,9%] 12
2 8 | [0;2,82] 4 3 12 | [0;2, 127] 4
2 10 | [052, 5, 10] 4 3 12 | [053,4,12] 4
3 1| [3;9] 1 3 14 | [052,7,14] 4

§5. ENUMERATION OF ROOTED HYPERMAPS OF GIVEN GENUS

In this section we survey known results concerning the numbers hy(d).
Set hg,g = hg(d) and let

Fy(z) =) haga”,
d=1

be the corresponding generating function. Setting
t
(1+2t)?’
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Kazarian and Zograf [14] have determined F(z) as a rational function of ¢.
In general, for g > 1 they proved that

o~ 291 P (1)
Fyl@) = £y (0) = (1+t)49-3(1 — 2t)59—3’

where P,(t) is a polynomial of degree 59 — 5.
Independently, Giorgetti and Walsh [7] have investigated the same gen-
erating function

Hy(z) = Z hdﬂmd: Hy(z) = Fy(x)
d=1

in a different way. They put © = pu(1 — 2u), with g = 0 when z = 0, and
considered a rational expression of Hy(x) in terms of p. The main idea is
to express Hy(z) for g > 1 as

Hy(x) = Hy(n) = 45 (n(1 = 21))* (1 = 4p)* 79 (1 — p)* =4 Dy (n),
where D, (p) is a polynomial of degree 5g — 6.

The formulae for Hy(x), where g = 0,1,2,3,4,5 and 6, were derived
explicitly by Giorgetti and Walsh in [7]. More precisely, one gets

1-3
(©) Hole) = (=33

@ Hi() = =gy
3 _ 2
(i) Ha(e) = Mot
(i) Hs (o) = itz -Dele)
— “ 7“ )
(iv) Hy(z) = 4’?31(”4&1)_127%1)6]3)41(3”)
—4p —u )
(V) H5 (CU) — 4}??(#&1)—22273-)8%51(#1)
—4p — i )
(vi) H(r) = 2t Dol
— ,LL _p] )
where

Do(p) =2 — 15u + 48 — 77u + 51u*,

Ds3(p) = 45 — 552p + 3360u> — 13168u> + 35172u* — 618724°
+61676u° — 131644 — 36888u® + 28496,

Dy(p) = 2016 — 304564 + 2396972 — 13209204° + 5541192*
— 17597520p° 4 398140324° — 5355307247 + 1281984 %
+170357328y” — 3892687681 + 442844592
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— 24331374412 4+ 15509760412 + 32375616,

Ds(p) = 151200 — 24904804 + 217382404 — 1413932203
+ 7618354651 — 33364591444° + 110161562444°
— 2329586582417 + 756805987218 + 1655425117444°
— 7615652300164 + 2000782619136 — 3552865706240
+ 4243997599488 — 2962590413376 + 3383939168001°
+ 140309634873641¢ — 1163002515456 + 2390434475528
+ 6174240460812,

Dg(p) = 17107200 — 284717376 + 2485496880u> — 173145085924°
+ 112079088144, — 6263363831044° 4+ 2630924485729,°
— 6580517850696 — 4043551301232° + 1384731632561764°
— 813298324826016° + 3098312828500416.'
— 8736443315384448'? + 18704646148809216."°
— 29719458122609664 1'% 4 31734000656779264 4>
— 13439214645718272u'5 — 22997164994372352417
+ 542834579202232321'% — 55010184951564288
+ 28025505345377280%° — 2073822560019456 %
—49336637117306881.%% + 1584534210564096*
+ 1780547713024004*.

t

Since z = {Fapz I the work of Kazarian and Zograf [14, 33], and

xz = p(l — 2u) in that of Giorgetti and Walsh [7], we get the following
useful relation

ﬁ = (1 —2p).

Taking into account the initial data we obtain p = ﬁ This gives the fol-

lowing correspondence between the Kazarian—Zograf and Giorgetti-Walsh
generating functions:
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We will use the Giorgetti-Walsh formulae to enumerate the rooted hy-
permaps of each genus g < 6. The results of our calculations coincide with
those obtained by Kazarian and Zograf, we checked it up to genus three.

As already mentioned, the explicit formulae for the coefficients hg ¢ were
obtained by Walsh in [30], and for hq 4 by Arqueés in [2].

§6. COUNTING UNROOTED HYPERMAPS OF GENUS AT MOST
THREE

In this section we apply the above results to calculate the numbers of
unrooted hypermaps with a given number of darts on the surfaces of genus
two and three. For the sake of completeness we also summarise the known
resuts for the sphere and for the torus.

6.1. The sphere. For each ¢ > 1 there is only one possible action of
the cyclic group Z; on the sphere S. The corresponding orbifold O has
signature [0; ¢, ], and by Proposition 7 we have Epi,(m1(0), Z¢) = ¢(£).
By Theorem 5 we obtain

Uo(d) = z(ho(d) + 3 (O)(™)*)ho(m)), (6.1)

e|d, £>1
tm=d

where the numbers ho(m) of spherical rooted hypermaps with m darts
were determined by Walsh [30] as follows:

3.2m-1 2m

Inserting (6.2) into (6.1) we get the following formula, see [23], counting
the spherical unrooted hypermaps with d darts:

=Yg ba() 3 0 (o)

eld, e>1
em=d

The numbers of rooted and unrooted spherical hypermaps with up to
30 darts are given in Table 1 at the end of this paper.

Note that the numbers Uy(d) were also determined in an equivalent
form by Bosquet—-Melou and Schaeffer [3], in terms of unrooted planar
2-constellations formed by d polygons.
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6.2. The torus. In this section we derive an explicit formula for count-
ing unrooted maps on the torus. The list of 1-admissible orbifolds and
the corresponding numbers Epi, (w1 (O), Z;) were derived in Proposition 7.
Rooted toroidal maps were enumerated by Arques in [2]. He proved that

d—3
S 24tk 1) <d : k) (6.3)
k

=0

() = 5

Inserting (6.3) into Theorem 5 we obtain the following formula, derived
in [23], giving the number U; (d) of oriented unrooted toroidal hypermaps
with d darts:

(D)) ra(F(5) (3w )

d+12

+ 12(?)% (g) + Z ¢z(€)h1(m)>,

fm=d

where ¢ is the Jordan multiplicative function of the second order, and
ho(m) and hi(m) are respectively determined by (6.2) and (6.3).

6.3. The surfaces of genus 2 and 3. By using the general counting
formula (3.2) and the lists of the numbers Epi,(71(0), Z;) = ¢(£) (see
Proposition 7), where O ranges through all 2- and 3-admisible orbifolds,
we get the following two theorems.

Theorem 8. The number of oriented unrooted hypermaps with d darts on
a surface of genus two is given by the formula
(h2 (d) + 4h[1;22] (d/2) + h[0;26] (d/2) + 6h[0;34] (d/3)
+ 2h[0;22742] (d/4) + 12h[0;53] (d/5)2h[0;22’32](d/6) + Qh[o;g’ez](d/ﬁ)
+ 4h[0;2782] (d/8) + 4h[0;275’10](d/10)),

ISR

where ho(m) is defined in (3.1) and hy(m) is the number of rooted hyper-
maps of genus g with m darts.
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Theorem 9. The number of oriented unrooted hypermaps with d darts on
a surface of genus three is given by the formula

é(hg(d) + 15ha(d/2) + 4hyy.09(d/2) + hyosy(d/2) + 18k .42 (d/3)
+ 10hj0,35 (d/3) + 12hj1,92 (d/4) + 2hjo,25 42/ (d/4) + 8hig,44)(d/4)
+ 2hyp 52,6 (4/6) + 2hj.92 621 (d/6) + 30ho731(d/7) + 8hoa 521 (d/8)
+ 12h03.02)(d/9) + 4hio.2 1921 (d/12) +4hyocs 4.12(d/12) +6ho0 7 141 (d/14)),

where ho(m) is defined in (3.1) and hy(m) is the number of rooted hyper-
maps of genus g with m darts.

6.4. The surfaces of genus 4, 5 and 6. The general counting formula
(3.2) and the list of the numbers Epi, (71 (0), Z;) given in [21, Lemma 4.5],
where O ranges through all 4-admisible orbifolds, give the following count-
ing formula.

Theorem 10. The number of oriented unrooted hypermaps with d darts
on a surface of genus four is given by the formula

é(h;;(d) + 16h2,22)(d/2) + 4h1,261(d/2) + hjo;210)(d/2) + 80h2(d/3)
+ 18h(1.39)(d/3) + 22hio.30) (d/3) + 32h(1,42) (d/4) + 8hjo2.45) (d/4)
+ 2ho;24 421 (d/4) + 52hyo;541(d/5) + 32hy1;02(d/6) + 2hyo;2,651(d/6)
+ 2hjo;92 331 (d/6) + 6hjo;32 621 (d/6) + 2hjo.23 3,6](d/6) + 4hjo,22 s21(d/8)
+ 180,09 (d/9) + 12hio;s. 102 (d/10) + 4hygp2 52 (d/10)
+ 4hjo;3,122)(d/12) + 4hio,4,6,12)(d/12) + 8hjo;3,5,15(d/15)

+ 8hj0;2,162)(d/16) + 6h[0;2,9718](d/18)>7

where ho(m) is defined in (3.1) and hy(m) is the number of rooted hyper-
maps of genus g.with m darts.

Similar arguments using the lists of 5-admissible and 6-admissible orb-
ifolds O and the corresponding numbers Epi, (71 (0), Z;) [13] give the fol-
lowing results.
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Theorem 11. The number of oriented unrooted hypermaps with d darts
on a surface of genus five is given by the formula
é(hs(d) 1 6303(d/2) + 16h061(d/2) + A1 o (d/2) + Moz (4/2)
+ 54hy1;34)(d/3) + 42hjo,37)(d/3) + 240ha(d/4) + 12h1,541(d/4)
+ 32h1;2,42)(d/4) + 2hjo,05 42)(d/4) + 8hjp,p2 441 (d/4)
+ 100h1;52)(d/5) + 54h1;32)(d/6) + 6ho;2,35,6)(d/6) + 2h(0;22 3,62 (d/6)
+ 2hjo;94 321(d/6) + 6hjo,641(d/6) + 48hy1,22(d/8)
+ 8ho;2,4,821(d/8) + 4hjo;22,102](d/10) + 90h(g;113)(d/11)
+ 4hjo;6,122)(d/12) + 8hjg;3,1521(d/15) + 8hjo;2,202] (d/20)

+ 10h;2,11,22) (d/22)>>

where ho(m) is defined in (3.1) and hy(m) is the number of rooted hyper-
maps of genus g with m darts.

Theorem 12. The number of oriented unrooted hypermaps with d darts
on a surface of genus six is given by the formula

é(he(d) + 64hy3,22)(d/2) + 16hy2,261(d/2) + 4hy1;2101(d/2) + hyos2141(d/2)
+ 162hp,52 (d/3) + 90h(y.39)(4/3) + 860,381 (d/3) + 32h(1 2 42 (d/4)
+ 32hy0sa0)(d/4) + Shyosas asy(d]4) + 2oz 421 (d]4) + 62403 (d/5)
+ 204hy0,551 (d/5) + T2h;1.62)(d/6) + 602,565 (4/6) + 10hio.35 62 (d/6)
+ 2hjous 62 (d4/6) + 2hjo00 52 (4/6) + 6hyg22 5 (d/6) + 186hy0,74 (d) /7)
+ 16h0;42,52](d/8) + 4hjo;25 52 (d/8) + 24hjo;52 921 (d/9) + 96h1,22](d/10)
+ 12hjo;2 52,10 (d/10) + 4hjo;32 42)(d/12) + 4hjg;2 3 4,12)(d/12)
+ 4ho;22 122)(d/12) + 132hjg;135)(d/13) + 6hyg;22 721 (d/14)
+ 30hy057 142)(d/14) + 24hy55 15 (d/15) + 16hig,4.162 (d/16)
+ 120053 152)(@/18) + Shigy5.20, (4/20) + 12hiois.7 21 (d/21)

+ 8hjo;,242) (d/24) + 12h[0;2,13,26](d/26)>7

where ho(m) is defined in (3.1) and hy(m) is the number of rooted hyper-
maps of genus g with m darts.
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Table 2. Numbers of rooted and unrooted hypermaps on

the sphere with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
01 1 1
02 3 3
03 12 6
04 56 20
05 288 60
06 1584 291
07 9152 1310
08 54912 6975
09 339456 37746
10 2149888 215602
11 13891584 1262874
12 91287552 7611156
13 608583680 46814132
14 4107939840 293447817
15 28030648320 1868710728
16 193100021760 12068905911
17 1341536993280 78913940784
18 9390758952960 521709872895
19 66182491668480 3483289035186
20 469294031831040 23464708686960
21 3346270487838720 159346213738020
22 23981605162844160 1090073011199451
23 172667557172477952 7507285094455566
24 1248519259554840576 52021636161126702
25 9063324995286990848 362532999811480604
26 66032796394233790464 2539722940697502966
27 482722511571640123392 17878611539691757938
28 3539965084858694238208 126427324476844560112
29 26035872237025235042304 897788697828456380772
30 192014557748061108436992 6400485258395785352796
31 1419744002743239710867456 45798193636878700350566
32 10522808490920482562899968 328837765342188339724215
33 78169434503980727610114048 2368770742544870599309164
34 581928012418523194430849024 17115529777022135213432360
35 4340868416959794639538225152 | 124024811913136989701130840

36

32442279747804780990233051136

901174437439071256974607848
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Table 3. Numbers of rooted and unrooted hypermaps on

the torus with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
03 1 1
04 15 6
05 165 33
06 1611 285
07 14805 2115
08 131307 16533
09 1138261 126501
10 9713835 972441
11 81968469 7451679
12 685888171 57167260
13 5702382933 438644841
14 47168678571 3369276867
15 388580070741 25905339483
16 3190523226795 199408447446
17 26124382262613 1536728368389
18 213415462218411 11856420991413
19 1740019150443861 91579955286519
20 14162920013474475 708146055343668
21 115112250539595093 5481535740059577
22 934419385591442091 42473608898628639
23 7576722323539318101 329422709719100787
24 61375749135369153195 2557322884534185500
25 496747833856061953365 19869913354242478293
26 4017349254284543961771 154513432889706455145
27 32467023775647069984085 1202482362061007078175
28 262225359776626483309227 9365191420865873023026
29 2116714406654571321840981 72990151953605907649689
30 17077642118698511054318251 569254737292213025378571
31 137718253327424350825305429 4442524300884656478235659
32 1110121628423796225561242283 34691300888262396351206916
33 8945004369725873610785379669 271060738476541624829912533
34 72050204862659963828300327595 2119123672431330647024502021
35 580158674937809688551201527125 16575962141080276815748625439

36

4670100332161384829372940855979

129725009226706415775520829736
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Table 4. Numbers of rooted and unrooted hypermaps of
genus two with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
05 8 4
06 252 48
07 4956 708
08 77992 9807
09 1074564 119436
10 13545216 1355400
11 160174960 14561360
12 1805010948 150429819
13 19588944336 1506841872
14 206254571236 14732613116
15 2118399516180 141226638540
16 21310566266640 1331912032173
17 210636265153004 12390368538412
18 2050696768165560 113927616087252
19 19704531058696008 1037080582036632
20 187168609978022860 9358430685657218
21 1759888050471704664 83804192879934456
22 16398685297890141180 745394788170961932
23 151570887948878270348 6590038606472968276
24 1390769475046930549944 57948728145925503486
25 12677318864153808488340 507092754566152344372
26 114866214763196961698608 4417931337231617942004
27 1035084863819168419185504 38336476437747003381792
28 9280607880474962296968276 331450281447322431858738
29 82826281765786596848797216 2856078681578848167199904
30 736047153365477687155010772 24534905112199593482491548
31 6515177130047600059726385988 210167004195083872894399548
32 57458287482787782037108848928 1795571483837278068662501714
33 505004316878986204007116435068 15303161117545036486870040316
34 4424381841184163772620281181544 130128877681888658319586285764
35 38646910849128504231568725072824 | 1104197452832242978044820979944
36 | 336637773892407350719198338194844 | 9351049274789106814328551437162

The first 12 members of each sequence were computed by Walsh, see
the sequences A214817 and A214819 in Sloan’s Encyclopedia of Integer
Sequences [25].



RECENT PROGRESS IN ENUMERATION OF HYPERMAPS 159

Table 5. Numbers of rooted and unrooted hypermaps of
genus three with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
07 180 30
08 9132 1155
09 268980 29910
10 6010220 601364
11 112868844 10260804
12 1877530740 156469887
13 28540603884 2195431068
14 404562365316 28897471080
15 5422718644920 361514582340
16 69428442576136 4339280187364
17 855504181649448 50323775391144
18 10204459810035768 566914469842923
19 118364711625485256 6229721664499224
20 1340006035830921720 67000302262906866
21 14850353930248138104 707159710965012834
22 161502853638370415864 7341038807584085816
23 1727146533728893094604 75093327553430134548
24 18194375590933862966292 758098983024722532057
25 189080264025911947923500 7563210561036477916940
26 1940922056061010034996724 74650848310828035397344
27 19701557064420962393581236 729687298682257951832052
28 197942906403556061566996716 7069389514421460285584196
29 1970114245638125530899290580 67934973987521570031010020
30 19439135973954567991969413660 647971199131913428836824787
31 190275115717451197782353154992 6137906958627457992979134032
32 1848675554724680793176038604496 57771111085147274672337156264
33 17837763912982477086251258735424 540538300393408396560945218358
34 171011492126067571593754049882912 5029749768413762495690182157138
35 1629668927538321804193022741828400 46561969358237765834086364060880
36 15442910125865479229529011667731664 428969725718485640429202027454929

Compare the numbers in Table 5 with the sequences A214818 and
A214820 in the Encyclopedia of Integer Sequences [25]



160 A. MEDNYKH, R. NEDELA
Table 6. Numbers of rooted and unrooted hypermaps of
genus four with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
09 8064 900
10 579744 58032
11 23235300 2112300
12 684173164 57017238
13 16497874380 1269067260
14 344901105444 24635879496
15 6471056247920 431403755052
16 111480953909328 6967561712925
17 1792031518697232 105413618746896
18 27197316623478960 1510962076238986
19 393207192141924744 20695115375890776
20 5453210050430783640 272660503240047690
21 72949244341257096792 3473773540061130158
22 945523594111460363208 42978345198144175632
23 11918067649004916470640 518176854304561585680
24 146538779626167833263888 6105782484587260861256
25 1762112462707129510538640 70484498508285180442512
26 20768368282870029687839376 798783395497239872773008
27 240368024958405223433064588 8902519442903897358900492
28 2736299821653534456272141028 97724993630512562418847782
29 30681668858759894127714525252 1057988581336548073369466388
30 339282919442101898443749216780 11309430648070428892839507568
31 3704145932011843576043417342880 119488578451994954065916688480
32 39964865942865385063297950889824 1248902060714547710624818909977
33 426488837595688137917785681779808 12923904169566307209653526582082
34 4505169994980190400756661701929056 132504999852358593288691501546752
35 47140026269255416100164550166394896 1346857893407297602861844292181680
36 488894077989077432470427208027444912 13580391055252151499726431398068094
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Table 7. Numbers of rooted and unrooted hypermaps of
genus five with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
11 604800 54990
12 57170880 4764654
13 2936606400 225892800
14 108502598960 7750214770
15 3225186125460 215012412162
16 81861294718764 5116332159396
17 1840409325096500 108259372064500
18 37558997857897164 2086611028856442
19 708015469597497732 37263972084078828
20 12488421105878928700 624421056158964400
21 208161512148250424484 9912452959442487798
22 3304395638081490531324 150199801748445171324
23 50267199680265668419244 2185530420881116018228
24 736516493829967530909204 30688187243229908347917
25 10437808798822929984593100 417512351952917199390324
26 143579847174876616432522932 5522301814423518341906738
27 1922778363105897685775636508 71214013448366581415749056
28 25131774144239809681153633380 897563362294358670413127978
29 321313741483354251493720181436 11079784189081181085990351084
30 4026024070504885445987516470740 134200802350164006593186711922
31 49520952483083613251458914166776 1597450080099471395208352069896
32 598831540994207081864686094849544 18713485656068987355673572454932
33 7128322474534319390866713604688760 216009771955585436086944711426036
34 83625433414413168743681427153055368 2459571571012152235464897610954668
35 967844566522922616486129256587080600 27652701900654931899603693046233460
36 11060906643174942949121784485538024168 307247406754859529111624332164273023

The above tables were computed using MATHEMATICA, Ver. 8. The
input numbers of rooted maps come from [2].
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Table 8. Numbers of rooted and unrooted hypermaps of
genus six with at most 36 darts.

Darts No. of rooted hypermaps No. of unrooted hypermaps
13 68428800 5263764
14 8099018496 578503836
15 511859777472 34123986582
16 22925949056640 1432872113513
17 815521082030784 47971828354752
18 24494440792190400 1360802282552400
19 645212095792089220 33958531357478380
20 15292175926873102956 764608796937519942
21 332150183310464271324 15816675395738446494
22 6702637985834037183508 304665363009300666760
23 126995200843857803023176 5521530471472078392312
24 2278149500006567629947864 94922895834007468383231
25 38954050134978747926573016 1558162005399149917112472
26 638403304977613386193366152 24553973268378095302926108
27 10074031934071102231202906148 373112293854485268614197848
28 153658174505132363683454644044 5487791946612027408828957093
29 2272899190645387594635333126300 78375834160185779125356314700
30 32696626257089371291804270484436 1089887541902981774320298641500
31 458548507259290795212121173292320 14791887330944864361681328170720
32 6282789494351752733963682019756896 196337171698492317310913800795248
33 84259058847630667707075246329668128 2553304813564565688093367462644732
34 1107884001406279366551657449722624608 32584823570772923227586875738243520
35 14302816838086914619821081571229279928 408651909659626131994888044899128296
36 181537182685287061468632215656362324072 5042699519035751717459257549806279480

10.
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