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HIGHLY SYMMETRIC MAPS ON SURFACES WITH
BOUNDARY

ABSTRACT. The regular maps and the arc-transitive maps on sur-
faces with non-empty boundary are classified. It is shown that it is
unrealistic to expect a similar classification of edge-transitive maps
on such surfaces.

§1. INTRODUCTION

In topological graph theory, as in most other areas of mathematics,
the search for the most symmetric objects is a major activity. The most
symmetric maps on surfaces are the regular maps, those for which the
automorphism group acts transitively on flags. In recent years, considerable
efforts have been devoted to the problem of classifying the regular maps
on a given compact surface, in both the orientable and non-orientable
cases (see [2,16,17] for example). In 1985 Bryant and Singerman [1] laid
the foundations of a theory of maps on surfaces with boundary, yet since
then little attention seems to have been paid to the regular maps on these
surfaces.

The main aim of this paper is to use algebraic map theory to classify
such regular maps. Taken together, having a non-empty boundary and
being regular are very restrictive conditions: by the first condition, at least
one flag must have a vertex, edge or face meeting the boundary, so by
the second condition every flag must have this property; from this, fairly
easy group theory shows that the automorphism group must be cyclic
or dihedral, and the classification follows by case-by-case analysis. These
maps are all on the closed disc, so they are quotients of regular maps on
the sphere; in the finite case (see Theorem 3.1) there are two mutually
dual infinite families and six sporadic examples, and in the infinite case we
obtain two examples, one of which is, in fact, a graph embedding rather
than a map (see Section 3.5 for this technical distinction). Most of the maps
we classify here also appear in the work of Li and Sirdii [12] on regular
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maps whose automorphism group does not act faithfully on vertices, edges
or faces.

This classification is extended in Section 7 to include regular hypermaps
with non-empty boundary, objects which, through results of Kock and
Singerman [10], are relevant to the study of algebraic curves defined over
real algebraic number fields: all the examples arising are obtained in a
simple way from the regular maps classified earlier.

In Theorem 5.1 we classify those maps with non-empty boundary which
come close to being regular, in the sense that their automorphism group
acts transitively on arcs but not on flags. Similar arguments show that
most of these maps are on the closed disc, but there are also examples on
the closed annulus, M6bius band and infinite strip.

Given these results, one might hope to obtain a similar classification
by weakening the symmetry hypothesis a little further to include edge-
transitive maps. However, group theoretic and combinatorial constructions
are used in Section 6 to show that in this case the examples arising are so
varied and so numerous that it is unrealistic to expect any useful classifi-
cation.

Acknowledgement The author is grateful to Jozef Siran and Tom Tucker
for some very helpful comments. This work was supported by the project:
Mobility — enhancing research, science and education at the Matej Bel
University, ITMS code: 26110230082, under the Operational Program Ed-
ucation cofinanced by the European Social Fund.

§2. ALGEBRAIC THEORY OF MAPS

In this section we will briefly outline the algebraic theory of maps de-
veloped in more detail elsewhere (see [1,9], for example).

Each map M (possibly non-orientable or with non-empty boundary)
determines a permutation representations of the group

[ = (Ro,Ri, Ry | R? = (RoR2)? = 1) =V % Oy,

on the set @ of flags ¢ = (v, e, f) of M, where v,e and f are a mutually
incident vertex, edge and face. For each ¢ € ® and each i = 0,1, 2, there
is at most one flag ¢’ # ¢ with the same j-dimensional components as ¢
for each j # i (possibly none if ¢ is a boundary flag). Define r; to be the
permutation of ® transposing each ¢ with ¢’ if the latter exists, and fixing
¢ otherwise. (See Figs. 2 and 2 for the former and latter cases. In Fig. 2,
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as in all diagrams, the broken line represents part of the boundary of the
map.). Since r? = (ror2)? = 1 there is a permutation representation
0:T -G :=(rg,r1,r2) < Sym®

of I on @, given by R; — r;.

f
¢r1
v ® ¢ro
ora € ¢rora

Fig. 1. Generators r; of G acting on a flag ¢ = (v, ¢, f).

Fig. 2. Flags fixed by 19,1 and rs.

Conversely, any permutation representation of I' on a set ® determines a
map M in which the vertices, edges and faces are identified with the orbits
on ® of the subgroups (R, R2) = Do, (Ry, Re) = V4 and (Ro, R1) = Do,
incident when they have non-empty intersection.

The map M is connected if and only if I' acts transitively on ®, as we
will always assume. In this case the stabilisers in I' of flags ¢ € ® form a
conjugacy class of subgroups M < T, called map subgroups. The map M
is finite (has finitely many flags) if and only if M has finite index in I', and
it has non-empty boundary if and only if some r; has fixed points in .

The group G is called the monodromy group Mon M of M. The auto-
morphism group A = Aut M of M is the centraliser of G in Sym ®. We
have A 2 N/M where N := Np(M) is the normaliser of M in I'. The map
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M is called regular if A is transitive on @, or equivalently G is a regular
permutation group, that is, M is normal in I'; in this case

A= G=T/M,

and one can identify ® with G, so that A and G are the left and right
regular representations of G on itself. We will then let a, b and ¢ denote the
automorphisms of M corresponding to rg, 1 and ra, respectively changing
the vertex, edge or face of a particular flag (or fixing it in the case of a
boundary flag), so that A has a presentation of the form

A={a,bc|la®*=b"=c*=(ac)’ =1,...).

The (classical) dual D(M) of M, a map on the same surface formed
by transposing the roles of vertices and faces, corresponds to the image
of M under the automorphism ¢ of I' which fixes Ry, and transposes Ry
and Ry. The Petrie dual P(M) embeds the same graph as M, but the
faces are transposed with Petrie polygons, closed zig-zag paths which al-
ternately turn first right and first left at the vertices of M; this operation
corresponds to the automorphism 7 of I' which transposes Ry and Ry Ra,
and fixes R; and Rs. Both of these operations D and P preserve regular-
ity and automorphism groups, but P may change the underlying surface,
for example by changing orientability and by eliminating or introducing
boundary components.

§3. REGULAR MAPS ON SURFACES WITH BOUNDARY

A map M, corresponding to a map subgroup M of ', has non-empty
boundary if and only if some 7; (i = 0, 1,2) has a fixed point on the set ® of
flags of M, or equivalently, some conjugate of R; lies in M. For a regular
map, corresponding to a normal subgroup M of I, this is equivalent to
M containing R;, that is, r; = 1. In this case, a,b or c is the identity
automorphism, so that the group A = Aut M = T'/M is cyclic or dihedral,
generated by at most two involutions. We will consider the different cases,
concentrating first on the finite maps, those for which A has finite index
in I

3.1. The case b = 1. We first treat the simplest case, when b = 1, so
that A is a quotient of the group

(Ro, Ry | R? = (RoR)? = 1) =V,
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with a presentation of the form
A={(a,cla®*=c*=(ac)* =1,...).

If a,c and 1 are distinct then A = (a,¢) = V4, and one can take M to
be an embedding B of the complete graph K, as a diameter D N R of the
closed disc D = {z € C | |2| < 1}. This map B is shown in Fig. 3.1, with
the broken line representing the boundary 0D = S* of D.

Fig. 3. The map B, with b =1, A = (a,¢) 2 V}.

If a = ¢ # 1 then M is the quotient B/{ac) of B by a half-turn ac, that
is, the embedding of a half-edge in D, with the vertex on the boundary
and the rest of the half-edge along a radius to the centre (see Fig. 3.1). In
this case A = D; (here we use this notation rather than Cy for a group of
order 2, since it is generated by a reflection rather than a half-turn).

Fig. 4. The map B/(ac), with b=1, A = (a) = (¢)=D;.

If a = 1 but ¢ # 1 then M = B/{a) is an embedding of a single half-edge
as a diameter of D (see Fig. 3.1), with A = (c | ¢® = 1) = D;.

If c=1but a # 1 then M = B/{c) is an embedding of K> on the
boundary of D (see Fig. 3.1), with A= (a | a® =1) = D;.
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Fig. 5. The map B/{(a), witha =b=1, A = (¢)=D;.

Fig. 6. The map B/(c), with b=c =1, A = (a)=D;.

If a=b=c=1 then M is the trivial map 7 = B/(a, cl with one flag,
an embedding of a half-edge along part of the boundary of D (see Fig. 3.1),

Fig. 7. The map 7, witha =b=c=1, A=(C;.
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3.2. The case a = 1. Now suppose that a = 1, so that A is a finite
quotient of the infinite dihedral group
(Ri,Ry | RI =R3=1)2~D..
We have already dealt with the cases where b = 1, so we may assume that
b#1.If c # 1 then
A= (c|b*=c=(bec)" =1)= D,

for some n € N (the vertex-valency), and M is an embedding A, of a
semi-star map in D, with a single vertex of valency n > 1 at the centre,

and n half-edges along radii to the nth roots of unity on the boundary.
This includes the case n = 1, where b = ¢. The map Ay is shown in Fig. 8.

Fig. 8. The map A, with a = 1, A = (b,¢)=D,,, where
n =4.
If ¢c =1 but b # 1 then M is an embedding D of a single vertex

and two half-edges along part of the boundary of D (see Fig. 9), with
A=({d|bv*=1)=D;.

Fig. 9. The map D, witha =¢ =1, A = (b)=D;.
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3.3. The case ¢ = 1. When ¢ = 1 we obtain the duals D(M) of the
maps M arising when a = 1. If a,b # 1 then

A={a,b|a*=0"=(ab)"=1)=D,

for some n € N (the face-valency), and M is an embedding C,, = D(A,,) of
a circuit of n vertices and n edges around the boundary of D. The map C4
is shown in Fig. 10.

Fig. 10. The map C,, with ¢ = 1, A = (a,b)=D,,, where
n = 4.

The cases where a = 1 or b = 1 have already been dealt with, so this
completes the classification of the finite maps.

3.4. The list of finite regular maps. To summarise, we have proved
the following theorem:

Theorem 3.1. The finite reqular maps with non-empty boundary are all
on the closed disc D. They are as follows:

e an infinite family {A, | n > 1}, each embedding a semi-star of
valency n, with automorphism group {(b,c) = D,,

e an infinite family {C,, | n > 1}, each embedding a circuit of n
vertices and n edges around the boundary 0D = S' of D, with
automorphism group {(a,b) = D,,,

e an embedding B of Ky as a diameter of D, with automorphism
group (a,c) = Vi,

e the quotients B/(a), B/{c) and B/{ac) of B by subgroups of Aut B
of order 2, each with automorphism group D1,

e an embedding D of a vertex and two half-edges along the boundary
of D, with automorphism group D1,
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e the trivial map T, embedding a half-edge along the boundary of D,
with automorphism group C1.

By considering the automorphism ¢ of I' which transposes Ry and Rs
and fixes R, we find that the classical duality D transposes these regular
maps with boundary in pairs as follows, leaving the others invariant:

The Petrie duality P, corresponding to the automorphism 7 transposing
Ry and RygR» and fixing R; and R,, induces the following pairings:

B/{a) — B/{ac), An — P(Ay),
where P(A,) is an embedding of an n-valent semi-star in the sphere,

formed by extending its embedding A,, in D to the Riemann sphere C=
CU {o0}.

3.5. The infinite case. In the infinite dihedral group D, the only nor-
mal subgroup of infinite index is the identity subgroup, so if we try to
extend the preceding classification of regular maps with non-empty bound-
ary to the infinite case, the only automorphism groups which arise are the
groups

A=({bc|b*=c*=1)= D,
where a = 1, and

A={a,b|a*=b>=1)= D,
where ¢ = 1. In the first case the corresponding map is an embedding A,
of a semi-star with countably infinite valency, such that A, = A /{(bc)™)
for each n € N. In the second case we have its dual, an embedding Co, of
an infinite path, such that C, = Co/((ab)™) for each n. In both cases we
can take the underlying surface to be the closed disc, as in all the finite
cases.

In the case of Ay it is simplest initially to take this disc to be the
closed hemisphere H = {z € C | Imz > 0} U {oo} of the Riemann sphere
C = P(C) = CU {cc}; there is a single vertex at oo, with half-edges
along the lines Rez = n to the boundary points n € Z. Applying thf
Mébius transformation f : z — (z —i)/(z + i) (a rotation of the sphere C
of order 3) sends H to the closed unit disc D; the vertex oo is sent to 1,
and the half-edges Rez = n (n € Z) are sent to arcs of circles meeting
the boundary S! perpendicularly at 1 and at f(n) = (n —4)/(n +1) (or
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(3+4i)/5
(4 + 3i)/5
(15 + 8i) /17

(15 — 8i)/17
(4—3i)/5
(3—4i)/5

Fig. 11. The map Ao, with a =1, G = (b, )= D.

to a diameter from 1 to —1 when n = 0). This map is shown in Fig. 11,
where only those half-edges with |n| < 4 are indicated. As n — £o0o the
half-edges accumulate at the boundary point 1.

In the case of C, one can use the same Mobius transformation f to send
a doubly infinite path graph along R C H, with vertices at the integers, to
an isomorphic graph along the subset S\ {1} of the boundary of D, with
vertices at the points (n —4)/(n + i) for n € Z. This is shown in Fig. 12,
where only those vertices with |n| < 4 are indicated. As n — oo the
vertices accumulate at the boundary point 1.

This embedding is isomorphic to the dual D(Ay) of As; in fact, if we
translate the half-edges in H by 1/2, so that they are given by Re z = n—}—%
for n € Z, and then apply the Mébius transformation f, the image is the
dual of A, with vertices at the points f(n+1) = (n+ 5 —i)/(n+ 5 +1)
on S', again accumulating at 1. As in the finite case, the Petrie duality P
leaves Co invariant, while transposing A, with an embedding of the same
infinite semi-star graph in the sphere.

3.6. A technical distinction. We have refrained from calling C, a map,
since it fails condition M5 for a map with boundary, stated in [1]. This
requires that any face (connected component of the complement of the
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(3+4i)/5
(4 + 3i)/5
(15 + 8i) /17

(15 — 8i)/17
(4—3i)/5
(3—4i)/5

Fig. 12. The embedding Co, with ¢ =1, G = {4, b)=D .

graph) which meets the boundary should be homeomorphic to a half-disc,
the quotient of an open disc by a reflection, so that it meets the boundary
along an open interval. Although A, satisfies this condition, C, does not,
since its unique face consists of the open disc D together with the boundary
point 1.

This condition M5 is also required in the case of finite maps, for instance
to avoid examples such as the embedding of K, in an annulus, shown in
Fig. 13, and similarly the embedding of K» in a Mobius band formed in
the usual way by cutting across the annulus, twisting it by a half-turn,
and rejoining. In each case, although the unique face is simply connected,
it meets the boundary in two open intervals, rather than one.

The labelling of the flags in Figures 13 and 14 shows that algebraically
there is no distinction between these two embeddings and the map B in
Fig. 3.1, which also embeds K5: in all three cases, the monodromy group G
is a Klein four-group, where 19 and ry are the permutations (12)(34)
and (14)(23) of the flags, and r; is the identity. However, these three em-
beddings are topologically very different, so in order to preserve a bijection
between isomorphism classes of algebraic and topological maps, it is nec-
essary impose the condition M5 for maps with boundary.
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Fig. 14. The map B.

§4. CANONICAL DOUBLES

Let I't denote the orientation-preserving subgroup of index 2 in T,
consisting of the elements represented by words of even length in the gen-
erators R;. A map M is orientable and without boundary if and only if
the corresponding conjugacy class of map subgroups M < I are contained
in I'". Otherwise, when M is non-orientable or with non-empty boundary,
the canonical double of M is defined to be the map M¢? corresponding to
the conjugacy class of subgroups M = M NI'* of I'. This is an orientable
map without boundary, and the index 2 inclusion Mt < M induces a
double covering M% — M branched only over the boundary of M. Equiv-
alently, M has an orientation-reversing automorphism of order 2 with
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quotient map M, and with its fixed-points corresponding to the boundary
points of M.

If M is a regular map then M is normal in I, and hence so is MT,
so MY is regular. If M is a map on the closed disc D, then MY is a
map on the Riemann sphere C. It follows that the regular maps with non-
empty boundary which we have classified are all quotients, by reflections,
of regular maps on the sphere. In each case, one sheet of the covering is M,
and the other is the map obtained by inverting M in the unit circle S*.

Fig. 15. The double of Ay, with S shown (dotted).

In the finite case, the regular maps on the sphere are well-known. How-
ever, none of the maps corresponding to the five platonic solids arises in
this context. The double of A,, is the hosohedron (or beach-ball), denoted
by {2,n} in the notation of [4], with two n-valent vertices, n edges and n
digonal faces, while Cd is the dihedron {n,2}, with two n-gonal faces sep-
arated by a circuit of n vertices and n edges. More generally, in any case
such as C,,, Coo, B/{c), D or T, where the embedded graph is contained in
the boundary of the disc, the double is an embedding of the same graph
in the sphere. The double of B is the hosohedron (also a dihedron) {2,2},
though the corresponding reflection differs from those yielding A, or Cs.
The double of B/(a) is the dihedron {1,2}, the spherical embedding of a
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single vertex and a loop, while that of B/{ac) is an embedding of a semi-
star of valency 2. Finally A% is a pencil of circles in the Riemann sphere,
all mutually tangent at the vertex 1; nine of these circles, including the
real projective line P*(R) = R U {oo}, are shown in Fig. 15, together with
St (a dotted line).

§5. ARC-TRANSITIVE MAPS

A map M is arc-transitive if and only if N(R,) = T', where N is the
normaliser Np(M) of M in I'. This condition implies that |I' : N| < 2, so
either N =T and M is regular, or N is a normal subgroup of index 2 in
I, not containing R». We have dealt with regular maps, so in this section
we will assume that M is arc-transitive but not regular, so that N has
index 2. There are seven such subgroups N, of which four do not contain
R,, namely the normal closures in I' of the following sets X:

(1) £ = {RoRy, RiRs}.
(2) ¥ ={Ro, RiRx};
(3) £ ={Ro, R };

(4) Y = {Rl,RoRQ};

The map M has non-empty boundary if and only if M contains a con-
jugate of some R; for i = 0,1 or 2. This conjugate is then in N, so R; € N
since N is normal in I'. This eliminates case (1), since in this case N = 't
which does not contain R; for any .

The simplest of the remaining cases is case (2), where the Reidemeister-
Schreier process [13, §I1.4] shows that

N:<R0753: RlelRé :1>202*Coo-

Now M must be normal in N, and must contain a reflection. Since Rs
acts by conjugation on N by commuting with Ry and inverting S, the
reflections in IV are the conjugates in N of Ry, so Ry € M; thus N/M is
cyclic, and M is the normal closure in N of {Ry} or of {Ry, S™} for some
n = |N : M| > 1. The action of Ry by conjugation on Ry and S shows
that it normalises each such subgroup M, which is therefore normal in T.
This contradicts our assumption that M is not regular, so case (2) does
not arise.
In case (3) the Reidemeister-Schreier process shows that

N = (Ro,R1,R3 := R | RZ = 1) = Cy % Cy % O,
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where Ry commutes with Ry and transposes R; and Rjs. (See Fig. 3.1
for the map N = B/(a) corresponding to N.) Again, M is normal in N
and contains a reflection. The reflections in N are the conjugates in N of
Ry, Ry and R3, so M must contain at least one of these three generators,
and hence N/M is a cyclic or dihedral group. I Ry € M then the only
possibility for M not to be normal in I is for it to contain just one of R;
and Rs; this gives two subgroups M of index 2 in N, conjugate in I' and
corresponding to an arc-transitive but non-regular map M = & on D, with
a vertex on the boundary and two half-edges extending across the interior
to boundary points (see Fig. 16).

Fig. 16. The map &.

We may therefore assume that Ry ¢ M, so R; € M for i = 1 or 3.
If both Ry, R3 € M then M is normal in I') against our assumption. If
Ry € M but Ry ¢ M then provided |N : M] is finite M is a map F,
which embeds an n-gon in D, where N/M = D,, for some n > 1, with
vertices on the boundary and edges in the interior; the same applies, with
a conjugate subgroup M, if R3 € M but R; € M. (See Fig. 17 for Fy.)
This includes the case n = 1, where the embedded graph consists of a
single boundary vertex attached to a loop in the interior of the disc.

If [N : M]| is infinite the situation is similar to that for the embedding
Co shown in Fig. 12: we have an embedding F., of an infinite path in D,
with the same vertices as Co, accumulating at 1, but now connected by
edges in the interior of the disc, rather than its boundary (see Fig. 18).

Finally, in case (4) the Reidemeister-Schreier process shows that

N = (Ry,R3 := R Ry := RyRy | R? = 1) = Cy % Cy * Cs,

where R, transposes R; and Rs, and commutes with Ry. (See Fig. 3.1 for
the corresponding map N = B/{ac).) This subgroup N is obtained from
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Fig. 18. The embedding F.

that in case (3) by applying the automorphism 7 of I corresponding to the
Petrie operation P, so the arc-transitive maps arising are the Petrie duals
of those in case (3), embedding the same graphs. The reflections in N are
now the conjugates in NV of R; and Rs, so M contains one but not both
of these two generators. If M contains either R; or Rs, and also R4, we
obtain the map G in Fig. 19, the Petrie dual P(£) of the map £ in Fig. 16.

If M contains R; or Rz, but not R4, then in the finite case we obtain
a map H, = P(F,) which embeds a circuit of n vertices and edges where
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Fig. 19. The map G.

N/M 2 D, for some n > 1; its vertices are on the boundary of an an-
nulus or Mébius band as n is even or odd. (See Fig. 20, where the left
and right sides of the rectangular strip are identified orientably or non-
orientably in these two cases.) In the infinite case the pattern is the same,
but with the strip extending infinitely far in both directions; the result-
ing map Hoo = P(Fo) embeds an infinite path with vertices on alternate
boundary components, and edges in the interior. The automorphism group
is isomorphic to D, realised as the frieze group p2mg, with the cyclic sub-
group of index 2 generated by a glide reflection, and the involutions either
reflections or half-turns.

Fig. 20. The map H,.

To summarise, we have proved:

Theorem 5.1. The arc-transitive finite maps with non-empty boundary
are:

o the regular maps listed in Theorem 3.1;

e the Petrie dual pair of maps € and G = P(E), which embed a
boundary vertex and two semi-edges in D, with automorphism
group Dy;

e an infinite family {F, | n = 1}, each embedding a circuit of n
boundary vertices and n interior edges in D, with automorphism
group Dy,
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o an infinite family {H,, = P(F,) | n > 1}, each embedding a circuit
of n boundary vertices and n interior edges in a closed annulus or
Mdobius band as n is even or odd, with automorphism group D,,.

In the infinite case we have the embedding F., and the map Ho,, which
embed an infinite path with boundary vertices and interior edges in the
closed disc or infinite strip, with automorphism groups isomorphic to D .

§6. EDGE-TRANSITIVE MAPS

One might hope to obtain similar classifications of maps with boundary
which satisfy slightly weaker conditions than regularity or arc-transitivity,
such as edge-transitivity. The following examples show that this is unreal-
istic.

A map M, corresponding to a conjugacy class in I' of map subgroups M,
is edge-transitive if and only if NE = I, where N = N (M) as before, and
E := (Ry, R2) = V. There are 14 conjugacy classes of subgroups H < T
satisfying HE =TI, corresponding to the 14 types of edge-transitive maps
classified by Graver and Watkins in [6] (see also [18] for finite realisations
of these types). As just one example, let H be the normal closure in T’
of Ry, a normal subgroup of index 4 playing the role of Ny (M) for the
edge- but not vertex- or face-transitive maps, denoted by type 3 in [6].
This group has a presentation

H = (Sy:= Ry, S := R Sy := R S5 .= Riof2 | 52 — 1),

s0 H = Cyx Cy+ Cy % Co and the normal subgroups M of H are the kernels
of epimorphisms 6 : H — B where B is any group generated by at most
four involutions.

For any such subgroup M the normaliser N = Ny (M) satisfies N > H,
so NE =T and the corresponding map M is edge-transitive. It has non-
empty boundary if and only if M contains reflections; since the reflections
in H are the conjugates in H of its generators S;, this condition is equiv-
alent to S; € kerf for some ¢ = 0,...,3. The required groups B are
therefore those generated by at most three involutions. This is a very wide
class, including, for example, every non-abelian finite simple group except
Us(3) (see [14]); most of these simple groups have many such generating
triples which are inequivalent under automorphisms and hence correspond
to different kernels M (for instance, Hall [8] showed that there are 19 for
As). The resulting profusion of normal subgroups M of finite index in
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H makes it impossible to envisage a reasonable classification of the cor-
responding finite edge-transitive maps with non-empty boundary. If the
finiteness condition is relaxed the situation is even worse: Bernhard Neu-
mann [15] showed that there are uncountably many isomorphism classes
of 2-generator groups; since Cs * Cs * Co contains a free group of rank 2 as
a subgroup of index 2, it follows that the same applies to groups generated
by three involutions, so there are uncountably many isomorphism classes
of edge-transitive maps with non-empty boundary.

Here is a method for constructing explicit examples of such maps, all
of type 3. Take any map M with empty boundary, and colour its vertices
black. Within the interior of each m-gonal face of M, draw another m-
gon, with white vertices midway between successive vertices of M, and
then join alternate black and white vertices around the face in zig-zag
fashion to give a 2m-gon. Now delete the edges of M, and remove the in-
teriors of the white m-gons, giving a boundary component within each face
of M. The edges of the 2m-gons are the edges of a new bipartite map M*,
with black and white vertices in the interior and boundary respectively.
Alternate faces are either triangles meeting the boundary, or quadrilater-
als in the interior (see Fig. 21, where m = 4). This process is reversible,
so Aut M* = Aut M. Since some vertices and faces meet the boundary,
while others do not, M* is neither vertex- nor face-transitive. The edges of
M* correspond bijectively to the flags of M, so if M is regular then M*
is edge-transitive, of Graver-Watkins type 3. Since M can be any regular
map without boundary, Aut M* can be isomorphic to any non-dihedral
quotient of T'.

M M

Fig. 21. Construction of edge-transitive maps.
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§7. REGULAR HYPERMAPS

In recent years the theory of maps has been extended to include hyper-
maps. Originally introduced by Cori [3] as a method for concisely repre-
senting 2-dimensional images, their study subsequently received a boost
through their use (under the name dessins d’enfants) in Grothendieck’s
program [7] for relating the Galois theory of algebraic number fields and
the Teichmiiller theory of Riemann surfaces (see [5,11] for accessible intro-
ductions). In this theory, compact oriented hypermaps represent projective
algebraic curves defined over algebraic number fields, and those with non-
empty boundary represent curves over real algebraic number fields (see the
work of K6ck and Singerman in [10] for more precise details).

Just as a map embeds a graph in a surface, a hypermap embeds a
hypergraph, which is essentially a graph in which edges are allowed to be
incident with any number of vertices. Algebraically, this corresponds to
replacing the group I' 2 V, %« (3 with the group

A ={(Ry,Ry,Ry | R? = 1fori=0,1,2) 2 Cy % Cy % Cs,

thus omitting the defining relation (RoR3)? = 1 of T’ which restricts the
valencies of the edges of a map to 1 or 2. In particular, every map can
be regarded as a hypermap. Conversely, the most economical way of rep-
resenting a hypermap is as its Walsh map [19], a bipartite map on the
same surface, with its black and white vertices representing the vertices
and edges of the hypermap, and edges between black and white vertices
indicating incidence.

Apart from lacking a restriction on the valencies of edges, the algebraic
theory of hypermaps is very similar to that for maps: thus regular hyper-
maps correspond to normal subgroups M of A, their automorphism groups
are isomorphic to A/M, and those with non-empty boundary correspond
to normal subgroups containing some R;. As in the case of maps, it fol-
lows that regular hypermaps with non-empty boundary must have cyclic
or dihedral automorphism groups, with a,b or ¢ = 1. Indeed, when a = 1
or ¢ = 1 the extra relation (ac)? = 1 for maps is redundant, so in these
cases the hypermaps arising are exactly the same as the maps classified
earlier, and one simply needs to reinterpret them as hypermaps. When
b = 1 the omission of the relation (ac)? = 1 allows arbitrary dihedral
groups, as in the cases where ¢ = 1 or ¢ = 1, but the hypermaps arising
are just the vertex-edge duals of those for ¢ = 1, the same hypermaps
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except that vertices and edges are transposed. (This corresponds to ap-
plying the automorphism of A which fixes Ry and transposes Ry and Ry,
or equivalently to transposing the vertex-colours in the Walsh map.) Thus
the regular hypermaps with non-empty boundary are those obtained in
this way from the regular maps classified in Section 3. In particular, they
can all be drawn on the closed disc.

10.
11.

12.

13.

14.
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