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PRIMITIVE MONODROMY GROUPS OF RATIONAL
FUNCTIONS WITH ONE MULTIPLE POLE

ABSTRACT. We classify primitive monodromy groups of rational
functions of the form P/Q, where Q is a polynomial with no multiple
roots and deg P > deg Q + 1. There are 17 families of such functions
which are not Belyi functions. Only one family from the list contains
functions that have five critical values. All the remaining families
consist of functions with at most four critical values and constitute
one-dimensional strata in the Hurwitz space. We compute the ac-
tion of the braid group on generators of their monodromy groups
and draw the corresponding megamaps.

The result extends the classification of primitive edge rotation
groups of weighted trees obtained by the author and Zvonkin and
is also a generalization of the classification of primitive monodromy
groups of polynomials obtained by P. Miiller.

§1. INTRODUCTION

Let f : PY(C) — PY(C) be a rational function with a single pole of
multiplicity greater than one. We consider such functions up to linear-
fractional transformations z +— (az + b)/(cz + d) of the argument and
assume that the multiple pole is placed at z = co. Then the function has
the form f(z) = P(2)/Q(z), where P,Q € C[z], deg P > deg @ + 1 and @
has no multiple roots.

We are interested in primitive monodromy groups of such functions. The
monodromy group of a generic rational function is most likely to be either
alternating or symmetric. We say that a primitive monodromy group of
degree n is special if it is different from A,, and S,,.

Rational functions with only one multiple pole and three critical values
are Belyi functions corresponding to weighted trees. The monodromy group
of a Belyi function can be interpreted as the edge rotation group of the
corresponding dessin. All special primitive monodromy groups of Belyi
functions of weighted trees were classified in [11]. Theorem 1 below lists

Key words and phrases: dessins d’enfants, weighted trees, Belyi functions, mon-
odromy groups.
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PRIMITIVE MONODROMY GROUPS 13

all possible special primitive monodromy groups of functions with only one
multiple pole, which have at least four critical values.

A covering of the sphere S? of degree n, branched over k points, can be
described by k permutations a1, as,...,ar € Sy, satisfying a1as . ..ar = 1.
We say that two sets of generators (ai,as,...ax) and (ai,as,...a}) are
equivalent if there exists a permutation 7 € S,, such that a} = 7~ ta;7 for
all i. We are also interested in flexible equivalence of coverings (see [5]),
which can be described using the Hurwitz braid group.

The spherical braid group (or Hurwitz braid group) on k strands is
the group Hj, generated by elements o1,...0,_1 satisfying the following
relations:

oi0; = 0j0; when |i—j|>2,
0i0i+10; = 044+10i04+1,
0109 ... akfga,%_lak,g ...0201 =id.
The Hurwitz group Hj, acts on the sets of generators (a;,as,...ax) as
follows:
0i(a;) = aiy1, 0i(ais1) = a;yaiair1, oi(a;) = a; when j #i,i+ 1.

A family of functions with four branch points (or critical values), which
corresponds to an orbit of H4 on the monodromy generators, constitutes
a one-dimensional stratum in the Hurwitz space, with a Belyi function
naturally defined on this stratum (see [8, 5]). The dessin d’enfant corre-
sponding to this Belyi function is called a megamap and can be defined by
the triple of permutations ¥ = o7, A = 03, ® = 0, 070, acting on the
sets of generators. The elements X, A, ® € Hy satisfy AP = id.

In this paper we also calculate the action of the Hurwitz group and
draw megamaps for all families of functions with only one multiple pole
and exactly four critical values.

§2. MAIN RESULT

Theorem 1. A complete list of special primitive monodromy groups of
rational functions f : P*(C) — PY(C) with a single pole of multiplicity
greater than one and with at least four critical values, their branch data
(passports) and the numbers of non-equivalent sets of generators, is given
in Table 1.

Remarks. 1. In [11] we labeled special primitive monodromy groups of
functions with three critical values by n.m, where n is the degree of the
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G Passport # g(M) | ER(M)
4/6.1 | La(5) (122212221722 1'5') 10 0 Ay
4/6.2 | PGL2(5) | (122%,1%22,23 1%4%) 8 0 Ag
4/6.3 | PGL2(5) | (122%,1%22,124% 1%4%) 16 1 8!.81/2
4/7.1 | L3(2) (1%22,132% 1322 7") 2x7 0 A,
5/8.1 | ASL3(2) | (1%27,1%2%,1%2% 1%22,1'7") | 2x 147 | - -
4/8.1 | ASL3(2) | (1%2%,1%2% 2% 1'7) 2% 7 0 A,
4/8.2 | ASL3(2) | (1*2%,1%2% 12241 1'7h) 2 x 14 0 Ay
4/8.3 | ASL3(2) | (1*2%,1%2%,123% 1'7") 2 x 21 1 A
4/8.4 | PGL(7) | (122%,1%23,172% 1%6") 18 1 Ag
4/9.1 | AGL»(3) | (132%,13231%23 1'8') 2 x 16 0 27 . 4l
4/10.1 | PTL2(9) | (12%,1%23,25 1%8%) 8 0 41 - 4!
4/12.1 | My (1%24,1%2% 1%24,1'111) 2 x 33 0 Az
4/12.2 | My (1%2%,1%2% 1%24, 11 11) 2 x 22 0 Ay
4/13.1 | Ly(3) (152%,1°2% 152,13 4x13 0 Az
4/15.1 | L4(2) (172%,172% 1329, 15) 2x5 0 Ss
4/16.1 | AGL4(2) | (1%2%,1%25,1%25 1'15%) 2 x 15 0 Sis
4/24.1 | Mo (1828 1828 1828 1'23%) 2 x 46 0 Ay

Table 1. Special primitive monodromy groups of rational
functions with a single pole of multiplicity greater than
one and with at least four critical values. The meaning of
the columns #, g(M), and ER(M) is explained below.

permutation group and m is a sequence number. To keep numbering in this
paper consistent with [11] we label monodromy groups by k/n.m where k
is the number of critical values, n is the degree of the function and m is
a sequence number. For example, 4/8.3 means “four critical values, group
of degree 8, third covering”.

2. For every critical value of a function f of degree n, the multiplicities
of its preimages give us a partition of n. The collection of such partitions
taken for all critical values is called the passport. A covering of the sphere
S2 of degree n branched over k points can be described by a tuple of k
permutations ai,as,-..,ar € S, satisfying ajas ...ar = 1. The passport
of the covering is a tuple of cycle structures of permutations a;.
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3. We call two set of generators (a1, as,...ax) and (af,a),...a}) equiv-
alent if there is a permutation m € S,, such that a} = 7~ la;7 for all i.
The column named # in Table 1 gives the numbers of non-equivalent sets
of generators, that is, the sizes of the orbits of the action of the Hurwitz
braid group Hy.

4. In most cases, for a partition of n in a passport, there is only one
conjugacy class of elements with this cycle structure in the corresponding
group G. In some cases, however, there are two or four such classes. For
example, in the case 4/7.1, the group L3(2) contains only one conjugacy
class A of elements with cycle structure 1322 and exactly two classes By and
B, of elements with cycle structure 7', For both i = 1,2 there are seven
non-equivalent sets of generators (aj,as,as,aqs) such that a;,a2,a3 € A
and a4 € B;. In this case we write the total number of non-equivalent sets
as 2 x 7.

5. For the functions with four critical values, the action of the Hurwitz
group Hy by the permutations 3, A, ® defines a dessin M which is called
a megamap. The column g(M) gives the genus and the column ER(M)
gives the edge rotation group of the megamap M. In cases 4/6.3,4/9.1 and
4/10.1 the corresponding group ER(M) is imprimitive, so we give only its
order. All these megamaps are drawn in Figs. 1-15.

Fig. 1. Megamap 4/6.1: ¢ =0, ER = A4y.

~

Fig. 2. Megamap 4/6.2: ¢ =0, ER = As.

§3. PROOF OF THE FINITENESS OF THE LIST

The proof of Theorem 1 proceeds as follows. First of all, we show that
there is only a finite list of special primitive permutation groups which
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Fig. 3. Megamap 4/6.3: g =1, |[ER| = 8!-8!/2 = 812851 200.

[ 1]

Fig. 4. Megamaps 4/7.1 and 4/8.1: ¢ =0, ER = A7.

Fig. 5. Megamap 4/8.2: g =0, ER = A14.

Fig. 6. Megamap 4/8.3: g =1, ER = Ay;.

contain a permutation with cycle structure 1¢(n — ¢)* and which may ap-
pear as monodromy groups of coverings of genus 0. After that, we find all
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Fig. 7. Megamap 4/8.4: g =1, ER = A;3s.

Fig. 8. Megamap 4/9.1: g = 0, |ER| = 27 - 4! = 3072.

[ 0]

Fig. 9. Megamap 4/10.1: ¢ =0, |[ER| = 4! - 4l = 576.

Fig. 10. Megamap 4/12.1: g =1, ER = A3s.

possible non-equivalent sets of generators for these groups using the GAP
system (see [1]).

To determine primitive monodromy groups of functions with a single
multiple pole we use the following theorem.
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Fig. 11. Megamap 4/12.2: ¢ =0, ER = As,.

CTD<—

Fig. 12. Megamaps 4/13.1: ¢ =0, ER = A;3.

Fig. 13. Megamap 4/15.1: ¢ =0, ER = S;.

Fig. 14. Megamap 4/16.1: ¢ =0, ER = Sy5.

Theorem 2 (G.Jones, [3]). Let G be a primitive permutation group of
degree n not equal to S,, or A,,. Suppose that G contains a permutation
with cycle structure 18(n —t)t. Then t < 2, and one of the following holds:

0. t =0 and either
(a) C, C G C AGL(p), with n = p prime, or
(b) PGL4(q) € G € PT'Ly(q), with n = (¢ —1)/(¢ — 1) and
d > 2 for some prime power q = p°, or
(c) G =Ly(11), My or Mag, with n = 11, 11 or 23 respectively.
1. t =1 and either
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Fig. 15. Megamap 4/24.1: g =0, ER = Ays.

(a) AGL4(q) € G C ATLy(q), withn = q* and d > 1 for some
prime power q = p®, or
(b) G =La(p) or PGLy(p), n =p+ 1 for some prime p > 5, or
(¢c) G =Mj1, Mio or May, with n =12, 12 or 24 respectively.
2. t = 2 and PGLy(¢) € G C PI'Ly(q), with n = ¢+ 1 for some
prime power q = p°.

The classification in Theorem 2 contains several infinite series of groups.
Our goal is to show that the additional condition of being a monodromy
group of a covering of genus g = 0 leaves us with only a finite number of
groups.

The case t = 0 of genus 0 corresponds to polynomials; the complete
classification of the corresponding groups was given in [7]. All the possible
special primitive monodromy groups of polynomials with more than two
finite critical values correspond to the cases 4/7.1, 4/13.1 and 4/15.1 in
Table 1.

All the sets of generators of genus 0 for affine groups (the case 1(a) of
Theorem 2) are listed in [6]. Sets of generators with four or more elements
such that one of them has the cycle structure 1!(n — 1)! give us the cases
5/8.1,4/8.1,4/8.2,4/8.3,4/9.1 and 4/16.1 in Table 1.

The case 1(c) of Theorem 2 contains three groups: My, Mjy and May.
In the remaining cases 1(b) and 2 the group G is a subgroup of PT'Ly(q)
acting on points of the projective line P! (F,). We need the following lemma;
its proof can be found in [7] or [9].

Lemma 3. Let z be a permutation. Denote by c(x) the number of inde-
pendent cycles of ©, and by c1(x) the number of fixed points of x.

(i) Let G be a permutation group and suppose that for every mon-
identity permutation g € G we have ¢1(g) < C. Then for every
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non-identity permutation x € G of order d we have
n—C
d
(ii) Let G = PT'Lay(q) act on the points of the projective line P*(F,),
where ¢ = p™ for a prime p. Then for any non-identity element
x € G we have

c(x) < +C.

2 ifm=1,

a(z) <
/' +1 ifm>1, andl > 1 is the minimal divisor of m.

Let a1, as, ...ar € G satisfying ajas ...ar = 1 define a covering f :
P}(C) — P(C) of degree n. Then by the Riemann-Hurwitz formula

k

(k—2n+2= Z c(a;).
i=1
Let f be a rational functions of degree n = ¢ + 1 with a single multiple
pole; suppose that the monodromy group of f is G C PI'Ly(g) and that
the ramification over oo is given by the permutation ay. Then ¢;(ag) < 3,
and by Lemma 3 we have

(k—2)(q+1)+ Zc 3+Z<q+1 \f)+1)+(\/a+1))

ord

3+§:(q+1 ;Vﬁ+1) (¢§+10:=3+@p4)(2%f@+¢).

Hence

k—1)(g+1)<qg+2+(k—1) (%a-l-l)

(k—nq;Va<q+z

For k > 4 it follows that ¢ — 3,/g — 4 <0, i.e., ¢ < 16.

§4. GENERATORS AND HURWITZ GROUP ACTION

In the previous section, we have shown that there is a finite list of
groups that appear as special primitive monodromy groups of functions
with a single multiple pole and at least four critical values. In particular,
all such groups have degree < 24.
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We used a program written for the GAP computer system to check all
the primitive permutation groups of degree up to 24. For every group G we
found all the sets of generators of a monodromy of genus 0 and computed
the braid group orbits. This section presents the results of calculations.
Since the complete lists of the orbit elements are too long, we give only
one representative for each orbit. To restore the whole orbit it is sufficient
to apply X, A and ®.

The corresponding megamaps were shown above. All of them are in-
variant under the color exchange which, in some cases, requires choosing
a particular permutation as the permutation corresponding to the faces
of the megamap. For example, in the case 4/6.2 the faces are described
by the permutation A, while in case 4/6.3 the faces are described by the
permutation X.

However, in most cases, by choosing any of the permutations 3, A or ®
as the permutation corresponding to the faces of the megamap we obtain
isomorphic dessins. Such dessins are called self-dual.

L2(5) of order 60 PrimitiveGroup(6,1)
4/6.1. (122212221222 1'51). Orbit size: 10.
(1) ap = (176)(475) az = (176)(273) az = (375)(476)
The Hurwitz group H,4 acts by permutations
Y = (2,48,3,5)(7,10,9)
A = (1,2,5)(3,6,4,9,10)
® = (1,3,7,9,2)(4,6,8)

The corresponding (self-dual) dessin of genus 0 is shown in Fig. 1; its
edge rotation group is Ajp.

PGL;(5) of order 120 PrimitiveGroup(6,2)
4/6.2. (1222,1222,23 124%). Orbit size: 8.
(1) ar = (173)(275)(476) az = (275)(376) as = (176)(475)
The Hurwitz group Hy4 acts by permutations

Y o= (1,2)(3,6)(4,7,8)
A = (1,3,7)(2,4,8,6,5)
e = (1,4)(2,5,3)(6,7)

The corresponding dessin of genus 0 is shown in Fig. 2; its edge rotation
group is As.
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PGL;(5) of order 120 PrimitiveGroup(6,2)
4/6.3. (122212221241 124Y). Orbit size: 16.
(1) a1 =(2,4)(5,6) ay = (1,4)(3,6) as = (1,2,3,4)
The Hurwitz group H,4 acts by permutations
¥ = (1,2,5)(3,8,7,6,14)(4,10,13)
A = (1,3,9,10)(2,6)(4,11,7,15,14,12)(5,13,16,8)
¢ = (1,4,12,6)(2,7,11,13)(3,5)(8,16,10,9,14,15)

The corresponding dessin of genus 1 is shown in Fig. 3; its edge rotation
group is imprimitive of order 8! - 8!/2 = 812851 200.

L3(2) of order 168 PrimitiveGroup(7,5)
4/7.1. (132213221322, 71). Orbit size: 2 x 7.

The group L3(2) contains two conjugacy classes of elements of order
7, which give two sets of generators with this passport (see Remark 4 on
page 15). Each of these sets consists of seven elements; the Hurwitz group
acts transitively on each. Here are the representatives for each set:

(1a) a1 =(3,5)(6,7) az = (1,7)(2,5) as = (1,5)(3,4)
(1) a1 =(1,6)(2,3) as = (1,7)(2,5) as = (2,6)(4,5)
The Hurwitz group Hy4 acts on both orbits by the same permutations
Y = (1,2,5)(3,4)(6,7)
A = (1,3)(2,6)(4,5,7)
® = (1,4,6)(2,7)(3,5)

The corresponding (self-dual) dessin of genus 0 is shown in Fig. 4; its
edge rotation group is Ay.

ASL;(2) of order 1344 PrimitiveGroup(8,3)
5/8.1. (112214221422 1422 117'). Orbit size: 2 x 147.

This is the only case in our list when the functions have more than four
(namely, five) critical values. The group ASL3(2) contains two conjugacy
classes of elements of order 7, and the braid group action has two orbits
of size 147.

(1) a1=(5,6)(7,8) a2=(2,3)(5,8) a3=(L1,8)(4,5) as=(1,8)(3,6)
(]-b) G1=(5,6)(7,8) a2=(2,3)(6,7) a’3:(175)(478) a4:(175)(37 7)
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4/8.1. (1221422 2% 1'7Y). Orbit size: 2 x 7.
The group ASL3(2) contains two conjugacy classes of elements of order
7, which give two orbits with this passport:
(]-a) ay = (374)(77 8) az = (177)(476) az = (177)(276)(375)(478)
(11)) ay = (177)(476) az = (374)(778) az = (178)(273)(475)(677)
The Hurwitz group H,4 acts on both orbits by the same permutations

Y = (1,2,5)(3,4)(6,7)
A = (1,3)(2,4,7)(5,6)
o = (1,4)(2,6)(3,5,7

The corresponding (self-dual) dessin of genus 0 is the same as the
megamap in case 4/7.1 (Fig. 4; its edge rotation group is Az).
4/8.2. (1422,1422,122141 1171). Orbit size: 2 x 14.
(1) a1 = (5,6)(7,8) as = (1,8)(3,6) as = (1,4,5,8)(2,6)
(11)) ap = (178)(376) az = (576)(77 8) as = (176747 7)(273)
The Hurwitz group Hy4 acts on both orbits by the same permutations

Y = (1,2,5)(4,8)(9,12,13)(10, 14)
A = (1,3,8)(2,6,4,9,13,14,7)(5,10,11)
® = (1,4,6)(2,7,10)(3,5,11,14,12,9,8)

The corresponding (self-dual) dessin of genus 0 is shown in Fig. 5; its
edge rotation group is Ajy4.
4/8.3. (122,122 1232 1'71). Orbit size: 2 x 21.
(]-a) ar = (37577)(47678) az = (274)(678) az = (174)(578)
(lb) ar = (3777 5)(47876) az = (172)(374) az = (178)(376)
The Hurwitz group H,4 acts on both orbits by the same permutations

Y = (1,2,5)(3,8,15)(4,9,10, 14, 13,20, 16)(6, 12, 19, 7)(11, 17, 21, 18)
A = (1,3,9)(2,6)(4,8,12)(5,10,17)(7,13)(15, 21)(18, 20)
® = (1,4,6)(2,7,14,10)(3,5,11,18,13,19,12)(8, 16,20, 21)(9, 15,17)

The corresponding dessin of genus 1 is shown in Fig. 6; its edge rotation
group is Ao;.



24 N. ADRIANOV

PGL(7) of order 336 PrimitiveGroup(8,5)
4/8.4. (1223,1223,1223 126'). Orbit size: 18.
(1) a1 =(2,8)(4,6)(5,7) as=(1,5)(3,7)(4,8) as = (1,5)(2,4)(6,7)
The Hurwitz group Hy4 acts by permutations

T o= (1,2)(3,7,12)(4,8,15,10,14,13,17)(5,9, 16)(11, 18)
A = (1,3,8)(2,5,10,15,12,18,6)(4,9)(7,13)(11, 14, 16)
& = (1,4,5)(2,6,11,9,17,13,3)(7, 14, 18)(8, 12)(10, 16)

The corresponding (self-dual) dessin of genus 1 is shown in Fig. 7; its
edge rotation group is A;g.

AGL,(3) of order 432 PrimitiveGroup(9,7)
4/9.1. (13231323 1323 1'81). Orbit size: 2 x 16.
The group AGL»(3) contains two conjugacy classes of elements of order
8, which give two orbits with this passport:
(]-a) (11:(4:, 7)(578)(679) a2:(175)(378)(677) a3:(175)(276)(374)
(]-b) (11:(4:, 7)(578)(679) a2:(178)(375)(479) a3:(178)(274)(577)
The Hurwitz group H,4 acts on both orbits by permutations

Y = (1,2)(3,7,11)(4,8,13)(5,9, 14)(6, 10, 12)(15, 16)
A = (1,3,8)(2,5,10)(4,9)(6,7)(11,15,13)(12, 14, 16)
® = (1,4,5)(2,6,3)(7,12,15)(8,11)(9,13,16)(10, 14)

The corresponding (self-dual) dessin of genus 0 is shown in Fig. 8; its
edge rotation group is imprimitive of order 27 - 4! = 3072.

PT'L,(9) of order 1440 PrimitiveGroup(10,7)
4/10.1. (1423,1423,25,128%). Orbit size: 8.
(1) ar = (173)(27 10)(578) a2 = (177)(278)(379)

a3 = (17 9)(27 10)(37 4)(57 6)(77 8)
The Hurwitz group H,4 acts by permutations

S = (1,2)(3,5,8)(6,7)
A = (1,3,6,4)(2,5)(7,8)
® = (1,4,7,5)(2,3)(6,8)

The corresponding dessin of genus 0 is shown in Fig. 9; its edge rotation
group is imprimitive of order 4! - 4!.
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M;; of order 7920 acting on 12 points PrimitiveGroup(12,1)
4/12.1. (1124,1424,1424,11111). Orbit size: 2 x 33.

The group M;; contains two conjugacy classes of elements of order 11,
which give two orbits with this passport:

(1) a1=(2,7)(5,9)(6,12)(10,11) (1p) a1=(2,7)(5, 9)(6 12)(10,11)

=(3,6)(4,10)(5,8)(9,11) as=(3,12)(4,11)(5,10)(8,9)
as=(1,9)(3,11)(4,7)(6,12) as=(1,10)(2,11)(3,6)(5,12)

On the first orbit the Hurwitz group Hy acts by permutations

¥ = (1,2,5)(3,8,16)(4,9,18)(6,13)(7, 14, 21,27, 22)
(10,17,11)(12,15,19)(20, 25, 32)(23, 30, 33)(24, 28, 26) (29, 31)

A = (1,3,9)(2,6,14)(4,10)(5,7,15)(8,12,11)(13,19,25)
(16,17,24, 31, 30)(18, 23, 28)(20, 26, 21)(22, 29, 32)(27, 33)

¢ = (1,4,11,19,6)(2,7)(3,5,12)(8,17)(9, 16, 23)(10, 18, 24)

(13,20, 14)(15,22,25)(21, 28, 33)(26, 32, 31)(27, 30, 29)

The corresponding (self-dual) dessin of genus 1 is shown in Fig. 10; its
edge rotation group is Ajss.
On the second orbit the Hurwitz group H,4 acts by permutations

Y=x1 A=A41 & =AY
and the corresponding dessin is mirror-symmetric to the dessin shown in
Fig. 10.
M;, of order 95 040 PrimitiveGroup(12,2)
4/12.2. (1124,142%,1424,1111%). Orbit size: 2 x 22.
The group Mj» contains two conjugacy classes of elements of order 11,
which give two orbits with this passport:

(1a) @ = (1,11)(3,9)(5,6)(7,12)  (1p) a1=( 8)(5,10)(6,9)(7,11)
= (1,8)(5,10)(6,9)(7,11) = (1,11)(3,9)(5,6)(7,12)
= (1,4)(2,11)(3,9)(6,7) az = (1,3)(2,12)(4,8)(5,9)

The Hurwitz group H,4 acts on each orbit by permutations
¥ =(1,2,5,12,10)(3,8)(4,9,16)(6,7)(11, 18,22)(13,14)(15,17)(19, 21, 20)
A=1(1,3,9)(2,6)(4,11,19,14,7)(5,13)(8,10,17)(12,20, 15)(16, 18)(21, 22)
® =(1,4,6)(2,7,13)(3,10)(5,14,20)(8, 15,21,18,9)(11,16)(12,17)(19, 22)
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The corresponding (self-dual) dessin of genus 0 is shown in Fig. 11; its
edge rotation group is Ays.

L3(3) of order 5616 PrimitiveGroup(13,7)
4/13.1. (15241524152 131). Orbit size: 4 x 13.

The group Lj3(3) contains four conjugacy classes of elements of order
13, which give four orbits with this passport:

(1a) a1 = (1,6)(2,11)(4,13)(9,12) (1) a1 = (3,13)(5,12)(6,7)(8,11)
as = (2,3)(4,9)(7,12)(10,13) as = (1,10)(6,12)(7,13)(8,9)
as = (3,9)(5,7)(6,11)(8,12) az = (1,9)(2,12)(4,5)(6,11)

(1) a1 =(1,2)(3,8)(6,11)(9,12)  (1a) ax = (1,2)(5,13)(6,12)(9,11)
ax = (2,4)(3,9)(5,8)(7,12) ax = (1,5)(3,10)(4,11)(12,13)
az = (2,9)(3,10)(4, 13)(11, 12) az = (3,12)(5,8)(7,9)(11,13)

The Hurwitz group Hy acts on the orbits (a) and (b) by permutations

¥ = (1,2,5)(3,4)(6,8,11)(7,9,12)(10,13)
A =(1,3)(2,6,9)(4,5,8)(7,10,11)(12,13)
® = (1,4,6)(2,7,8)(3,5)(9,11,13)(10,12),

and on the orbits (¢) and (d) by permutations

¥ = (1,2,4)(3,6,10)(5,9,8)(7,12)(11,13)
A=(1,3,7)(2,5)(4,8,13)(6,11)(9, 12, 10)
® = (1,12,5)(2,8)(3,4, 11)(6,13,9)(7, 10)

The corresponding (self-dual) dessins of genus 0 are shown in Fig. 12; their
edge rotation group is Ajjs.

A different action of the braid group is considered in [4]; it also gives
two different dessins in this case.
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L4(2) of order 20160 PrimitiveGroup(15,4)
4/15.1. (1724,172%,1325,15%). Orbit size: 2 x 5.

The group L4 (2) contains two conjugacy classes of elements of order 15,
which give two orbits with this passport:

(1a) a1 =(1,13)(2,14)(4,8)(7,11)
= (1,10)(3, )(4 15)(6,13)

a3=( (3, )( 12)(9,11)(10,14)(13,15)
(1p) a1 =(1,13)(2,14)(4,8)(7,11)
= (1,8)(2, 1)(5 12)(6,15)

= (1,15)(2,10)(3,5)(4,12)(7,9)(11, 13)

The Hurwitz group H, acts on each orbit by permutations
o= (1,2)3,4)

A = (1,3)(2,4,5)
o = (1,4)(2,5,3)

The corresponding dessin of genus 0 is shown in Fig. 13; its edge rotation
group is Ss.

AGL,(2) = 2. L4(2) of order 322560 PrimitiveGroup(16,11)
4/16.1. (182%4,1425 1425 1115%). Orbit size: 2 x 15.

The group AGL4(2) contains two conjugacy classes of elements of order
15, which give two orbits with this passport:

(1) a1 = (2,13)(4,15)(5,10)(7, 12)

as = (1,5)(3,14)(4,9)(7, 10)(8, 13)(12, 16)

as = (1,5)(2,14)(3,11)(6,10)(7, 15)(9, 13)
(1,) a1 = (2,13)(4,15)(5,10)(7, 12)

ay = (1,10)(2,15)(4,6)(7,16)(8,9)(11, 13)

as = (1,10)(2,9)(3,11)(4,12)(5,6)(13, 14)

The Hurwitz group Hy4 acts on each orbit by permutations
by (1,2,5)(3,8,4)(6,10,14)(7,11)(9,13)(12,15)
A (1,3)(2,6,11)(4,9,10)(5,7,12,13,8)(14, 15)
® = (1,4,6)(2,7)(3,5)(8,9)(10,13,15)(11,14,12)

The corresponding dessin of genus 0 is shown in Fig. 14; its edge rotation
group is Si5.
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M4 of order 244 823 040 PrimitiveGroup(24,1)
4/24.1. (18281828 1828 1123'). Orbit size: 2 x 46.
The group M4 contains two conjugacy classes of elements of order 23,
which give two orbits with this passport:
(la) = (1,11)(2,7)(3,9)(5,17)(8,15)(13,18)(14,22)(19, 24)
= (1,21)(3,23)(6,13)(7,11)(9,14)(15,19)(16,24)(17,18)
=(1,12)(4,6)(7,13)(8,10)(11,20)(14, 22)(15,23)(17,19)
(1b) = (1,11)(2,7)(3,9)(5,17)(8,15)(13,18)(14, 22)(19, 24)
=(1,2)(3,22) 5 13)(6, 18)(8,24)(9,23)(11,21)(16, 19)
= (1,6)(2,20)(3,14)(4, 18)(8,13)(9,24)(10,15)(12,21)
The Hurwitz group Hy acts on the first orbit by permutations

TN — —
AAA\/

S = (1,2,5,12,10)(3,8,18)(4,9)(6, 15,26)(7, 16)(11, 21, 27)
(13,24,14)(17, 28, 38)(19, 20)(22, 33) (23, 34, 44) (25, 37, 43)
(29,39, 46) (30, 41, 32) (31, 35, 45)(36, 40, 42)
(1,3,9)(2,6,16)(4,11, 15)(5,13)(7, 17, 29, 40, 24)(8, 10, 20)
(12,22, 34)(14, 25, 33)(18, 30, 21)(19, 23, 35)(26, 28)

(27,32, 38)(31, 42, 46) (36, 37) (39, 41) (43, 45, 44)

(1,4,6)(2,7, 13)(3,10)(5, 14, 22)(8, 19, 31, 39, 30)(9, 18, 11)
(12,23,20)(15, 27, 28)(16, 26, 17)(21, 32) (24, 36, 25) (29, 38, 41)
(33,43, 34) (35, 44)(37, 42, 45) (40, 46)

The corresponding (self-dual) dessin of genus 0 is shown in Fig. 15; its

edge rotation group is A4g-
On the second orbit the Hurwitz group H,4 acts by permutations

Y=x1 A=A41 & =AY

and the corresponding dessin is mirror-symmetric to the dessin shown in
Fig. 15.

§5. CONCLUDING REMARKS

Examining the list of megamaps presented in this paper we can make
the following observations.

1. All these megamaps are invariant under the vertex color exchange.
Moreover, some of them are self-dual.
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2. In all our cases the action of the braid group on the set of generators
{(91,92,---,9r) | gi € C;} is transitive for every tuple of conjugacy classes
(C1,Cs,...,Cy), so we have one megamap for every tuple.

3. Only in three cases (4/6.3,4/9.1 and 4/10.1) is the action of the braid
group imprimitive.

4. Only in three cases (4/10.1, 4/15.1 and 4/16.1) does the action of the
braid group contain odd permutations.

Do these observations reflect some general phenomena? Is it possible
to find criteria which could predict these properties of megamaps without
explicit calculation? Megamaps are interesting objects of study which are
not yet well understood.

I am deeply grateful to A. Zvonkin, who drew my attention to weighted
trees and related questions, for helpful discussions and constant moral
support.
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