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182 G. V. KUZ'MINALet M(D; a) be the redued module of a simply onneted domain Dwith respet to a point a ∈ D :M(D; a) = 1=2� logR(D; a), where R(D; a)is the onformal radius of the domain D with respet to the point a if a 6=
∞, M(D;∞) = −1=2� logR(D;∞). By M(D; a; b), the redued moduleof the bigon D with respet to its verties a and b is denoted.INTRODUCTION: geometri funtion theory. The roleof J. A. Jenkins in the development of this theoryThe objets of study in geometri funtion theory (for short,the GFT)are lasses of funtions de�ned in given simply onneted or multiply on-neted domains or on a Riemann surfae. A distintive harateristi ofthis theory is that it onsiders the funtions in suh lasses mainly asmappings possessing some spei� geometri properties. The essential rolein the problems of the GFT belongs to univalent funtions, these fun-tions realize one-to-one mappings. Univalent mappings possess a numberof important extremal properties in various general lasses of onformalmappings.Muh attention in the GFT has been paid to the following objets. LetS denote the family of funtions f(z) regular and univalent in the disk
|z| < 1 with the expansion in a neighborhood of the origin given byf(z) = z + 2z2 + 3z3 + : : : : (0:1)Let D be a domain on the z-sphere ontaining the point at in�nity.Let�(D) denote the family of funtions f(z) meromorphi and univalent inD with the Laurent expansion in a neighborhood of in�nity given byf(z) = z + �0 + �1z−1 + : : : : (0:2)In partiular, if D is the simply onneted domain |z| > 1, we denote thelast lass merely by �.The beginning of the GFT has been made in 1907 in works of Koebeon funtions in the lass S. In the middle of the last entury, the theoryof univalent funtions has already been a suÆiently advaned mathemat-ial disipline in whih powerful methods appliable to general families ofunivalent funtions were developed. The �rst of the deeper methods to beapplied in the theory of univalent funtions was the parametri method dueto Loewner [212℄. Gr�otzsh was �rst who treated the theory of univalentfuntions in a uni�ed manner by a single method, namely, by the method



GEOMETRIC FUNCTION THEORY 183of the extremal metri. Several years later, Grunsky [181℄ treated a numberof the same problem by the method of ontour integration. Finally, Shi�er[226{228℄ developed a variational method for treating extremal problemsfor univalent funtions. Sha�er and Spener [223{225℄ gave another vari-ant of the method of interior variations. Goluzin [164℄ applied his versionof this method to various extremal problems in the theory of univalentfuntions. A harateristi of these methods and the results obtained bythese methods are given in the Introdution to the monograph of Jenkins[41℄; this monograph will repeatedly mentioned in the sequel.Note that a Bieberbah typothesis inuened the initial development ofthese lassial methods. Namely, in 1916 L.Bieberbah onjetured that inthe lass S for all n > 2 we have the inequality
|n| 6 nand the equality |n| = n ours only for the Koebe funtions K�(z) =z=(1 − �z)2; |�| = 1: The funtions K�(z) map the disk |z| = 1 onto thewhole plane with a radial slit.In the early 50s, a new method arose in the theory of univalent fun-tions, namely, the method of symmetrization. An eÆient approah tosymmetrization for funtion theoreti problems was introdued by P�olyaand Szeg�o [218℄. This method was initially used in the works of Hayman[183℄.That was the situation in the theory of univalent funtions when themethod of the extremal metri appeared. A more omplete desription isgiven in [41, Introdution℄. Fundamental forwards steps for the reation ofthis method are due to Jenkins. The basis of the method of the extremalmetri is the Gr�otzsh method of strips.In the Jenkins monograph [41℄, the following estimate of Gr�otzsh'sresults is given.\His approah, alled by him the method of strips, represents a very es-sential improvement over the primitive length-area proofs, operating withthe harateristi onformal invariants of doubly-onneted domains andquadrangles. He readily obtained most of the then known results and in anoutstanding series of papers [169{180℄ obtained many interesting new re-sults, attaking with equal faility problems for simply-onneted domainsand for domains of �nite onnetivity. Notable also are his ontributionsto the theory of domains of in�nite onnetivity. . . . It is diÆult to un-derstand the slowness with whih proper reognition ame to him. Even



184 G. V. KUZ'MINAto-day, when one feels that his work must be universally known, we �nd hisresults being expliitly redited to others . . . Perhaps the best measure ofthe brilliane of his aomplishment is the e�ort required for some mathe-matiians at the present time, working with the best tools now available,to redisover his results, obtained twenty-�ve years ago and more."Another diretion in the development of the extremal metri methodwas presented by work of Ahlfors [124℄ whih is also an improvement overthe length-area proof.In 1946, Ahlfors and Beurling [125℄ gave an important new formulationof the extremal metri method.The important role in the development of the method of the extremalmetri is due to Teihm�uller [247-249℄. We ite Jenkins' expression [41℄.\On the one hand he made expliit the lose relationship of this methodwith Di�erential Geometry. (However this idea is present impliity and insome plaes even impliitly in the work of Gr�otzsh, see espeially [177III, 179℄.) Even more important was his disovery, based on his studyof Gr�otzsh's results on his own work on quasionformal mapping, of theessential role played by quadrati di�erentials. In this onnetion he formu-lated a notable priniple giving the manner in whih quadrati di�erentialsare assoiated with the solutions of extremal problems partiularly in sofar as the singularities of the quadrati di�erential orrespond to givendata of the extremal problem."Reall that the Teihm�uller priniple onsists in the following assertion.If in an extremal problem it is assumed that a ertain point is �xed andthere are no other restritions, then the quadrati di�erential has a simplepole at that point. If an addition it is required that the funtion underonsideration in the problem has �xed values for its �rst n derivativesat this point (in terms of the orresponding loal parameter), then thequadrati di�erential has a pole of order n+1 at this point. More generally,the highest derivatives ourrene may not be required to be �xed but someondition on its region of variation may be desired.However, Teihm�uller did not prove any general result that realized thispriniple in onrete form.One of the most general results of the method of the extremal metriand all the GFT is the General CoeÆient Theorem of Jenkins (for short,the GCT;[41℄, Theorem 4.1). A more general form of the GCT was given



GEOMETRIC FUNCTION THEORY 185in [50℄. The GCT realizes the Teihm�'ller priniple for a wide range ofextremal problems.Briey about the GCT and its appliations will be said in Se. 3.Almost simultaneously with the GCT, Jenkins [39 I℄ disovered thegeneral priniple that establishes an equivalene of a module problem forseveral urve lasses and a problem on extremal deomposition of a Rie-mann surfae into a family of domains assoiated with given urve lasses.This priniple was the basis for a new method of the GFT referred toas the method of modules of urve families (shortly, the module methodor MM). This method was established by the St.Petersburg mathematialshool.Results of the module method and its appliations are the entraltheme of this survey.At the present time, the method of the extremal metri is a generalmethod in the theory of funtions.Along with the development of the extremal metri method, the lassi-al methods of the GFT have also been perfeted. For example, a generaland rather heuristi form of the area method was worked out. The Lebedevmonograph [210℄ is devoted to this method. The logial ompletion of theLoewner-Kufarev theory was shaped �nally in the studies of Pommerenke[219, 220℄ and Gutlyanskii [182℄. In the series of work by Goryanov, thesemigroup aspet of the Loewner{Kufarev method was developed and ap-plied [165{168℄.The theory of quadrati di�erentials led to simpli�ation of the proofand ompleteness of results of the variational method. The eÆieny ofthe ombination of the extremal metri method and the method of sym-metrization was shown already in the �rst investigations by these methods.To the present time, the method of symmetrization gained obtainedunexpeted appliations and development. Also, with the help of the po-larization method Dubinin obtained the solution of the Gonhar problemon ondenser apaity, whih that indued the interest to this method[133℄. Working on the Gonhar problem onerning the harmoni mea-sure, Dubinin reated the method of dissymmetrization [132℄. Contrary tothe lassial results, dissymmetrization of a symmetri ondenser does notinrease its apaity. Polarization and dissymmetrization are widely usedin modern investigations.



186 G. V. KUZ'MINAOne of the new symmetrization approahes is the pieewise separatingsymmetrization of ondensers and domains, developed by Dubinin [134℄.In a number of ases, the results obtained by this symmetrization an bederived by the method of modules.A number of investigations due to Dubinin and his shool are devotedto asymptoti properties of the apaity of generalized ondensers un-der degeneration of its plates and some appliations of this approah[136,137,143℄. The indiated approah is parallel to the extremal metriapproah to the onept of a redued module.For the questions mentioned above see the surveys artiles [135, 141℄,the monograph [138℄.On the bakground of development of new methods, a lassial methodshowed itself unexpetedly. In 1984, L. de Branges [128, 129℄ proved theBieberbah hypothesis with the help of the Loewner method [212℄, whihompleted almost 70s years history of the existene of this hypothesis. AsuÆiently unusual history of de Branges' proof is presented in [161℄.In the last deades, in the works of Dubinin and his pupils, a onsider-able advane was obtained in lassial and modern problems for polynomi-als and entire funtions. This progress was attained due to the appliationof univalent funtion theory and also potential theory and symmetrization.For this question, see the survey artile [139℄.1. MODULES AND EXTREMAL LENGTHS1.1. In Ses.1 and 2, many de�nitions and fats from [41℄ are given withoutreferenes to [41℄.Sine we shall disuss families of urves on a Riemann surfae, we startwith the de�nition of a onformally invariant metri.Let R be a Riemann surfae. We say that onformally invariant metri�(z)|dz| is de�ned on R if every loal uniformizing parameter z on R givesrise to a real nonnegative measurable funtion �(z) satisfying the followingtwo onditions.(1) If  is a reti�able urve in a planar parametri neighborhood forz, then the integral ∫ �(z)|dz| exists as a Lebesgue-Stieltjes integral (thease where this integral is equal to +∞ is not exluded).(2) At every point of intersetion of two neighborhood on R that arerelated to loal parameters z and z∗, for the orresponding funtions �(z)



GEOMETRIC FUNCTION THEORY 187and �∗(z∗) we have �∗(z∗) = �(z)|dz=dz∗|:A urve on a Riemann surfae R is said to be loally reti�able if forevery losed ar of this urve lying entirely in some neighborhood on R inwhih a loal parameter z is de�ned, the orresponding ar on the z-planeis reti�able.The notion of onformally invariant metri allows us to introdue thelength of urves on R, and also the module and extremal length of a familyof urves, whih yield a general pattern of de�ning onformal invariants.We shall use the following L-de�nition of a module (see [41℄).Let � be a family of loally reti�able urves on aRiemann surfae R, and let P be the lass of onformally invariantmetris �(z)|dz| de�ned on R and suh that �(z) is square integrable inthe z-plane for every loal uniformizing parameter z = x+ iy; we assumethat the quantitiesA�(R) = ∫∫

R

�2(z)dxdy; L�(�) = inf∈�∫ �(z)|dz|are not equal to 0 or∞ simultaneously. Let PL be the sublass of P de�nedas follows: for � ∈ PL and  ∈ � we have
∫ �(z)|dz| > 1:If the set PL is not void, then the quantityM(�) = inf�∈PLA�(R)is alled the module of the family �. If P is not void and PL is void, thenwe put M(�) = ∞. The reiproal of M(�) is the extremal length of �.If M(�) 6= ∞, then every metri in PL is said to be admissible. If thereexists a metri �∗(z)|dz| in PL suh thatM(�) = A�∗(R);then it is alled an extremal metri of the module problem for the family �.Most fundamental of the basi properties of modules is the fat that theyare onformally invariant. When an extremal metri exists, it is essentiallyunique (see [41℄, Theorems 2.1 and 2.2).



188 G. V. KUZ'MINA1.2. Mention simple examples of modules of urve families.Theorem 1.1. Let Q be a quadrangle with verties denoted by 1; 2; 3; 4taken in the natural order on the boundary of Q. Let � be the lass ofloally reti�able urves in Q joining the sides 12 and 34. The quadranglean be mapped onformally onto a retangle R with verties A1; A2; A3; A4so that 1; 2; 3; 4 orrespond respetively to these verties. Let A1A2 havelength a;A2A3 length b. Then � has module m(�) equal to a=b.Theorem 2.2. Let D be a doubly-onneted domain lying in the w-planefor whih neither boundary omponent is redued to a point. Let � be thelass of reti�able Jordan urves lying in D and separating its boundaryomponents, and let �′ be the lass of loally reti�able urves lying inD and joining its boundary omponents. The domain D an be mappedonformally onto the irular ring in the z-plane de�ned byr1 < |z| < r2 (0 < r1 < r2):Then � has module m(�) equal to 12� log r2r1 , and �′ has module m(�′) equalto 2�= log r2r1 .In the terms of modules of doubly-onneted domains, well-known lem-mas of Gr�otzsh are formulated with elegane ([41℄,Theorems 2.6 and 2.7).Lemma 1.1. (The �rst lemma of Gr�otzsh.) Let Di; i = 1; : : : ; n,be non-overlapping quadrangles lying in the irular ring r1 < |z| < r2 (0 < r1 <r2), eah with a pair of opposite sides on the two bounding irles of thatring. Let Di have the module Mi for the lass of urves joining this pairof opposite sides. Then n
∑i=1Mi 6 2�= log(r2=r1):Equality ours if and only if the quadrangles Di are obtained from thering by radial deomposition so that the sum of areas of the quadrangles isequal to the area of the ring.The seond lemma of Gr�otzsh establishes an appropriate extremalproperty for deomposition of a irular ring into nonoverlapping onen-tri rings.1.3. The de�nition of the module of a family of urves an be extendedin various ways. One suh generalization is related to the notion of the



GEOMETRIC FUNCTION THEORY 189redued module of a simply onneted domain with respet to an interiorpoint.Let D be a simply onneted domain of hyperboli type, and z0 a pointof D. For � > 0 suÆiently small, the set D(�) = D \ U(z0; �) is a doublyonneted domain. LetM(D(�)) be the module of this domain for the lassof urves that separate the boundary omponent of D(�). The reduedmodule of D with respet to z0 is de�ned as follows:M(D; z0) = lim�→0{M(D(�)) + 12� log �}:Let R(D; z0) be the onformal radius of the domain D with respet toz0. Then M(D; z0) = 12� logR(D; z0);if z0 6=∞, M(D;∞) = − 12� logR(D;∞).Now we give the de�nition of the redued module of a bigon withnonzero integer angles at its verties, suggested by Emel'yanov (see [148,198, 156, 238℄).Let D be a simply onneted domain of hyperboli type with two dis-tinguished boundary elements ~a1 and ~a2 with supports at di�erent or o-iniding points a1 and a2 (for de�niteness, let a1; a2 ∈ C). We assumethat D satis�es the following ondition (∗): if � = g(z) is the onformalhomeomorphism of D onto the strip −h=2 < Im � < h=2 that satis�esRe g(~a1) = −∞;Re g(~a2) = +∞, and �1 and �2 are suÆiently small pos-itive numbers, then in the onneted omponent �k(�k) of D ∩ U(ak; �k)having ~ak as a boundary element we have the relationg(z) = (−1)k−1{Ak log(z − ak) + ~gk(z)}; k = 1; 2;where Ak > 0, and ~gk(z) is a regular funtion. It is lear that �k = h=Akis the interior angle of D at the boundary element ~ak.Suppose that D satis�es ondition (∗). Let � be the lass of reti�ableurves in D that join the sides of D. We denote by Sk(�k) the ar ofthe irle |z − ak| = �k ontained in the boundary of the domain �k(�k).Let D(�1; �2) be a quadrangle in D with opposite sides Sk(�k); k = 1; 2.Let �(�1; �2) denote the lass of loally reti�able urves in D(�1; �2) thatseparate the sides S1(�1) and S2(�2), and let be the module of D(�1; �2)



190 G. V. KUZ'MINAfor the lass �(2)(�1; �2). The limitM(D) := lim�1;�2→0{M(D(�1; �2)) + 2
∑k=1 �−1k log �k}is alled the redued module of the bigon D for the lass � and is denotedby M(D; a1; a2).Another extension of the notion of the module of urve families is that ofthe redued module of a triangle suggested by Solynin [230,238℄. Neessaryonditions of the existene of this redued module were investigated alsoby Emel'yanov [153℄.1.4. Important for appliations to the theory of univalent funtions isthe extension obtained by onsidering simultaneously a number of urvefamilies.The module de�ned in this manner is a funtion rather than anumber. Jenkins [39 I, II; 41℄ has proved the existene of an extremal met-ri in situations of onsiderable generality. Namely, Jenkins has establishedthe general priniple whih states the relationship between quadrati dif-ferentials and a lass of modules for multiple urves families. This priniplewas a basis of the module method. This result of Jenkins is ited in Se. 4.2.2. QUADRATIC DIFFERENTIALSThe notion of quadrati di�erential is one of the most important notionsin more reent geometri funtion theory. Quadrati di�erentials withoutthis notion and an expliit general analyti de�nition have already beenpresented in Gr�otzsh's earlier papers, as well as in Shi�er's fundamentallemma from 1938 and its appliations to extremal problems in onformalmapping. Teihm�uller made quadrati di�erentials an independent notionand formulated his general priniple (see the Introdution). In investiga-tions by Jenkins, the great attention is paid to the theory of quadratidi�erentials.Below we give some fats from quadrati di�erentials theory, follow-ing the presentation in [41℄. Many results on quadrati di�erentials areolleted in a later monography of Strebel [242℄.2.1. Let R be a Riemann surfae.A quadrati di�erential on R is an entitywhih assigns, to every loal uniformizing parameter z on R, a funtionQ(z) meromorphi in the neighborhood for the parameter z and satisfyingthe following ondition. If z∗ is another loal uniformizing parameter on



GEOMETRIC FUNCTION THEORY 191
R and Q∗(z∗) is the orresponding funtion assoiated with z∗, and ifthe neighborhoods for z and z∗ overlap, then on the intersetion of theseneighborhoods we have Q∗(z∗) = Q(z)(dz=dz∗)2:A point P ∈ R is alled a zero or a pole of order � of the di�erentialQ(z)dz2 if for every loal uniformizing parameter z,P is represented bya point having this property with respet to Q(z). The zeros and polesof Q(z)dz2 are alled ritial points. The set of zeros and simple poles ofQ(z)dz2 will be denoted by C, and the set of poles of order � > 2 will bedenoted by H .A maximal regular urve on R on whih Q(z)dz2 > 0 (respetively,Q(z)dz2 < 0) is alled a trajetory (respetively, an orthogonal trajetory)of Q(z)dz2.The trajetories and orthogonal trajetories are intrinsially assoiatedwith a given quadrati di�erential, i.e., they do not depend on the spei�hoie of a loal uniformizing parameter.2.2. For the �rst time, the loal struture of trajetories has been desribedby Teihmuller [247℄ without proof. The �rst detailed presentation underthe additional (inessential) ondition of hyperelliptiity of the quadratidi�erential in question has been given by Shae�er and Spener [225℄. An-other proof was suggested by Jenkins [21℄, who onsidered the ase of aquadrati di�erential on a Riemann surfae. In the ase of the Riemannsphere, the loal and global struture of trajetories of a quadrati di�er-ential is desribed by Jensen in a hapter of the Pommerenke book [220℄.Jensen's treatment uses the onformal mappings to redue the quadratidi�erential to a form as simple as possible. In this onnetion, see also theStrebel monograph [242℄.The struture of trajetories near the points of R \ H is desribed bythe following two theorems [41℄.Theorem 2.1. For any point P ∈ R\ (C ∪H) there exists a neighborhoodN of P on R and a homeomorphism of N onto the disk |w| < 1 that takesthe maximal open ar of every trajetory in N to a segment on whih Imwis onstant.



192 G. V. KUZ'MINAThus, eah point of R \ (C ∪H) belongs to a unique trajetory of thedi�erential Q(z)dz2, whih is either an open ar or a losed Jordan urveon R.Theorem 2.2. For eah point P ∈ C of order �(� > 0 if P is a zero and� = −1 if P is a simple pole), there exists a neighborhood N of P on Rand a homeomorphism of N onto the disk |w| < 1 that takes the maximalopen ar of every trajetory on N to an open ar on whih Imw(�+2)=2 isonstant. There are � + 2 trajetories with limiting endpoints at P ; theirlimiting tangential diretions at P are spaed at equal angles of opening2�=(�+ 1).The behavior of the trajetories near the points belonging to H turnsout to be muh more ompliated. We give a redued version of Theorems3.3 and 3.4 in [41℄.Theorem 2.3. Suppose that P ∈ H is a pole of order � > 2, and let z be aloal parameter suh that P orresponds to z = 0. Let � > 0 be suÆientlysmall.I. Let � = 2, and(for some hoie of a branh of the square root) letQ(z)1=2 = (a+ bi)z−1(1 + b1z + : : : ); a; b ∈ R; a+ bi 6= 0;in the viinity of z = 0. Asymptotially, the image of every trajetorymeeting the disk |z| < � behaves as a logarithmi spiral for a 6= 0; b 6= 0and as a retilinear ray for a 6= 0; b = 0. If a = 0, then the image of everytrajetory meeting the irle |z| = � is a losed Jordan urve lying in theirular annulus �− 0(�) < |z| < �+ 0(�).II. Let � > 3. Then the image of every trajetory having a limitingendpoint at z = 0 tends to this point along (�−2) diretions equally spaedat angles of 2�=(� − 2). The image of every trajetory meeting the disk
|z| < � tends to z = 0 in at least one sense. If the image of a ertaintrajetory lies entirely in the disk |z| < �, then it tends to z = 0 in twoadjaent limiting diretions.2.3.When we onsider the global struture of trajetories of the di�erentialQ(z)dz2, an important part is played by the set � de�ned as the union ofall trajetories of Q(z)dz2 that have a limiting end point in the set C. Theelements of � are alled ritial trajetories of the di�erential Q(z)dz2. Let� denote the losure of �.



GEOMETRIC FUNCTION THEORY 193The �rst general result on the global struture of trajetories was ob-tained by Jenkins and Spener [4℄, where it was shown that in the aseof a hyperellipti quadrati di�erential, the struture of trajetories is de-sribed in terms of domains of four types (the de�nition of these basitypes of domains is given below) together with a �nite number of domainsin whih some of the trajetories belonging to the family � are everywheredense. Later, Jenkins applied the same arguments to positive quadratidi�erential on a �nite Riemann surfae. A quadrati di�erential on a �-nite Riemann surfae R is positive if, in terms of a boundary uniformizingparamerer z, the funtion Q(z) is regular and positive on the segment ofthe real axis orresponding to the boundary points of R with the exeptionof the zeros of Q(z) (these zeros are neessarily of even order).Any positive quadrati di�erential is automatially regular in the bound-ary of R. To make the formulations shorter, we agree that every quadratidi�erential on a losed Riemann surfae (in partiular, on the z-sphere) ispositive.The following lemma of an algebrai nature [41, Lemma3.2℄ establishesa property of quadrati di�erentials, whih is important for appliations.Lemma 2.1. Consider a positive quadrati di�erential on a �nite Rie-mann surfae R of genus g with n boundary omponents; let p be the totalorder of the poles of this di�erential and q the total order of its zeros, whereeah zero on the boundary (neessarily of even order) is ounted with halfof its multipliity. Then p− q = 4− 4g − 2n:It follows that in the ase R = C we have p− q = 4.In the de�nitions of basi types of domains, below R is a �nite Riemannsurfae and Q(z)dz2 is a quadrati di�erential on R.An F -set K withrespet to this di�erential is a subset of R suh that eah trajetory ofQ(z)dz2 that meets K lies entirely in K. The inner losure of a set K isde�ned as the interior of the losure of K and is denoted by K̂. The innerlosure of an F -set is also an F -set.A ring, irular, strip, end, or density domain for the di�erentialQ(z)dz2is a maximal onneted open F -set possessing the following properties.(1)A ring domain D ontains no points of the set C∪H and is swept outby trajetories of Q(z)dz2, eah being a losed Jordan urve. For a suitable



194 G. V. KUZ'MINAhoie of a pure imaginary onstant , the funtion w = exp{ ∫ Q(z)1=2dz}onformally maps D onto the irular annulus r1 < |w| < r2.(2) A irular domain C ontains a unique double pole A of Q(z)dz2,and C \A is swept out by trajetories of Q(z)dz2, eah being a losed Jor-dan urve separating A from the boundary of C. For a suitable hoie of apure imaginary onstant , the funtion w = exp{ ∫ Q(z)1=2dz} extendedby zero to the point A onformally maps C onto the disk |w| < R andtakes A to w = 0.(3)A strip domain S ontains no points of the set C∪H and is swept outby trajetories of Q(z)dz2, eah having a limiting endpoint in one diretionat a point A ∈ H and a limiting endpoint in the other diretion at somepoint B ∈ H (possibly oiniding with A). The funtion � = ∫ Q(z)1=2dzonformally maps the domain S onto the strip a < Imw < b.The loal struture of the trajetories of the di�erential Q(z)dz2 impliesthat A and B must be poles of Q(z)dz2 of order > 2.(4) An end domain E ontains no points of the set C ∪H and is sweptout by trajetories of Q(z)dz2 eah having a limiting endpoint at one andsame point A ∈ H in eah of the two possible diretions. The funtion� = ∫ Q(z)1=2dz onformally maps the domain E onto the upper or thelower half-plane of the �-plane (depending on the hoie of a branh of thesquare root).The point A must be a pole of Q(z)dz2 of order > 3.A density domain F ontains no points of the set H , and F \C is sweptout by trajetories of Q(z)dz2,eah being everywhere dense in F .2.4.The global struture of trajetories is desribed by the Basi StrutureTheorem (for short,the BST) in [41℄. Here we give a short version of thistheorem.Theorem 2.4. Let R be a �nite Riemann surfae and Q(z)dz2 be a pos-itive quadrati di�erential on R. Assume that this on�guration is notonformally equivalent to any of the following possible ases: (1) R is thez-sphere, Q(z)dz2 = dz2; (2) R is the z-sphere, Q(z)dz2 = Kei�dz2=z2,K > 0, � is real; (3) R is a torus, Q(z)dz2 is regular on R. Then R \ �onsists of a �nite number of ring, irular, strip, and end domains.Eah pole of Q(z)dz2 of order � = 2 has a neighborhood ontained in airular domain, or a neighborhood overed by the inner losures of �nitelymany strip domains, and eah pole of order � > 3 has a neighborhood



GEOMETRIC FUNCTION THEORY 195overed by the inner losures of � − 2 end domains and �nitely many(possibly, none) strip domains.The inner losure �̂ of the set � need not be empty. If �̂ 6= ∅, then Rontains domains in whih every trajetory is everywhere dense.The question of whether every trajetory had a point set losure whihwas either an ar or a Jordan urve, i.e., whether onversely there ould bereurrent trajetories was onsidered by Shae�er and Spener [225℄. Theyshowed in partiular that there ould be no reurrent trajetory in thease of a di�erential with one or two poles and obtained the same resultfor a partiular type of the meromorphi quadrati di�erential with threepoles. They expeted and were trying to prove that this was the generalsituation.Jenkins proved that the only general irumstanes in whih one anaÆrm the absene of reurrent trajetories for positive quadrati di�er-entials on �nite Riemann surfae are in the ase of shlihtartig domainsand when the total number of poles and boundary omponents is at mostthree. In the ase R = C, the Three Pole Theorem is as follows [41℄.Theorem 2.5. Let Q(z)dz2 be a quadrati di�erential on C having atmost three distint poles. Then the set �̂ is empty.Note that for the quadrati di�erentialsQ(z)dz2 = ei�[(z2 − 1)(z − a)℄−1dz2; � ∈ R;with four distint poles ±1; a;∞; the set �̂ is empty only for ountablymany values of �: In eah of these ases,� onsists of two analyti arsonneting some pair of points among {−1; 1; a;∞}, and the domain C\�realizes the maximum of the onformal module in the orresponding familyof doubly onneted domains on C.Theorem 2.4 has turned out to be suÆient for many appliations andfor the proof of the GCT,but it leaves open the question of the strutureof trajetories in domains ontaining an everywhere dense trajetory. Ananswer to this question is given by the Extended Form of the Basi Stru-ture Theorem obtained in [51℄. Let � ∈ � be the union of all trajetoriesof Q(z)dz2 one of whose limiting endpoints is a point of C, and the otherone is a point of C ∪H .



196 G. V. KUZ'MINATheorem 2.6. Let the onditions of Theorem 2:4 be ful�lled. Then R \� onsists of a �nite number of ring, irular, strip, end, and densitydomains.2.5. The fats onerning the struture of trajetories of quadrati dif-ferentials are widely used in the GFT. In many investigations, poles ofthe assoiated quadrati di�erential are free parameters. The fats on thestruture of the trajetories in some ases allow one to establish a symme-try in the arrangement of these poles, whih leads to the solution of theproblem onsidered. One of these fats is the following lemma of Pirl [217℄.Lemma 2.2. Let Q(z)dz2 be a meromorphi quadrati di�erential on C.Let  be a ritial trajetory of this di�erential, a and b be the limitingendpoints of ; a 6= b. Assume that the segment [a; b℄ has no ommon pointswith  and that on the domain bounded by the urve  and the segment[a; b℄ ritial points of Q(z)dz2 are not present. Then on the interval (a; b)at least one point of tangeny with a trajetory of Q(z)dz2 is present.A reent example of the usage of this lemma is the work [157℄ devotedto the Vuorinen problem.3. THE GENERAL COEFFICIENT THEOREM AND ITSAPPLICATIONS3.1. As was already noted, one of the most general results of the methodof the extremal metri is the General CoeÆient Theorem of Jenkins ([41℄,Theorem 4.1). This theorem (for short,the GCT) is the entral topi ofthe monograph [41℄, a more general form of the GCT was given in [50℄.The GCT realizes the Teihmuller priniple for a wide range of extremalproblems.Within the limits of the present survey, we restrit ourselves to a generalharaterization of that theorem. In the GCT one onsiders a positivequadrati di�erential Q(z)dz2 on a �nite Riemann surfae R, a family �of domains �j on R admissible with respet to this di�erential, and anadmissible family f of funtions fj assoiated with �. It is assumed thatQ(z)dz2 has poles P1; : : : ; Pn of order at least 2.By an admissible family � of domains �j ; j = 1; : : : ; k; on R with re-spet to Q(z)dz2, we mean the omplement on R of the union of a �nite



GEOMETRIC FUNCTION THEORY 197set of trajetories of Q(z)dz2eah of whih is either losed or has a limit-ing end point in eah sense at a point of C, possible end points of thesetrajetories and a �nite number of ars in R\H on losures of trajetories.Aording to this de�nition, every point of H is interior to a domain �j .An admissible family f of funtions fj , j = 1; : : : ; k, assoiated with �is a family, with the following properties: (1) the funtions fj onformallymap the domains �j onto nonoverlapping domains on R; (2) if A is a poleof the di�erential Q(z)dz2 in �j , then fj(A) = A; (3) if A is a pole ofQ(z)dz2 in �j of order at least 2 and A is mapped by the loal parameterz to the point at in�nity, then the oeÆients of the expansions of thefuntions Q(z) and fj(z) in terms of the same parameter are subjet toertain normalization onditions; (4) �nally, the family f satis�es someonditions of a topologial nature.The GCT provides an inequality for a ertain funtional; the latterinvolves oeÆients of the expansions of Q(z) and fl(z) near the poles Pj ,j = 1; : : : ; n; and a statement on the equality ases in this inequality.In the proof of the GCT, the key point is the invoation of the BasiStruture Theorem and of the extremal properties of the Q-metri |d�| =
|Q(z)|1=2|dz|. In aordane with the BST, whih is onformally invarianton R \H , some speial neighborhoods U(Pj ; L) of the points Pj ∈ H areintrodued(L is a real parameter, and the neighborhood U(Pj ; L) ontratsto the point PJ as L→ ∞). Let �j(L) be the domains obtained from �jby deleting these neighborhoods,�i(L) = �i \ n

⋃j=1U(Pj ; L); i = 1; : : : ; k:For the areas in the Q-metri of the images of the domains �i(L) un-der the mappings realized by the funtions in f , some lower and upperestimates are established in terms of the areas of �i(L) in the same met-ri. Combination of the estimates obtained leads to the inequality of theGCT. Equality in this inequality ours only if the mappings realized bythe funtions in f are isometri in the Q-metri and every trajetory of thedi�erential Q(z)dz2 is mapped again to a trajetory by the orrespondingfuntion in f . Furthermore, no open set on R an be exterior relative to
∪ki=1fi(�i).The General CoeÆient Theorem has passed through a number of onse-quent extensions and generalizations [23,41,50,60,62℄.The Extended Form



198 G. V. KUZ'MINAof the GCT is presented in [50℄, where the normalization onditions ofthe GCT for admissible funtions fl are weakened, and result obtained isapplied to a broader range of problems. The proof in [50℄ required of addi-tional onsiderations related to the hange of the uniformizing parameter.By the GCT we shall always mean the Extended Form of the GCT.The suess in applying the GCT depends on the right hoie of adi�erential Q(z)dz2, an admissible family � of domains, and an admissiblefamily f of funtions.The proof of the GCT in the ase R = C was reprodued by Jen-sen [220℄.As the monograph of Jenkins [41℄ shows, the fore of the GCT (alreadyin its initial form )is suh that it inludes as orollaries pratially allknown results about of univalent funtions. These results are presentedwith signi�ant simpli�ation and uniformity of proofs. The GCT has ledto solution of new, by statement, extremal problems.3.2. Dwell ompletely briey on some appliations of the GCT. By meansof GCT, Jenkins established [48℄ signi�antly more omplete results thanthose obtained previously in the lass SR of funtions f ∈ S with realoeÆients 2; 3; : : : in the expansion(1.1). In partiular, he found a ge-ometrially expliit ondition determining the Koebe set, say, K(SR), forthe lass SR (see Se. 5.3). The region of values of f(z0) in the lass SR,where z0 is an arbitrary point of U , is determined in [48℄ by an analogousondition.In [49 I℄ Jenkins worked out in detail a low order version of the GCTand established a number of new results for the lasses S and �. In [49 II℄he obtained a number of sharp estimates for the oeÆients in the lasses SandM , whereM is the lass of funtions f(z), meromorphi and univalentin |z| < 1 with the expansion f(z) = 1z+ 2z2z2+ : : : in a neighborhoodof the origin.These papers aroused great interest in the problem of estimating theoeÆients for the funtions in the lass S and � for whih ertain o-eÆients satisfy presribed onditions (for example, are real numbers).Inthis onnetion, we mentioned the works of Y.Kubota in whih, with thehelp of the GCT, sharp estimates are found for Re�4 in the lass of fun-tions f(z) ∈ � with real oeÆient �1 [188℄, and for Re�5 in the lassof funtions in � with real oeÆients �1 and �2 in the expansion (1.1)[187℄. The estimate obtained for Re�4 is the �rst disproof of the onjeture



GEOMETRIC FUNCTION THEORY 199that |�n| 6 2=(n+ 1) in the lass � for even n > 2. Indiated results arenot strengthened in the present time. Phelp [216℄ determined the range of(2; 3; 4) In the lass SR.The GCT gave rise to uniqueness results in the theory of extremalproblems onneted with the oeÆient problem of univalent funtions[66℄.Using the uniqueness results, Babenko [126℄ and independently Puger[216℄ established the property of onvexity of the orresponding setionsof the nth body Vn in the lass S, i.e., the region of values of the system(2; : : : ; n)of oeÆients in this lass. This property of the body Vn in thesmall had been established earlier by Duren and Shi�er [145℄.As Jenkins indiates,the seletion of speial Riemann surfaes and qua-drati di�erentials in the GCT gives rise to whole new lasses of problemsfor univalent funtions. In [41℄, Jenkins introdues the lass �(r) of fun-tions from �, whih map |z| > 1 onto a domain whose omplement ontainsa domain with inner onformal radius with respet to the origin at leastr, 0 < r < 1. Conerning the results of Jenkins and other authors for thelass �(r), see Se. 5.5.For some appliations of the GCT and related results, see the surveyartile of Jenkins [122℄; some of these results are ited in Se. 5.1.4. METHOD OF MODULES OF CURVE FAMILIES.EXTREMAL DECOMPOSITION PROBLEMS4.1 Even in the early works by Jenkins [20,22 I,II, 32℄ the eÆieny of thenotion of the module of a family of several urve lasses in ombinationwith results of the symmetrization method has been with the example ofthe solution of diÆult extremal problems for univalent funtion theory.These results are mentioned in Se. 5.1.4.2 In [39 I, II℄ Jenkins established a general priniple, whih states therelationship between the quadrati di�erentials and an important lass ofmodules for multiple urve families.It played a de�ning role for develop-ment of the method of modules of urve families. In this method, problemson the extremal deomposition are onsidered. These problems are relatedwith �nding the maximum of a funtional de�ned on the family D of sys-tems Di assoiated with a family H of homotopy lasses of urves Hi; thisfuntional is a linear ombination
∑i �2iMi(Di)



200 G. V. KUZ'MINAof funtions of the domains Di (modules or redued modules of Di assoi-ated with the lasses Hi), the �2i being real parameters.Citing a theorem from [39, I℄, we preserve the Jenkins' formulationsalmost word for word. We need some de�nitions.Let R be a �nite Riemann surfae, and let there be given a set A =
{�k}nk=1 of distint points. On R

′ = R \ A we onsider a free family
H = {Hk}n1+n2k=1 of homotopi lasses of loally reti�able urves of thefollowing two types. The �rst type onsists of lasses Hi, i = 1; : : : ; n1;of losed Jordan urves not homotopi to zero on R

′. If R atually hasboundary omponents, then the seond type onsists of lasses Hi; i =n1+1; : : : ; n1+n2; of ars on R
′ onneting some boundary element of R.Let {�k}n1+n2k=1 be a system of positive numbers.First onsider the module problem P (�1; : : : ; �n1+n2) onsisting of �nd-ing the module M(�1; : : : ; �n1+n2) de�ned as inf ∫∫R �2dA in the lass ofmetris satis�ed the ondition

∫k �|dz| > �kfor every reti�able urve k ∈ Hk; k = 1; : : : ; n1 + n2.Now onsider a problem on extremal deomposition in an admissiblefamily of domains assoiated with the family H. This family is de�ned infollowing way.We all a doubly-onneted domain D lying on R
′ assoiated with thehomotopy lass H of the �rst type if the lass of simple losed urveslying in D and separating its boundary omponents is ontained in H . Inthis ase, we refer to the module of D for this lass of urves as likewiseassoiated with H . We all a quadrangleD lying on R
′ assoiated with thehomotopy lass H of the seond type if a pair of opposite sides of D liesrespetively on the boundary omponents of R joined by ars in H andif the lass of ars lying in D and joining these sides is ontained in H .Inthis ase, we refer to the module of D for this lass of urves as likewiseassoiated with H .By an admissible family D of domains assoiated with a free familyof homotopy lasses Hi; i = 1; : : : ; n1 + n2; we mean a �nite number ofdomains eah assoiated with a lass Hi ( a doubly-onneted domain orto whether quadrangle aording as Hi is of �rst or seond type)and no



GEOMETRIC FUNCTION THEORY 201more than one assoiated with any suh lass.Let Mk(Dk) be the moduleof Dk assoiated with the lass Hk; k = 1; : : : ; n1 + n2.We ask for the maximum of n1+n2∑k=1 �2kMk(Dk) in the family D.The following theorem shows that these two values are the same, and aunique extremal on�guration orresponds to a positive quadrati di�er-ential on R.Theorem 4.1. Let the previous onditions be ful�lled. Then for the mod-ule problem P (�1; : : : ; �n1+n2), there exists an extremal metri �∗(w)|dw|:This metri has the form |Q(w)|1=2|dw| where Q(w)dw2 is a quadrati dif-ferential on R regular apart from possible simple poles at the distinguishedpoints.If R is not a losed surfae of genus 1 or a doubly-onneted domain (ineither ase without distinguished points), then the trajetories of Q(w)dw2whih have limiting end points at its �nite ritial points together withthose whih pass through distinguished points divide R into an admissiblefamily D∗ of domains D∗i ; i = 1; : : : ; n1 + n2; assoiated with the givenfree family of homotopy lasses H i: If M∗i is the assoiated module for thedomain D∗i , then
M(a1; : : : ; ak) = n1+n2

∑i=1 �2iMi(D∗i ):For an admissible family D of domains Di; i = 1; : : : ; n1 + n2, assoiatedwith a given free family of homotopy lasses Hi, if Mi is the assoiatedmodule for the domain Di, thenn1+n2
∑i=1 �2iMi(Di) 6 M(a1; : : : ; �n1+n2): (4:1)Subjet to the previous exlusions, equality in (4:1) may our only for thefamily D∗.The proof of Theorem 4.1 in [39 I℄ was obtained with the help of Shif-fer's variational method, the proof in [39 II℄ is based on the method of theextremal metri only.Similarly to the GCT, Theorem 4.1 establishes the determining role ofquadrati di�erentials in the onformal mapping problems. Later, investi-gations of many authors were devoted to various questions of the theory of



202 G. V. KUZ'MINAquadrati di�erentials inluding its role in problems on extremal deom-position and their onnetions with topology and di�erential geometry.Renelt [222℄ onsidered the problem on the greatest lower bound of thesum
∑i �2iM−1i (Di)(we use the former notation). In this onnetion, see the Jenkins' work[119℄. Tamrazov [245℄ obtained a supplement to the GCT in the ase wherethe assoiated quadrati di�erential Q(z)dz2 does not have poles of ordergreater than 1.Let us give some examples of another harater. Many results on qua-drati di�erentials are olleted in the Strebel monograph [242℄. A holo-morphi quadrati di�erential on a ompat Riemann surfae suh thatall of its trajetories explaining the ritial ones are losed is alled theJenkins{Strebel di�erential by some authors. In 1974, Strebel onjeturedthat on a ompat Riemann surfae suh di�erentials are dense in the spaeof all holomorphi quadrati di�erentials. This was proved by Douady andHubbard [131℄. The properties of the Jenkins{Strebel di�erentials havebeen studied in many papers. We does not dwell on these papers.Even in [39 I℄, it has been mentioned that the result of this paper anbe extended to the ase of a family H of homotopy lasses Hi of urveson a Riemann surfae R of three types: the family H ontains, along withthe lasses Hi onsidered above,the lasses Hl of losed urves homotopito point ontours at distinguished points bl ∈ R. Properties of quadratidi�erentials with losed trajetories and seond order poles were onsideredby Strebel. Mention one of his results. Let Q be a quadrati di�erential ona ompat Riemann surfae with losed trajetories whih has double polesPj . The ritial trajetories will ut out ertain simply onneted domainsDj ontaining Pj . Let rj be the onformal radius of Dj with respet to Pjin term of a given loal parameter at Pj . Strebel proved the existene of aunique di�erential Q for whih the ratios of the rj have presribed values(see [242℄).A simple proof of the general result whih is the extension of Theo-rem 4.1 indiated above in the ase of a planar surfae S where S = Cor S is a simply onneted domain on C, was given by the author [194,Theorems 0.1 and 0.2℄. More preisely, Theorem 0.1 in [194℄ establishesthat in the ase R = C, the extremal metri problem for a family H asabove is equivalent to an extremal deomposition problem that deals with



GEOMETRIC FUNCTION THEORY 203the maximum of a funtional involving a linear ombination of modules ofdoubly onneted domains and the redued modules of simply onneteddomains Dl with respet to some points bl ∈ Dl. The extremal systemof domains of this problem is de�ned by an assoiated quadrati di�eren-tial having at the points bl poles of seond order with irled struture oftrajetories.The result of [194℄ have found a great number of appliations (some ofthem are mentioned below).In the works of several authors [148,156,238℄, the results in [39,194℄ wereextended to a more general ase where the family H onsists of lasses offour or more types and the assoiated quadrati di�erential has poles ofseond order with the radial or spiral struture of trajetories.To give a omplete statement of the problem in question, we need somede�nitions. To make the presentation simpler for understanding, we pre-serve the stile of the presentation from [39 I℄. For brevity, we have notonsidered the ase of the spiral struture of trajetories.4.3. In the sequel, R is a �nite Riemann surfae. LetA = {ak}nk=1; B(0) = {b(0)l }ml=1; B = {bk}rk=1be some sets of distint points on R and on the boundary of R if thelatter is nonempty, where the points from B(0) and B belong to R (one ortwo of these sets may be empty, but not all). We assume that a �xed loalparameter is hosen in the viinity of eah point from A ∪B(0) ∪B.Let R
′ = R \ {A ∪ B(0) ∪ B}. On R

′, we onsider homotopi lassesof loally reti�able Jordan urves of the following four types. The lassesH1; : : : ; Hn1 of the �rst type and the lasses Hn1+1; : : : ; Hn1+n2 of theseond type and domains assoiated with these lasses (doubly-onneteddomains and quadrangles) are de�ned as in Theorem 4.1.The third type onsists of lasses Hn1+n2+1; : : : ; Hn1+n2+m of losedurves, eah of whih onsists of urves separating one of the points b(0)l ∈B from the other distinguished points on R and from the boundary of Rif it exists, hene they are homotopi to the pointwise urve at the pointb(0)l . A simply onneted domain D on R
′ ∪ b(0)l ; b(0)l ∈ D, will be alledassoiated with a lass H of the third type if the family of losed Jordanurves separating the point b(0)l from the boundary of D is ontained in H .Finally, if B 6= ∅, then the fourth type onsists of lasses Hn1+n2+m+s =H(1)s ; s = 1; : : : ; p, of ars on R′ with ends at not neessarily distint points



204 G. V. KUZ'MINAbk′(s); bk′′(s) ∈ B. It is assumed that eah one of the points bk ∈ B is anend of ars belonging to one or several of the lasses of the fourth type.A bigon D on R
′ having verties at the points of the set B is alledassoiated with a lass H of the fourth type if the family of ars in Donneting the verties of D is ontained in H . In this ase, we assumethat the domain D satis�es ondition (∗) with respet to its verties (seethe de�nition of Se.1.3).Aording to whih one of the four ases indiated above takes plae,the moduleM(D) of the doubly onneted domainD for the lass of urvesseparating its boundary omponents, the moduleM (1)(D) of the quadran-gle D for the lass of ars onneting its opposite sides on the boundaryof R, the redue module M(D; b(0)l ) of the simply onneted domain Dwith respet to the point b(0)l ∈ D, or the redue module M(D; bk′ ; bk′′) ofthe bigon D with respet to its verties bk′ ; bk′′ will be alled assoiatedwith the lass H . The values of all these modules are de�ned by the hoieof a �xed loal parameter in the viinity of eah one of the points fromA ∪ B(0) ∪ B. We assume that all lasses Hi are determined by systemsof points A;B(0),and B in suh a way that for eah one of the domains Dassoiated with one of these lasses, the module of D assoiated with thislass is bounded from above (and from below in the ase of the reduedmodule of a bigon) by some onstant that depends only on the position ofthe points from A;B(0), and B but not on the hoie of the domain D.By an admissible system of domains Di assoiated with a family Hof lasses Hi, i = 1; : : : ; n1 + n2 + m + p; we mean a �nite number ofnonoverlapping domains on R

′ ∪B(0) suh that eah of them is assoiatedwith a ertain lass Hi and no two are assoiated with the same lass. Iffor a ertain lass Hi of the �rst or the seond type none of the domainsindiated is assoiated with Hi, then the orresponding domain Di is saidto be degenerate, and by the module assoiated with suh a lass Hi wemean 0.The family of all admissible systems of domains Di, i = 1; : : : ; n1+n2+m+ p, assoiated with the family H, is denoted by DR.Let � = {�i}n1+n2+mi=1 ; h = {hs}ps=1



GEOMETRIC FUNCTION THEORY 205be two given sets of positive numbers, and let�k(h) = ∑s∈Ik hs;where Ik is the set of all indies s ∈ {1; : : : ; p} suh that the ars from thelassHn1+n2+m+s := H(1)s have limiting endpoints in one or two diretionsat the point b(1)k (in the latter ase, the orresponding index s ours in Iktwie).We assume that the interior angles �k of the bigons D(1)s ; s = 1; : : : ; p,at the verties b(1)k satisfy the ondition�k = 2� hk�k(h) ; k = k′(s); k′′(s):The family of systems of domains in DR that satisfy this ondition isdenoted by DR(h).For �xed systems � and h, we onsider the following funtional on thefamily DR(h):FR(�; h) = n1
∑i=1 �2iM(Di) + n1+n2

∑i=n1+1�2iM (1)(Di)+ m
∑l=1 �2n1+n2+lM(Dn1+n2+l; b(0)l )− p

∑s=1 h2sM(D(1)s ; bk′(s); bk′′(s)): (4.2)Now we an state the theorem on the extremal deomposition in thefamily DR(h). Below, by a ritial trajetory of the quadrati di�erentialQ(z)dz2 we mean a trajetory that has its limiting endpoint at a zero or ata simple pole of this di�erential or passes through a point from the set A.Theorem 4.2. Let the above-formulated ondition be ful�lled. Then thereexists a meromorphi quadrati di�erential Q(z)dz2 on R uniquely deter-mined by the following onditions.The di�erential Q(z)dz2 has simple poles at the points aj ∈ A (possibly,not at all of these points), double poles at eah one of the points b(0)l ∈ B(0)and bs ∈ B, and has no other points on R.Let �R be the union of all ritial trajetories and ars of ritial traje-tories of Q(z)dz2 lying on R, and let �R be the losure of �R. The innerlosure �̂R of the set �R is empty and R\�R is the union of the domainsD∗i ; i = 1; : : : ; n1 + n2 +m+ p, of the family DR(h).



206 G. V. KUZ'MINAIt is assumed that none of the domains D∗i , i = 1; : : : ; n1 + n2; aredegenerate. The lengths of the trajetories of Q(z)dz2 in the domain D∗i ,i = 1; : : : ; n1, the losures of the ars of the trajetories of Q(z)dz2 in thedomain D∗i , i = n1+1; : : : ; n1+n2;, and the trajetories of Q(z)dz2 in thedomain D∗i , i = n1+n2+1; : : : ; n1+n2+m; are equal to �i. The lengthsin the Q-metri of the losures of the ars of the orthogonal trajetories ofQ(z)dz2 in the domain D∗n1+n2+m+s, s = 1; : : : ; p; are equal to hs.The system of domains {D∗i }n1+n2+m+pi=1 is the only system realizing themaximum of the funtional (4:2) in the family DR(h).Corollary 4.1. From the metrial onditions of Theorem 4.1, we obtaindi�erential equations for the funtions gi(z) mapping the domains D∗i ontoa irular ring, a quadrangle, a disk, or a strip,respetively.In terms of a loal parameter z suh that z(b(0)l ) (respetively, z(bk) =0), the funtion Q(z) has the expansionsQ(z) = − �2i4�2 z−2 + : : : if b(0)l ∈ B(0);Q(z) = �k(h)24�2 z−2 + : : : if bk ∈ B:Remark 4.1. Theorem 4.2 was �rst proved by Emel'yanov [148℄ (in thease R = C). In the paper of Emelyanov and the author[156℄, Theorem4.2 was extended to the ase where the family of domains in questionontains biangles assoiated with lasses of ars asymptotially similar atthe distinguished point on R to logarithmi spirals of given slopes. Solynin[238℄ proved the theorem on extremal deomposition of R in the family ofdomains of six types; along with the domains onsidered in Theorem 4.2,this family ontains triangles with the verties on R and �R.Return to Theorem 4.2. In the ase R = C, the homotopy lasses ofthe seond type (onsequently, the seond sum in (4.1)) are absent and wehave a simple analyti expression for the di�erential Q(z)dz2. The familyof domains D
C
(h) and the funtional F

C
(�; h) are denoted simply by D(h)and F (�; h).Theorem 4.3. Let R = C. Suppose that the assumptions of Theorem 4:2are ful�lled, n + 2(m + r) 6 4. There exists a quadrati di�erential on C



GEOMETRIC FUNCTION THEORY 207of the formQ(z)dz2 = P (z){ n
∏k=1(z − ak) m

∏l=1(z − b(0)l )2 r
∏k=1(z − bk)2}−1dz2 (4:3)(where P (z) is a polynomial of degree at most n + 2(m + r) − 4) thatis uniquely determined by the onditions indiated in Theorem 5:1. Thesystem of domains D∗i ; i = 1; : : : ; n1+m+ p; whih form the set C \� forthe di�erential Q(z)dz2 is the only system realizing the maximum of thefuntional F (�; h) on the family D(h).It is assumed that none of the domains D∗i , i = 1; : : : ; n1; are degener-ated. Let � = gi(z)(respetively, � = gn1+l(z) and � = gn1+m+s(z) denotea onformal homeomorphism of the doubly-onneted domain D∗i onto theirular annulus 1 < |�| < Mi (respetively,of the simply onneted domainDn1+l onto the disk |�| < Rl, gn1+l(b(0)l ) = 0, g′n1+l(b(0)l ) = 1, and of thebigon D∗n1+m+s onto the strip −1=2 < Im � < 1=2, gn1+m+s(bk′(s)) = −∞,gn1+m+s(bk"(s)) = +∞). In the domain D∗i , i = 1; : : : ; n1 +m; we have�2i d�2 = −4�2Q(z)dz2;and in the domain D∗n1+m+s; s = 1; : : : ; p; we haveh2sd�2 = Q(z)dz2:For the maximum F ∗(�; h) of the funtional F (�; h) on D(h), we haveF ∗(�; h) = n

∑i=1 �2iM(D∗i ) + m
∑l=1 �2n1+lM(D∗n1+l; b(0)l )

−
p

∑s=1 h2sM(D(1)∗s ; bk′(s); bk"(s)): (4.4)Remark 4.1. In the ase R = C the relations of Corollary 4.1 give alge-brai onditions for the polynomial P (z) in (4.3). In simplest speial ases,these onditions determine the polynomial P (z) entirely.If the set B is empty and the lasses of fourth type are absent, thenTheorem 4.3 was proved in [194℄; in this ase, the fourth sum in (4.4) isabsent.Theorem 4.3 ompletely haraterizes the extremal system of domainsand the mapping funtions for a wide range of extremal deomposition



208 G. V. KUZ'MINAproblems. Some simple examples of the extremal problem solved with thehelp of Theorem 4.3 are given in Se.5 of this survey.4.5. Dwell on a ertain orollary to the previous theorem. Let A = {a�}n�=1and B = {bk}mk=1 be given systems of distint points on C; n+m > 4.Westudy the relation between two extremal problems. Let � = {�k}mk=1 be agiven system of positive numbers. The �rst problem onsists of �nding themaximum M∗1(�) of the funtional
M1(�) = m

∑k=1�2kM(Dk; bk)over the family D1 of all systems of nonoverlapping simply onneted do-mains {Dk}mk=1 on C \A, bk ∈ Dk, k = 1; : : : ;m:Now, let H be a family of homotopi lasses Hs; s = 1; : : : ; p; of ars on
C

′ = C \ {A ∪ B}, the limiting endpoints of whih are the orrespondingpoints bk′(s); bk"(s) of the set B.It is assumed that in the ase where bk′(s) =bk"(s) = bk(s) the urves in Hs annot be ontrated on C ′ to the pointbk(s). Let h = {hs}ps=1 be a given system of positive numbers. The seondproblem onsists of �nding the maximum M∗2(h) of the funtional
M2(h) = −

m
∑s= h2sM2( ~Ds;~bk′(s);~bk"(s))over the family D(2)(h) of all admissible systems of domains { ~Ds}ps=1 as-soiated with the family H, where the domains ~Ds; s = 1; : : : ; p; satisfyondition (∗) and their interior angles at the boundary elements ~bk withsupports at the points bk are�k = 2�hs= ∑t∈Ik ht; k = k′(s); k"(s):The following theorem due to Emel'yanov [149℄establishes the relation-ship between these problems.Theorem 4.4. Let H be a family of homotopi lasses Hs; s = 1; : : : ; p; ofloally reti�able ars on C of the form desribed above. Let h = {hs}ps=1be an arbitrary system of positive numbers, and let � = �(h) = {�k}mk=1,where �k = ∑s∈Ik hs; k = 1; : : : ;m:



GEOMETRIC FUNCTION THEORY 209Then
M∗1(�(h) 6 −M∗2(h):Let { ~Ds} be any system of domains in the family D2(h). Then

M∗1(�(h)) 6

p
∑s=1 h2sM (2)( ~Ds;~bk′(s);~bk"(s)): (4:5)Equality in (4:5) is attained only in the ase where the domains ~Ds; s =1; : : : ; p, are bounded by the losures of orthogonal trajetories of the dif-ferential Q(z)dz2, whih determines the extremal system of domains forthe problem on M∗1(�(h)).Theorem 4.4 has a large number of appliations (see,for instane, [?℄). Amore general result devoted to the \orthogonal" extremal deompositionproblem is obtained by Solynin [238℄.4.6. In appliations of the method of modules, as a rule, the distinguishedpoints on the surfae S ourring in the de�nitions of the homotopy lassesof urves are free parameters of the problem under study. In the results ofthe method of modules, these parameters aquire a lear geometri mean-ing, being the poles of the assoiated quadrati di�erential. The methodof modules allows one to study the dependene of the maxima of the fun-tionals ourring in extremal problems on the real parameters and theloation of the distinguished points on S.We dwell on this question in the ase of the funtional of Theorem 4.3.The maximum F ∗

C
(�; h) mentioned in this theorem will be denoted by

M(�; h;A;B(0); B). For short, we denote these quantities byM(�i),M(ak);et., emphasizing the dependene of M on the parameter indiated. LetQ(z)dz2 denote the di�erential (4.3).The properties of the funtionM are desribed in the following theoremdue to Emel'yanov [148℄and Solynin [229, 238℄).Theorem 4.5. Let the notation of Theorem 4:3 be used. (1) Let �i ∈ �or hs ∈ h. Then ���iM(�i) = 2�iM(D∗i );��hsM(hs) = −2hsM(D∗n1+m+s; bk′(s); bk"(s)):



210 G. V. KUZ'MINA(2) Let ak ∈ A; ak 6= ∞: Then��akM(ak) = �Qk(ak) where Qk(z) = (z − ak)Q(z):(3) Let bl ∈ B(0)∪B; bl 6= ∞ (we write bm+k for b(1)k ). Then��blM(bl) = � ~Q′l(bl); where ~Ql(z) = (z − bl)2Q(z):Here Q(z)dz2 is the quadrati di�erential of Theorem 4:3.Note that assertion (2) of Theorem 4.5 has a simple geometri meaning:the gradient of the funtion M(ak) at the point a0k is direted along thetangent to the ritial trajetory of the di�erential Q(z)dz2 starting at thepoint a0k. This lari�es the role of Theorem 4.5 in the extremal problemsin whih it is required to establish some symmetry in the loation of thepoles of the assoiated quadrati di�erential.5. THE METHOD OF MODULES OF CURVE FAMILIES.SOME ASPECTS OF APPLICATIONS OF THE METHODIn this setion, a brief aount of results obtained with the help ofthe module method in various questions of geometri funtion theory isgiven.The module method ombines very e�etive with variational andsymmetrization methods, some results obtained by suh ombination arepresented below. We restrit ourselves to the most easily formulated re-sults.As a rule, the modules method redues to a geometrially expliit solu-tion, giving omplete information on the problem; however, obtaining ananalytially impliit solution may turn out to be suÆiently ompliated.5.1. The early results of Jenkins.In the early works of Jenkins, the approah based on onsideration of themodule of several lasses of urves in ombination with the symmetrizationmethod of P�olya and Szeg�o was applied. In this way, Jenkins [20,22,32℄solved a number of problems whih where not amenable to other methods.In [20℄, the solution of the Gronwall problem onsisting of �nding the exatestimate of the modulus of a funtion in the lass S with a �xed value of themodulus of the seond oeÆient 2 in the expansion (1.1) was obtained.In [32℄, theorems on the boundary distortion for univalent onformalmappings of multiply onneted domains were established. The prototype



GEOMETRIC FUNCTION THEORY 211of the results is a well-known Lowner's Lemma on the boundary distortionfor a onformal mapping of the disk |z| < 1.In the same way, some extremal problems in the lass C of Bieberbah-Eilenberg funtions were solved [22 I,II℄.5.2. The initial results in extremal deomposition problems.First extremal deomposition results are related to sums of reduedmodulus.Let n > 2, and let a = {a1; : : : ; an} be a system of distint pointson C, � = {�1; : : : ; �n} be a system of positive numbers. Let Dn(a) bethe family of all systems Dn = {D1; : : : ; Dn} of nonoverlapping simplyonneted domains on C, ak ∈ Dk, k = 1; : : : ; n: The maximum of the sumn
∑i=1 �2iM(Di; ai) (5:1)in the family Dn(a) will be denoted byM(a1; : : : ; an;�1; : : : ; �n); M(a1; : : : ; an; 1; : : : ; 1)will be denoted by M(a1; : : : ; an).Lavrent'ev (1934) and Goluzin (1950) shoved that, in the family Dn(a),the exat inequalities hold:2

∏k=1R(Dk; ak) 6 |a1 − a2|2;3
∏k=1R(Dk; ak) 6

6481√3 |(a1 − a2)(a1 − a3)(a2 − a3)|: (5.2)In 1952, Kolbina [185℄ obtained exat estimates for the sum�21M(D1; a1) + �22M(D2; a2)in the family of pairs of nonoverlapping domains D1; D2 on C; ai ∈ Di; i =1; 2; and for the sum (5.1) in the family D(a) in the ase n = 3.The proofin [185℄ was one of the �rst appliations of the Goluzin variational method.Jenkins [19℄ gave a signi�antly simpler proof by using of extremal metrionsiderations and showed a sharpening of results in [185℄.In [41℄, Jenkins obtained a geometrially expliit solution of the problemon the maximum of the sum (5.1) for n > 3 with the help of the GCT. Inthe present time, this result is a diret orollary of Theorem 4.3.



212 G. V. KUZ'MINAIn the ase n = 4, an analytially impliit solution of the problem onM(a1; : : : ; an) is obtained in [195℄ (see Se. 5.7).With the problem on the maximum of the sum (5.1) in the family Dn(a),an extremal deomposition problem in a family of systems of nonoverlap-ping bigons is immediately onneted.Let n > 3. Let a = {a1; : : : ; an} be a system of distint points on theirle |z| = 1, enumerated in the order of inreasing argument. Let Pn(a)be a family of systems of nonoverlapping bigons Pk; k = 1; : : : ; n, on the z-sphere, where Pk has its verties at the points ak; ak+1. It is assumed thatthe bigon Pk; k = 1; : : : ; n; is assoiated with the lass of ars homotopi on
C\{a1; : : : ; an} to the ar k = {z : |z| = 1; argak < arg z < argak+1} andhas at the verties ak; ak+1 the inner angles equal to �. LetM(Pk; ak; ak+1)be the redued module of the bigon Pk with respet to the lass of arsonneting its sides.The results of Lavrent'ev and Goluzin ited above are supplemented bythe following simple theorem [208℄.Let a1; a2 be distint points of C. In the family P2(a) we have the in-equality 2

∑k=1M(Pk; ak; ak+1)− 2� log |a1 − a2|2 > 0:Let a1; a2; a3 be distint points of C. In the family P3(a) we have the in-equality3
∑k=1M(Pk; ak; ak+1)− 2� log |(a1 − a2)(a1 − a3)(a2 − a3)| >

2� log 6481√3 :(5:3)As shown in [204 III℄, the minimum of the linear ombinationn
∑k=1h2kM(Pk; ak; ak+1)in the family Pn(a) in the ase n = 3 for every nonnegative h1; h2; h3 isequal to the maximum of the weight sum of redued modules3

∑k=1�2kM(Dk; ak); where �1 = h1 + h3; �2 = h1 + h2; �3 = h2 + h3;



GEOMETRIC FUNCTION THEORY 213of domains in the family D3(a) of domains D1; D2; D3 . In the ase n > 4the situation is di�erent, this is observed already for n = 4 (see [204 III℄).Dwell on the extremal deomposition problem in the family of domainsof distint struture, many extremal problems in lasses of onformal map-pings are onneted with this problem. Consider the funtional�21M(D;∞) + �22M(D2) (�1 > 0; �2 > 0; �1 + �2 > 0) (5:4)de�ned on the family � of all pairs of nonoverlapping domains D1; D2 on
C

′ = C \ {−1; 1; a}; a 6= +1;−1, where D1 is a simply onneted domain,
∞ ∈ D1; D2 is a doubly-onneted domains, separating the pairs of points
−1; 1 and a;∞ and belonging to a presribed homotopi lass. In variousases, solutions of this problem are given in [184, 163,196℄. Let �(1);�(2)be two families of pairs of domains D1; D2 in � suh that the domainsD2 are doubly- onneted and are assoiated with the simplest homotopylasses H(1) and H(2) of losed Jordan urves on C

′. ( In the ase whereRea > 0; Ima > 0, the lasses H(1) and H(2) onsist, respetively, ofurves homotopi on C to the slit along the segment [−1; 1℄ and to theslit along the broken line with verties −1; ta and 1, where t > 0.) Let
{D(j)1 ; D(j)2 }, j = 1; 2; be the on�guration providing the maximumM(j) =
M(j)(�1; �2; a) for the funtional (5.4) over the family �(j). Let E(−1; 1; a)be the ontinuum of minimal apaity ontaining the points −1; 1; a.For�2=�1 6 �(j), where �(j) depend on a and are de�ned in terms of onditionsdesribing ap E(−1; 1; a),the doubly-onneted domains D(j)2 degenerate,namely, D(j)1 = C \ E(−1; 1; a), D(j)2 = ∅: For �1 = 0, D(j)1 = ∅ and thedomain D(j)2 realizes the maximum of the onformal module in the familyof doubly-onneted domains on C

′ assoiated with the lass H(2)j ; aboutthe Chebotarev problem on the ontinuum of minimal apaity and theTeihmuller problem on the maximum of the onformal module we shallspeak in the following setions.For any �1; �2 the quantity M (j) monotonially depends on a in thesame way as does the ap E(−1; 1; a) (see Se.5.2).5.3. Problem on the ontinuum of minimal apaity and relatedproblems.With the problems mentioned in the previous Setion a problem indi-ated in the title is onneted. Let a1; : : : ; an; n > 2, be distint points of



214 G. V. KUZ'MINA
C. By E(a1; : : : ; an) we denote the ontinuum of minimal apaity on-taining the points a1; : : : ; an. The domain D = C \ E(a1; : : : ; an) realizesthe maximum of the redued module M(D;∞) in the family of all simplyonneted domains on C \ {a1; : : : ; an}. Goluzin obtained a geometriallyexpliit solution of the problem on E(a1; : : : ; an): he established an analyt-ial expression for the assoiated quadrati di�erential and the onditionde�ned its parameters. This result is a partiular orollary to Theotem 4.3.The problem of obtaining of an analytially impliit solution of the prob-lem on E(a;1; : : : ; an) for arbitrary a1; : : : ; anin the ase of large n is ofonsiderable diÆulty.In the ase n = 3, a omplete solution of the problem is obtained.Theorem 4.3 implies the following result. The ontinuum E(a1; a2; a3) isthe �-set for the quadrati di�erentialq(z)dz2 = − z − (z − a1)(z − a2)(z − a3)dz2;for whih the zero  = (a1; a2; a3) is de�ned by the ondition of theonnetivity of �-set for the di�erential onsidered. This geometrially ex-pliit result yelds a desription of geometri properties of the ontinuumE(a1; a2; a3) (see the paper of Pirl [217℄), and an analytially impliit so-lution of the problem [194℄. Namely, for the funtion � = g(z) mappingthe domain C \ � onto the disk |�| < 1, we have the equationq(z)dz2 = −4�2d�2=�2:Therefore,  = (a1; a2; a3) and ap E(a1; a2; a3) are found from a systemof equations ontaining ellipti funtions [194, Theorem 1.6℄. In the sym-metri ase, the solution is simpler. The ontinuum E(0; ei ; e−i ); 0 6 6 �=2, is the �-set for the quadrati di�erentialq(z;  ) = − z − ( )z(z − ei )(z − e− )dz2;where 1 > ( ) > 0. For  = ( ) and H( ) = apE(0; ei ; e−i ), we havea simpler system of equations [194,Theorem 1.5℄.Many extremal problems are onneted with the problem onE(a1; a2; a3).We restrit ourselves to the following two examples. Let SR be the lassof funtions f ∈ S with real oeÆients 2; 3; : : : in the expansion (1.1).Let K(SR) be the Koebe set for this lass of funtions, i.e.,the exat do-main overed by the image f(U) of the disk U under every f ∈ SR. The



GEOMETRIC FUNCTION THEORY 215set K(SR) is easily found from results on H( ) = apE(0; ei ; e−i ). Wehave the following theorem [194℄.The set K(SR) is bounded by the urve w = r( )ei ;−�=2 6  6 3�=2,where r( ) = H(| |) for −�=2 6  6 �=2; r( ) = H(|� −  |) for �=2 6 6 3�=2.The set K(SR) was found �rst by Jenkins [48℄by means of the Gen-eral CoeÆient Theorem. The set K(SR) is symmetri with respet toboth oordinate axes. Let w = r( )ei ; 0 6  6 �=2; be boundarypoints of K(SR). The value r( ); 0 6  6 �=2; is de�ned by the fol-lowing ondition. Let the domain D( ) realize the maximum of the re-dued module M(D( ); 0) in the family of all simply onneted domainson C \ {0; r( )ei ; r( e−i )}: Then r( ); 0 6  6 �=2, is determinedby the ondition M(D( ); 0) = 1. As was shown in [48℄, D( ) = C \ �,where � is the union of losures of the ritial trajetories of the quadratidi�erentialQ(w; )dw2 = r2( )a( ) w − a( )w2(w − r( )ei )(w − r( )e−i )dw2; (5:5)where a( ) is uniquely determined by the ondition of onnetivity of theset � indiated.For 0 <  < �=2 ; a( ) > 0 and the ritial trajetories of the dif-ferential (5.3)are the ray w > a( ) and the trajetories T1 and T2 havingrespetive limiting end points at a( ); r( )ei and a( ); r( )e−i . Fur-ther, a(0) = r(0); a(�=2) = ∞, whene r(0) = 1=4; r(�=2) = 1=2.The same desription of the domain D( ) follows immediately fromTheorem 4.3. It is easily seen that the mapping z → r( )=z maps thedomain D( ) into the exterior of the ontinuum E(0; ei ; e−i ) of theapaity H( ), whene the boundary ar of the set K(S;R) is determinedby the ondition r( ) = H( ); 0 6  6 �=2.From Theorem 4.5 and simple geometri properties of the ontinuumE(a1; a2; a3) (see,for instane, [194℄), the following re�nement of the resultin [221℄ follows. This result is due to Emel'yanov [147℄ and Solynin [229℄.Let a point a move along an ar of the ellipse with fouses −1; 1, so thatarga inreases from 0 to �=2. Then apE(−1; 1; a) stritly inreases.Let C be the Bieberbah{Eilenberg lass, i.e.,the lass of funtions f(z)regular in the disk U = {z : |z| < 1} and suh that f(0)=0; f(z1)f(z2) 6=1



216 G. V. KUZ'MINAfor z1; z2 ∈ U . Let C(�) be the sublass of funtions f(z) ∈ C with
|f ′(0)| = �; 0 < � 6 1: In a similar way as above, the author found[197℄ that the Koebe set in the lass C(�); 0 < � 6 1, is bounded by theurve w = R(�; �)ei , where R(�; �); 0 < R(�; �) < 1, is a solution of theequationapE(−1; 1; 1=2[R( ; �)ei + 1=R( ; �)e−i ℄) = 1=(2�):5.4. The Teihm�uller problem and the Vuorinen problem.The Teihmuller problem an be formulated as foll ows.Find the maximum of the onformal module in the family of doubly-onneted domains on the z-sphere separating the point pairs −1; 1 anda;∞.We assume that a ∈ I , where I = {z : Re z > 0; Im z > 0}; a 6= 1: LetM(a) be the desired maximum. In [194℄, the following theorem is proved.logM(a) = �K′(k)K(k) ; k2 = 2a+ 1 ;where the ellipti integralsK(k) and K′(k) are understood to be funtionsthat are positive for k2 ∈ (0; 1) and de�ned for other k2 by suitable analytiontinuation (for the exat formulation see [194℄).An extremal domain D(a) of this problem is bounded by the losures ofritial trajetories of the quadrati di�erentialQ(z)dz2 = ei�(a)dz2(z2 − 1)(z − a) ; (5:6)where �(a) = − arg k2K2(k):In the ase a =∈ [0; 1) the domain D(a) is unique, in the ase a ∈ [0; 1) theextremal domains are D(a) and the domain D(a) symmetri to D(a) withrespet to the real axis.This result is obtained from Theorem 4.3 and properties of the elliptimodular funtions, these properties determine the hoie of the homotopylass of urves with whih the extremal domain is assoiated.In the ases a > 1 and a = ih, h > 0; the domainD(a) is symmetri withrespet to both oordinate axes. In the �rst ase, the boundary omponentsof D(a) are the segment [−1; 1℄ and the ray z > a, in the seond ase thear {z : |z − a| = (1 + h2)1=2; Im z 6 0} and the ray z = at; t > 1.



GEOMETRIC FUNCTION THEORY 217We have the following property ofM(a) [239℄. Let E be the ellipse withthe fouses −1; 1.If a point a moves along an ar of the ellipse E in suh a way that arga inreases, remaining in I, then M(a) stritly inreases.This assertion easily follows from Theorem 4.4. Indeedarg gradM(a) = arg a2 − 1ei�(a)and from the expression for �(a) it follows that0 < arg gradM(a)− arg√a2 − 1 < �=2;arg√a2 − 1 is the argument of the normal to the ellipse E at the point a.A hyperboli analog of the Teihmuller problem is the Vuorinen prob-lem. It an be formulated by the following way.Let 1 < R < ∞. As a model of the hyperboli plane let us take thedisk UR = {z : |z| < R} with the metri de�ned by the line elementds = |dz|=√1−R−2|z|2. Let CR = {z : |z| = R}; IR = {z : z ∈ UR;Re z >0; Im z > 0}.Let a ∈ IR; a 6= 1: Let DR(a) be the family of all doubly-onneteddomains in the disk UR, separating the points −1; 1 from the point a andthe irle CR. Find the maximum MR(a) of the onformal module in thefamily DR(a) and the domains, realizing this maximum, and investigatethe properties of MR(a) as a funtion of a.A solution of this problem is obtained by Emel'yanov and the author[157℄ and is as follows. Theorem 4.3 establishes a solution of this problemformulated in terms of hyperellipti funtions [157℄. In the ases a ∈ (1; R)and a = ih; h ∈ (0; R), the extremal on�gurations are symmetri andMR(a) is expressed in expliit form by the ellipti integrals.Let ER be a hyperboli ellipse with fouses −1; 1 and HR be a onfo-al hyperboli hyperbola. The following result [157℄ establishes the role ofsymmetri on�gurations indiated above in the problem under onsider-ation.The funtional MR(a) stritly inreases if the point a moves along anar of a hyperboli ellipse ER belonging to IR and if the point a movesalong an ar of a hyperboli hyperbola HR belonging to the same set, sothat Im a inreases.



218 G. V. KUZ'MINAThe proof is obtained in [157℄ by means of detailed analysis of geometriproperties of trajetories of assoiated quadrati di�erentials for the givenproblem and Theorem 4.4.The extremal on�gurations of some problems on extremal deomposi-tions of the disk with three distinguished points have the same propertiesas the extremal on�gurations in the Vuorinen problem. Two suh prob-lems was onsidered by Emel'yanov [155℄. Dwell on one of them.Let p ∈ U , Re p > 0, Im p > 0, 0 < x < 1. Find domains D1; D2 in thedisk U , realizing maximum M(p) of the sumM(D1) + �2M(D2); � > 0;in the family of all pairs D of nonoverlapping doubly-onneted domainsD1; D2, where the domain D1 separates the points −x; x from p, the do-main D2 separates the points p;−x; x from the irle |z| = 1.There are the numbers �− and �+; �− < 1 < �+, for whih respetivelythe domain and the domain degenerate, for � = 1 the point p is notsingular and the domains D1(1); D2(1) are joined into one domain, whihis U \ [−x; x℄. The domain D1(�−) is the extremal domain of the Vuorinenproblem. In [155℄, the following theorem is proved.The funtional M(p) stritly inreases if the point p moves along an arof the hyperboli ellipse with fouses −x; x in the diretion to the imaginaryaxes.Let p ∈ E;Re p > 0; Im p > 0, and let p0 and p1 = i√(p20 − x2)=(1− p20)be the points of intersetion of the ellipse E with the oordinate axe. Bythe last theorem,
M(p0; �) <M(p; �) <M(p1; �):The valuesM(p; �) andM(p1; �) are easily determinated by the Q-lengthsof orthogonal trajetories and their ars of the assoiated quadrati di�er-ential for a given problem.5.5. Extremal problems in the lasses of univalent funtions.Many extremal problems in the basi lasses of univalent mappings areonneted with simple problems of the extremal deomposition; about suhextremal deomposition problems we shall speak in Se. 5.2. The examplesof results obtained owing to the indiated onnetion are the results on themaximum and minimum of |f(z0)| in the lass R(�) obtained by Gavrilyuk



GEOMETRIC FUNCTION THEORY 219amd Solynin [163℄; a result on the region of values f(z0) in the lass SR,say, �(SR; z0), is due to Fedorov [160℄.Dwell on the last result.A geometrially expliit result in the problemon �(SR; z0) was obtained by Jenkins [48℄ with the help of the GCT.The last problem was onsidered later by Chernikov [130℄, who used theGoluzin variational method. As is well known, �(SR; z0) is ontained in�(T; z0), where �(T; z0) is the region of values f(z0) in the lass T oftypial real funtions, and part of the boundary of �(SR; z0) belongs tothe boundary of �(T; z0). Finding the remaining part of the boundary of�(SR; z0) turned out to be diÆult. Fedorov [160℄ sueeded in investi-gating the boundary of �(SR; z0) and obtained in this way a ompletesolution of the problem. The proof in [160℄ is based on the simultaneousonsideration of two extremal deomposition problems: the above problemon M (j) for pure imaginary values of a (see Se. 5.2) and the problem onthe maximum of the sum (5.4)over another family of pairs of domains (thelatter problem is onneted with the problem on a ontinuum of minimalapaity, whih was solved in [159℄).A number of problems on regions of values of funtional systems on thelasses of univalent funtions are studied in the book of A.Vasil'ev [250℄.In [250℄, the set of values of the system
{|f(z1)|; |f(z2|}; 0 < z1 < z2 < 1;in the lass SR is found. The lower bound of this set is easily established byonsidering of the redued module of the bigon U \ {[−1; r1℄∩ [r2; 1℄} withboth verties at z = 0 and its image for the extremal mapping. The upperbound is found with the help of onsidering the problem on the maximumof the sum (5.4) in the ase a > 1 and the problem of the maximum of theorresponding funtional in the family of pairs of domains, de�ned on thesphere with distinguished points −1; 1; a1; 1;∞, where 0 < a1 < 1 <∞:By the same module approah the regions of values of some funtionalsystems in the lass S(M) of bounded funtions from the lass S and in theMontel lass of funtions f(z) = a1z + a2z2 + : : : , regular and univalentin U and satisfying the ondition f(!) = !; 0 < ! < 1, are found [250℄.Jenkins [41℄ introdued the lass �(r) of funtions f(z) from the lass�, whih map |z| > 1 onto a domain whose omplement ontains thedomain with the inner onformal radius with respet to the origin at leastr, 0 < r < 1. In [41, 50℄, exat estimates for |�0| and |�1| in the lass �(r)were obtained. The lass �(r) is partiularly onvenient for applying the



220 G. V. KUZ'MINAmodule method. By this method Gavrilyuk and Solynin [163℄ solved someextremal problem in this lass. Solynin [233℄ obtained an exat estimatefor the diameter of level urves, i.e., for the funtional
|f(z1)− f(z2)|; |z1| = |z2| = � > 1;in the lass �(r).In the lass �, a distortion theorem is known (z = �ei�):(1− �−2)24�2(1 + �−2)2 6

|f ′(z)f ′(−z)|
|f(z)− f(−z)|2 6

(1 + �−2)24�2(1− �−2)2 : (5:7)Extending this result, Suita [243℄ obtained the inequalities(1− �−3)3√3�3(1 + �−3)3 6

3
∏k=1 |f ′(z!k−1)|f(z!k−1)− f(z!k)| 6

(1 + �−3)33√3r3(1− �−3)3 ; (5:8)where z = �ei�; � > 1 and ! = e2i�=3, and showed all equality ases. Suitaobtained inequalities (5.6) with the help of the GCT of Jenkins. Howeverthe inequalities (5.6) are simple orollaries to the Goluzin inequality (seethe seond inequality in (5.2)) and inequality (5.3).In [200, 208℄, the upper and the lower estimates for the funtional in(5.7) in the lass �(r) are obtained. Under limit passage for �→ ∞, fromthe indiated result in [233℄ and the result in [200℄ the maximum of |�1|in the lass �(r) is found. Earlier the indiated maximum was obtained in[50℄ by means of the GCT (in the Extended Form). Note that the extensionof inequalities (5.8) to the lass �(r) leads to an estimate of |�2| in thelass �(r).5.6. Harmoni measures and triad modules.There are various onnetions between harmoni measures and modules.Of importane is the relationship between harmoni measures of a ertaintype and triad modules.A number of Jenkins' results [42, 80, 103 I, II, III; 120℄ and relatedworks of various authors were devoted to problems onerning harmonimeasures.By a triad (P; �;D), the on�guration onsisting of a simply onneteddomain D of hyperboli type, an open border ar � of D, and a point Pinterior to D is meant (the triads of Jenkins). We denote the harmonimeasure of � taken in P with respet to D by !(P; �;D). By the moduleM(P; �;D) we mean the module of the lass of loally reti�able open ars



GEOMETRIC FUNCTION THEORY 221in D \ {P} running from � bak to � and separating P from the losedborder ar �∗ omplementary to �. This module is alled a triad module;this term was introdued by Jenkins [42℄. There is a stritly monotoneinreasing funtion that relates !(P; �;D) to M(P; �;D).In [103 I℄ the following simple property of a triad module is noted. LetU = {|z| < 1} and let � be the ar on the unit irle from e−i�=2 to ei�=2(in the positive sense), 0 < � < 2�. Consider the triad (0; �; U), and letM(0; �; U) be its triad module. The quadrati di�erentialdz2z(z − ei�=2)(z − e−i�=2)determines the extremal on�guration of the Mori problem onerningthe maximum of the module in the family of doubly-onneted domainsseparating pairs of points 0;∞ and ei�=2; ei(2�−�=2) (see Se. 5.4). Fromthe de�nition of the triad module it follows that the desired triad moduleis equal to twie of the mentioned maximum. Hene forM(0; �; U) we havea relation in terms of the ellipti integrals:M(0; �; U) = 12K′(os�=4)=K(os�=4):Dwell on the result in [80℄. Let U = {|z| < 1}, and let � be a half-openar in U with end points � ∈ U and 1. Let G = U \�. Gaier [162℄ onsideredthe problem of estimating from below the harmoni measure !(0; �;G) ofthe ar � with respet to G at the origin, and he gave an expliit but notsharp estimate for this quantity. Jenkins showed that the problem is mostnaturally stated in terms with topology determination, and he �rst solvedthe problem when the hange in the argument on the ar � from 1 to �has an assigned value. Shortly, this solution is stated as follows.Let � be an ar in U \ {0} with end points � ∈ U and 1. Further weassume that the hange of argument ��(arg z) has the assigned value Æ.Then !(0; �;��) > !(0; �∗; G�∗);where �∗ is a ompeting ar uniquely determined as follows. There is aunique point ei�; � is real,suh that the quadrati di�erentialQ(z)dz2 = (z − ei�)[z(z − �)(z − �−1)(z − 1)℄−1dz2with the onstant (6= 0) is real in the unit irumferene and �∗ onsistsof a trajetory of Q(z)dz2 on |z| = 1 from 1 to ei� and a trajetory in D



222 G. V. KUZ'MINAfrom ei� to � together with their end points. Equality may our only if �oinides with �∗.Fuhs (see [127℄) raised the problem of �nding the greatest lower boundof the harmoni measure at the origin of a set in |z| 6 1 whih meets ev-ery radius. This problem has been investigated by Marshal and Sundberg[213℄. For a ontinuum, a geometri expliit solution of this problem isobtained by Jenkins [103 I℄. In this paper it is shown that the result in [80℄ited above readily gives a haraterization of the extremal in the problemof Fuhs. Solynin [236℄ extended this result, onsidering the above ontin-uum whose index about the origin is a half integer n=2; he obtained ananalytially impliit solution. Jenkins [120℄ simpli�ed Solynin's proof andgave a geometrially expliit identi�ation of the extremal on�guration.A new approah to the problem of Fuhs provides the Jenkins result[116℄ devoted to the n-fold symmetrization. In [120℄, Jenkins simpli�es theproof in [236℄ and gives a geometrially expliit haraterization of theextremal on�guration.In this onnetion, see also the papers of Liao [211℄, the Jenkins refer-enes [223, Se. 9℄, Solynin's artile [236℄.5.7. Problems with free poles of quadrati di�erential.Let E be a ontinuum on C, and let Dn(E); n > 2, be the nth diameterof E: dn(E) = { maxk;l∈E ∏16k<k6n |k − l|}2=[n(n−1)℄:The problem on the maximum of dn(E) in the family of all ontinua E ofthe unit apaity is an example of the problem with free poles of assoiatedquadrati di�erential: Goluzin showed that an extremal ontinuum of thisproblem is the �-set for the quadrati di�erentialQ(z)dz2 = −
∑16k<l6n 1(z − k)(z − l)dz2;here k, i.e., the Fekete points on E, are unknown parameters of the givenproblem, Reih and Shi�er [221℄ shoved that the eah extremal ontinuumof the problem under onsiderations possesses this property. The extremalon�guration is unique up a linear transformation and it is the ontinuumof minimal apaity for its Fekete points. The problem is solved for n =2; 3; 4. By the Faber theorem, in the ase n = 2 an extremal ontinuum



GEOMETRIC FUNCTION THEORY 223is the segment E∗2 = [−2; 2℄, Goluzin showed that in the ase n = 3, thisontinuum is E∗3 = ∪3k=1[0; 41=3!k−1; ! = e2�=3. The problem on d4(E)is solved by the author [194℄. The extremal ontinuum E∗4 is symmetriwith respet to both oordinate axes and it is onneted with a suitableontinuum of minimal apaity by the onditionE∗4 = {z : H(�))z2 ∈ E(0; ei�0 ; e−i�0)};where �0; 0 < �0 < �=2; is the solution of the equation(�) = 13 os�(see notation in Se.(5.3)). In the proof in [194℄, various methods of inves-tigation were used.Let a = {a1; : : : ; an} be a system of distint points on C,and let � =
{�1; : : : ; �n} be a system of positive numbers. As above, let Dn(a) bethe family of all systems D = {D1; : : : ; Dn} of nonoverlapping simple on-neted domains on C; ak ∈ Dk; k = 1; : : : ; n. The �rst results of the modulemethod in the problems of the maximum M(a1; : : : ; an;�1; : : : ; �n) of thesum (5.1) over the family Dn(a) were mentioned in Se.5.2. The indiatedmaximum will be denoted by M(a;�);M(a;1) will be denoted by M(a).The problem on M(a) will be alled the problem An.The problem on the maximum of the onformal invariant2� n

∑k=1M(Dk; ak)− 2n− 1 ∑16k<l6n log |ak − al|in the family D(a) with respet to every point system a = {a1; : : : ; an}will be alled the problem Bn.In the ases n = 2; 3, the problems An and Bn are equivalent, and wehave the results of Lavrent'ev, Golusin, and Kolbina (for their proofs, seeomments of Jenkins [19℄).Theorem 4.3 has led to a omplete solution of the problems An and Bnfor n = 4 [195℄. The maximum in the problem A4 is expressed in termsof the problem on E(−1; 1; a), where a is expressed by the ross-ratio ofthe quadrangle of points under onsideration. It allowed one to �nd thelargest value of the above maximum for all values of a, and thus also tosolve the problem B4; see [195℄ and the paper of Fedorov [158℄, as well.



224 G. V. KUZ'MINAFor n > 5, the problems An and Bn remain unsolved. Under theadditional assumption that the systems of points {a1; : : : ; a5} are sym-metri with respet to a irle or a line, the maximum I∗5 was found bythe author [199℄ and Dubinin [138℄; in this ase, the extremal system is
{1; !; !2; 0;∞}, where !3 = 1. It is plausible that this system of points isalso extremal for the problem B5 in the general ase.An investigation of some andidates for the extremal on�gurations ofthe problem Bn is given in [206℄.Let now a = {a1; : : : ; an} be a system of distint points of the disk U ,and let � = {�1; : : : ; �n} be a system of positive numbers. Let DU (a) bethe family of all systems D = {D1; : : : ; Dn} of nonoverlapping simply on-neted domains in U; ak ∈ Dk; k = 1; : : : ; n. The problem on the maximumof the sum (5.4) for all systems a of points ak ∈ U and systems of domainsDk of the family DU (a) will be alled the problem Kn. The problem of themaximum of the funtionalJn = 2� n

∑k=1M(Dk; ak)− { 23(n− 1) ∑16k<l6n log(|ak − al||1− akal|)+ 13 n
∑k=1 log(1− |ak|2)}in the family DU (a) with respet to every system a = {a1; : : : ; an} of thepoints in U will be alled the problem Ln.The diÆulty in solving Problems Bn;Kn, and Ln for suÆiently largen is onneted with the presene of various admissible on�gurations, sat-isfying the neessary onditions, but not realizing the desired maximum.Therefore, it is of interest to establish additional onditions that the ex-tremal on�gurations must satisfy. These onditions are given by the fol-lowing theorem, due to Kuznetsov [190, 193℄.The assoiated quadrati di�erential in Problem Bn does not have mul-tiple zeros. The bound every from domains of the extremal system in Prob-lems Bn and Knis a losed Jordan urve.Geometrially, this theorem shows that the domains indiated do nothave interior slits and "holes".An addition to the previous theorem, see [193℄.In the ase n = 2, the maximum of the sum (5.4) in the family DU (a)was found by Kufarev and Falles [189℄. Using their results ited above,



GEOMETRIC FUNCTION THEORY 225Kuznetsov [193℄ obtained a simple solution of the problem K2 for any�1; �2. The solution of the problem K3 in the ase � = 1 was obtainedby Kostyuhenko [186℄. In addition to theoreti funtion reasonings, thissolution was needed some omputer alulation.5.8. Problems in the presene of a symmetri onditions.As it was indiated above, the extremal deompositions problems inthe ase of large number of free parameters are of onsiderable diÆulty.Therefore it is natural to onsider these problems for the ondition thatthe disposition of the points ak satis�es ome additional onditions. Firstresult in this diretion belongs to Dubinin [134℄, and it is given by thefollowing theorem.Let a = {a1; : : : ; an}; n > 2, be a system of the points of C. In the family
D(a)

M(a1; : : : ; an) 6
n2� log 4n: (5:9)Equality in (5.9) ours only in the ase where the points a1; : : : ; an areuniformly distributed on C.This result is supplemented by the following theorem [204 III℄ in thefamily Pn(a) (see Se.(5.2)).Let a = {a1; : : : ; an} be a system of points on C; n > 3. In the family

Pn(a) we have the inequalitymaxa min
Pn(a) n

∑k=1M(Pk; ak; ak+1) 6
2n� log 4n: (5:10)Equality in (5:10) ours only in the same ase as in (5:9).Dubinin [134℄ showed that the maximum of every of the funtionals

M(0; a1; : : : ; an) and M(0; a1; : : : ; an;∞;�; 1; : : : ; �); �2 = 1=2, wherea1; : : : ; an are points of C, ours only in the ase of indiated symmet-ri disposition of the points a1; : : : ; an. This gave simple expressions fordesired maxima.The author [203, 202 I℄ established, that the mentioned property issatis�ed for the funtional M(0; a1; : : : ; an;�; 1; : : : ; 1) for 0 < � 6 1 andfor the seond of the indiated funtionals for �2 6
n28 .



226 G. V. KUZ'MINAIn the proof, Dubinin used the method of separating transformation ofondensers and domains, the author used Theorem 4.4, whih establishesthe onnetion between two extremal deomposition problems.Conerning the ondition �2 6 n2=8 in the problem on the funtional
M(0; a1; : : : ; an;�; 1; : : : ; 1; �), the following theorem is proved [202, I℄.The maximum M(0; ei�; e−i� ;∞), where 0 6 � 6 �=2, is attained for� = �0, where �0; �=6 < �0 < �=2, is the solution of the equation (�) =1=2; (�) is the zero of the quadrati di�erential, de�ning the ontinuumof minimal apaity E(0; ei� ; e−i�), 0 6 � 6 �=2.A number of extremal deomposition problems in the presene of ertainsymmetry in the ondition of the problem under onsideration is solved in[149, 204{207℄.5.9. Problems for whih assoiated quadrati di�erential is a om-plete square.In deomposition problems ited in the title the module method, as arule,immediately yields a omplte solution. We shall indiate some suhresults, following the presentation in Emel'yanov's artile [151℄.Let P = {a1; : : : ; an} be a system of distinguished points on C and let
C

′ = C\P . Let P be the family of all systems D = {D1; : : : ; Dn1 ; D(1)1 ; : : : ;D(1)n2 } of nonoverlapping domains, where Dj is a simply onneted domainon C
′ ∪ {aj} suh that aj ∈ Dj for j = 1; : : : ; n1(n1 6 n); D(1)k ; k =1; : : : ; n2; is a doubly onneted domain on C

′. It is assumed that thefamily P is assoiated with a given family of homotopy lasses of losedJordan urves on C. Let � = {�1; : : : ; �n1} and l = {l1; : : : ; ln2} be twogiven systems of positive numbers.Let D∗ = {D∗1; : : : ; D(1)∗n2 } be the system of domains realizing the max-imum value of the funtionalF (D) = n1
∑j=1 �2jM(Dj ; aj) + n2

∑k=1 l2kM(D(1)k )in the family P . Here M(D(1)k ) denotes the module of the domain D(1)kwith respet to the family of urves separating its boundary omponents.It is known that the extremal system D∗ is unique, and where existsa unique quadrati di�erential assoiated with the problem suh that his



GEOMETRIC FUNCTION THEORY 227�-set deomposes C onto domains forming the system D∗. This di�erentialis of the form Q(w)dw2 = n
∑j=1 ( Aj(w − aj)2 + �j(w − aj))dw2;where Aj = −�2j=4�2 if j 6 n1 and Aj = 0 otherwise.Let
M(P ) = F (D∗);and onsider the funtionalJ(P ) =M(P ) + 14� ∑j;k;j 6=k �k;j log |ak − aj |2; �k;j = �j;k; (5:12)where the �k;j are some real numbers. We assume that the ondition

∑k;k 6=j �k;j = −�2j ; j = 1; : : : ; n;holds, where we set �j = 0 for n1 < n 6 n2. In this ase, the funtionalJ(P ) is onformally invariant.If the funtional (5.12) is bounded from above then exists an extremalsystems of points P ∗ = {a∗1; : : : ; a∗n} and an assoiated quadrati di�eren-tial QP∗(w)dw2.The following preposition is valid [151℄.Let P ∗ = {a∗1; : : : ; a∗n} be an extremal system of points for the funtional(5:12). Then the quadrati di�erential QP∗(w)dw2 has the formQP∗(w)dw2 = 14�2 n
∑k;j=1;k<j �k;j( 1w − a∗k − 1w − a∗j )2:If P ∗ = {a∗1; : : : ; a∗n;∞},thenQP∗(w)dw2 = 14�2(

n
∑k;j=1;k<j �k;j( 1w − a∗k − 1w − a∗j )2+ n

∑j=1 �j;n+1 1(w − a∗j )2)dw2:By means of obtained expressions for QP∗(w)dw2 , in [151℄, the inequali-ties in the lass � are obtained whih are generalizations of the inequalitiesof Golusin and Grunsfy, respetively.



228 G. V. KUZ'MINADwell on another results in [151℄. The following lemma is valid.Let P = {a1; : : : ; an;∞} be a set of distinguished points on C, let F (D)be a funtional of the form (5:11) of the extremal deomposition problemorresponding to the set P , and let QP (z)dz2 be the assoiated quadratidi�erential. If QP (z)dz2 = − 14�2(

n
∑j=1 �jz − aj )2;then

M(P ) = F (D∗) = − 12� n
∑p;q=1;p 6=q �p�q log |ap − aq |:As it is noted in [151℄, this lemma follows of [143, Theorem 1℄. In [151℄,a not ompliated proof of this lemma by the module method is given.Now let P = {a1; a2; a3;∞} be a system of distint points of C. Con-sider the problem of the extremal deomposition of the z-sphere in thefamily of all nonoverlapping simply onneted domains Dj ; aj ∈ Dj ; j =1; : : : ; 4(a4 =∞), with the funtionalF (D) =M(D1; a1) +M(D2; a2) +M(D3; a3) + 9M(D4;∞):Let D∗ = {D∗1; : : : ; D∗4} be the extremal systems of domain, M(P ) =F (D∗). SetJ(P ) = M(P ) + 12� (log |a2 − a1|2 + log |a3 − a1|2 + log |a1 − a3|2):The funtional J(P ) is bounded from above [151, Theorem 1℄. By The-orem 4.3, an assoiated quadrati di�erential of this problem is a ompletesquare. We have the following theorem [151℄.Let T = T0 ∪ T+ ∪ T−, where T0 = [−2; 1℄,T+ = {z : |z − !| = √3; z > 0}; T− = {z : z ∈ T+};here ! = e2�=3. The maximum of the funtional J(P ) is equal to 0 and itis attained at every systems of pointsPa = {!; !; a;∞}; a ∈ T;and also at systems of points obtained from the indiated systems of pointsby linear-frational transformations and only at suh systems of points.



GEOMETRIC FUNCTION THEORY 229Now we onsider the deomposition problem of the w-sphere into simplyonneted domains Dj ; j = 1; : : : ; 4, suh that aj ∈ Dj and a doubly-onneted domain D. The domain D has to separate two pairs of pointsa1; a3 and a2;∞ and is assoiated with the lass losed Jordan urveshomotopi on C \ {a1; a2; a3} to the slit along the segment [a1; a3℄. Set~F (D) =M(D1; a1) +M(D2; a2) +M(D3; a3) + 9M(D4;∞) + 4M(D);~M(P ) = ~F (D∗):Let the funtional ~J(P ) be de�ned similarly to (5.13), i.e.,~J(P ) = ~M(P ) + 12� (log |a2 − a1|2 + log |a3 − a2|2 + log |a1 − a3|2: (5:14)The funtional ~J(P ) is bounded from above. Let 
1;3 denote the om-ponent of C \ T ontaining the point w = ∞. The following statement isan easy onsequene of the last theorem.The maximum value of the funtional ~J(P ) is equal to 0. The fun-tional ~J(P ) ahieves its maximal value at systems of points obtained fromthe system Pa = {!; !; a;∞}, where a ∈ 
1;3, by linear-frational trans-formations and only at suh system s of points.By means of the last theorem and its orollary, an inequality for aombination of initial oeÆients of the expansion of a funtion f(z) ∈ �is obtained in [151℄. In ontrary to the analog inequality obtaining with theuse of the GCT of Jenkins, this inequality is valid without any restritionson the �rst oeÆients of this expansion.Some extremal deomposition problems in multiply onneted domainsfor whih the assoiated quadrati di�erentials are omplete squares areonsidered by Emel'yanov in [154℄.5.10. Solution of some isoperimetri problems.By means of the method of modules, a solution of a number of isoperi-metri problems was obtained. We shall indiate some appliation of thenotion of the redued module of a triangle introdue by Solynin [230, 238℄.In [218℄, P�olya and Szeg�o posed the problem of �nding the maximum ofthe onformal radius R(�n; 0) over the family of all n-gons �n(0 ∈ �n) ofa given area. For n = 3; 4, this problem was solved in [218℄ with the help ofthe Steiner symmetrization;for n > 4, the proof in [218℄ fails. Solynin [230℄obtained a solution of this isoperimetri problem for all n simultaneously;



230 G. V. KUZ'MINAthe maximum is attained only in the ase where �n is a regular n-gonwith enter at the origin. In [234℄, some inequalities between geometri andfuntional harateristis of n-gons, suh as the perimeter, diameter, innerradius, trans�nite diameter, torsion rigidly, and eletrostati apaity, wereestablished. The proof uses the notion of dissymmetrization introdued byDubinin [132℄.Some diÆult isoperimetri problems for n-gons were solved by Solyninand Zalgaller [240,241℄. In the �rst paper, the authors proved that amongall n-gons �n with �xed area, the regular n-gon, and only this one, hasminimal logarithmi apaity. This result was onjetured by P�olya andSzeg�o [218℄ (and was proved by them for n = 3; 4). Let C�n be the un-bounded omponent of C \ �n. The proof uses the onnetion betweenthe redued module of C�n and the redued modules of the trilateralsassoiated with a speial triangulation of an n-bigon �n; this approahwas developed by Solynin in an earlier work [230℄).In [241℄ the authors prove various isometri inequalities for a urvilinearpolygon with n sides, eah of whih is a smooth ar of urvature at most k.The proof relies on the method of dissymmetrization and on a speialpurely geometri theorem for the polygons under onsideration.5.11. Conluding remarks.In the theory of the module method, presented in Se.4, the assoiatedquadrati di�erentials have poles of order not exeeding 2. The open ques-tion is to extend this theory to quadrati di�erentials with poles of higherorder.In a number of ases, extremal deomposition problems in whih the as-soiated quadrati di�erentials have poles of higher orders an be reduedto problems in whih the quadrati di�erentials have poles of orders 6 2.Suh a redution is based on the fat that a quadrati di�erential with apole f order n > 4, say, at the point z = 0, an be approximated by a qua-drati di�erential with n− 2 poles of seond order that are symmetriallyloated on the irle |z| = � (in the ase n = 3, also there is a simple poleat the origin). This approah was used in [200, 208℄ for the estimate of theoeÆient �1 in the lass �(r).Another approah onsist of the introdution of redued modules of do-mains similar to the end and strip domains of a quadrati di�erentials withpoles of high order, and of the onsideration of a deomposition problem



GEOMETRIC FUNCTION THEORY 231in a family of domains ontaining the domains indiated. The preliminaryresult in this diretion was obtained in [209℄. This result an be regardedas an analog of the Jenkins GCT.6. OTHER RESULTS OF J.A.JENKINSJenkins is the author of more than 130 of sienti� papers.These papersare devoted to various questions of GFT. They are prominant appliationsof the method of the extremal metri and related approahes.On the general CoeÆient Theorem, its extensions and generalizations,we said in Se. 3. The general priniple stated in [39 I, II℄ and its develop-ments were presented in Se. 4. Dwell briey on other results of Jenkins.6.1. Jenkins made a large ontribution to the development of the methodof symmetrization.Let us give one of the results of Jenkins in the symmetrization methodof P�olya and Szeg�o.Let D be a doubly-onneted domain in the w-sphere, and let P be apoint and � be a ray with end point at P . Let D∗ be the domains assoi-ated with D by the irular symmetrization determined by P and � (seede�nitions in [41℄). Let M(D) and M(D∗) be the modules of D and D∗,in eah ase for the lass of urves separating the boundary omponents.Then (P�olya and Szeg�o) M(D) 6 M(D∗): (6:1)Jenkins obtained the following uniqueness result [44℄.Let the irular symmetrization be de�ned by the origin and the positivereal axis. Equality in (6.1) ours only if D∗ is obtained from D by a rigidrotation about the point w = 0.Analogous results are valid for the symmetrization of quadrangles.As it was be noted (see Se. 5.1) in early papers of Jenkins [22 ?,20,32℄,the eÆieny of the ombination of the general extremal metri priniplewith the symmetrization method of P�olya and Szeg�o was demonstratedwith examples of the solution of diÆult problems.6.2. Some results of the GFT express the fat that a given set has a mini-mal apaity ( or possesses an analogous extremal property) in some familyof planar sets satisfying one or another geometri ondition. The examples



232 G. V. KUZ'MINAare many of overing theorems. Jenkins [11℄ obtained the following resultby a symmetrization argument.Let f ∈ S and let L(f; r) denote the Lebesgue length measure of theset of values on |w| = r not overed by the image of |z| < 1 under themapping w = f(z). For 1=4 < r < 1, we have the sharp boundL(f; r) 6 2r aros(8r1=2 − 8r − 1)with equality only for funtions given expliitly in [11℄.This work has had a number of ontinuations.In this onnetion, see thereent paper of Dubinin [140℄.6.3. In [65℄, Jenkins gave a simple proof of a riterion for a losed set Eto have minimal apaity in a given lass of admissible sets and obtainedthe orresponding uniqueness assertion. This riterion is formulated asonditions on E and on the omparison sets that are expressed in terms ofthe topology of the orthogonal trajetories to the level urves of the Greenfuntion for the domain D = C \E. Coneptually, the paper of Tamrazow[205℄ on overing of urves under onformal mapping is lose to this paper.The paper [71℄ is devoted to geometri questions related to apaity.The results of this paper, very simple in formulation, led to signi�ant re-�nements in a number of previously known results of the overing theoremtype in the lasses � and S.6.4. A number of Jenkins' results [42,80,103I,II,III;120℄ were devoted toproblems onerning harmoni measures. Some of these results were sitedin Se. 5.6.6.5. The method of the extremal metri has various forms. Using a formof this method lose to the area method, Jenkins [63℄ proved the SpeialCoeÆient Theorem. This result does not ontain many of the most in-teresting appliations of the General CoeÆient Theorem, but it makespossible to onsider a number of other problems.In [61℄, Jenkins applied a modi�ed form of the methods of the extremalmetri to obtain generalizations of the usual span theorems for multiplyonneted domains. In this way, it was possible to prove for the �rst timetheorems of this kind for funtions regular in a domain (previously, suhproblems had been onsidered only for funtions having given singulari-ties).



GEOMETRIC FUNCTION THEORY 2336.6. A number of Jenkins' papers is devoted to the theory of Riemann sur-faes, results on the boundary orrespondene, appliations of the methodof the extremal metri to nonunivalent funtions, and other questions.Many of his papers dealt with the theory of quasionformal mappings.A short aount by Jenkins [100℄ and his fundamental survey artile[123℄ have been devoted to the method of the extremal metri in its variousaspets. These publiations reeted many results of Jenkins.PUBLICATIONS OF JAMES A. JENKINS1. Some problems in onformal mapping. Thesis (Ph.D.) HarvardUniversity. 1948.2. Some problem in onformal mapping. | Trans. Amer. Math. So.67 (1949), 327{350.3. Positive quadrati di�erentials in triply-onneted domains. |Ann. Math. (2) 53 (1951), 1{3.4. Hyperellipti trajetories (jointly with D. C. Spener). | Ann.Math. (2) 53 (1951), 4{35.5. On an inequality of Goluzin. | Amer. J. Math. 73 (1951), 181{185.6. On the topologial theory of funtions.|Canad. J. Math. 3 (1951),276{289.7. On a theorem of Spener. | J. London Math. So. 26 (1951),313{316.8. Generalization of a theorem of Mandelbrojt. | Amer. J. Math. 73(1951), 807{812.9. Remarks on \Some problems in onformal mapping." | Pro.Amer. Math. So. 3 (1952), 147{151.10. Contour equivalent pseudoharmoni funtions and pseudoonju-gates (jointly with M. Morse). | Amer. J. Math. 74 (1952), 23{51.11. On values omitted by univalent funtions. | Amer. J. Math. 75(1953), 406{408.12. Various remarks on univalent funtions. | Pro. Amer. Math.So. 4 (1953), 595{599.13. A symmetrization results for some onformal invariants.| Amer.J. Math. 75 (1953), 510{522.14. Some results related to extremal length. Contributions to the theoryof Riemannn surfaes, pp. 87{94. Annals of Mathematis Studies,No. 30. Prineton University Press, Prineton, N.J., 1953.



234 G. V. KUZ'MINA15. Topologial methods on Riemann surfaes. Pseudoharmoni fun-tions (jointly with Marston Morse). Contributions to the theory ofRiemann surfaes, pp. 111{139. Annals of Mathematis Studies,No. 30. Prineton University Press, Prineton, N.J., 1953.16. Another remarks on \Some problems in onformal mapping." |Pro. Amer. Math. So. 4 (1953), 978{981.17. Conjgate nets,onformal struture, and interior transformationson open Riemann surfaes (jointly with M.Morse) | Pro. Nat.Aad. Si. U.S.A. 39 (1953), 1261{1268.18. Curve families F ∗ loally the level urves of a pseudoharmonifuntion (jointly with M.Morse). | Ata Math. 91 (1954), 1{42.19. A reent note of Kolbina. | Duke Math. J. 21 (1954), 155{162.20. On a problem of Gronvall. | Ann. Math.(2) 59 (1954), 490{504.21. On the loal struture of the trajetories of a quadrati di�erential.| Pro. Amer. Math. So. 5 (1954), 357{362.22. On Bieberbah{Eilenberg funtions. I, II, III. | Trans. Amer.Math. So. 76 (1954), 389{396; 78 (1955), 510{515; 119 (1965),195{215.23. A general oeÆient theorem. | Trans. Amer. Math. So. 77(1954), 262{280.24. Some uniqueness in the theory of symmetrization. I, II. | Ann.Math. (2) 61 (1955), 106{115; 75 (1962), 223{230.25. On irumferentially mean p-valent funtions. | Trans. Amer.Math. So. 79 (1955), 423{428.26. On irularly symmetri funtions. | Pro. Amer. Math. So. 6(1955), 620{624.27. On a lemma of R. Huron. | J. London Math. So. 30 (1955),382{384.28. Sur quelques aspets globaux du theoreme de Piard. | Ann. Si.Eole Norm. Sup. (3) 72 (1955), 151{161.29. On a problem of Luzin. | Mihigan Math. J. 3 (1955{1956), 187{189.30. On expliit bound s in Shottky's theorem. | Canad. J. Math.7(1955), 76{82.31. Conjugate nets on an open Riemann surfae (jointly with M. Mor-se). | Letures on funtions of a omplex variable, pp. 123{185.The University of Mihigan Press, Ann Arbor, 1955.



GEOMETRIC FUNCTION THEORY 23532. Some theorem on boundary distortion.| Trans. Amer. Math. So.81 (1956), 477{500.33. On quasionformal mappings. | Rational Meh. Anal. 5 (1956),343{352.34. On a result on Keogh.| J. London Math. So.31 (1956), 391{399.35. On empliit bounds in Landau's theorem. I, II. | Canad. J. Math.8(1956), 423{425; 33 (1981), 559{562.36. Some new anonial mappings for multiply-onneted domains. |Ann. Math. (2) 65 (1957), 119{196.37. A new riterion for quasionformal mapping. | Ann. Math. (2)65 (1957), 208{214.38. On a onjeture of Spener.| Ann. Math. (2) 65 (1957), 405{410.39. On the existene of ertain general extremal metris. I, II. | Ann.Math. (2) 66 (1957), 440{453; TohokuMath. J.(2) 45 (1993), No.2,249{257.40. On a anonial onformal mapping of J. L. Walsh.|Trans. Amer.Math. So.88 (1958), 207{213.41. Univalent funtions and onformal mapping. | Ergebnisse derMathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe:Moderne Funtionentheory. Springer-Verlag, Berlin{Gottingen{Heidelberg, 1958. Seong print. orreted, 1965. òÕÓ. �ÅÒÅ×. 1-ÇÏ ÉÚÄ. äÖ. äÖÅÎËÉÎÓ, ïÄÎÏÌÉÓÔÎÙÅ ÆÕÎË�ÉÉ É ËÏÎÆÏÒÍÎÙÅÏÔÏÂÒÁÖÅÎÉÑ. í., 1962.42. On the Denjoy onjeture. | Canad. Math. J.10 (1958), 627{631.43. Book Review: Introdution to Riemann surfaes. | Bull.Amer.Math. So.64 (1958), No.6, 382{385.44. A ounter-example to a statement on onformal mapping of Rie-mann surfaes. | Pro. Amer. Math. So.10 (1959), 423{424.45. On the type problem. | Canad. J. Math. 11 (1959), 427{431.46. Book Review: Multivalent funtions. | Bull. Amer. Math. So.65(1959), No. 31, 63{166.47. On weighted distortion in onformal mapping. I, II. | Illinois J.Math.4 (1960), 28{37; Bull. London Math. So.30 (1998), No. 2,151{158.48. On univalent funtions with real oeÆients. | Ann. Math. (2)71 (1960), 1{15.
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