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GEOMETRIC FUNCTION THEORY. JENKINS
RESULTS. THE METHOD OF MODULES OF CURVE
FAMILIES

ABSTRACT. Results and applications of the method of modules in
geometric function theory are presented. The method was originated
by J. A. Jenkins,and further development proceeded in works of
the Leningrad—St.Petersburg mathematical school. A retrospective
description of the origin of the method is given, and the determining
role of Jenkins in the development of the method of the extremal
metric is pointed out.

Dedicated to the memory of James Allister Jenkins

The survey is organized in following way.

In the Introduction, a brief account of the history of Geometric Function
Theory is given.

In Secs. 1 and 2 of this survey, basic definitions and facts of the theory of
modules and the theory of quadratic differentials are described; we preserve
the terminology from the Jenkins monograph [41]. These notions and facts
are given for completeness of the presentation; they are used throughout
in the following parts of this survey everywhere.

In Sec. 3, a short description of the General Coeflicient Theorem of
Jenkins and some applications of this theorem are given.

Section 4, is devoted to results of the method of modules of curve fam-
ilies, Sec. 5 is concerned with some applications of this method.

Section 6 deals with results of Jenkins related to the symmetrization
method and various other questions.

At the end of this review, a list of Jenkins’ articles and a list of cited
works of other authors are presented.

_In the sequel, the following notation is used: C is the complex plane,
C = CU {oo} is the Riemann sphere, Up = {z : |2| = R},U; = U,
Ula,e) ={z:|z—a| <€}, C={z:|z| =1}.

Key words and phrases: extremal metric, quadratic differential, trajectory, module
of curve family, reduced module, extremal decomposition.
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Let M(D,a) be the reduced module of a simply connected domain D
with respect to a pointa € D : M(D,a) = 1/2wlog R(D, a), where R(D, a)
is the conformal radius of the domain D with respect to the point a if a #
00, M(D,00) = —1/2nlog R(D,0). By M(D,a,b), the reduced module
of the bigon D with respect to its vertices a and b is denoted.

INTRODUCTION: GEOMETRIC FUNCTION THEORY. THE ROLE
OF J. A. JENKINS IN THE DEVELOPMENT OF THIS THEORY

The objects of study in geometric function theory (for short,the GFT)
are classes of functions defined in given simply connected or multiply con-
nected domains or on a Riemann surface. A distinctive characteristic of
this theory is that it considers the functions in such classes mainly as
mappings possessing some specific geometric properties. The essential role
in the problems of the GFT belongs to univalent functions, these func-
tions realize one-to-one mappings. Univalent mappings possess a number
of important extremal properties in various general classes of conformal
mappings.

Much attention in the GFT has been paid to the following objects. Let
S denote the family of functions f(z) regular and univalent in the disk
|z| < 1 with the expansion in a neighborhood of the origin given by

f(2)=z+cz® 432 +.... (0.1)

Let D be a domain on the z-sphere containing the point at infinity.Let
(D) denote the family of functions f(z) meromorphic and univalent in
D with the Laurent expansion in a neighborhood of infinity given by

f)=z+ap+az7 +.... (0.2)

In particular, if D is the simply connected domain |z| > 1, we denote the
last class merely by X.

The beginning of the GFT has been made in 1907 in works of Koebe
on functions in the class S. In the middle of the last century, the theory
of univalent functions has already been a sufficiently advanced mathemat-
ical discipline in which powerful methods applicable to general families of
univalent functions were developed. The first of the deeper methods to be
applied in the theory of univalent functions was the parametric method due
to Loewner [212]. Grotzsch was first who treated the theory of univalent
functions in a unified manner by a single method, namely, by the method
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of the extremal metric. Several years later, Grunsky [181] treated a number
of the same problem by the method of contour integration. Finally, Schiffer
[226-228] developed a variational method for treating extremal problems
for univalent functions. Schaffer and Spencer [223-225] gave another vari-
ant of the method of interior variations. Goluzin [164] applied his version
of this method to various extremal problems in the theory of univalent
functions. A characteristic of these methods and the results obtained by
these methods are given in the Introduction to the monograph of Jenkins
[41]; this monograph will repeatedly mentioned in the sequel.

Note that a Bieberbach typothesis influenced the initial development of
these classical methods. Namely, in 1916 L.Bieberbach conjectured that in
the class S for all n > 2 we have the inequality

len] < n

and the equality |c,| = n occurs only for the Koebe functions K. (z) =
2/(1 — €z)?,|e| = 1. The functions K.(z) map the disk |z| = 1 onto the
whole plane with a radial slit.

In the early 50s, a new method arose in the theory of univalent func-
tions, namely, the method of symmetrization. An efficient approach to
symmetrization for function theoretic problems was introduced by Pdlya
and Szegd [218]. This method was initially used in the works of Hayman
[183].

That was the situation in the theory of univalent functions when the
method of the extremal metric appeared. A more complete description is
given in [41, Introduction]. Fundamental forwards steps for the creation of
this method are due to Jenkins. The basis of the method of the extremal
metric is the Grotzsch method of strips.

In the Jenkins monograph [41], the following estimate of Grotzsch’s
results is given.

“His approach, called by him the method of strips, represents a very es-
sential improvement over the primitive length-area proofs, operating with
the characteristic conformal invariants of doubly-connected domains and
quadrangles. He readily obtained most of the then known results and in an
outstanding series of papers [169-180] obtained many interesting new re-
sults, attacking with equal facility problems for simply-connected domains
and for domains of finite connectivity. Notable also are his contributions
to the theory of domains of infinite connectivity. ...It is difficult to un-
derstand the slowness with which proper recognition came to him. Even
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to-day, when one feels that his work must be universally known, we find his
results being explicitly credited to others ... Perhaps the best measure of
the brilliance of his accomplishment is the effort required for some mathe-
maticians at the present time, working with the best tools now available,
to rediscover his results, obtained twenty-five years ago and more.”

Another direction in the development of the extremal metric method
was presented by work of Ahlfors [124] which is also an improvement over
the length-area proof.

In 1946, Ahlfors and Beurling [125] gave an important new formulation
of the extremal metric method.

The important role in the development of the method of the extremal
metric is due to Teichmiiller [247-249]. We cite Jenkins’ expression [41].

“On the one hand he made explicit the close relationship of this method
with Differential Geometry. (However this idea is present implicity and in
some places even implicitly in the work of Grétzsch, see especially [177
ITI, 179].) Even more important was his discovery, based on his study
of Grotzsch’s results on his own work on quasiconformal mapping, of the
essential role played by quadratic differentials. In this connection he formu-
lated a notable principle giving the manner in which quadratic differentials
are associated with the solutions of extremal problems particularly in so
far as the singularities of the quadratic differential correspond to given
data of the extremal problem.”

Recall that the Teichmiiller principle consists in the following assertion.
If in an extremal problem it is assumed that a certain point is fixed and
there are no other restrictions, then the quadratic differential has a simple
pole at that point. If an addition it is required that the function under
consideration in the problem has fixed values for its first n derivatives
at this point (in terms of the corresponding local parameter), then the
quadratic differential has a pole of order n+1 at this point. More generally,
the highest derivatives occurrence may not be required to be fixed but some
condition on its region of variation may be desired.

However, Teichmiiller did not prove any general result that realized this
principle in concrete form.

One of the most general results of the method of the extremal metric
and all the GFT is the General Coefficient Theorem of Jenkins (for short,
the GCT;[41], Theorem 4.1). A more general form of the GCT was given
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in [50]. The GCT realizes the Teichm’ller principle for a wide range of
extremal problems.
Briefly about the GCT and its applications will be said in Sec. 3.

Almost simultaneously with the GCT, Jenkins [39 1] discovered the
general principle that establishes an equivalence of a module problem for
several curve classes and a problem on extremal decomposition of a Rie-
mann surface into a family of domains associated with given curve classes.
This principle was the basis for a new method of the GFT referred to
as the method of modules of curve families (shortly, the module method
or MM). This method was established by the St.Petersburg mathematical
school.Results of the module method and its applications are the central
theme of this survey.

At the present time, the method of the extremal metric is a general
method in the theory of functions.

Along with the development of the extremal metric method, the classi-
cal methods of the GFT have also been perfected. For example, a general
and rather heuristic form of the area method was worked out. The Lebedev
monograph [210] is devoted to this method. The logical completion of the
Loewner-Kufarev theory was shaped finally in the studies of Pommerenke
[219, 220] and Gutlyanskii [182]. In the series of work by Goryanov, the
semigroup aspect of the Loewner—Kufarev method was developed and ap-
plied [165-168].

The theory of quadratic differentials led to simplification of the proof
and completeness of results of the variational method. The efficiency of
the combination of the extremal metric method and the method of sym-
metrization was shown already in the first investigations by these methods.

To the present time, the method of symmetrization gained obtained
unexpected applications and development. Also, with the help of the po-
larization method Dubinin obtained the solution of the Gonchar problem
on condenser capacity, which that induced the interest to this method
[133]. Working on the Gonchar problem concerning the harmonic mea-
sure, Dubinin created the method of dissymmetrization [132]. Contrary to
the classical results, dissymmetrization of a symmetric condenser does not
increase its capacity. Polarization and dissymmetrization are widely used
in modern investigations.
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One of the new symmetrization approaches is the piecewise separating
symmetrization of condensers and domains, developed by Dubinin [134].
In a number of cases, the results obtained by this symmetrization can be
derived by the method of modules.

A number of investigations due to Dubinin and his school are devoted
to asymptotic properties of the capacity of generalized condensers un-
der degeneration of its plates and some applications of this approach
[136,137,143]. The indicated approach is parallel to the extremal metric
approach to the concept of a reduced module.

For the questions mentioned above see the surveys articles [135, 141],
the monograph [138].

On the background of development of new methods, a classical method
showed itself unexpectedly. In 1984, L. de Branges [128, 129] proved the
Bieberbach hypothesis with the help of the Loewner method [212], which
completed almost 70s years history of the existence of this hypothesis. A
sufficiently unusual history of de Branges’ proof is presented in [161].

In the last decades, in the works of Dubinin and his pupils, a consider-
able advance was obtained in classical and modern problems for polynomi-
als and entire functions. This progress was attained due to the application
of univalent function theory and also potential theory and symmetrization.
For this question, see the survey article [139].

1. MODULES AND EXTREMAL LENGTHS

1.1. In Secs.1 and 2, many definitions and facts from [41] are given without
references to [41].

Since we shall discuss families of curves on a Riemann surface, we start
with the definition of a conformally invariant metric.

Let R be a Riemann surface. We say that conformally invariant metric
p(z)|dz| is defined on fR if every local uniformizing parameter z on R gives
rise to a real nonnegative measurable function p(z) satisfying the following
two conditions.

(1) If v is a rectifiable curve in a planar parametric neighborhood for

z, then the integral [ p(z)|dz| exists as a Lebesgue-Stieltjes integral (the
v
case where this integral is equal to 400 is not excluded).

(2) At every point of intersection of two neighborhood on P that are
related to local parameters z and z*, for the corresponding functions p(z)
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and p*(z*) we have
§(2") = pl2)\dz/d=").

A curve on a Riemann surface fR is said to be locally rectifiable if for
every closed arc of this curve lying entirely in some neighborhood on R in
which a local parameter z is defined, the corresponding arc on the z-plane
is rectifiable.

The notion of conformally invariant metric allows us to introduce the
length of curves on R, and also the module and extremal length of a family
of curves, which yield a general pattern of defining conformal invariants.
We shall use the following L-definition of a module (see [41]).

Let ' be a family of locally rectifiable curves on a

Riemann surface SR, and let P be the class of conformally invariant
metrics p(z)|dz| defined on R and such that p(z) is square integrable in
the z-plane for every local uniformizing parameter z = x + iy; we assume
that the quantities

4,0 = [[ #@dedy, L0 = 1t [ )i
R v

are not equal to 0 or co simultaneously. Let Pr, be the subclass of P defined
as follows: for p € Pr, and v € T we have

JECIEESt
5
If the set P, is not void, then the quantity
M) = inf A,(R
(1) = inf 4,(R)

is called the module of the family T'. If P is not void and Py, is void, then
we put M(T) = oo. The reciprocal of M (T) is the extremal length of T.
If M(T) # oo, then every metric in Py, is said to be admissible. If there
exists a metric p*(z)|dz| in Pp, such that

M(T) = Ap-(R),
then it is called an extremal metric of the module problem for the family T.

Most fundamental of the basic properties of modules is the fact that they
are conformally invariant. When an extremal metric exists, it is essentially
unique (see [41], Theorems 2.1 and 2.2).
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1.2. Mention simple examples of modules of curve families.

Theorem 1.1. Let QQ be a quadrangle with vertices denoted by 1,2,3,4
taken in the natural order on the boundary of Q. Let ' be the class of
locally rectifiable curves in QQ joining the sides 12 and 34. The quadrangle
can be mapped conformally onto a rectangle R with vertices Ay, As, Az, Ay
so that 1,2,3,4 correspond respectively to these vertices. Let A1 As have
length a, As A3 length b. Then T' has module m(I") equal to a/b.

Theorem 2.2. Let D be a doubly-connected domain lying in the w-plane
for which neither boundary component is reduced to a point. Let T be the
class of rectifiable Jordan curves lying in D and separating its boundary
components, and let I be the class of locally rectifiable curves lying in
D and joining its boundary components. The domain D can be mapped
conformally onto the circular ring in the z-plane defined by

re <zl <re (0<r <7a).

T2

Then T has module m(T') equal to 5-log 2, and I has module m(I") equal
to 2/ log 2.

In the terms of modules of doubly-connected domains, well-known lem-
mas of Grotzsch are formulated with elegance ([41], Theorems 2.6 and 2.7).

Lemma 1.1. (The first lemma of Grétzsch.) Let D;;i = 1,...,n,be non-
overlapping quadrangles lying in the circular ring r1 < |z| <12 (0 <1 <
r2), each with a pair of opposite sides on the two bounding circles of that
ring. Let D; have the module M; for the class of curves joining this pair
of opposite sides. Then

Z M; < 2n/log(ra/r1).
i=1

Equality occurs if and only if the quadrangles D; are obtained from the
ring by radial decomposition so that the sum of areas of the quadrangles is
equal to the area of the ring.

The second lemma of Grotzsch establishes an appropriate extremal
property for decomposition of a circular ring into nonoverlapping concen-
tric rings.

1.3. The definition of the module of a family of curves can be extended
in various ways. One such generalization is related to the notion of the
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reduced module of a simply connected domain with respect to an interior
point.

Let D be a simply connected domain of hyperbolic type, and zy a point
of D. For € > 0 sufficiently small, the set D(e) = D \ U(zo,¢€) is a doubly
connected domain. Let M (D(e)) be the module of this domain for the class
of curves that separate the boundary component of D(e). The reduced
module of D with respect to zg is defined as follows:

M(D, z) = 6hlr(l){M(D(e)) + % loge}.

Let R(D, zp) be the conformal radius of the domain D with respect to
2g- Then

1
M (D, zy) = — log R(D, zp),
2m
if 29 # 00, M(D,00) = —5-log R(D,0).

Now we give the definition of the reduced module of a bigon with
nonzero integer angles at its vertices, suggested by Emel’yanov (see [148,
198, 156, 238]).

Let D be a simply connected domain of hyperbolic type with two dis-
tinguished boundary elements @; and G, with supports at different or co-
inciding points a; and as (for definiteness, let a;,a2 € C). We assume
that D satisfies the following condition (x): if ( = g(2) is the conformal
homeomorphism of D onto the strip —h/2 < Im({ < h/2 that satisfies
Reg(a1) = —oo,Reg(az) = +00, and €, and ey are sufficiently small pos-
itive numbers, then in the connected component Ag(ex) of D N U (ag, €)
having a as a boundary element we have the relation

g(z) = (=1DF YA log(z — ag) + gr(2)}, k= 1,2,

where A > 0, and g (z) is a regular function. It is clear that ¢, = h/Ag
is the interior angle of D at the boundary element day,.

Suppose that D satisfies condition (x). Let I' be the class of rectifiable
curves in D that join the sides of D. We denote by Si(ex) the arc of
the circle |z — aj| = €; contained in the boundary of the domain Ag(eg).
Let D(e,€e2) be a quadrangle in D with opposite sides Si(ex),k = 1,2.
Let I'(e1, €2) denote the class of locally rectifiable curves in D(eq, €2) that
separate the sides Si(e;) and Sa(e2), and let be the module of D(ey, €2)
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for the class I'(2)(ey, €2). The limit

2
M(D):= lim {M(D(er,e)) + > ¢y tloger}
€2 — k=1

is called the reduced module of the bigon D for the class T' and is denoted
by M(D,al,ag).

Another extension of the notion of the module of curve families is that of
the reduced module of a triangle suggested by Solynin [230,238]. Necessary
conditions of the existence of this reduced module were investigated also
by Emel’yanov [153].

1.4. Important for applications to the theory of univalent functions is
the extension obtained by considering simultaneously a number of curve
families.The module defined in this manner is a function rather than a
number. Jenkins [39 I, IT; 41] has proved the existence of an extremal met-
ric in situations of considerable generality. Namely, Jenkins has established
the general principle which states the relationship between quadratic dif-
ferentials and a class of modules for multiple curves families. This principle
was a basis of the module method. This result of Jenkins is cited in Sec. 4.2.

2. QUADRATIC DIFFERENTIALS

The notion of quadratic differential is one of the most important notions
in more recent geometric function theory. Quadratic differentials without
this notion and an explicit general analytic definition have already been
presented in Grotzsh’s earlier papers, as well as in Schiffer’s fundamental
lemma from 1938 and its applications to extremal problems in conformal
mapping. Teichmiiller made quadratic differentials an independent notion
and formulated his general principle (see the Introduction). In investiga-
tions by Jenkins, the great attention is paid to the theory of quadratic
differentials.

Below we give some facts from quadratic differentials theory, follow-
ing the presentation in [41]. Many results on quadratic differentials are
collected in a later monography of Strebel [242].

2.1. Let R be a Riemann surface. A quadratic differential on R is an entity
which assigns, to every local uniformizing parameter z on fR, a function
Q(z) meromorphic in the neighborhood for the parameter z and satisfying
the following condition. If z* is another local uniformizing parameter on
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R and Q*(z*) is the corresponding function associated with zx, and if
the neighborhoods for z and z* overlap, then on the intersection of these
neighborhoods we have

Q(2") = Q()(dz/dz")?.

A point P € R is called a zero or a pole of order p of the differential
Q(2)dz? if for every local uniformizing parameter z,P is represented by
a point having this property with respect to @(z). The zeros and poles
of Q(z)dz? are called critical points. The set of zeros and simple poles of
Q(z)dz? will be denoted by C, and the set of poles of order u > 2 will be
denoted by H.

A maximal regular curve on R on which Q(z)dz? > 0 (respectively,
Q(2)dz? < 0) is called a trajectory (respectively, an orthogonal trajectory)
of Q(z)dz>.

The trajectories and orthogonal trajectories are intrinsically associated
with a given quadratic differential, i.e., they do not depend on the specific
choice of a local uniformizing parameter.

2.2. For the first time, the local structure of trajectories has been described
by Teichmuller [247] without proof. The first detailed presentation under
the additional (inessential) condition of hyperellipticity of the quadratic
differential in question has been given by Schaeffer and Spencer [225]. An-
other proof was suggested by Jenkins [21], who considered the case of a
quadratic differential on a Riemann surface. In the case of the Riemann
sphere, the local and global structure of trajectories of a quadratic differ-
ential is described by Jensen in a chapter of the Pommerenke book [220].
Jensen’s treatment uses the conformal mappings to reduce the quadratic
differential to a form as simple as possible. In this connection, see also the
Strebel monograph [242].

The structure of trajectories near the points of S8\ H is described by
the following two theorems [41].

Theorem 2.1. For any point P € R\ (CUH) there exists a neighborhood
N of P on R and a homeomorphism of N onto the disk |w| < 1 that takes
the mazimal open arc of every trajectory in N to a segment on which Im w
s constant.
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Thus, each point of R\ (C U H) belongs to a unique trajectory of the
differential Q(2)dz2, which is either an open arc or a closed Jordan curve
on ‘R.

Theorem 2.2. For each point P € C of order u(p > 0 if P is a zero and
w = —1if P is a simple pole), there exists a neighborhood N of P on R
and a homeomorphism of N onto the disk |w| < 1 that takes the maximal
open arc of every trajectory on N to an open arc on which Imw(#+2)/2 s
constant. There are p + 2 trajectories with limiting endpoints at P; their
limiting tangential directions at P are spaced at equal angles of opening
2n/(p+1).

The behavior of the trajectories near the points belonging to H turns
out to be much more complicated. We give a reduced version of Theorems
3.3 and 3.4 in [41].

Theorem 2.3. Suppose that P € H is a pole of order yp > 2, and let z be a
local parameter such that P corresponds to z = 0. Let € > 0 be sufficiently
small.

L. Let u =2, and(for some choice of a branch of the square root) let

Q)2 =(a+bi)z"* A +bz+...), abeR,a+bi#0,

in the vicinity of z = 0. Asymptotically, the image of every trajectory
meeting the disk |z| < € behaves as a logarithmic spiral for a # 0,b # 0
and as a rectilinear ray for a # 0,b = 0. If a = 0, then the image of every
trajectory meeting the circle |z| = € is a closed Jordan curve lying in the
circular annulus € — 0(e) < |z| < €+ 0(e).

I. Let p > 3. Then the image of every trajectory having a limiling
endpoint at z = 0 tends to this point along (u—2) directions equally spaced
at angles of 2w /(u — 2). The image of every trajectory meeting the disk
|z| < € tends to z = 0 in at least one sense. If the image of a certain
trajectory lies entirely in the disk |z| < €, then it tends to z = 0 in two
adjacent limiting directions.

2.3. When we consider the global structure of trajectories of the differential
Q(z)dz?, an important part is played by the set ® defined as the union of
all trajectories of Q(z)dz? that have a limiting end point in the set C'. The
elements of ® are called critical trajectories of the differential Q(2)dz>. Let
& denote the closure of ®.
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The first general result on the global structure of trajectories was ob-
tained by Jenkins and Spencer [4], where it was shown that in the case
of a hyperelliptic quadratic differential, the structure of trajectories is de-
scribed in terms of domains of four types (the definition of these basic
types of domains is given below) together with a finite number of domains
in which some of the trajectories belonging to the family ® are everywhere
dense. Later, Jenkins applied the same arguments to positive quadratic
differential on a finite Riemann surface. A quadratic differential on a fi-
nite Riemann surface R is positive if, in terms of a boundary uniformizing
paramerer z, the function Q(z) is regular and positive on the segment of
the real axis corresponding to the boundary points of R with the exception
of the zeros of Q(z) (these zeros are necessarily of even order).

Any positive quadratic differential is automatically regular in the bound-
ary of fR. To make the formulations shorter, we agree that every quadratic
differential on a closed Riemann surface (in particular, on the z-sphere) is
positive.

The following lemma of an algebraic nature [41, Lemma3.2] establishes
a property of quadratic differentials, which is important for applications.

Lemma 2.1. Consider a positive quadratic differential on a finite Rie-
mann surface R of genus g with n boundary components; let p be the total
order of the poles of this differential and q the total order of its zeros, where
each zero on the boundary (necessarily of even order) is counted with half
of its multiplicity. Then p — q =4 — 4g — 2n.

It follows that in the case /% = C we have p — ¢ = 4.

In the definitions of basic types of domains, below fR is a finite Riemann
surface and Q(z)dz? is a quadratic differential on R.An F-set K with
respect to this differential is a subset of R such that each trajectory of
Q(2)dz? that meets K lies entirely in K. The inner closure of a set K is
defined as the interior of the closure of K and is denoted by K. The inner
closure of an F-set is also an F-set.

A ring, circular, strip, end, or density domain for the differential Q(z)dz?
is a maximal connected open F'-set possessing the following properties.

(1)A ring domain D contains no points of the set CUH and is swept out
by trajectories of Q(z)dz?, each being a closed Jordan curve. For a suitable



194 G. V. KUZMINA

choice of a pure imaginary constant ¢, the function w = exp{c [ Q(2)'/%dz}
conformally maps D onto the circular annulus r; < |w| < 7.

(2) A circular domain C contains a unique double pole A of Q(z)dz?,
and C'\ A is swept out by trajectories of Q(z)dz?2, each being a closed Jor-
dan curve separating A from the boundary of C'. For a suitable choice of a
pure imaginary constant ¢, the function w = exp{c [ Q(2)'/2dz} extended
by zero to the point A conformally maps C onto the disk |w| < R and
takes A to w = 0.

(3)A strip domain S contains no points of the set CUH and is swept out
by trajectories of Q(z)dz?, each having a limiting endpoint in one direction
at a point A € H and a limiting endpoint in the other direction at some
point B € H (possibly coinciding with A). The function ¢ = [ Q(2)'/2dz
conformally maps the domain S onto the strip a < Imw < b.

The local structure of the trajectories of the differential Q(2)dz? implies
that A and B must be poles of Q(2)dz? of order > 2.

(4) An end domain E contains no points of the set C'U H and is swept
out by trajectories of Q(z)dz? each having a limiting endpoint at one and
same point A € H in each of the two possible directions. The function
¢ = [Q(2)'/?dz conformally maps the domain E onto the upper or the
lower half-plane of the (-plane (depending on the choice of a branch of the
square root).

The point A must be a pole of Q(z)dz? of order > 3.

A density domain F contains no points of the set H, and F'\ C is swept
out by trajectories of Q(z)dz?,each being everywhere dense in F.

2.4. The global structure of trajectories is described by the Basic Structure
Theorem (for short,the BST) in [41]. Here we give a short version of this
theorem.

Theorem 2.4. Let R be a finite Riemann surface and Q(z)dz* be a pos-
itive quadratic differential on R. Assume that this configuration is not
conformally equivalent to any of the following possible cases: (1) R is the
z-sphere, Q(2)dz> = dz?; (2) R is the z-sphere, Q(2)dz*> = Ke'®dz? /22,
K >0, a is real; (3) R is a torus, Q(2)dz? is regular on R. Then R\ @
consists of a finite number of ring, circular, strip, and end domains.
Each pole of Q(2)dz? of order u = 2 has a neighborhood contained in a
circular domain, or a neighborhood covered by the inner closures of finitely
many strip domains, and each pole of order > 3 has a neighborhood
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covered by the inner closures of u — 2 end domains and finitely many
(possibly, none) strip domains.

The inner closure ® of the set ® need not be empty. If & # (), then R
contains domains in which every trajectory is everywhere dense.

The question of whether every trajectory had a point set closure which
was either an arc or a Jordan curve, i.e., whether conversely there could be
recurrent trajectories was considered by Schaeffer and Spencer [225]. They
showed in particular that there could be no recurrent trajectory in the
case of a differential with one or two poles and obtained the same result
for a particular type of the meromorphic quadratic differential with three
poles. They expected and were trying to prove that this was the general
situation.

Jenkins proved that the only general circumstances in which one can
affirm the absence of recurrent trajectories for positive quadratic differ-
entials on finite Riemann surface are in the case of schlichtartig domains
and when the total number of poles and boundary components is at most

three. In the case & = C, the Three Pole Theorem is as follows [41].

Theorem 2.5. Let Q(2)dz? be a quadratic differential on C having at
most three distinct poles. Then the set ® is empty.

Note that for the quadratic differentials
Q(2)dz? = e™[(2® — 1)(z — a)] 1d2?, a €M,

with four distinct poles +1,a,00, the set & is empty only for countably
many values of . In each of these cases,® consists of two analytic arcs
connecting some pair of points among {—1,1,a, o0}, and the domain C\ &
realizes the maximum of the conformal module in the corresponding family

of doubly connected domains on C.

Theorem 2.4 has turned out to be sufficient for many applications and
for the proof of the GCT,but it leaves open the question of the structure
of trajectories in domains containing an everywhere dense trajectory. An
answer to this question is given by the Extended Form of the Basic Struc-
ture Theorem obtained in [51]. Let A € ® be the union of all trajectories
of Q(z)dz? one of whose limiting endpoints is a point of C', and the other
one is a point of C' U H.
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Theorem 2.6. Let the conditions of Theorem 2.4 be fulfilled. Then R\
A consists of a finite number of ring, circular, strip, end, and density
domains.

2.5. The facts concerning the structure of trajectories of quadratic dif-
ferentials are widely used in the GFT. In many investigations, poles of
the associated quadratic differential are free parameters. The facts on the
structure of the trajectories in some cases allow one to establish a symme-
try in the arrangement of these poles, which leads to the solution of the
problem considered. One of these facts is the following lemma of Pirl [217].

Lemma 2.2. Let Q(2)dz> be a meromorphic quadratic differential on C.
Let v be a critical trajectory of this differential, a and b be the limiling
endpoints of v, a # b. Assume that the segment [a, b] has no common points
with v and that on the domain bounded by the curve v and the segment
[a,b] critical points of Q(2)dz* are not present. Then on the interval (a,b)
at least one point of tangency with a trajectory of Q(z)dz? is present.

A recent example of the usage of this lemma is the work [157] devoted
to the Vuorinen problem.

3. THE GENERAL COEFFICIENT THEOREM AND ITS
APPLICATIONS

3.1. As was already noted, one of the most general results of the method
of the extremal metric is the General Coefficient Theorem of Jenkins ([41],
Theorem 4.1). This theorem (for short,the GCT) is the central topic of
the monograph [41], a more general form of the GCT was given in [50].
The GCT realizes the Teichmuller principle for a wide range of extremal
problems.

Within the limits of the present survey, we restrict ourselves to a general
characterization of that theorem. In the GCT one considers a positive
quadratic differential Q(2)dz? on a finite Riemann surface R, a family A
of domains A; on R admissible with respect to this differential, and an
admissible family f of functions f; associated with A. It is assumed that
Q(2)dz? has poles P, ..., P, of order at least 2.

By an admissible family A of domains Aj,j =1,...,k, on R with re-
spect to Q(z)dz%, we mean the complement on R of the union of a finite
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set of trajectories of Q(z)dz?each of which is either closed or has a limit-
ing end point in each sense at a point of C, possible end points of these
trajectories and a finite number of arcs in R\ H on closures of trajectories.

According to this definition, every point of H is interior to a domain A;.

An admissible family £ of functions f;, j =1,...,k, associated with A
is a family, with the following properties: (1) the functions f; conformally
map the domains A; onto nonoverlapping domains on fR; (2) if A is a pole
of the differential Q(z)d2> in A;, then f;(4) = 4; (3) if 4 is a pole of
Q(2)dz? in A; of order at least 2 and A is mapped by the local parameter
z to the point at infinity, then the coefficients of the expansions of the
functions Q(z) and f;(z) in terms of the same parameter are subject to
certain normalization conditions; (4) finally, the family f satisfies some
conditions of a topological nature.

The GCT provides an inequality for a certain functional; the latter
involves coefficients of the expansions of Q(z) and fi(z) near the poles P;,
j=1,...,n, and a statement on the equality cases in this inequality.

In the proof of the GCT, the key point is the invocation of the Basic
Structure Theorem and of the extremal properties of the Q)-metric |d¢| =
|Q(2)|'/?|dz|. In accordance with the BST, which is conformally invariant
on R\ H, some special neighborhoods U(P;, L) of the points P; € H are
introduced(L is a real parameter, and the neighborhood U (P;, L) contracts
to the point Py as L — c0). Let A;(L) be the domains obtained from A;
by deleting these neighborhoods,

A(L) =M\ JUWP,L), i=1,...,k
j=1

For the areas in the @Q-metric of the images of the domains A;(L) un-
der the mappings realized by the functions in f, some lower and upper
estimates are established in terms of the areas of A;(L) in the same met-
ric. Combination of the estimates obtained leads to the inequality of the
GCT. Equality in this inequality occurs only if the mappings realized by
the functions in f are isometric in the ()-metric and every trajectory of the
differential Q(z)dz? is mapped again to a trajectory by the corresponding
function in f. Furthermore, no open set on R can be exterior relative to

U, fi(As).

The General Coeflicient Theorem has passed through a number of conse-
quent extensions and generalizations [23,41,50,60,62].The Extended Form
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of the GCT is presented in [50], where the normalization conditions of
the GCT for admissible functions f; are weakened, and result obtained is
applied to a broader range of problems. The proof in [50] required of addi-
tional considerations related to the change of the uniformizing parameter.

By the GCT we shall always mean the Extended Form of the GCT.

The success in applying the GCT depends on the right choice of a
differential Q(z)dz?2, an admissible family A of domains, and an admissible
family f of functions.

The proof of the GCT in the case & = C was reproduced by Jen-
sen [220].

As the monograph of Jenkins [41] shows, the force of the GCT (already
in its initial form )is such that it includes as corollaries practically all
known results about of univalent functions. These results are presented
with significant simplification and uniformity of proofs. The GCT has led
to solution of new, by statement, extremal problems.

3.2. Dwell completely briefly on some applications of the GCT. By means
of GCT, Jenkins established [48] significantly more complete results than
those obtained previously in the class Sg of functions f € S with real
coefficients ¢, c3,... in the expansion(1.1). In particular, he found a ge-
ometrically explicit condition determining the Koebe set, say, K(Sg), for
the class Sg (see Sec. 5.3). The region of values of f(zp) in the class Sg,
where zg is an arbitrary point of U, is determined in [48] by an analogous
condition.

In [49 I] Jenkins worked out in detail a low order version of the GCT
and established a number of new results for the classes S and X. In [49 IT]
he obtained a number of sharp estimates for the coefficients in the classes S
and M, where M is the class of functions f(z), meromorphic and univalent
in |z| < 1 with the expansion f(z) = 12+ 22?22 + ... in a neighborhood
of the origin.

These papers aroused great interest in the problem of estimating the
coefficients for the functions in the class S and 3 for which certain co-
efficients satisfy prescribed conditions (for example, are real numbers).In
this connection, we mentioned the works of Y.Kubota in which, with the
help of the GCT, sharp estimates are found for Re a4 in the class of func-
tions f(z) € ¥ with real coefficient oy [188], and for Reas in the class
of functions in ¥ with real coefficients a; and s in the expansion (1.1)
[187]. The estimate obtained for Re ay is the first disproof of the conjecture



GEOMETRIC FUNCTION THEORY 199

that |a,| < 2/(n+ 1) in the class ¥ for even n > 2. Indicated results are
not strengthened in the present time. Phelp [216] determined the range of
(c2,c3,c4) In the class Sg.

The GCT gave rise to uniqueness results in the theory of extremal
problems connected with the coefficient problem of univalent functions
[66].Using the uniqueness results, Babenko [126] and independently Pfluger
[216] established the property of convexity of the corresponding sections
of the nth body V,, in the class S, i.e., the region of values of the system
(ca,...,cn)of coeflicients in this class. This property of the body V;, in the
small had been established earlier by Duren and Schiffer [145].

As Jenkins indicates,the selection of special Riemann surfaces and qua-
dratic differentials in the GCT gives rise to whole new classes of problems
for univalent functions. In [41], Jenkins introduces the class X(r) of func-
tions from ¥, which map |z| > 1 onto a domain whose complement contains
a domain with inner conformal radius with respect to the origin at least
r, 0 < r < 1. Concerning the results of Jenking and other authors for the
class X(r), see Sec. 5.5.

For some applications of the GCT and related results, see the survey
article of Jenkins [122]; some of these results are cited in Sec. 5.1.

4. METHOD OF MODULES OF CURVE FAMILIES.
EXTREMAL DECOMPOSITION PROBLEMS

4.1 Even in the early works by Jenkins [20,22 I,TI, 32] the efficiency of the
notion of the module of a family of several curve classes in combination
with results of the symmetrization method has been with the example of
the solution of difficult extremal problems for univalent function theory.
These results are mentioned in Sec. 5.1.

4.2 In [39 T, IT] Jenkins established a general principle, which states the
relationship between the quadratic differentials and an important class of
modules for multiple curve families.It played a defining role for develop-
ment of the method of modules of curve families. In this method, problems
on the extremal decomposition are considered. These problems are related
with finding the maximum of a functional defined on the family D of sys-
tems D; associated with a family H of homotopy classes of curves H;; this
functional is a linear combination
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of functions of the domains D; (modules or reduced modules of D; associ-
ated with the classes H;), the o} being real parameters.

Citing a theorem from [39, I], we preserve the Jenkins’ formulations
almost word for word. We need some definitions.

Let R be a finite Riemann surface, and let there be given a set A =
{ap}p_, of distinct points. On ' = R\ A we consider a free family
H = {H}*1" of homotopic classes of locally rectifiable curves of the
following two types. The first type consists of classes H;, i = 1,...,nq,
of closed Jordan curves not homotopic to zero on R’. If R actually has
boundary components, then the second type consists of classes H;,i =
ni+1,...,n1+ne, of arcs on R’ connecting some boundary element of fR.
Let {a;}711"* be a system of positive numbers.

First consider the module problem P(ay, ..., Qn,+n,) consisting of find-
ing the module M(ay,...,an, +n,) defined as inf [[ p?dA in the class of
R

metrics satisfied the condition

[ el > au

Ve

for every rectifiable curve v, € Hg, k =1,...,n1 + no.

Now consider a problem on extremal decomposition in an admissible
family of domains associated with the family H. This family is defined in
following way.

We call a doubly-connected domain D lying on R’ associated with the
homotopy class H of the first type if the class of simple closed curves
lying in D and separating its boundary components is contained in H. In
this case, we refer to the module of D for this class of curves as likewise
associated with H. We call a quadrangle D lying on R’ associated with the
homotopy class H of the second type if a pair of opposite sides of D lies
respectively on the boundary components of R joined by arcs in H and
if the class of arcs lying in D and joining these sides is contained in H.In
this case, we refer to the module of D for this class of curves as likewise
associated with H.

By an admissible family D of domains associated with a free family
of homotopy classes H;,i = 1,...,n1 + no, we mean a finite number of
domains each associated with a class H; ( a doubly-connected domain or
to whether quadrangle according as H; is of first or second type)and no
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more than one associated with any such class.Let My (Dy) be the module
of Dy, associated with the class Hi, k= 1,...,n1 + no.

nit+ns
We ask for the maximum of Y afMy(Dy) in the family D.
k=1
The following theorem shows that these two values are the same, and a
unique extremal configuration corresponds to a positive quadratic differ-
ential on *R.

Theorem 4.1. Let the previous conditions be fulfilled. Then for the mod-
ule problem P(au,...,Qpn,4n,), there exists an extremal metric p*(w)|dw|.
This metric has the form |Q(w)|'/?|dw| where Q(w)dw? is a quadratic dif-
ferential on R regular apart from possible simple poles at the distinguished
points.

If R is not a closed surface of genus 1 or a doubly-connected domain (in
either case without distinguished points), then the trajectories of Q(w)dw>
which have limiting end points at its finite critical points together with
those which pass through distinguished points divide R into an admissible
family D* of domains D},i = 1,...,n1 + na, associated with the given
free family of homotopy classes H'. If M} is the associated module for the
domain D}, then

ni+nz
M(ay,...,a5) = Z o My(D}).
i=1
For an admissible family D of domains D;,i = 1,...,n1 + ns, associated

with a given free family of homotopy classes H;, if M; is the associated
module for the domain D;, then

ni+n2
> aIM(Di) < Mlay, .., Oy iny)- (4.1)
i=1
Subject to the previous exclusions, equality in (4.1) may occur only for the
family D*.

The proof of Theorem 4.1 in [39 I] was obtained with the help of Schif-
fer’s variational method, the proof in [39 II] is based on the method of the
extremal metric only.

Similarly to the GCT, Theorem 4.1 establishes the determining role of
quadratic differentials in the conformal mapping problems. Later, investi-
gations of many authors were devoted to various questions of the theory of
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quadratic differentials including its role in problems on extremal decom-
position and their connections with topology and differential geometry.
Renelt [222] considered the problem on the greatest lower bound of the

sum
Za?Miil(Di)

(we use the former notation). In this connection, see the Jenkins’ work
[119]. Tamrazov [245] obtained a supplement to the GCT in the case where
the associated quadratic differential Q(z)dz? does not have poles of order
greater than 1.

Let us give some examples of another character. Many results on qua-
dratic differentials are collected in the Strebel monograph [242]. A holo-
morphic quadratic differential on a compact Riemann surface such that
all of its trajectories explaining the critical ones are closed is called the
Jenkins—Strebel differential by some authors. In 1974, Strebel conjectured
that on a compact Riemann surface such differentials are dense in the space
of all holomorphic quadratic differentials. This was proved by Douady and
Hubbard [131]. The properties of the Jenkins—Strebel differentials have
been studied in many papers. We does not dwell on these papers.

Even in [39 I], it has been mentioned that the result of this paper can
be extended to the case of a family H of homotopy classes H; of curves
on a Riemann surface R of three types: the family H contains, along with
the classes H; considered above,the classes H; of closed curves homotopic
to point contours at distinguished points b; € R. Properties of quadratic
differentials with closed trajectories and second order poles were considered
by Strebel. Mention one of his results. Let () be a quadratic differential on
a compact Riemann surface with closed trajectories which has double poles
P;. The critical trajectories will cut out certain simply connected domains
D; containing P;. Let r; be the conformal radius of D; with respect to P;
in term of a given local parameter at P;. Strebel proved the existence of a
unique differential ¢} for which the ratios of the r; have prescribed values
(see [242)]).

A simple proof of the general result which is the extension of Theo-
rem 4.1 indicated above in the case of a planar surface S where S = C
or S is a simply connected domain on C, was given by the author [194,
Theorems 0.1 and 0.2]. More precisely, Theorem 0.1 in [194] establishes
that in the case 8 = C, the extremal metric problem for a family H as

above is equivalent to an extremal decomposition problem that deals with
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the maximum of a functional involving a linear combination of modules of
doubly connected domains and the reduced modules of simply connected
domains D; with respect to some points b; € D;. The extremal system
of domains of this problem is defined by an associated quadratic differen-
tial having at the points b; poles of second order with circled structure of
trajectories.

The result of [194] have found a great number of applications (some of
them are mentioned below).

In the works of several authors [148,156,238], the results in [39,194] were
extended to a more general case where the family H consists of classes of
four or more types and the associated quadratic differential has poles of
second order with the radial or spiral structure of trajectories.

To give a complete statement of the problem in question, we need some
definitions. To make the presentation simpler for understanding, we pre-
serve the stile of the presentation from [39 I]. For brevity, we have not
considered the case of the spiral structure of trajectories.

4.3. In the sequel, R is a finite Riemann surface. Let
A={a}iz, B = (0"}, B = {bi}io

be some sets of distinct points on R and on the boundary of R if the
latter is nonempty, where the points from B(®) and B belong to % (one or
two of these sets may be empty, but not all). We assume that a fixed local
parameter is chosen in the vicinity of each point from AU B(® U B.

Let % = %\ {AU B© U B}. On %/, we consider homotopic classes
of locally rectifiable Jordan curves of the following four types. The classes
Hy,...,H,, of the first type and the classes Hy,, 11,...,Hn, 1n, of the
second type and domains associated with these classes (doubly-connected
domains and quadrangles) are defined as in Theorem 4.1.

The third type consists of classes Hp,ynot1y--- 5 Hpytng+m Of closed

curves, each of which consists of curves separating one of the points bl(o) €
B from the other distinguished points on R and from the boundary of SR
if it exists, hence they are homotopic to the pointwise curve at the point
bl(o). A simply connected domain D on R’ U bl(o), bl(o) € D, will be called
associated with a class H of the third type if the family of closed Jordan
curves separating the point bl(o) from the boundary of D is contained in H.

Finally, if B # ), then the fourth type consists of classes Hy, 4 notmts =

§1), s=1,...,p,of arcs on R’ with ends at not necessarily distinct points
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br(s),br(sy € B. It is assumed that each one of the points b, € B is an
end of arcs belonging to one or several of the classes of the fourth type.

A bigon D on R’ having vertices at the points of the set B is called
associated with a class H of the fourth type if the family of arcs in D
connecting the vertices of D is contained in H. In this case, we assume
that the domain D satisfies condition (x) with respect to its vertices (see
the definition of Sec.1.3).

According to which one of the four cases indicated above takes place,
the module M (D) of the doubly connected domain D for the class of curves
separating its boundary components, the module M) (D) of the quadran-
gle D for the class of arcs connecting its opposite sides on the boundary
of R, the reduce module M (D,bl(o)) of the simply connected domain D

with respect to the point bl(o) € D, or the reduce module M (D, by, by ) of
the bigon D with respect to its vertices by, by will be called associated
with the class H. The values of all these modules are defined by the choice
of a fixed local parameter in the vicinity of each one of the points from
AU B© U B. We assume that all classes H; are determined by systems
of points A, B and B in such a way that for each one of the domains D
associated with one of these classes, the module of D associated with this
class is bounded from above (and from below in the case of the reduced
module of a bigon) by some constant that depends only on the position of
the points from A, BY), and B but not on the choice of the domain D.

By an admissible system of domains D; associated with o family H
of classes H;, i = 1,...,n1 + no + m + p, we mean a finite number of
nonoverlapping domains on 8’ U B(®) such that each of them is associated
with a certain class H; and no two are associated with the same class. If
for a certain class H; of the first or the second type none of the domains
indicated is associated with H;, then the corresponding domain D; is said
to be degenerate, and by the module associated with such a class H; we
mean 0.

The family of all admissible systems of domains D;,i =1,...,n1 +ns+
m + p, associated with the family H, is denoted by Dg.

Let

o= {1, h={ha},
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be two given sets of positive numbers, and let
ag(h) =Y he,
sely,

where Ij; is the set of all indices s € {1,...,p} such that the arcs from the
class Hy, +notm+s := H, 8(1) have limiting endpoints in one or two directions
at the point bg) (in the latter case, the corresponding index s occurs in Ty
twice).

We assume that the interior angles ¢y, of the bigons Dgl),s =1,...,p,

at the vertices bg) satisfy the condition

hg
. =2r——, k=FK(s),k"(s).
b =2m b, (5), K"(5)
The family of systems of domains in Dg; that satisfy this condition is
denoted by Dn(h).

For fixed systems « and h, we consider the following functional on the
family Dy (h):

ni ni+ng
Fr(o,h) =Y oiM(Di)+ Y oMY (D))
=1 i=ni+1
- N
+> 0l M (Dot b)) = Y BZM (DS by ), brrs)) . (42)
=1 s=1

Now we can state the theorem on the extremal decomposition in the
family Dy (h). Below, by a critical trajectory of the quadratic differential
Q(z)dz? we mean a trajectory that has its limiting endpoint at a zero or at
a simple pole of this differential or passes through a point from the set A.

Theorem 4.2. Let the above-formulated condition be fulfilled. Then there
exists a meromorphic quadratic differential Q(z)dz> on R uniquely deter-
mined by the following conditions.

The differential Q(z)dz* has simple poles at the points a; € A (possibly,
not at all of these points), double poles at each one of the points bl(o) e B
and by € B, and has no other points on R.

Let ®g be the union of all critical trajectories and arcs of critical trajec-
tories of Q(2)dz? lying on R, and let By be the closure of ®x. The inner
closure ®on of the set o is empty and R\ B is the union of the domains
Dri=1,...,n1 +n2+m+p, of the family Dx(h).
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It is assumed that none of the domains D}, i = 1,...,n1 + na, are
degenerate. The lengths of the trajectories of Q(z)dz? in the domain D},
i=1,...,n1, the closures of the arcs of the trajectories of Q(z)dz? in the
domain D}, i=n1+1,...,n1+na,, and the trajectories of Q(z)dz* in the
domain D}, i =n1 +n2+1,...,n1 +no +m, are equal to ;. The lengths
in the Q-metric of the closures of the arcs of the orthogonal trajectories of
Q(z)dz? in the domain D}, . iss, S =1,...,p, are equal to hs.

The system of domains { D} T4 s the only system realizing the
mazimum of the functional (4.2) in the family Dy (h).

Corollary 4.1. From the metrical conditions of Theorem 4.1, we obtain
differential equations for the functions g;(z) mapping the domains D} onto
a circular ring, a quadrangle, a disk, or a strip,respectively.

In terms of a local parameter z such that z(bl(o)) (respectively, z(bg) =
0), the function Q(z) has the expansions

2

Q) = — 572+ it b eBO;
7
2
Q(z):%ﬂﬁt... if by € B.

Remark 4.1. Theorem 4.2 was first proved by Emel’yanov [148] (in the
case R = C). In the paper of Emelyanov and the author[156], Theorem
4.2 was extended to the case where the family of domains in question
contains biangles associated with classes of arcs asymptotically similar at
the distinguished point on R to logarithmic spirals of given slopes. Solynin
[238] proved the theorem on extremal decomposition of R in the family of
domains of six types; along with the domains considered in Theorem 4.2,
this family contains triangles with the vertices on R and 0fR.

Return to Theorem 4.2. In the case /% = C, the homotopy classes of
the second type (consequently, the second sum in (4.1)) are absent and we
have a simple analytic expression for the differential Q(2)dz>. The family
of domains Dg(h) and the functional Fi=(c, h) are denoted simply by D(h)
and F'(a,h).

Theorem 4.3. Let R = C. Suppose that the assumptions of Theorem 4.2
are fulfilled, n + 2(m + r) < 4. There exists a quadratic differential on C
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of the form

Q(2)dz? = P(z){ [1¢—an [ (= - 2> H 2}_1d22 (4.3)

k=1 =1 k=1

(where P(z) is a polynomial of degree at most n + 2(m + r) — 4) that
ts uniquely determined by the conditions indicated in Theorem 5.1. The
system of domains D},i=1,...,n1 +m+ p, which form the set C\ @ for
the differential Q(z)dz? is the only system realizing the mazimum of the
functional F(a,h) on the family D(h).

It is assumed that none of the domains D}, i =1,...,n1, are degener-
ated. Let ¢ = g;(z) (respectively, ( = gn,+1(2) and { = gn,+m+s(2) denote
a conformal homeomorphism of the doubly-connected domain D} onto the
circular annulus 1 < |¢| < M; (respectively,of the simply connected domain
Dy, 11 onto the disk (| < Ry, gn1+l(bl(0)) =0, an(b( )) =1, and of the
bigon D} ., ... onto the strip —1/2 <Im ( < 1/2, gn, ymts(brr(s)) = —00,
Ini+m+s(bpr (5)) = +00). In the domain D}, i=1,...,n; +m, we have

a2d¢* = —4r*Q(2)d2?

and in the domain D, s=1,...,p, we have

ni+m-+s?
h2d¢* = Q(z)d2>.
For the mazimum F*(a, h) of the functional F(a,h) on D(h), we have

) =Y a?M(D; +Zam+lM( s 0”)

=1
thZ Y (s b () (44)

Remark 4.1. In the case % = C the relations of Corollary 4.1 give alge-
braic conditions for the polynomial P(z) in (4.3). In simplest special cases,
these conditions determine the polynomial P(z) entirely.

If the set B is empty and the classes of fourth type are absent, then
Theorem 4.3 was proved in [194]; in this case, the fourth sum in (4.4) is
absent.

Theorem 4.3 completely characterizes the extremal system of domains
and the mapping functions for a wide range of extremal decomposition
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problems. Some simple examples of the extremal problem solved with the
help of Theorem 4.3 are given in Sec.5 of this survey.

4.5. Dwell on a certain corollary to the previous theorem. Let A = {a, }?_,
and B = {b}7, be given systems of distinct points on C, n +m > 4.We
study the relation between two extremal problems. Let a = {a}{, be a
given system of positive numbers. The first problem consists of finding the
maximum M7 (a) of the functional

My(a) =" af M(Dy, by)
k=1

over the family D; of all systems of nonoverlapping simply connected do-
mains {Dy}7, on C\ A, b, € Dy, k=1,...,m.

Now, let H be a family of homotopic classes Hgs, s = 1,...,p, of arcs on
C =T\ {AU B}, the limiting endpoints of which are the corresponding
points by (s), b () of the set B.It is assumed that in the case where by () =
ber(s) = bi(s) the curves in H; cannot be contracted on C’ to the point
bi(s)- Let h = {hs}._; be a given system of positive numbers. The second
problem consists of finding the maximum M3 (h) of the functional

m
MQ(h) = Z h’f‘Mz(D& bk’(s)a bk”(s))
over the family D®)(h) of all admissible systems of domains {D,}_, as-
sociated with the family H, where the domains Dy, s = 1,...,p, satisfy
condition (x) and their interior angles at the boundary elements by, with
supports at the points b, are

¢ =2mhe/ > hy, k=k(s),k"(s).

tely

The following theorem due to Emel’yanov [149]establishes the relation-
ship between these problems.

Theorem 4.4. Let H be a family of homotopic classes Hg,s = 1,...,p, of
locally rectifiable arcs on C of the form described above. Let h = {hs}t_,
be an arbitrary system of positive numbers, and let o = a(h) = {ar i,
where

ap = Z hs,k=1,...,m.

s€ly
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Then
Mi(a(h) < =M3(h).
Let {D,} be any system of domains in the family Dy(h). Then

14
Mi(a(h)) < hiMP (D, by sy, bir (s))- (4.5)
s=1

Equality in (4.5) is attained only in the case where the domains D,,s =
1,...,p, are bounded by the closures of orthogonal trajectories of the dif-
ferential Q(z)dz%, which determines the extremal system of domains for
the problem on Mi(a(h)).

Theorem 4.4 has a large number of applications (see,for instance, [?]). A
more general result devoted to the “orthogonal” extremal decomposition
problem is obtained by Solynin [238].

4.6. In applications of the method of modules, as a rule, the distinguished
points on the surface S occurring in the definitions of the homotopy classes
of curves are free parameters of the problem under study. In the results of
the method of modules, these parameters acquire a clear geometric mean-
ing, being the poles of the associated quadratic differential. The method
of modules allows one to study the dependence of the maxima of the func-
tionals occurring in extremal problems on the real parameters and the
location of the distinguished points on S.

We dwell on this question in the case of the functional of Theorem 4.3.
The maximum FX(a, h) mentioned in this theorem will be denoted by
M(a, h; A, B) B). For short, we denote these quantities by M (), M(az),
etc., emphasizing the dependence of M on the parameter indicated. Let
Q(z)dz? denote the differential (4.3).

The properties of the function M are described in the following theorem
due to Emel’yanov [148]and Solynin [229, 238]).

Theorem 4.5. Let the notation of Theorem 4.3 be used. (1) Let a; € «
or hy € h. Then

0 .
Fa M(@) = 20:M (D),

0
Ohs

M(hs) = 72hSM(D:Ll+m+S7 bk’(s)u bk”(s))-
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(2) Let ay, € A,ay, # co. Then

aﬂM(ak) =7mQr(ar)  where Qr(2) = (» — ax)Q(2).
ak

3) Let by € BOUB, b # 0o (we write by .y, for b)Y, Then
+ k

M) =7 Gi), where Qu(z) = (=~ 0)*Q(2)
1

Here Q(2)dz? is the quadratic differential of Theorem 4.3.

Note that assertion (2) of Theorem 4.5 has a simple geometric meaning:
the gradient of the function M (ax) at the point a is directed along the
tangent to the critical trajectory of the differential Q(z)dz? starting at the
point af. This clarifies the role of Theorem 4.5 in the extremal problems
in which it is required to establish some symmetry in the location of the
poles of the associated quadratic differential.

5. THE METHOD OF MODULES OF CURVE FAMILIES.
SOME ASPECTS OF APPLICATIONS OF THE METHOD

In this section, a brief account of results obtained with the help of
the module method in various questions of geometric function theory is
given.The module method combines very effective with variational and
symmetrization methods, some results obtained by such combination are
presented below. We restrict ourselves to the most easily formulated re-
sults.

As a rule, the modules method reduces to a geometrically explicit solu-
tion, giving complete information on the problem; however, obtaining an
analytically implicit solution may turn out to be sufficiently complicated.

5.1. The early results of Jenkins.

In the early works of Jenkins, the approach based on consideration of the
module of several classes of curves in combination with the symmetrization
method of Pélya and Szegb was applied. In this way, Jenkins [20,22,32]
solved a number of problems which where not amenable to other methods.
In [20], the solution of the Gronwall problem consisting of finding the exact
estimate of the modulus of a function in the class S with a fixed value of the
modulus of the second coefficient ¢ in the expansion (1.1) was obtained.

In [32], theorems on the boundary distortion for univalent conformal
mappings of multiply connected domains were established. The prototype
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of the results is a well-known Lowner’s Lemma on the boundary distortion
for a conformal mapping of the disk |z| < 1.

In the same way, some extremal problems in the class C' of Bieberbach-
Eilenberg functions were solved [22 LII].

5.2. The initial results in extremal decomposition problems.

First extremal decomposition results are related to sums of reduced
modulus.Let n > 2, and let a = {ay,...,a,} be a system of distinct points
on C, @ = {a1,...,a,} be a system of positive numbers. Let D, (a) be
the family of all systems D,, = {D;,...,D,} of nonoverlapping simply
connected domains on C, aj, € Dy, k = 1,...,n. The maximum of the sum

> I M(D;, a;) (5.1)
i=1
in the family D, (a) will be denoted by
M(ay,...,an;00,...,an), Mat,...,ap;1,...,1)
will be denoted by M (a4, ..., ay).

Lavrent’ev (1934) and Goluzin (1950) shoved that, in the family D, (a),
the exact inequalities hold:

R(Dy,ax) < lay — as?,

=]t

~
Il
—

e

64
1] R(Dy,,ax) < m“al —a2)(a; — a3)(a2 — a3)|. (5.2)

In 1952, Kolbina [185] obtained exact estimates for the sum

|
-

Q%M(Dl, al) + Oé%M(DQ,(lQ)

in the family of pairs of nonoverlapping domains Dy, D2 on C,a; € D;,i =
1,2, and for the sum (5.1) in the family D(a) in the case n = 3.The proof
in [185] was one of the first applications of the Goluzin variational method.
Jenkins [19] gave a significantly simpler proof by using of extremal metric
considerations and showed a sharpening of results in [185].

In [41], Jenkins obtained a geometrically explicit solution of the problem
on the maximum of the sum (5.1) for n > 3 with the help of the GCT. In
the present time, this result is a direct corollary of Theorem 4.3.
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In the case n = 4, an analytically implicit solution of the problem on
M(ay,...,ay,) is obtained in [195] (see Sec. 5.7).

With the problem on the maximum of the sum (5.1) in the family D, (a),
an extremal decomposition problem in a family of systems of nonoverlap-
ping bigons is immediately connected.

Let n > 3. Let a = {ay,...,a,} be a system of distinct points on the
circle |z| = 1, enumerated in the order of increasing argument. Let Py (a)
be a family of systems of nonoverlapping bigons P,k = 1,...,n, on the 2-
sphere, where Py has its vertices at the points ay, ap41. It is assumed that
the bigon Py, k = 1,...,n,is associated with the class of arcs homotopic on
C\{a1,...,a,}tothearcy, = {z: |z| = 1,argay, < argz < argag, } and
has at the vertices ag, ar11 the inner angles equal to 7. Let M (Py, ag, ags1)
be the reduced module of the bigon P with respect to the class of arcs
connecting its sides.

The results of Lavrent’ev and Goluzin cited above are supplemented by
the following simple theorem [208].

Let a1, a2 be distinct points of C. In the family Pa(a) we have the in-
equality

2 2
Z M(Pk, ag, ak+1) — ; IOg |a1 — a2|2 Z 0.
k=1

Let ay, a9, a3 be distinct points of C. In the family Ps(a) we have the in-
equality

3

2 2 64
;M(Pk,ak,akﬂ) - ;log|(a1 —as)(a; — as)(az —ag)| > ;log m
(5.3)

As shown in [204 III], the minimum of the linear combination

n
Z h%M(Pkyakyak-H)
k=1

in the family P, (a) in the case n = 3 for every nonnegative hy, ho, hs is
equal to the maximum of the weight sum of reduced modules

3
Za%M(Dk,ak), where a1 = hi + hg, s = h1 + ha, a3 = hs + hs,
k=1
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of domains in the family D3(a) of domains D1, Do, D3 . In the case n > 4
the situation is different, this is observed already for n = 4 (see [204 III]).

Dwell on the extremal decomposition problem in the family of domains
of distinct structure, many extremal problems in classes of conformal map-
pings are connected with this problem. Consider the functional

I M(D,00) + a3 M(Ds) (a1 = 0,00 > 0,01 4+ ap > 0) (5.4)

defined on the family A of all pairs of nonoverlapping domains Dy, D> on
C = C\{-1,1,a},a # +1,—1, where D; is a simply connected domain,
00 € Dy, D5 is a doubly-connected domains, separating the pairs of points
—1,1 and a, 0 and belonging to a prescribed homotopic class. In various
cases, solutions of this problem are given in [184, 163,196]. Let A1), A(?)
be two families of pairs of domains D1, D> in A such that the domains
D, are doubly- connected and are associated with the simplest homotopy
classes HV and H® of closed Jordan curves on C . ( In the case where
Rea > 0,Ima > 0, the classes HY) and H®) consist, respectively, of
curves homotopic on C to the slit along the segment [—1,1] and to the
slit along the broken line with vertices —1,ta and 1, where ¢ > 0.) Let
{ng), Déj)}7 j = 1,2, be the configuration providing the maximum M) =
MU (ay, as, a) for the functional (5.4) over the family AWY). Let E(—1,1,a)
be the continuum of minimal capacity containing the points —1, 1, a.For
as/ay < pl9), where ) depend on a and are defined in terms of conditions
describing cap E(—1,1, a),the doubly-connected domains ng) degenerate,
namely, Dy) =C\ E(-1,1,a), Déj) ={. For oy = 0, D%j) = () and the
domain ng ) realizes the maximum of the conformal module in the family
of doubly-connected domains on C associated with the class Hj(.z); about
the Chebotarev problem on the continuum of minimal capacity and the
Teichmuller problem on the maximum of the conformal module we shall
speak in the following sections.

For any aq, s the quantity M9 monotonically depends on a in the
same way as does the cap E(—1,1,a) (see Sec.5.2).

5.3. Problem on the continuum of minimal capacity and related
problems.

With the problems mentioned in the previous Section a problem indi-
cated in the title is connected. Let aq,...,a,,n > 2, be distinct points of
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C. By E(a1,...,a,) we denote the continuum of minimal capacity con-
taining the points aj, ..., a,. The domain D = C\ E(ay,...,a,) realizes
the maximum of the reduced module M (D, c0) in the family of all simply
connected domains on C \ {ai,...,a,}. Goluzin obtained a geometrically
explicit solution of the problem on E(ay, ..., a,): he established an analyt-
ical expression for the associated quadratic differential and the condition
defined its parameters. This result is a particular corollary to Theotem 4.3.
The problem of obtaining of an analytically implicit solution of the prob-
lem on E(al,...,a,) for arbitrary ai,...,asin the case of large n is of
considerable difficulty.

In the case n = 3, a complete solution of the problem is obtained.
Theorem 4.3 implies the following result. The continuum FE(aq,az2,as) is
the ®-set for the quadratic differential

z—c

(z —a1)(z — a2)(z — a3)
for which the zero ¢ = ¢(a1,az2,as) is defined by the condition of the
connectivity of ®-set for the differential considered. This geometrically ex-
plicit result yelds a description of geometric properties of the continuum
E(ai,a9,a3) (see the paper of Pirl [217]), and an analytically implicit so-
lution of the problem [194]. Namely, for the function { = g(z) mapping
the domain C \ ® onto the disk |¢| < 1, we have the equation

q(2)dz* = —4x?d¢?/¢2.

q(2)dz* = — dz?,

Therefore, ¢ = ¢(a1, a2, a3) and cap E(aq,as,as) are found from a system
of equations containing elliptic functions [194, Theorem 1.6]. In the sym-
metric case, the solution is simpler. The continuum E(0, e, e~¥),0 <
1 < /2, is the ®-set for the quadratic differential

— 2= C(d)) 22
q(Z,’lf)) - z(z—e“/’)(z—e—w)d ’

where 1 > ¢(y) > 0. For ¢ = ¢(¢) and H () = cap E(0,e™, e~ %), we have
a simpler system of equations [194,Theorem 1.5].

Many extremal problems are connected with the problem on E(aq, as, as3).
We restrict ourselves to the following two examples. Let Sg be the class
of functions f € S with real coefficients cs,cs3, ... in the expansion (1.1).
Let K(Sg) be the Koebe set for this class of functions, i.e.,the exact do-
main covered by the image f(U) of the disk U under every f € Sg. The
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set K (Sg) is easily found from results on H (1)) = cap E(0,e'¥,e™¥). We
have the following theorem [194].

The set K (Sg) is bounded by the curve w = r(y)e™¥, —n/2 < ¢ < 37/2,
where r() = H(\W]) for —1/2 < ¢ < 7/2,7(8) = H(ir — $]) for 7/2 <
¥ < 3m/2.

The set K(Sgr) was found first by Jenkins [48]by means of the Gen-
eral Coefficient Theorem. The set K(Sg) is symmetric with respect to
both coordinate axes. Let w = r(¥)e™,0 < 9 < 7/2, be boundary
points of K(Sg). The value r(¢),0 < ¢ < w/2, is defined by the fol-
lowing condition. Let the domain D(t) realize the maximum of the re-
duced module M (D(%),0) in the family of all simply connected domains
on C\ {0,7()e’,r(e™)}. Then r(x),0 < ¢ < 7/2, is determined
by the condition M (D(¢)),0) = 1. As was shown in [48], D(y)) = C \ ®,
where @ is the union of closures of the critical trajectories of the quadratic
differential

Q(w, 77!))dwz — Tz (7:[)) w — a’(d))

a() w?(w —r()e)(w —r(yp)e=™)
where a () is uniquely determined by the condition of connectivity of the
set ® indicated.

For 0 < ¢ < 7/2 ,a(y) > 0 and the critical trajectories of the dif-
ferential (5.3)are the ray w > a() and the trajectories 71 and T having
respective limiting end points at a(v),r(¥)e’¥ and a(v),r(1)e~ . Fur-
ther, a(0) = r(0), a(r/2) = oo, whence r(0) = 1/4,r(x/2) =1/2.

dw?,  (5.5)

The same description of the domain D(1) follows immediately from
Theorem 4.3. It is easily seen that the mapping z — r(¢)/z maps the
domain D(1) into the exterior of the continuum E(0, e, e~%¥) of the
capacity H (1), whence the boundary arc of the set K (S, R) is determined
by the condition r(¢) = H(¥),0 < ¢ < 7/2.

From Theorem 4.5 and simple geometric properties of the continuum
E(ay,a9,a3) (see,for instance, [194]), the following refinement of the result
in [221] follows. This result is due to Emel’yanov [147] and Solynin [229].

Let a point a move along an arc of the ellipse with focuses —1,1, so that
arga increases from 0 to w/2. Then capE(—1,1,a) strictly increases.

Let C be the Bieberbach—Eilenberg class, i.e.,the class of functions f(z)
regular in the disk U = {z : |z| < 1} and such that f(0)=0, f(z1)f(z2)#1
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for 21,20 € U. Let C(\) be the subclass of functions f(z) € C with
|£/(0)] = A,0 < A < 1. In a similar way as above, the author found
[197] that the Koebe set in the class C(A),0 < A < 1, is bounded by the
curve w = R(4, N)e'¥, where R(¢,)),0 < R(¢,\) < 1, is a solution of the
equation

cap E(—1,1,1/2[R(x, \)e™ + 1/R(p, Ne™™]) = 1/(2)).

5.4. The Teichmiiller problem and the Vuorinen problem.

The Teichmuller problem can be formulated as foll ows.

Find the maximum of the conformal module in the family of doubly-
connected domains on the z-sphere separating the point pairs —1,1 and
a, oo.

We assume that a € I, where I = {z : Rez > 0,Imz > 0},a # 1. Let
M (a) be the desired maximum. In [194], the following theorem is proved.

K'(k) o _ 2
K(k)’ Ca+1’
where the elliptic integrals K(k) and K'(k) are understood to be functions
that are positive for k2 € (0, 1) and defined for other k% by suitable analytic
continuation (for the exact formulation see [194]).

An extremal domain D(a) of this problem is bounded by the closures of
critical trajectories of the quadratic differential

logM(a) =7

eiB(a) .2

YOS e

(5.6)

where

B(a) = —arg kK> (k).
In the case a ¢ [0,1) the domain D(a) is unique, in the case a € [0,1) the
extremal domains are D(a) and the domain D(a) symmetric to D(a) with
respect to the real axis.

This result is obtained from Theorem 4.3 and properties of the elliptic
modular functions, these properties determine the choice of the homotopy
class of curves with which the extremal domain is associated.

In the cases a > 1 and a = ih, h > 0, the domain D(a) is symmetric with
respect to both coordinate axes. In the first case, the boundary components
of D(a) are the segment [—1,1] and the ray z > a, in the second case the
arc {z: |z —al = (1 + h?)Y2,Im 2 < 0} and the ray z = at,t > 1.
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We have the following property of M (a) [239]. Let E be the ellipse with
the focuses —1, 1.

If a point a moves along an arc of the ellipse E in such a way that arg
a increases, remaining in I, then M (a) strictly increases.

This assertion easily follows from Theorem 4.4. Indeed

a?—1
arggrad M (a) = arg —Aar
el a

and from the expression for §(a) it follows that
0 < arggrad M (a) —argva? — 1< /2,
arg+v/a? — 1 is the argument of the normal to the ellipse E at the point a.

A hyperbolic analog of the Teichmuller problem is the Vuorinen prob-
lem. It can be formulated by the following way.

Let 1 < R < co. As a model of the hyperbolic plane let us take the
disk Ur = {z : |z|] < R} with the metric defined by the line element
ds =|dz|/\/1—R2|z|?. Let Cp ={z:|2| =R}, I[r={z:2 € Ugr,Rez >
0,Imz > 0}.

Let a € Ig,a # 1. Let Dg(a) be the family of all doubly-connected
domains in the disk Ug, separating the points —1,1 from the point a and
the circle Cr. Find the maximum Mpg(a) of the conformal module in the
family Dg(a) and the domains, realizing this maximum, and investigate
the properties of Mpg(a) as a function of a.

A solution of this problem is obtained by Emel’yanov and the author
[157] and is as follows. Theorem 4.3 establishes a solution of this problem
formulated in terms of hyperelliptic functions [157]. In the cases a € (1, R)
and a = ih,h € (0, R), the extremal configurations are symmetric and
Mg(a) is expressed in explicit form by the elliptic integrals.

Let Er be a hyperbolic ellipse with focuses —1,1 and Hg be a confo-
cal hyperbolic hyperbola. The following result [157] establishes the role of
symmetric configurations indicated above in the problem under consider-
ation.

The functional Mpg(a) strictly increases if the point a moves along an
arc of a hyperbolic ellipse Egr belonging to Ir and if the point a moves
along an arc of a hyperbolic hyperbola Hg belonging to the same set, so
that Im a increases.
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The proof is obtained in [157] by means of detailed analysis of geometric
properties of trajectories of associated quadratic differentials for the given
problem and Theorem 4.4.

The extremal configurations of some problems on extremal decomposi-
tions of the disk with three distinguished points have the same properties
as the extremal configurations in the Vuorinen problem. Two such prob-
lems was considered by Emel’yanov [155]. Dwell on one of them.

Let pe U, Rep>0,Imp >0, 0 < z < 1. Find domains Dy, D, in the
disk U, realizing maximum M (p) of the sum

M(Dy) +a*M(Ds), >0,

in the family of all pairs D of nonoverlapping doubly-connected domains
D1, D>, where the domain D, separates the points —z,z from p, the do-
main D, separates the points p, —z, z from the circle |z| = 1.

There are the numbers a_ and a4,a_ < 1 < a4, for which respectively
the domain and the domain degenerate, for &« = 1 the point p is not
singular and the domains D; (1), D2(1) are joined into one domain, which
is U\ [-z, z]. The domain D; (a_) is the extremal domain of the Vuorinen
problem. In [155], the following theorem is proved.

The functional M(p) strictly increases if the point p moves along an arc
of the hyperbolic ellipse with focuses —x, x in the direction to the imaginary
azes.

Let p € E,Rep > 0,Imp > 0, and let py and p; = iv/(p3 — 22)/(1 — p})
be the points of intersection of the ellipse E with the coordinate axe. By
the last theorem,

M(po, @) < M(p,a) < M(p1,a).

The values M (p, a) and M(py, o) are easily determinated by the Q-lengths
of orthogonal trajectories and their arcs of the associated quadratic differ-
ential for a given problem.

5.5. Extremal problems in the classes of univalent functions.

Many extremal problems in the basic classes of univalent mappings are
connected with simple problems of the extremal decomposition; about such
extremal decomposition problems we shall speak in Sec. 5.2. The examples
of results obtained owing to the indicated connection are the results on the
maximum and minimum of | f(2p)] in the class R(\) obtained by Gavrilyuk
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amd Solynin [163]; a result on the region of values f(z) in the class Sg,
say, A(SR, 20), is due to Fedorov [160].

Dwell on the last result.A geometrically explicit result in the problem
on A(Sg,zp) was obtained by Jenkins [48] with the help of the GCT.
The last problem was considered later by Chernikov [130], who used the
Goluzin variational method. As is well known, A(Sg, zp) is contained in
A(T, z), where A(T, z) is the region of values f(zp) in the class T of
typical real functions, and part of the boundary of A(Sg, z) belongs to
the boundary of A(T),zp). Finding the remaining part of the boundary of
A(SR,zp) turned out to be difficult. Fedorov [160] succeeded in investi-
gating the boundary of A(Sg,zp) and obtained in this way a complete
solution of the problem. The proof in [160] is based on the simultaneous
consideration of two extremal decomposition problems: the above problem
on M) for pure imaginary values of a (see Sec. 5.2) and the problem on
the maximum of the sum (5.4)over another family of pairs of domains (the
latter problem is connected with the problem on a continuum of minimal
capacity, which was solved in [159]).

A number of problems on regions of values of functional systems on the
classes of univalent functions are studied in the book of A.Vasil’ev [250].
In [250], the set of values of the system

{IfC)Lf(22]}, 0<21 <2z <1,

in the class Sg is found. The lower bound of this set is easily established by
considering of the reduced module of the bigon U \ {[—1,71] N [re, 1]} with
both vertices at z = 0 and its image for the extremal mapping. The upper
bound is found with the help of considering the problem on the maximum
of the sum (5.4) in the case @ > 1 and the problem of the maximum of the
corresponding functional in the family of pairs of domains, defined on the
sphere with distinguished points —1,1, a1, ¢1, 00, where 0 < a1 < ¢; < 0.

By the same module approach the regions of values of some functional
systems in the class S™) of bounded functions from the class S and in the
Montel class of functions f(2) = a;z + a22? + ..., regular and univalent
in U and satisfying the condition f(w) =w, 0 < w < 1, are found [250].

Jenkins [41] introduced the class X(r) of functions f(z) from the class
Y, which map |z| > 1 onto a domain whose complement contains the
domain with the inner conformal radius with respect to the origin at least
r, 0 <r < 1.In [41, 50], exact estimates for |a| and |ay]| in the class X(r)
were obtained. The class X(r) is particularly convenient for applying the
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module method. By this method Gavrilyuk and Solynin [163] solved some
extremal problem in this class. Solynin [233] obtained an exact estimate
for the diameter of level curves, i.e., for the functional

|f(z1) = f(z2)|, |z1i| =|2z2| =p>1,
in the class X(r).

In the class ¥, a distortion theorem is known (z = pe'):

- _ Wf@fCD (4

X 5 X B . 57
Wt e - JCaR S a7
Extending this result, Suita [243] obtained the inequalities
1— k1 14 -3)3
3v3p3(1 +p L flew fzwP)] 7~ 3v3r3 (1 — p=3)3

where z = pe?,p > 1 and w = 62”/3, and showed all equality cases. Suita

obtained inequalities (5.6) with the help of the GCT of Jenkins. However
the inequalities (5.6) are simple corollaries to the Goluzin inequality (see
the second inequality in (5.2)) and inequality (5.3).

n [200, 208], the upper and the lower estimates for the functional in
(5.7) in the class X(r) are obtained. Under limit passage for p — oo, from
the indicated result in [233] and the result in [200] the maximum of |a; |
in the class X(r) is found. Earlier the indicated maximum was obtained in
[50] by means of the GCT (in the Extended Form). Note that the extension
of inequalities (5.8) to the class X(r) leads to an estimate of |az| in the
class X(r).

5.6. Harmonic measures and triad modules.

There are various connections between harmonic measures and modules.
Of importance is the relationship between harmonic measures of a certain
type and triad modules.

A number of Jenkins’ results [42, 80, 103 I, II, IIT; 120] and related
works of various authors were devoted to problems concerning harmonic
measures.

By a triad (P, a, D), the configuration consisting of a simply connected
domain D of hyperbolic type, an open border arc a of D, and a point P
interior to D is meant (the triads of Jenkins). We denote the harmonic
measure of « taken in P with respect to D by w(P,a, D). By the module
M (P, a, D) we mean the module of the class of locally rectifiable open arcs
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in D \ {P} running from « back to « and separating P from the closed
border arc a* complementary to «. This module is called a triad module;
this term was introduced by Jenkins [42]. There is a strictly monotone
increasing function that relates w(P, a, D) to M (P, «, D).

In [103 1] the following simple property of a triad module is noted. Let
U = {|z| < 1} and let a be the arc on the unit circle from e~%/2 to ¢?3/2
(in the positive sense), 0 < 8 < 2x. Consider the triad (0,a,U), and let
M(0,a,U) be its triad module. The quadratic differential

dz?
2z — P (z — e 1B77)

determines the extremal configuration of the Mori problem concerning
the maximum of the module in the family of doubly-connected domains
separating pairs of points 0,00 and e’#/2, ¢/(?7=5/2) (see Sec. 5.4). From
the definition of the triad module it follows that the desired triad module
is equal to twice of the mentioned maximum. Hence for M (0, a, U) we have
a relation in terms of the elliptic integrals:

M(0,a,U) = %K'(cos B/4)/K(cos 3/4).

Dwell on the result in [80]. Let U = {|z| < 1}, and let « be a half-open
arc in U with end points ¢ € U and 1. Let G = U\ e. Gaier [162] considered
the problem of estimating from below the harmonic measure w(0, o, G) of
the arc o with respect to G at the origin, and he gave an explicit but not
sharp estimate for this quantity. Jenkins showed that the problem is most
naturally stated in terms with topology determination, and he first solved
the problem when the change in the argument on the arc a from 1 to ¢
has an assigned value. Shortly, this solution is stated as follows.

Let a be an arc in U \ {0} with end points ¢ € U and 1. Further we
assume that the change of argument A, (arg z) has the assigned value 4.
Then

w(oa a, Foz) > w(oa 04*7 Ga*)a
where a* is a competing arc uniquely determined as follows. There is a
unique point e?X, x is real,such that the quadratic differential

Q(2)dz* = e(z — eM)[2(z = O)(z = C )z — 1)) dz?

with the constant ¢(# 0) is real in the unit circumference and a* consists
of a trajectory of Q(z)dz? on |z| = 1 from 1 to e™X and a trajectory in D
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from e®X to ¢ together with their end points. Equality may occur only if «
coincides with a*.

Fuchs (see [127]) raised the problem of finding the greatest lower bound
of the harmonic measure at the origin of a set in |z| < 1 which meets ev-
ery radius. This problem has been investigated by Marshal and Sundberg
[213]. For a continuum, a geometric explicit solution of this problem is
obtained by Jenkins [103 I]. In this paper it is shown that the result in [80]
cited above readily gives a characterization of the extremal in the problem
of Fuchs. Solynin [236] extended this result, considering the above contin-
uum whose index about the origin is a half integer n/2; he obtained an
analytically implicit solution. Jenkins [120] simplified Solynin’s proof and
gave a geometrically explicit identification of the extremal configuration.

A new approach to the problem of Fuchs provides the Jenkins result
[116] devoted to the n-fold symmetrization. In [120], Jenkins simplifies the
proof in [236] and gives a geometrically explicit characterization of the
extremal configuration.

In this connection, see also the papers of Liao [211], the Jenkins refer-
ences [223, Sec. 9], Solynin’s article [236].

5.7. Problems with free poles of quadratic differential.

Let E be a continuum on C, and let D,,(E),n > 2, be the nth diameter
of E:
dn(E) = { max H lex — Cl|}2/[n(n—1)}.

cr,c1€EF
FOET  Kh<k<n

The problem on the maximum of d,,(E) in the family of all continua E of
the unit capacity is an example of the problem with free poles of associated
quadratic differential: Goluzin showed that an extremal continuum of this
problem is the ®-set for the quadratic differential

. 1 .

2)dz? = — —d??;

Q2) 1%;@ e
here ¢y, i.e., the Fekete points on F, are unknown parameters of the given
problem, Reich and Schiffer [221] shoved that the each extremal continuum
of the problem under considerations possesses this property. The extremal
configuration is unique up a linear transformation and it is the continuum
of minimal capacity for its Fekete points. The problem is solved for n =
2,3,4. By the Faber theorem, in the case n = 2 an extremal continuum
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is the segment EJ = [—2,2], Goluzin showed that in the case n = 3, this
continuum is Ei = Uj_,[0,4'/3wk=1 w = €27/3. The problem on dy(E)
is solved by the author [194]. The extremal continuum Ej is symmetric
with respect to both coordinate axes and it is connected with a suitable
continuum of minimal capacity by the condition

Ej = {2 : H(a))2? € B(0, ¢, e~0)},

where ag,0 < ap < /2, is the solution of the equation
cla) = = cosa
() =5

(see notation in Sec.(5.3)). In the proof in [194], various methods of inves-
tigation were used.

Let a = {a1,...,a,} be a system of distinct points on C,and let o =
{a1,...,a,} be a system of positive numbers. As above, let D,(a) be
the family of all systems D = {Dy,..., Dy} of nonoverlapping simple con-
nected domains on C,ay, € Dy, k =1,...,n. The first results of the module
method in the problems of the maximum M (ay,...,an;a1,...,ay) of the
sum (5.1) over the family D,,(a) were mentioned in Sec.5.2. The indicated
maximum will be denoted by M (a, ), M(a,1) will be denoted by M (a).
The problem on M (a) will be called the problem A,,.

The problem on the maximum of the conformal invariant

- 2
QWZM(Dk,ak) i Z log |ar — ai]

k=1 1<k<I<n

in the family D(a) with respect to every point system a = {a1,...,a,}
will be called the problem B,,.

In the cases n = 2,3, the problems A, and B,, are equivalent, and we
have the results of Lavrent’ev, Golusin, and Kolbina (for their proofs, see
comments of Jenkins [19]).

Theorem 4.3 has led to a complete solution of the problems A,, and B,
for n = 4 [195]. The maximum in the problem A, is expressed in terms
of the problem on E(—1,1,a), where a is expressed by the cross-ratio of
the quadrangle of points under consideration. It allowed one to find the
largest value of the above maximum for all values of a, and thus also to
solve the problem By; see [195] and the paper of Fedorov [158], as well.
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For n > 5, the problems A, and B, remain unsolved. Under the
additional assumption that the systems of points {a1,...,as5} are sym-
metric with respect to a circle or a line, the maximum I? was found by
the author [199] and Dubinin [138]; in this case, the extremal system is
{1,w,w? 0,00}, where w?® = 1. It is plausible that this system of points is
also extremal for the problem Bj in the general case.

An investigation of some candidates for the extremal configurations of
the problem B, is given in [206].

Let now a = {as,...,a,} be a system of distinct points of the disk U,

and let & = {ay,...,a,} be a system of positive numbers. Let Dy (a) be
the family of all systems D = {D;,..., D,} of nonoverlapping simply con-
nected domains in U, a, € D,k =1,...,n. The problem on the maximum

of the sum (5.4) for all systems a of points a € U and systems of domains
Dy, of the family Dy (a) will be called the problem K,. The problem of the
maximum of the functional

n
2
JHZQWZM(Dk,ak)—{m Z log(|ak—al||1—6kal|)
k=1 1<k<I<n
1 n
+ 2 log(1— i)}
k=1
in the family Dy (a) with respect to every system a = {ay,...,a,} of the

points in U will be called the problem L,,.

The difficulty in solving Problems B, K,,, and L,, for sufficiently large
n is connected with the presence of various admissible configurations, sat-
isfying the necessary conditions, but not realizing the desired maximum.
Therefore, it is of interest to establish additional conditions that the ex-
tremal configurations must satisfy. These conditions are given by the fol-
lowing theorem, due to Kuznetsov [190, 193].

The associated quadratic differential in Problem B, does not have mul-
tiple zeros. The bound every from domains of the extremal system in Prob-
lems B, and Kis a closed Jordan curve.

Geometrically, this theorem shows that the domains indicated do not
have interior slits and ”holes”.

An addition to the previous theorem, see [193].

In the case n = 2, the maximum of the sum (5.4) in the family Dy (a)
was found by Kufarev and Falles [189]. Using their results cited above,
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Kuznetsov [193] obtained a simple solution of the problem K, for any
ay,as. The solution of the problem K3 in the case o = 1 was obtained
by Kostyuchenko [186]. In addition to theoretic function reasonings, this
solution was needed some computer calculation.

5.8. Problems in the presence of a symmetric conditions.

As it was indicated above, the extremal decompositions problems in
the case of large number of free parameters are of considerable difficulty.
Therefore it is natural to consider these problems for the condition that
the disposition of the points ay satisfies come additional conditions. First
result in this direction belongs to Dubinin [134], and it is given by the
following theorem.

Leta ={a1,...,an},n > 2, be a system of the points of C. In the family
D(a)

n 4
v, an) < —log —. 5.9
Mlay,...,an) 5. 108 (5.9)
Equality in (5.9) occurs only in the case where the points ai,...,a, are

uniformly distributed on C.

This result is supplemented by the following theorem [204 III] in the
family Py, (a) (see Sec.(5.2)).

Let a = {a1,...,an} be a system of points on C,n > 3. In the family
Pn(a) we have the inequality

n

4
max min M (Py,ap,a54+1) < — log —. (5.10)
a P,(a) —1 ™ n

Equality in (5.10) occurs only in the same case as in (5.9).

Dubinin [134] showed that the maximum of every of the functionals
M(0,ay,...,a,) and M(0,a1,...,ap,00;a,1,...,a),a®> = 1/2, where
ai,.-.,a, are points of C', occurs only in the case of indicated symmet-
ric disposition of the points aq,...,a,. This gave simple expressions for
desired maxima.

The author [203, 202 1] established, that the mentioned property is
satisfied for the functional M(0,ay,...,an;a,1,...,1) for 0 < a < 1 and

n2

for the second of the indicated functionals for o? < .
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In the proof, Dubinin used the method of separating transformation of
condensers and domains, the author used Theorem 4.4, which establishes
the connection between two extremal decomposition problems.

Concerning the condition a? < n? /8 in the problem on the functional
M(0,a1,...,an;0,1,... 1, ), the following theorem is proved [202, I].

The mazimum M(0,e"” e~ o0), where 0 < 8 < m/2, is attained for
B = Bo, where By, m/6 < By < /2, is the solution of the equation c¢(8) =
1/2,¢(B) is the zero of the quadratic differential, defining the continuum
of minimal capacity E(0,e" e, 0 < B < /2.

A number of extremal decomposition problems in the presence of certain
symmetry in the condition of the problem under consideration is solved in
[149, 204-207].

5.9. Problems for which associated quadratic differential is a com-
plete square.

In decomposition problems cited in the title the module method, as a
rule;immediately yields a complte solution. We shall indicate some such
results, following the presentation in Emel’yanov’s article [151].

Let P = {ai,...,a,} be a system of distinguished points on C and let
C = C\ P. Let P be the family of all systems D = {Dy, ... ,Dnl,Dil), e
DSZ)} of nonoverlapping domains, where D; is a simply connected domain
on C U {a;} such that a; € D; for j = 1,...,n1(n1 < n),D,(Sl),k =
1,...,n9, is a doubly connected domain on C. It is assumed that the
family P is associated with a given family of homotopy classes of closed
Jordan curves on C. Let & = {a,...,ap, } and 1 = {l1,..., 1y, } be two
given systems of positive numbers.

Let D* ={Dj,... ,D%)*} be the system of domains realizing the max-
imum value of the functional

F(D) =Y a?M(Dj,a;) + > ZM(DY)
j=1 k=1

in the family P. Here M (D,(cl)) denotes the module of the domain D,(;)
with respect to the family of curves separating its boundary components.

It is known that the extremal system D* is unique, and where exists
a unique quadratic differential associated with the problem such that his



GEOMETRIC FUNCTION THEORY 227

®-set decomposes C onto domains forming the system D*. This differential
is of the form

. - Aj Aj .
Q(w)dw? = e + ! dw?,
(w) ]Z::l((w—aj)Q (w—aj))
where 4; = —a} /47 if j < ny and A; = 0 otherwise.
Let
M(P) = F(D"),

and consider the functional
1 ‘
J(P) = M(P) + > mkjloglar —a;?, g =pik,  (5.12)
3k, #k
where the p, ; are some real numbers. We assume that the condition

Zﬂk,j:_a?7 j:17"'7n7

kk#j
holds, where we set «; = 0 for ny < n < no. In this case, the functional
J(P) is conformally invariant.

If the functional (5.12) is bounded from above then exists an extremal
systems of points P* = {a},...,a’} and an associated quadratic differen-
tial Q p+ (w)dw?.

The following preposition is valid [151].

Let P* = {a3,...,a}} be an extremal system of points for the functional
(5.12). Then the quadratic differential Qp(w)dw? has the form

‘ 1 ~ 1 1
Qr(wydw® = > g - )7

—a; w—a}
k=1 k< k j
If P*={aj,...,a},cc0},then

O e D N ey i

472 —a w—a*
k,j=1,k<j k i

n
1
+ Z Hjn+1 m) dw?.
j=1 J

By means of obtained expressions for Q p« (w)dw?, in [151], the inequali-
ties in the class X are obtained which are generalizations of the inequalities
of Golusin and Grunsfy, respectively.
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Dwell on another results in [151]. The following lemma is valid.

Let P = {ay,...,a,,00} be a set of distinguished points on C, let F(D)
be a functional of the form (5.11) of the extremal decomposition problem
corresponding to the set P, and let Qp(z)dz? be the associated quadratic

differential. If
. 1 a; \2
2 _ J
QP(Z)dZ . 47T2(z:12aj) ;

j=

then

M(P) =F([D7) = —— Z aporg loglap — ag|.

p,q=1,p#q

As it is noted in [151], this lemma follows of [143, Theorem 1]. In [151],
a not complicated proof of this lemma by the module method is given.

Now let P = {a1,as,as3,00} be a system of distinct points of C. Con-
sider the problem of the extremal decomposition of the z-sphere in the
family of all nonoverlapping simply connected domains Dj,a; € D;,j =
1,...,4(ay = o0), with the functional

F(D) = M(Dl,al) + M(Dz,az) + M(Dg,(lg) + 9M(D4, OO)

Let D* = {D5,...,D;} be the extremal systems of domain, M(P) =
F(D*). Set
1 . .
J(P) = M(P) + %(log lag — a1 |* +log |ag — a;|* + log |ay — as|?).

The functional J(P) is bounded from above [151, Theorem 1]. By The-
orem 4.3, an associated quadratic differential of this problem is a complete
square. We have the following theorem [151].

Let T =ToUTTUT™, where Ty = [-2,1],
TH={z:|z—w|=V3, 220}, T ={z:2eT"};
here w = €>™/3. The mazimum of the functional J(P) is equal to 0 and it
is attained at every systems of points
P, ={w,w,a,0}, a€T,

and also at systems of points obtained from the indicated systems of points
by linear-fractional transformations and only at such systems of points.
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Now we consider the decomposition problem of the w-sphere into simply
connected domains D;,j = 1,...,4, such that a; € D; and a doubly-
connected domain D. The domain D has to separate two pairs of points
a1,az and as,00 and is associated with the class closed Jordan curves
homotopic on C\ {a1, az,a3} to the slit along the segment [a;, as]. Set

F(D) = M(Dy,a1) + M(Ds,as) + M(Ds,a3) + 9M(Dy, 00) + 4M (D),

M(P) = F(D").
Let the functional J(P) be defined similarly to (5.13), i.e.,

~ ~ 1 . .
J(P) = M(P) + %(log lag — a1|? +log |ag — as|* + log |a; — as|*. (5.14)

The functional .J(P) is bounded from above. Let Q; 3 denote the com-
ponent of C\ 7" containing the point w = co. The following statement is
an easy consequence of the last theorem.

The mazimum value of the functional j(P) is equal to 0. The func-
tional j(P) achieves its mazimal value at systems of points obtained from
the system P, = {w,W,a, 0}, where a € Q4 3, by linear-fractional trans-
formations and only at such system s of points.

By means of the last theorem and its corollary, an inequality for a
combination of initial coefficients of the expansion of a function f(z) € X
is obtained in [151]. In contrary to the analog inequality obtaining with the
use of the GCT of Jenkins, this inequality is valid without any restrictions
on the first coeflicients of this expansion.

Some extremal decomposition problems in multiply connected domains
for which the associated quadratic differentials are complete squares are
considered by Emel’yanov in [154].

5.10. Solution of some isoperimetric problems.

By means of the method of modules, a solution of a number of isoperi-
metric problems was obtained. We shall indicate some application of the
notion of the reduced module of a triangle introduce by Solynin [230, 238].
In [218], Pélya and Szegd posed the problem of finding the maximum of
the conformal radius R(A,,,0) over the family of all n-gons A, (0 € A,,) of
a given area. For n = 3,4, this problem was solved in [218] with the help of
the Steiner symmetrization;for n > 4, the proof in [218] fails. Solynin [230]
obtained a solution of this isoperimetric problem for all n simultaneously;



230 G. V. KUZMINA

the maximum is attained only in the case where A,, is a regular n-gon
with center at the origin. In [234], some inequalities between geometric and
functional characteristics of n-gons, such as the perimeter, diameter, inner
radius, transfinite diameter, torsion rigidly, and electrostatic capacity, were
established. The proof uses the notion of dissymmetrization introduced by
Dubinin [132].

Some difficult isoperimetric problems for n-gons were solved by Solynin
and Zalgaller [240,241]. In the first paper, the authors proved that among
all n-gons A,, with fixed area, the regular n-gon, and only this one, has
minimal logarithmic capacity. This result was conjectured by Pdlya and
Szego [218] (and was proved by them for n = 3,4). Let CA,, be the un-
bounded component of C \ A,. The proof uses the connection between
the reduced module of C'A,, and the reduced modules of the trilaterals
associated with a special triangulation of an n-bigon A, ; this approach
was developed by Solynin in an earlier work [230]).

In [241] the authors prove various isometric inequalities for a curvilinear
polygon with n sides, each of which is a smooth arc of curvature at most &.
The proof relies on the method of dissymmetrization and on a special
purely geometric theorem for the polygons under consideration.

5.11. Concluding remarks.

In the theory of the module method, presented in Sec.4, the associated
quadratic differentials have poles of order not exceeding 2. The open ques-
tion is to extend this theory to quadratic differentials with poles of higher
order.

In a number of cases, extremal decomposition problems in which the as-
sociated quadratic differentials have poles of higher orders can be reduced
to problems in which the quadratic differentials have poles of orders < 2.
Such a reduction is based on the fact that a quadratic differential with a
pole f order n > 4, say, at the point z = 0, can be approximated by a qua-
dratic differential with n — 2 poles of second order that are symmetrically
located on the circle |z| = € (in the case n = 3, also there is a simple pole
at the origin). This approach was used in [200, 208] for the estimate of the
coefficient «; in the class X(r).

Another approach consist of the introduction of reduced modules of do-
mains similar to the end and strip domains of a quadratic differentials with
poles of high order, and of the consideration of a decomposition problem
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in a family of domains containing the domains indicated. The preliminary
result in this direction was obtained in [209]. This result can be regarded
as an analog of the Jenkins GCT.

6. OTHER RESULTS OF J.A.JENKINS

Jenkins is the author of more than 130 of scientific papers.These papers
are devoted to various questions of GFT. They are prominant applications
of the method of the extremal metric and related approaches.

On the general Coefficient Theorem, its extensions and generalizations,
we said in Sec. 3. The general principle stated in [39 I, IT] and its develop-
ments were presented in Sec. 4. Dwell briefly on other results of Jenkins.

6.1. Jenkins made a large contribution to the development of the method
of symmetrization.

Let us give one of the results of Jenkins in the symmetrization method
of Pélya and Szego.

Let D be a doubly-connected domain in the w-sphere, and let P be a
point and A be a ray with end point at P. Let D* be the domains associ-
ated with D by the circular symmetrization determined by P and A (see
definitions in [41]). Let M (D) and M (Dx) be the modules of D and D*,
in each case for the class of curves separating the boundary components.
Then (Pélya and Szegd)

M(D) < M(D*). (6.1)

Jenkins obtained the following uniqueness result [44].

Let the circular symmetrization be defined by the origin and the positive
real axis. Equality in (6.1) occurs only if D* is obtained from D by a rigid
rotation about the point w = 0.

Analogous results are valid for the symmetrization of quadrangles.

As it was be noted (see Sec. 5.1) in early papers of Jenkins [22 7,20,32],
the efficiency of the combination of the general extremal metric principle
with the symmetrization method of Pdélya and Szegé was demonstrated
with examples of the solution of difficult problems.

6.2. Some results of the GFT express the fact that a given set has a mini-
mal capacity ( or possesses an analogous extremal property) in some family
of planar sets satisfying one or another geometric condition. The examples
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are many of covering theorems. Jenkins [11] obtained the following result
by a symmetrization argument.

Let f € S and let L(f,r) denote the Lebesgue length measure of the
set of values on |w| = r not covered by the image of |2| < 1 under the
mapping w = f(z). For 1/4 < r < 1, we have the sharp bound

L(f,r) < 2rarccos(8r'/? — 8 — 1)
with equality only for functions given explicitly in [11].

This work has had a number of continuations.In this connection, see the
recent paper of Dubinin [140].

6.3. In [65], Jenkins gave a simple proof of a criterion for a closed set E
to have minimal capacity in a given class of admissible sets and obtained
the corresponding uniqueness assertion. This criterion is formulated as
conditions on E and on the comparison sets that are expressed in terms of
the topology of the orthogonal trajectories to the level curves of the Green
function for the domain D = C\ E. Conceptually, the paper of Tamrazow
[205] on covering of curves under conformal mapping is close to this paper.

The paper [71] is devoted to geometric questions related to capacity.
The results of this paper, very simple in formulation, led to significant re-
finements in a number of previously known results of the covering theorem
type in the classes ¥ and S.

6.4. A number of Jenkins’ results [42,80,103LILIII;120] were devoted to
problems concerning harmonic measures. Some of these results were sited
in Sec. 5.6.

6.5. The method of the extremal metric has various forms. Using a form
of this method close to the area method, Jenkins [63] proved the Special
Coeflicient Theorem. This result does not contain many of the most in-
teresting applications of the General Coefficient Theorem, but it makes
possible to consider a number of other problems.

In [61], Jenkins applied a modified form of the methods of the extremal
metric to obtain generalizations of the usual span theorems for multiply
connected domains. In this way, it was possible to prove for the first time
theorems of this kind for functions regular in a domain (previously, such
problems had been considered only for functions having given singulari-
ties).
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6.6. A number of Jenkins’ papers is devoted to the theory of Riemann sur-
faces, results on the boundary correspondence, applications of the method
of the extremal metric to nonunivalent functions, and other questions.
Many of his papers dealt with the theory of quasiconformal mappings.

A short account by Jenkins [100] and his fundamental survey article
[123] have been devoted to the method of the extremal metric in its various
aspects. These publications reflected many results of Jenkins.

10.

11.

12.

13.

14.
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