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ABSTRACT. The paper presents a technique for the automatic cal-
culation of Belyi functions for trees with weighted edges.

§1. INTRODUCTION

Let P(z) and Q(z) be polynomials with complex coefficients; the ratio
B(z) = P(z)/Q(z) is an example of a Belyi function provided that

B'(z)=0= B(z) =0 V B(z) = L. (1)

An introduction to the general theory of Belyi functions can be found in
many sources (for example, in [6]); only a few facts required to understand
this paper are reproduced here.

The preimage B~1([0,1]) is a plane graph, possibly with multiple edges,
called by A.Grothendieck a dessin d’enfant. The vertices of this graph
are the preimages of the critical values 0 and 1; we shall assume that the
vertices are colored white and black respectively. Values of z at which B'(z)
vanishes, and also multiple poles of B(z), are called critical points.

The complement of B~1(]0, 1]) consists of connected open regions called
faces: there is one unbounded, outer face, and other bounded, inner faces,
and each of the latter contains a zero of the polynomial Q(z). Thus B(z)
defines a planar map.

According to the general theory, every connected plane graph is isomor-
phic to some graph obtained in this way from a suitable Belyi function;
however actually finding this function turns out to be a difficult computa-
tional problem.

Paper [14] presents a fairly full survey of diverse methods used for such
calculations (up to 2014; some more recent publications are [1, 4]), and it
also classifies them. In particular, what the authors of [11] call inductive
complex analytic methods are supposed to construct (numerical approxi-
mations to) a Belyi function for a given graph from Belyi functions for
simpler graphs. Such simpler graphs can be obtained in several ways. In
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[2, 5, 3] a vertex in a tree is split into two vertices of smaller multiplicities.
In [20], on the other hand, an edge of a tree is contracted, producing a
vertex with larger multiplicity but reducing the number of vertices and
edges. Having mentioned these two approaches, applicable only to trees
without multiple edges, the authors of [14] write:

Question 3.6. — Can an inductive complex analytic me-

thod be employed to compute more complicated Belyi maps

in practice?

In particular, the iterative method by Couveignes and

Granboulan to find a good starting value seems to rely

on intuition involving visual considerations; can these be

made algorithmically precise?

It should be remarked that in [20] no human assistance is required: a cor-
rect starting approximation is constructed entirely by computer (see [10]).

In this paper we give an affirmative answer to the above question by
presenting a fully automated technique for finding (arbitrary accurate ap-
proximations to) Belyi functions for maps in which every inner face is
bounded by just two parallel edges; such maps can be described as trees
with weighted edges, an edge of weight w representing w parallel edges. The
interest in weighted trees is partially due to the relationship between their
Belyi functions and the problem of finding polynomials S(z) and T'(z) with
prescribed multiplicities of zeroes for which the difference S(z) —T'(z) has
the minimal possible degree (see, e.g., [12]).

The input to the proposed algorithm consists of a combinatorial de-
scription of a weighted tree; no additional information/assumptions, such
as the size of the orbit, the field of definition, or the monodromy group of
the corresponding Belyi function (coinciding with the edge rotation group
of the tree) is required. The output consists of (approximate) positions of
black and white vertices, and the accuracy can be made arbitrarily high.
In the case when the field of definition has sufficiently small degree, this
allows one, using the LLL algorithm [7] (or similar techniques), to find
the field and an exact Belyi function with algebraic coefficients (see the
examples in Appendices I and II and in [9, 10]).

§2. INFORMAL DESCRIPTION OF THE METHOD

In the new method the simpler graphs are obtained by cutting a certain
edge. In order to be able to do this, we consider a slightly different class
of plane graphs. Namely, it is easy to verify that if B(z) satisfies (1), then
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o

Fig. 1. Tree G with an edge of weight 2.

o

Fig. 2. Graph G resulting from G by subdividing edges.

| T

T

B(z) = 4B(z) — 4B2(z) is also a Belyi function. The plane graph G corre-
sponding to B (z) can be obtained from the plane graph G corresponding
to B(z) by subdividing each edge of the latter graph into two edges by in-
serting into it a new vertex (see an example in Figs 1-2). Moreover, white
and black vertices of G become white vertices of the graph CZ keeping their
coordinates. Thus, having constructed a Belyi function for G, we can then
easily find the required function B(z).

We can select any edge of G having some weight w and cut each of the
w black vertices of G originating from the selected edge of G into two black
vertices of degree 1. The graph G splits into two subgraphs G1, and G, (see
Fig. 3; there, and also in Figs. 1-2, the graphs are shown in their “true”
geometrical forms arising from the corresponding Belyi functions, though
in fact such a splitting is performed on a purely graph-theoretical level).
For them we iteratively find the corresponding Belyi functions By, (z) and
Br(z) and then on their basis we construct a Belyi function for G.

To be able to do this we use a precomputed catalog of Belyi functions

Biwn(z) = (2 = 2)" (2 = 2r)" / Q7. 0p.n(2) (2)
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Fig. 3. The result of cutting the graph G at vertices in-
serted into the edge of weight 2 of the tree G.

for canonical graphs C, .- Each of these graphs has two white vertices of
degrees m and n respectively, w black vertices of degree 2 each connected
to both the white vertices, and also m — 2w + n black vertices of degree
1 all lying on the boundary of the outer face (Fig. 4 depicts the graph
Cs,2,10)-

Let BL(z) = FLPL(2)/QL(z) and Br(z) = FrPr(z)/QL(z) where F},
and Fy are some numeric factors and Py (2), QL(2), Pr(z), and QL(2)
are polynomials with leading coefficients 1 and of degrees pr, qr, Pr, gr
respectively. We shall use By, , »(z) with m = pr, — g, n = pr — ¢r.

Combining By, Br, and By, w.»(2) is based on considering the preim-
ages B; ([0, 00]), Bg'([0,00]) and B, 1 ([0,00]). Visually, inside a suf-

ficiently small disks centered at a white vertex of degree m the preimage

Fig. 4. Graph Cs 210 as the preimage By 3 14([0, 1]).
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Fig. 5. Preimage B;%ylo([(),oo]), the small cross marks
the position of the pole.

Fig. 6. Preimages B; ([0, 00]) and B ([0, 00]).

B, 1 ([0,00]) looks like m almost straight lines forming angles of size
27 /m (see an example in Fig. 5). On the other hand, outside a sufficiently
large disk centered at the origin the preimage By '([0,00]) looks like m
almost straight lines with the same angles of size 2w /m between them (see
Fig. 6). Geometrically, we cut the large disk from the preimage B *([0, oc])
and rotate it (if required), then properly scale and substitute the scaled
disk for the corresponding small disk in the preimage B!, ([0, oc]). Nat-
urally, a similar operation is performed for By ([0, >0]) and the other small
disk in the preimage B, ([0, c]).

m,w,n
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N

Fig. 7. Preimage A~1(]0, o0]).

Symbolically, we consider the function
fi( ) MEL_pLMI?{R_pRPL(ML X (Z — ZL))PR(MR X (Z — ZR)) (3)
z) = ‘
QLML x (2 —20))Qr (Mg % (2 — 2r))Q}, w0 (2)
where My, and Mgy are sufficiently large numerical factors. Fig. 7 shows an
example of such a preimage A~1([0, 00]) (for small values of My, and Mg —
otherwise the details would be invisible due to the scaling). The two white
vertices of Ch, w,n “split” into the shifted white vertices of Gt and Gr
which kept their multiplicities; the pole of B!  (z) also kept its mul-

m,w,n

tiplicity and position. As for the black vertices of Gy, éR, and Chw.n
(those that corresponded to the critical points of second order), they
were destroyed. However, selecting larger values for My, and My we can
make preimage A~!([0,c0]) globally looking arbitraly like B, ([0, 00])
and locally, in the vicinities of points zr and zg, looking arbitraly like
B ([0, 00]) and B * ([0, oc]) respectively. This allows us to restore the de-
stroyed critical points of second order by applying Newton iterations; let

A(z) denote the result of such “adjusting” of function A(z).
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Topologically, the preimage A~1([0,00]) has the same structure as the
preimage B~1([0, oc]) where B(z) is the desired Belyi function for G. How-
ever, there is a great distinction between A(z) and B(z), namely, the crit-
ical values of A(z) at the restored critical points differ from 1. Due to the
scaling and extra factors in (3) these values are close to

MEL —PL M]%R*PRPR(MR X (ZL _ ZR))
FLQR(MR X (ZL - zR))Q%muun(zL)

(at critical points near zj,) or to
MI?{R_pRMEL_pLPL(ML X (ZR — ZL)) (5)
FrQu(My x (zr — 20))Q7, 0 (2R)

(at critical points near zg). Selecting correlated values of My, and Mg

we can make both (4) and (5) equal to a certain (small positive) number

co. Let A, (z) be the corresponding “adjusted” function. It satisfies the
following weaker counterpart of (1):

Al(2)=0= A.(2) =0V A(z) =1V A(z) =c (6)

(4)

for ¢ = ¢y.

The function A.,(z) can be taken as an initial point for constructing
B(z). Namely, treating ¢ as a parameter, we start incrementing its value
and finding the corresponding function A.(z) satisfying (6). The desired
function B(z) will be just A;(z).

§3. SOME TECHNICAL DETAILS

The edges of the desired weighted tree are numbered in an arbitrary
way, and the input to the algorithm consists of two lists:

e edges listed around the outer face (each edge is encountered twice);
e a list of the weights of the edges.

Any edge can be used for splitting the graph C~¥, but it is reasonable
to have the two resulting parts with approximately the same number of
edges.

The functions A.(z) are represented by the following information:

e zeroes z1(c),. .., z¢(c);

e multiplicities of these zeroes di, ..., dy;

e critical points ui(c), ..., u4(c) such that A.(ur(c))=1, k=1,...,g;
e critical points vy (¢), ..., vn(c) such that A.(vi(c))=c, k=1,...,h;
e poles y1(¢), ..., yw—1(c);
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e a constant factor F.

In other words, the following equations should hold:

_ Pz = z(e)™

O S e mo? "
Ac(up(e) =1, k=1,...,9, (8)
Al (ug(c)) =0, k=1,...,9, 9)
Ac(vp(e)) =¢, k=1,...,h, (10)
Awe(e) =0, k=1,...,h. (11)

We treat (7) as a definition of A.(z) and (8)—(11) as a system of 2¢g + 2h
equations among f + g + h + w — 1 numbers, the z’s, u’s, v’s, and y’s.
According to Euler’s theorem on plane graphs f+g+h+w—1 = 2g+2h+1,
so we are free to incorporate one more equation; we will demand that the
centre of gravity of the white vertices should lie at the origin:

diwi(c) + - +dywy(c) = 0. (12)
Treating ¢ as an independent variable, we can differentiate (8)—(12) by
it:
iA (ug(e)) =0 k=1 (13)
de c\Uk — Y =L..9
d
&Alc(uk(c)) :07 k:]-:"'aga (]‘4)
d
&AC(’U]C(C)) :07 k= 17"'7h7 (]‘5)
d
&A’c(vk(c)) =0, k=1,...,h, (16)
Lo () 4+ dy Ly (e) = 0 (17)
Yde ! Fde 79 =
We need to solve system (13)—(17) of differential equations for ¢ in [co, 1];
initial values z1(co),. .-, zr(co), y1(co),-..,Yw—1(co) are taken from the
function A.,, and initial values wq(co), ..., u4(co), vi(co),...,vp(co) can

be found from equations (8)—(10).

In principle, system (13)—(17) could be solved by many programs for the
boundary problem of ordinary differential equations. However, the presence
of algebraic equations (8)—(12) gives a supplementary tool f or checking
and improving the accuracy of the solution.
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Suppose that we have found solutions of (13)-(17) for an increasing

sequence of values of c¢: ¢1,...,¢. Then we can construct polynomials
Zi(c), ..., Zg(c), Ui(c),...,Uglc), Vi(e),...,Vi(c), Yai(e),...,Yy—1(c) ei-
ther having degrees k£ —1 and interpolating values of zi(c),...,zf(c),
ui(c), ..., uqg(c), vi(c),...,vp(c), y1(c), ..., yw—1(c) foundforc =¢1,..., ¢,

or having smaller degrees and best fitting these values. After that we can
extrapolate our solution to c¢; + A. The choice of A is subject to two
conditions:

(i) neither the zeroes, nor the critical points, nor the poles can move
too far;
(ii) the extrapolated values should satisfy (8)—(12) sufficiently well.

More formally, for (i) the following conditions should be met for a certain
security parameter «:
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Similarly, for (ii) the distances to the nearest pole, critical point or zero
should be compared (in general, for a different security parameter ) with
the discrepancies of the corresponding solutions of equations A., ya(2z) =
1, Ac,va(2) = ¢, and A, A(2) = 0. The smaller are the values of a and
B, the less are the chances of losing the desired structure of the preimage
A;& A([0,00]) by jumping to another tree; however, smaller values of o and
B also imply a smaller value of A and hence a larger number of steps for
reaching ¢ = 1.

Having found (as large as possible) an admissible value of A we can, by
Newton’s method, improve the extrapolated solution of system (8)—(11)
for ¢ = ¢; + A to any desired precision; this is important for the accuracy
of the forthcoming extrapolations.

A catalog of Belyi functions (2) for canonical graphs was precomputed
in the following way. Paper [13] explicitly describes, among other things,
Belyi functions for trees having m —w and n—w edges of weight 1 adjacent
to the ends of an edge of weight w. Such a Belyi function can be constructed
by the method described above from B,,, ,, »(z). But it is possible to reverse
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the order of things by considering the boundary problem for (13)—(17) with
the initial values of the unknown functions for ¢ = 1.
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APPENDIX I. EXAMPLES OF CALCULATED BELYI FUNCTIONS

A large number of weighted trees are considered in [19]. For many of
them the authors indicate fields of definition of their Belyi functions, and
corresponding monodromy groups. For other trees these data are missing
in [19] but they were partly found later by other authors. In particular,
according to [15] H. Monien did it for the two trees from orbit 24.1 (here
and below we use the numbering of orbits introduced in [19]) and J. Voight
did it for the 10 trees from orbit 24.1.

The techniques described in the present paper were used to fill in some
other gaps in [19]. In particular, the authors of that paper write:

We believe that the orbit 12.8 is defined over Q(v/—11)
and the orbit 12.3 is defined over a cubic extension of
Q(v/—11). ... We believe that this orbit [12.9] is defined
over a quadratic extension of Q(v/—11).

Calculations performed by the author confirmed these conjectures.

Fig.8 exhibits “true” geometric form of 3 (of a total of 6) trees from
orbit 12.3 (the other three are their mirror images). These trees have 10
edges of weight 1 and one edge of weight 2. The cubic extension predicted
in [19] can be defined by the polynomial 2% + (1 + v/—11)2% + 8, and the
coefficients of the numerator and the denominator of corresponding Belyi
functions are explicitly given in [9]. According to [19], the monodromy
group of these trees, which acts on 12 edges of the trees, is isomorphic
to Mj;. Thus, in this case Mj; acts not by its natural action on 11 points
but by its primitive action on 12 points (for example, on 12 cosets of its
subgroup PSL(2,11)).
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Fig. 8. Weighted trees from orbit 12.3 of [19].

Fig.9 exhibits the “true” geometric form of one of the two trees from
the orbit 12.8 (the other tree is just the mirror image). The coefficients
(belonging, as predicted in [19], to Q(v/—11)) of the numerator and the
denominator of a coressponding Belyi function can be found [9]. According
to [19], the monodromy group of this function is the Mathieu group Mj,.
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Fig. 9. Weighted tree from orbit 12.8 of [19].

Fig. 10 exhibits the “true” geometric form of two (out of 4) trees from
the orbit 12.9 (the other two are just their mirror images). The four cor-
responding Belyi functions can be defined as follows (see also [9]):

B(z) = N(2)/D(2), (22)
where
N(z) =Y Pr(@)z",  D(z) =2z+737, (23)
k=0

Py(a) =—1757429320513160002684949258191137
+8224680925652794493000295154114112¢x
—4728430597174350885511802085843240”
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+2102628674271161395154494882902400°,

Py (@) = —255140300921206543878828632717736
+3025796928414618364127426267640960x
—217126515187956087105985734456240
+74781229679384424763394158831200°,

Py () = —2720938807944654712472759019318
+2246594943216494692191618673920c
—1810049680568901914444602947240°
+54475523354906984166 7175658720,

Ps(a) = —7960303224716486782977498528
+3156321302003169859715782912c
—35978719096805490991594012802
+717472580241766489561097600°,

Py (a) = 2643763408614374367837285
—14636903447503206810686592cx
+771290967010943957558904>
—370493809653334324224960c°,

Ps(a) = 32180861718344205781200 — 37551260312089791037056¢
+2590158036563931488688a> — 9176913026461539437760°,

Ps(a) = 3733064478492711516 — 443174089168478976x
+17801784756196056% + 273257264302915203,

Pr(a) = —46059956689934880 + 25405769479875840c
—2393404361881632a% + 5946588183000960°,

Py(a) = —2519416580967 — 18799500924864
+9066792940920° — 4933422616320,

Py(a) =—-7089311592 + 12635149120 — 90802034402 + 3247434083,
Pro(a) = —34487046 + 33014784 — 255618002 + 8210400,
Pi(a)=0,

Piy(a) =3,
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and for a one should take each of the four numbers 1 + 2/—2 £+ /—11.
According to [19], in each case the monodromy group of the function B(z)
is the Mathieu group M;j».

\

Fig. 10. Weighted trees from orbit 12.9 of [19].
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Fig. 11. Trees with Mathieu group M3 as their edge ro-
tation groups.

APPENDIX II. AN EXAMPLE OF A CALCULATED SHABAT
POLYNOMIAL

At the end of 1990s the author wrote a program (outlined in [20] and
available (in an improved form) in [10]) for calculating generalized Cheby-
shev polynomials (also known as Shabat polynomials) which are just Belyi
functions for ordinary trees (i.e., those without multiple edges). This pro-
gram allowed the author to find generalized Chebyshev polynomials for
several trees for which it was known (in particular, from [18]) that their
fields of definition have small degrees. A polynomial for trees having the
Mathieu group Mi; as their edge rotation group was published in [20]; a
polynomial with edge rotation group Mays was presented in [8]; however,
this passed unnoticed, and recently generalized Chebyshev polynomials
for Mj; and M3 were considered anew (see [4], [4, footnote at p.360],
and [12]).
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Fig. 11 depicts trees with edge rotation group Mas; the coefficients of

the corresponding polynomials are available at [8, 10]. Originally, the field
of definition was found as a quadric extension of Q(1/—23) defined by

a

a

polynomial written explicitly, but having very large coefficients; later

simpler definition of the same field, namely Q <\/23/2 — (5/2)\/23),

was found by M. A. Vsemirnov (see [6, Example 2.4.10]).
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