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t. Results and appli
ations of the method of modules ingeometri
 fun
tion theory are presented. The method was originatedby J. A. Jenkins,and further development pro
eeded in works ofthe Leningrad{St.Petersburg mathemati
al s
hool. A retrospe
tivedes
ription of the origin of the method is given, and the determiningrole of Jenkins in the development of the method of the extremalmetri
 is pointed out.Dedi
ated to the memory of James Allister JenkinsThe survey is organized in following way.In the Introdu
tion, a brief a

ount of the history of Geometri
 Fun
tionTheory is given.In Se
s. 1 and 2 of this survey, basi
 de�nitions and fa
ts of the theory ofmodules and the theory of quadrati
 di�erentials are des
ribed; we preservethe terminology from the Jenkins monograph [41℄. These notions and fa
tsare given for 
ompleteness of the presentation; they are used throughoutin the following parts of this survey everywhere.In Se
. 3, a short des
ription of the General CoeÆ
ient Theorem ofJenkins and some appli
ations of this theorem are given.Se
tion 4, is devoted to results of the method of modules of 
urve fam-ilies, Se
. 5 is 
on
erned with some appli
ations of this method.Se
tion 6 deals with results of Jenkins related to the symmetrizationmethod and various other questions.At the end of this review, a list of Jenkins' arti
les and a list of 
itedworks of other authors are presented.In the sequel, the following notation is used: C is the 
omplex plane,
C = C ∪ {∞} is the Riemann sphere, UR = {z : |z| = R}; U1 := U ,U(a; �) = {z : |z − a| < �}, C = {z : |z| = 1}.Key words and phrases: extremal metri
, quadrati
 di�erential, traje
tory, moduleof 
urve family, redu
ed module, extremal de
omposition.181



182 G. V. KUZ'MINALet M(D; a) be the redu
ed module of a simply 
onne
ted domain Dwith respe
t to a point a ∈ D :M(D; a) = 1=2� logR(D; a), where R(D; a)is the 
onformal radius of the domain D with respe
t to the point a if a 6=
∞, M(D;∞) = −1=2� logR(D;∞). By M(D; a; b), the redu
ed moduleof the bigon D with respe
t to its verti
es a and b is denoted.INTRODUCTION: geometri
 fun
tion theory. The roleof J. A. Jenkins in the development of this theoryThe obje
ts of study in geometri
 fun
tion theory (for short,the GFT)are 
lasses of fun
tions de�ned in given simply 
onne
ted or multiply 
on-ne
ted domains or on a Riemann surfa
e. A distin
tive 
hara
teristi
 ofthis theory is that it 
onsiders the fun
tions in su
h 
lasses mainly asmappings possessing some spe
i�
 geometri
 properties. The essential rolein the problems of the GFT belongs to univalent fun
tions, these fun
-tions realize one-to-one mappings. Univalent mappings possess a numberof important extremal properties in various general 
lasses of 
onformalmappings.Mu
h attention in the GFT has been paid to the following obje
ts. LetS denote the family of fun
tions f(z) regular and univalent in the disk
|z| < 1 with the expansion in a neighborhood of the origin given byf(z) = z + 
2z2 + 
3z3 + : : : : (0:1)Let D be a domain on the z-sphere 
ontaining the point at in�nity.Let�(D) denote the family of fun
tions f(z) meromorphi
 and univalent inD with the Laurent expansion in a neighborhood of in�nity given byf(z) = z + �0 + �1z−1 + : : : : (0:2)In parti
ular, if D is the simply 
onne
ted domain |z| > 1, we denote thelast 
lass merely by �.The beginning of the GFT has been made in 1907 in works of Koebeon fun
tions in the 
lass S. In the middle of the last 
entury, the theoryof univalent fun
tions has already been a suÆ
iently advan
ed mathemat-i
al dis
ipline in whi
h powerful methods appli
able to general families ofunivalent fun
tions were developed. The �rst of the deeper methods to beapplied in the theory of univalent fun
tions was the parametri
 method dueto Loewner [212℄. Gr�otzs
h was �rst who treated the theory of univalentfun
tions in a uni�ed manner by a single method, namely, by the method



GEOMETRIC FUNCTION THEORY 183of the extremal metri
. Several years later, Grunsky [181℄ treated a numberof the same problem by the method of 
ontour integration. Finally, S
hi�er[226{228℄ developed a variational method for treating extremal problemsfor univalent fun
tions. S
ha�er and Spen
er [223{225℄ gave another vari-ant of the method of interior variations. Goluzin [164℄ applied his versionof this method to various extremal problems in the theory of univalentfun
tions. A 
hara
teristi
 of these methods and the results obtained bythese methods are given in the Introdu
tion to the monograph of Jenkins[41℄; this monograph will repeatedly mentioned in the sequel.Note that a Bieberba
h typothesis in
uen
ed the initial development ofthese 
lassi
al methods. Namely, in 1916 L.Bieberba
h 
onje
tured that inthe 
lass S for all n > 2 we have the inequality
|
n| 6 nand the equality |
n| = n o

urs only for the Koebe fun
tions K�(z) =z=(1 − �z)2; |�| = 1: The fun
tions K�(z) map the disk |z| = 1 onto thewhole plane with a radial slit.In the early 50s, a new method arose in the theory of univalent fun
-tions, namely, the method of symmetrization. An eÆ
ient approa
h tosymmetrization for fun
tion theoreti
 problems was introdu
ed by P�olyaand Szeg�o [218℄. This method was initially used in the works of Hayman[183℄.That was the situation in the theory of univalent fun
tions when themethod of the extremal metri
 appeared. A more 
omplete des
ription isgiven in [41, Introdu
tion℄. Fundamental forwards steps for the 
reation ofthis method are due to Jenkins. The basis of the method of the extremalmetri
 is the Gr�otzs
h method of strips.In the Jenkins monograph [41℄, the following estimate of Gr�otzs
h'sresults is given.\His approa
h, 
alled by him the method of strips, represents a very es-sential improvement over the primitive length-area proofs, operating withthe 
hara
teristi
 
onformal invariants of doubly-
onne
ted domains andquadrangles. He readily obtained most of the then known results and in anoutstanding series of papers [169{180℄ obtained many interesting new re-sults, atta
king with equal fa
ility problems for simply-
onne
ted domainsand for domains of �nite 
onne
tivity. Notable also are his 
ontributionsto the theory of domains of in�nite 
onne
tivity. . . . It is diÆ
ult to un-derstand the slowness with whi
h proper re
ognition 
ame to him. Even



184 G. V. KUZ'MINAto-day, when one feels that his work must be universally known, we �nd hisresults being expli
itly 
redited to others . . . Perhaps the best measure ofthe brillian
e of his a

omplishment is the e�ort required for some mathe-mati
ians at the present time, working with the best tools now available,to redis
over his results, obtained twenty-�ve years ago and more."Another dire
tion in the development of the extremal metri
 methodwas presented by work of Ahlfors [124℄ whi
h is also an improvement overthe length-area proof.In 1946, Ahlfors and Beurling [125℄ gave an important new formulationof the extremal metri
 method.The important role in the development of the method of the extremalmetri
 is due to Tei
hm�uller [247-249℄. We 
ite Jenkins' expression [41℄.\On the one hand he made expli
it the 
lose relationship of this methodwith Di�erential Geometry. (However this idea is present impli
ity and insome pla
es even impli
itly in the work of Gr�otzs
h, see espe
ially [177III, 179℄.) Even more important was his dis
overy, based on his studyof Gr�otzs
h's results on his own work on quasi
onformal mapping, of theessential role played by quadrati
 di�erentials. In this 
onne
tion he formu-lated a notable prin
iple giving the manner in whi
h quadrati
 di�erentialsare asso
iated with the solutions of extremal problems parti
ularly in sofar as the singularities of the quadrati
 di�erential 
orrespond to givendata of the extremal problem."Re
all that the Tei
hm�uller prin
iple 
onsists in the following assertion.If in an extremal problem it is assumed that a 
ertain point is �xed andthere are no other restri
tions, then the quadrati
 di�erential has a simplepole at that point. If an addition it is required that the fun
tion under
onsideration in the problem has �xed values for its �rst n derivativesat this point (in terms of the 
orresponding lo
al parameter), then thequadrati
 di�erential has a pole of order n+1 at this point. More generally,the highest derivatives o

urren
e may not be required to be �xed but some
ondition on its region of variation may be desired.However, Tei
hm�uller did not prove any general result that realized thisprin
iple in 
on
rete form.One of the most general results of the method of the extremal metri
and all the GFT is the General CoeÆ
ient Theorem of Jenkins (for short,the GCT;[41℄, Theorem 4.1). A more general form of the GCT was given



GEOMETRIC FUNCTION THEORY 185in [50℄. The GCT realizes the Tei
hm�'ller prin
iple for a wide range ofextremal problems.Brie
y about the GCT and its appli
ations will be said in Se
. 3.Almost simultaneously with the GCT, Jenkins [39 I℄ dis
overed thegeneral prin
iple that establishes an equivalen
e of a module problem forseveral 
urve 
lasses and a problem on extremal de
omposition of a Rie-mann surfa
e into a family of domains asso
iated with given 
urve 
lasses.This prin
iple was the basis for a new method of the GFT referred toas the method of modules of 
urve families (shortly, the module methodor MM). This method was established by the St.Petersburg mathemati
als
hool.Results of the module method and its appli
ations are the 
entraltheme of this survey.At the present time, the method of the extremal metri
 is a generalmethod in the theory of fun
tions.Along with the development of the extremal metri
 method, the 
lassi-
al methods of the GFT have also been perfe
ted. For example, a generaland rather heuristi
 form of the area method was worked out. The Lebedevmonograph [210℄ is devoted to this method. The logi
al 
ompletion of theLoewner-Kufarev theory was shaped �nally in the studies of Pommerenke[219, 220℄ and Gutlyanskii [182℄. In the series of work by Goryanov, thesemigroup aspe
t of the Loewner{Kufarev method was developed and ap-plied [165{168℄.The theory of quadrati
 di�erentials led to simpli�
ation of the proofand 
ompleteness of results of the variational method. The eÆ
ien
y ofthe 
ombination of the extremal metri
 method and the method of sym-metrization was shown already in the �rst investigations by these methods.To the present time, the method of symmetrization gained obtainedunexpe
ted appli
ations and development. Also, with the help of the po-larization method Dubinin obtained the solution of the Gon
har problemon 
ondenser 
apa
ity, whi
h that indu
ed the interest to this method[133℄. Working on the Gon
har problem 
on
erning the harmoni
 mea-sure, Dubinin 
reated the method of dissymmetrization [132℄. Contrary tothe 
lassi
al results, dissymmetrization of a symmetri
 
ondenser does notin
rease its 
apa
ity. Polarization and dissymmetrization are widely usedin modern investigations.



186 G. V. KUZ'MINAOne of the new symmetrization approa
hes is the pie
ewise separatingsymmetrization of 
ondensers and domains, developed by Dubinin [134℄.In a number of 
ases, the results obtained by this symmetrization 
an bederived by the method of modules.A number of investigations due to Dubinin and his s
hool are devotedto asymptoti
 properties of the 
apa
ity of generalized 
ondensers un-der degeneration of its plates and some appli
ations of this approa
h[136,137,143℄. The indi
ated approa
h is parallel to the extremal metri
approa
h to the 
on
ept of a redu
ed module.For the questions mentioned above see the surveys arti
les [135, 141℄,the monograph [138℄.On the ba
kground of development of new methods, a 
lassi
al methodshowed itself unexpe
tedly. In 1984, L. de Branges [128, 129℄ proved theBieberba
h hypothesis with the help of the Loewner method [212℄, whi
h
ompleted almost 70s years history of the existen
e of this hypothesis. AsuÆ
iently unusual history of de Branges' proof is presented in [161℄.In the last de
ades, in the works of Dubinin and his pupils, a 
onsider-able advan
e was obtained in 
lassi
al and modern problems for polynomi-als and entire fun
tions. This progress was attained due to the appli
ationof univalent fun
tion theory and also potential theory and symmetrization.For this question, see the survey arti
le [139℄.1. MODULES AND EXTREMAL LENGTHS1.1. In Se
s.1 and 2, many de�nitions and fa
ts from [41℄ are given withoutreferen
es to [41℄.Sin
e we shall dis
uss families of 
urves on a Riemann surfa
e, we startwith the de�nition of a 
onformally invariant metri
.Let R be a Riemann surfa
e. We say that 
onformally invariant metri
�(z)|dz| is de�ned on R if every lo
al uniformizing parameter z on R givesrise to a real nonnegative measurable fun
tion �(z) satisfying the followingtwo 
onditions.(1) If 
 is a re
ti�able 
urve in a planar parametri
 neighborhood forz, then the integral ∫
 �(z)|dz| exists as a Lebesgue-Stieltjes integral (the
ase where this integral is equal to +∞ is not ex
luded).(2) At every point of interse
tion of two neighborhood on R that arerelated to lo
al parameters z and z∗, for the 
orresponding fun
tions �(z)



GEOMETRIC FUNCTION THEORY 187and �∗(z∗) we have �∗(z∗) = �(z)|dz=dz∗|:A 
urve on a Riemann surfa
e R is said to be lo
ally re
ti�able if forevery 
losed ar
 of this 
urve lying entirely in some neighborhood on R inwhi
h a lo
al parameter z is de�ned, the 
orresponding ar
 on the z-planeis re
ti�able.The notion of 
onformally invariant metri
 allows us to introdu
e thelength of 
urves on R, and also the module and extremal length of a familyof 
urves, whi
h yield a general pattern of de�ning 
onformal invariants.We shall use the following L-de�nition of a module (see [41℄).Let � be a family of lo
ally re
ti�able 
urves on aRiemann surfa
e R, and let P be the 
lass of 
onformally invariantmetri
s �(z)|dz| de�ned on R and su
h that �(z) is square integrable inthe z-plane for every lo
al uniformizing parameter z = x+ iy; we assumethat the quantitiesA�(R) = ∫∫

R

�2(z)dxdy; L�(�) = inf
∈�∫
 �(z)|dz|are not equal to 0 or∞ simultaneously. Let PL be the sub
lass of P de�nedas follows: for � ∈ PL and 
 ∈ � we have
∫
 �(z)|dz| > 1:If the set PL is not void, then the quantityM(�) = inf�∈PLA�(R)is 
alled the module of the family �. If P is not void and PL is void, thenwe put M(�) = ∞. The re
ipro
al of M(�) is the extremal length of �.If M(�) 6= ∞, then every metri
 in PL is said to be admissible. If thereexists a metri
 �∗(z)|dz| in PL su
h thatM(�) = A�∗(R);then it is 
alled an extremal metri
 of the module problem for the family �.Most fundamental of the basi
 properties of modules is the fa
t that theyare 
onformally invariant. When an extremal metri
 exists, it is essentiallyunique (see [41℄, Theorems 2.1 and 2.2).



188 G. V. KUZ'MINA1.2. Mention simple examples of modules of 
urve families.Theorem 1.1. Let Q be a quadrangle with verti
es denoted by 1; 2; 3; 4taken in the natural order on the boundary of Q. Let � be the 
lass oflo
ally re
ti�able 
urves in Q joining the sides 12 and 34. The quadrangle
an be mapped 
onformally onto a re
tangle R with verti
es A1; A2; A3; A4so that 1; 2; 3; 4 
orrespond respe
tively to these verti
es. Let A1A2 havelength a;A2A3 length b. Then � has module m(�) equal to a=b.Theorem 2.2. Let D be a doubly-
onne
ted domain lying in the w-planefor whi
h neither boundary 
omponent is redu
ed to a point. Let � be the
lass of re
ti�able Jordan 
urves lying in D and separating its boundary
omponents, and let �′ be the 
lass of lo
ally re
ti�able 
urves lying inD and joining its boundary 
omponents. The domain D 
an be mapped
onformally onto the 
ir
ular ring in the z-plane de�ned byr1 < |z| < r2 (0 < r1 < r2):Then � has module m(�) equal to 12� log r2r1 , and �′ has module m(�′) equalto 2�= log r2r1 .In the terms of modules of doubly-
onne
ted domains, well-known lem-mas of Gr�otzs
h are formulated with elegan
e ([41℄,Theorems 2.6 and 2.7).Lemma 1.1. (The �rst lemma of Gr�otzs
h.) Let Di; i = 1; : : : ; n,be non-overlapping quadrangles lying in the 
ir
ular ring r1 < |z| < r2 (0 < r1 <r2), ea
h with a pair of opposite sides on the two bounding 
ir
les of thatring. Let Di have the module Mi for the 
lass of 
urves joining this pairof opposite sides. Then n
∑i=1Mi 6 2�= log(r2=r1):Equality o

urs if and only if the quadrangles Di are obtained from thering by radial de
omposition so that the sum of areas of the quadrangles isequal to the area of the ring.The se
ond lemma of Gr�otzs
h establishes an appropriate extremalproperty for de
omposition of a 
ir
ular ring into nonoverlapping 
on
en-tri
 rings.1.3. The de�nition of the module of a family of 
urves 
an be extendedin various ways. One su
h generalization is related to the notion of the



GEOMETRIC FUNCTION THEORY 189redu
ed module of a simply 
onne
ted domain with respe
t to an interiorpoint.Let D be a simply 
onne
ted domain of hyperboli
 type, and z0 a pointof D. For � > 0 suÆ
iently small, the set D(�) = D \ U(z0; �) is a doubly
onne
ted domain. LetM(D(�)) be the module of this domain for the 
lassof 
urves that separate the boundary 
omponent of D(�). The redu
edmodule of D with respe
t to z0 is de�ned as follows:M(D; z0) = lim�→0{M(D(�)) + 12� log �}:Let R(D; z0) be the 
onformal radius of the domain D with respe
t toz0. Then M(D; z0) = 12� logR(D; z0);if z0 6=∞, M(D;∞) = − 12� logR(D;∞).Now we give the de�nition of the redu
ed module of a bigon withnonzero integer angles at its verti
es, suggested by Emel'yanov (see [148,198, 156, 238℄).Let D be a simply 
onne
ted domain of hyperboli
 type with two dis-tinguished boundary elements ~a1 and ~a2 with supports at di�erent or 
o-in
iding points a1 and a2 (for de�niteness, let a1; a2 ∈ C). We assumethat D satis�es the following 
ondition (∗): if � = g(z) is the 
onformalhomeomorphism of D onto the strip −h=2 < Im � < h=2 that satis�esRe g(~a1) = −∞;Re g(~a2) = +∞, and �1 and �2 are suÆ
iently small pos-itive numbers, then in the 
onne
ted 
omponent �k(�k) of D ∩ U(ak; �k)having ~ak as a boundary element we have the relationg(z) = (−1)k−1{Ak log(z − ak) + ~gk(z)}; k = 1; 2;where Ak > 0, and ~gk(z) is a regular fun
tion. It is 
lear that �k = h=Akis the interior angle of D at the boundary element ~ak.Suppose that D satis�es 
ondition (∗). Let � be the 
lass of re
ti�able
urves in D that join the sides of D. We denote by Sk(�k) the ar
 ofthe 
ir
le |z − ak| = �k 
ontained in the boundary of the domain �k(�k).Let D(�1; �2) be a quadrangle in D with opposite sides Sk(�k); k = 1; 2.Let �(�1; �2) denote the 
lass of lo
ally re
ti�able 
urves in D(�1; �2) thatseparate the sides S1(�1) and S2(�2), and let be the module of D(�1; �2)



190 G. V. KUZ'MINAfor the 
lass �(2)(�1; �2). The limitM(D) := lim�1;�2→0{M(D(�1; �2)) + 2
∑k=1 �−1k log �k}is 
alled the redu
ed module of the bigon D for the 
lass � and is denotedby M(D; a1; a2).Another extension of the notion of the module of 
urve families is that ofthe redu
ed module of a triangle suggested by Solynin [230,238℄. Ne
essary
onditions of the existen
e of this redu
ed module were investigated alsoby Emel'yanov [153℄.1.4. Important for appli
ations to the theory of univalent fun
tions isthe extension obtained by 
onsidering simultaneously a number of 
urvefamilies.The module de�ned in this manner is a fun
tion rather than anumber. Jenkins [39 I, II; 41℄ has proved the existen
e of an extremal met-ri
 in situations of 
onsiderable generality. Namely, Jenkins has establishedthe general prin
iple whi
h states the relationship between quadrati
 dif-ferentials and a 
lass of modules for multiple 
urves families. This prin
iplewas a basis of the module method. This result of Jenkins is 
ited in Se
. 4.2.2. QUADRATIC DIFFERENTIALSThe notion of quadrati
 di�erential is one of the most important notionsin more re
ent geometri
 fun
tion theory. Quadrati
 di�erentials withoutthis notion and an expli
it general analyti
 de�nition have already beenpresented in Gr�otzsh's earlier papers, as well as in S
hi�er's fundamentallemma from 1938 and its appli
ations to extremal problems in 
onformalmapping. Tei
hm�uller made quadrati
 di�erentials an independent notionand formulated his general prin
iple (see the Introdu
tion). In investiga-tions by Jenkins, the great attention is paid to the theory of quadrati
di�erentials.Below we give some fa
ts from quadrati
 di�erentials theory, follow-ing the presentation in [41℄. Many results on quadrati
 di�erentials are
olle
ted in a later monography of Strebel [242℄.2.1. Let R be a Riemann surfa
e.A quadrati
 di�erential on R is an entitywhi
h assigns, to every lo
al uniformizing parameter z on R, a fun
tionQ(z) meromorphi
 in the neighborhood for the parameter z and satisfyingthe following 
ondition. If z∗ is another lo
al uniformizing parameter on
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R and Q∗(z∗) is the 
orresponding fun
tion asso
iated with z∗, and ifthe neighborhoods for z and z∗ overlap, then on the interse
tion of theseneighborhoods we have Q∗(z∗) = Q(z)(dz=dz∗)2:A point P ∈ R is 
alled a zero or a pole of order � of the di�erentialQ(z)dz2 if for every lo
al uniformizing parameter z,P is represented bya point having this property with respe
t to Q(z). The zeros and polesof Q(z)dz2 are 
alled 
riti
al points. The set of zeros and simple poles ofQ(z)dz2 will be denoted by C, and the set of poles of order � > 2 will bedenoted by H .A maximal regular 
urve on R on whi
h Q(z)dz2 > 0 (respe
tively,Q(z)dz2 < 0) is 
alled a traje
tory (respe
tively, an orthogonal traje
tory)of Q(z)dz2.The traje
tories and orthogonal traje
tories are intrinsi
ally asso
iatedwith a given quadrati
 di�erential, i.e., they do not depend on the spe
i�

hoi
e of a lo
al uniformizing parameter.2.2. For the �rst time, the lo
al stru
ture of traje
tories has been des
ribedby Tei
hmuller [247℄ without proof. The �rst detailed presentation underthe additional (inessential) 
ondition of hyperellipti
ity of the quadrati
di�erential in question has been given by S
hae�er and Spen
er [225℄. An-other proof was suggested by Jenkins [21℄, who 
onsidered the 
ase of aquadrati
 di�erential on a Riemann surfa
e. In the 
ase of the Riemannsphere, the lo
al and global stru
ture of traje
tories of a quadrati
 di�er-ential is des
ribed by Jensen in a 
hapter of the Pommerenke book [220℄.Jensen's treatment uses the 
onformal mappings to redu
e the quadrati
di�erential to a form as simple as possible. In this 
onne
tion, see also theStrebel monograph [242℄.The stru
ture of traje
tories near the points of R \ H is des
ribed bythe following two theorems [41℄.Theorem 2.1. For any point P ∈ R\ (C ∪H) there exists a neighborhoodN of P on R and a homeomorphism of N onto the disk |w| < 1 that takesthe maximal open ar
 of every traje
tory in N to a segment on whi
h Imwis 
onstant.



192 G. V. KUZ'MINAThus, ea
h point of R \ (C ∪H) belongs to a unique traje
tory of thedi�erential Q(z)dz2, whi
h is either an open ar
 or a 
losed Jordan 
urveon R.Theorem 2.2. For ea
h point P ∈ C of order �(� > 0 if P is a zero and� = −1 if P is a simple pole), there exists a neighborhood N of P on Rand a homeomorphism of N onto the disk |w| < 1 that takes the maximalopen ar
 of every traje
tory on N to an open ar
 on whi
h Imw(�+2)=2 is
onstant. There are � + 2 traje
tories with limiting endpoints at P ; theirlimiting tangential dire
tions at P are spa
ed at equal angles of opening2�=(�+ 1).The behavior of the traje
tories near the points belonging to H turnsout to be mu
h more 
ompli
ated. We give a redu
ed version of Theorems3.3 and 3.4 in [41℄.Theorem 2.3. Suppose that P ∈ H is a pole of order � > 2, and let z be alo
al parameter su
h that P 
orresponds to z = 0. Let � > 0 be suÆ
ientlysmall.I. Let � = 2, and(for some 
hoi
e of a bran
h of the square root) letQ(z)1=2 = (a+ bi)z−1(1 + b1z + : : : ); a; b ∈ R; a+ bi 6= 0;in the vi
inity of z = 0. Asymptoti
ally, the image of every traje
torymeeting the disk |z| < � behaves as a logarithmi
 spiral for a 6= 0; b 6= 0and as a re
tilinear ray for a 6= 0; b = 0. If a = 0, then the image of everytraje
tory meeting the 
ir
le |z| = � is a 
losed Jordan 
urve lying in the
ir
ular annulus �− 0(�) < |z| < �+ 0(�).II. Let � > 3. Then the image of every traje
tory having a limitingendpoint at z = 0 tends to this point along (�−2) dire
tions equally spa
edat angles of 2�=(� − 2). The image of every traje
tory meeting the disk
|z| < � tends to z = 0 in at least one sense. If the image of a 
ertaintraje
tory lies entirely in the disk |z| < �, then it tends to z = 0 in twoadja
ent limiting dire
tions.2.3.When we 
onsider the global stru
ture of traje
tories of the di�erentialQ(z)dz2, an important part is played by the set � de�ned as the union ofall traje
tories of Q(z)dz2 that have a limiting end point in the set C. Theelements of � are 
alled 
riti
al traje
tories of the di�erential Q(z)dz2. Let� denote the 
losure of �.



GEOMETRIC FUNCTION THEORY 193The �rst general result on the global stru
ture of traje
tories was ob-tained by Jenkins and Spen
er [4℄, where it was shown that in the 
aseof a hyperellipti
 quadrati
 di�erential, the stru
ture of traje
tories is de-s
ribed in terms of domains of four types (the de�nition of these basi
types of domains is given below) together with a �nite number of domainsin whi
h some of the traje
tories belonging to the family � are everywheredense. Later, Jenkins applied the same arguments to positive quadrati
di�erential on a �nite Riemann surfa
e. A quadrati
 di�erential on a �-nite Riemann surfa
e R is positive if, in terms of a boundary uniformizingparamerer z, the fun
tion Q(z) is regular and positive on the segment ofthe real axis 
orresponding to the boundary points of R with the ex
eptionof the zeros of Q(z) (these zeros are ne
essarily of even order).Any positive quadrati
 di�erential is automati
ally regular in the bound-ary of R. To make the formulations shorter, we agree that every quadrati
di�erential on a 
losed Riemann surfa
e (in parti
ular, on the z-sphere) ispositive.The following lemma of an algebrai
 nature [41, Lemma3.2℄ establishesa property of quadrati
 di�erentials, whi
h is important for appli
ations.Lemma 2.1. Consider a positive quadrati
 di�erential on a �nite Rie-mann surfa
e R of genus g with n boundary 
omponents; let p be the totalorder of the poles of this di�erential and q the total order of its zeros, whereea
h zero on the boundary (ne
essarily of even order) is 
ounted with halfof its multipli
ity. Then p− q = 4− 4g − 2n:It follows that in the 
ase R = C we have p− q = 4.In the de�nitions of basi
 types of domains, below R is a �nite Riemannsurfa
e and Q(z)dz2 is a quadrati
 di�erential on R.An F -set K withrespe
t to this di�erential is a subset of R su
h that ea
h traje
tory ofQ(z)dz2 that meets K lies entirely in K. The inner 
losure of a set K isde�ned as the interior of the 
losure of K and is denoted by K̂. The inner
losure of an F -set is also an F -set.A ring, 
ir
ular, strip, end, or density domain for the di�erentialQ(z)dz2is a maximal 
onne
ted open F -set possessing the following properties.(1)A ring domain D 
ontains no points of the set C∪H and is swept outby traje
tories of Q(z)dz2, ea
h being a 
losed Jordan 
urve. For a suitable
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hoi
e of a pure imaginary 
onstant 
, the fun
tion w = exp{
 ∫ Q(z)1=2dz}
onformally maps D onto the 
ir
ular annulus r1 < |w| < r2.(2) A 
ir
ular domain C 
ontains a unique double pole A of Q(z)dz2,and C \A is swept out by traje
tories of Q(z)dz2, ea
h being a 
losed Jor-dan 
urve separating A from the boundary of C. For a suitable 
hoi
e of apure imaginary 
onstant 
, the fun
tion w = exp{
 ∫ Q(z)1=2dz} extendedby zero to the point A 
onformally maps C onto the disk |w| < R andtakes A to w = 0.(3)A strip domain S 
ontains no points of the set C∪H and is swept outby traje
tories of Q(z)dz2, ea
h having a limiting endpoint in one dire
tionat a point A ∈ H and a limiting endpoint in the other dire
tion at somepoint B ∈ H (possibly 
oin
iding with A). The fun
tion � = ∫ Q(z)1=2dz
onformally maps the domain S onto the strip a < Imw < b.The lo
al stru
ture of the traje
tories of the di�erential Q(z)dz2 impliesthat A and B must be poles of Q(z)dz2 of order > 2.(4) An end domain E 
ontains no points of the set C ∪H and is sweptout by traje
tories of Q(z)dz2 ea
h having a limiting endpoint at one andsame point A ∈ H in ea
h of the two possible dire
tions. The fun
tion� = ∫ Q(z)1=2dz 
onformally maps the domain E onto the upper or thelower half-plane of the �-plane (depending on the 
hoi
e of a bran
h of thesquare root).The point A must be a pole of Q(z)dz2 of order > 3.A density domain F 
ontains no points of the set H , and F \C is sweptout by traje
tories of Q(z)dz2,ea
h being everywhere dense in F .2.4.The global stru
ture of traje
tories is des
ribed by the Basi
 Stru
tureTheorem (for short,the BST) in [41℄. Here we give a short version of thistheorem.Theorem 2.4. Let R be a �nite Riemann surfa
e and Q(z)dz2 be a pos-itive quadrati
 di�erential on R. Assume that this 
on�guration is not
onformally equivalent to any of the following possible 
ases: (1) R is thez-sphere, Q(z)dz2 = dz2; (2) R is the z-sphere, Q(z)dz2 = Kei�dz2=z2,K > 0, � is real; (3) R is a torus, Q(z)dz2 is regular on R. Then R \ �
onsists of a �nite number of ring, 
ir
ular, strip, and end domains.Ea
h pole of Q(z)dz2 of order � = 2 has a neighborhood 
ontained in a
ir
ular domain, or a neighborhood 
overed by the inner 
losures of �nitelymany strip domains, and ea
h pole of order � > 3 has a neighborhood
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overed by the inner 
losures of � − 2 end domains and �nitely many(possibly, none) strip domains.The inner 
losure �̂ of the set � need not be empty. If �̂ 6= ∅, then R
ontains domains in whi
h every traje
tory is everywhere dense.The question of whether every traje
tory had a point set 
losure whi
hwas either an ar
 or a Jordan 
urve, i.e., whether 
onversely there 
ould bere
urrent traje
tories was 
onsidered by S
hae�er and Spen
er [225℄. Theyshowed in parti
ular that there 
ould be no re
urrent traje
tory in the
ase of a di�erential with one or two poles and obtained the same resultfor a parti
ular type of the meromorphi
 quadrati
 di�erential with threepoles. They expe
ted and were trying to prove that this was the generalsituation.Jenkins proved that the only general 
ir
umstan
es in whi
h one 
anaÆrm the absen
e of re
urrent traje
tories for positive quadrati
 di�er-entials on �nite Riemann surfa
e are in the 
ase of s
hli
htartig domainsand when the total number of poles and boundary 
omponents is at mostthree. In the 
ase R = C, the Three Pole Theorem is as follows [41℄.Theorem 2.5. Let Q(z)dz2 be a quadrati
 di�erential on C having atmost three distin
t poles. Then the set �̂ is empty.Note that for the quadrati
 di�erentialsQ(z)dz2 = ei�[(z2 − 1)(z − a)℄−1dz2; � ∈ R;with four distin
t poles ±1; a;∞; the set �̂ is empty only for 
ountablymany values of �: In ea
h of these 
ases,� 
onsists of two analyti
 ar
s
onne
ting some pair of points among {−1; 1; a;∞}, and the domain C\�realizes the maximum of the 
onformal module in the 
orresponding familyof doubly 
onne
ted domains on C.Theorem 2.4 has turned out to be suÆ
ient for many appli
ations andfor the proof of the GCT,but it leaves open the question of the stru
tureof traje
tories in domains 
ontaining an everywhere dense traje
tory. Ananswer to this question is given by the Extended Form of the Basi
 Stru
-ture Theorem obtained in [51℄. Let � ∈ � be the union of all traje
toriesof Q(z)dz2 one of whose limiting endpoints is a point of C, and the otherone is a point of C ∪H .
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onditions of Theorem 2:4 be ful�lled. Then R \� 
onsists of a �nite number of ring, 
ir
ular, strip, end, and densitydomains.2.5. The fa
ts 
on
erning the stru
ture of traje
tories of quadrati
 dif-ferentials are widely used in the GFT. In many investigations, poles ofthe asso
iated quadrati
 di�erential are free parameters. The fa
ts on thestru
ture of the traje
tories in some 
ases allow one to establish a symme-try in the arrangement of these poles, whi
h leads to the solution of theproblem 
onsidered. One of these fa
ts is the following lemma of Pirl [217℄.Lemma 2.2. Let Q(z)dz2 be a meromorphi
 quadrati
 di�erential on C.Let 
 be a 
riti
al traje
tory of this di�erential, a and b be the limitingendpoints of 
; a 6= b. Assume that the segment [a; b℄ has no 
ommon pointswith 
 and that on the domain bounded by the 
urve 
 and the segment[a; b℄ 
riti
al points of Q(z)dz2 are not present. Then on the interval (a; b)at least one point of tangen
y with a traje
tory of Q(z)dz2 is present.A re
ent example of the usage of this lemma is the work [157℄ devotedto the Vuorinen problem.3. THE GENERAL COEFFICIENT THEOREM AND ITSAPPLICATIONS3.1. As was already noted, one of the most general results of the methodof the extremal metri
 is the General CoeÆ
ient Theorem of Jenkins ([41℄,Theorem 4.1). This theorem (for short,the GCT) is the 
entral topi
 ofthe monograph [41℄, a more general form of the GCT was given in [50℄.The GCT realizes the Tei
hmuller prin
iple for a wide range of extremalproblems.Within the limits of the present survey, we restri
t ourselves to a general
hara
terization of that theorem. In the GCT one 
onsiders a positivequadrati
 di�erential Q(z)dz2 on a �nite Riemann surfa
e R, a family �of domains �j on R admissible with respe
t to this di�erential, and anadmissible family f of fun
tions fj asso
iated with �. It is assumed thatQ(z)dz2 has poles P1; : : : ; Pn of order at least 2.By an admissible family � of domains �j ; j = 1; : : : ; k; on R with re-spe
t to Q(z)dz2, we mean the 
omplement on R of the union of a �nite
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tories of Q(z)dz2ea
h of whi
h is either 
losed or has a limit-ing end point in ea
h sense at a point of C, possible end points of thesetraje
tories and a �nite number of ar
s in R\H on 
losures of traje
tories.A

ording to this de�nition, every point of H is interior to a domain �j .An admissible family f of fun
tions fj , j = 1; : : : ; k, asso
iated with �is a family, with the following properties: (1) the fun
tions fj 
onformallymap the domains �j onto nonoverlapping domains on R; (2) if A is a poleof the di�erential Q(z)dz2 in �j , then fj(A) = A; (3) if A is a pole ofQ(z)dz2 in �j of order at least 2 and A is mapped by the lo
al parameterz to the point at in�nity, then the 
oeÆ
ients of the expansions of thefun
tions Q(z) and fj(z) in terms of the same parameter are subje
t to
ertain normalization 
onditions; (4) �nally, the family f satis�es some
onditions of a topologi
al nature.The GCT provides an inequality for a 
ertain fun
tional; the latterinvolves 
oeÆ
ients of the expansions of Q(z) and fl(z) near the poles Pj ,j = 1; : : : ; n; and a statement on the equality 
ases in this inequality.In the proof of the GCT, the key point is the invo
ation of the Basi
Stru
ture Theorem and of the extremal properties of the Q-metri
 |d�| =
|Q(z)|1=2|dz|. In a

ordan
e with the BST, whi
h is 
onformally invarianton R \H , some spe
ial neighborhoods U(Pj ; L) of the points Pj ∈ H areintrodu
ed(L is a real parameter, and the neighborhood U(Pj ; L) 
ontra
tsto the point PJ as L→ ∞). Let �j(L) be the domains obtained from �jby deleting these neighborhoods,�i(L) = �i \ n

⋃j=1U(Pj ; L); i = 1; : : : ; k:For the areas in the Q-metri
 of the images of the domains �i(L) un-der the mappings realized by the fun
tions in f , some lower and upperestimates are established in terms of the areas of �i(L) in the same met-ri
. Combination of the estimates obtained leads to the inequality of theGCT. Equality in this inequality o

urs only if the mappings realized bythe fun
tions in f are isometri
 in the Q-metri
 and every traje
tory of thedi�erential Q(z)dz2 is mapped again to a traje
tory by the 
orrespondingfun
tion in f . Furthermore, no open set on R 
an be exterior relative to
∪ki=1fi(�i).The General CoeÆ
ient Theorem has passed through a number of 
onse-quent extensions and generalizations [23,41,50,60,62℄.The Extended Form
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onditions ofthe GCT for admissible fun
tions fl are weakened, and result obtained isapplied to a broader range of problems. The proof in [50℄ required of addi-tional 
onsiderations related to the 
hange of the uniformizing parameter.By the GCT we shall always mean the Extended Form of the GCT.The su

ess in applying the GCT depends on the right 
hoi
e of adi�erential Q(z)dz2, an admissible family � of domains, and an admissiblefamily f of fun
tions.The proof of the GCT in the 
ase R = C was reprodu
ed by Jen-sen [220℄.As the monograph of Jenkins [41℄ shows, the for
e of the GCT (alreadyin its initial form )is su
h that it in
ludes as 
orollaries pra
ti
ally allknown results about of univalent fun
tions. These results are presentedwith signi�
ant simpli�
ation and uniformity of proofs. The GCT has ledto solution of new, by statement, extremal problems.3.2. Dwell 
ompletely brie
y on some appli
ations of the GCT. By meansof GCT, Jenkins established [48℄ signi�
antly more 
omplete results thanthose obtained previously in the 
lass SR of fun
tions f ∈ S with real
oeÆ
ients 
2; 
3; : : : in the expansion(1.1). In parti
ular, he found a ge-ometri
ally expli
it 
ondition determining the Koebe set, say, K(SR), forthe 
lass SR (see Se
. 5.3). The region of values of f(z0) in the 
lass SR,where z0 is an arbitrary point of U , is determined in [48℄ by an analogous
ondition.In [49 I℄ Jenkins worked out in detail a low order version of the GCTand established a number of new results for the 
lasses S and �. In [49 II℄he obtained a number of sharp estimates for the 
oeÆ
ients in the 
lasses SandM , whereM is the 
lass of fun
tions f(z), meromorphi
 and univalentin |z| < 1 with the expansion f(z) = 
1z+ 
2z2z2+ : : : in a neighborhoodof the origin.These papers aroused great interest in the problem of estimating the
oeÆ
ients for the fun
tions in the 
lass S and � for whi
h 
ertain 
o-eÆ
ients satisfy pres
ribed 
onditions (for example, are real numbers).Inthis 
onne
tion, we mentioned the works of Y.Kubota in whi
h, with thehelp of the GCT, sharp estimates are found for Re�4 in the 
lass of fun
-tions f(z) ∈ � with real 
oeÆ
ient �1 [188℄, and for Re�5 in the 
lassof fun
tions in � with real 
oeÆ
ients �1 and �2 in the expansion (1.1)[187℄. The estimate obtained for Re�4 is the �rst disproof of the 
onje
ture
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lass � for even n > 2. Indi
ated results arenot strengthened in the present time. Phelp [216℄ determined the range of(
2; 
3; 
4) In the 
lass SR.The GCT gave rise to uniqueness results in the theory of extremalproblems 
onne
ted with the 
oeÆ
ient problem of univalent fun
tions[66℄.Using the uniqueness results, Babenko [126℄ and independently P
uger[216℄ established the property of 
onvexity of the 
orresponding se
tionsof the nth body Vn in the 
lass S, i.e., the region of values of the system(
2; : : : ; 
n)of 
oeÆ
ients in this 
lass. This property of the body Vn in thesmall had been established earlier by Duren and S
hi�er [145℄.As Jenkins indi
ates,the sele
tion of spe
ial Riemann surfa
es and qua-drati
 di�erentials in the GCT gives rise to whole new 
lasses of problemsfor univalent fun
tions. In [41℄, Jenkins introdu
es the 
lass �(r) of fun
-tions from �, whi
h map |z| > 1 onto a domain whose 
omplement 
ontainsa domain with inner 
onformal radius with respe
t to the origin at leastr, 0 < r < 1. Con
erning the results of Jenkins and other authors for the
lass �(r), see Se
. 5.5.For some appli
ations of the GCT and related results, see the surveyarti
le of Jenkins [122℄; some of these results are 
ited in Se
. 5.1.4. METHOD OF MODULES OF CURVE FAMILIES.EXTREMAL DECOMPOSITION PROBLEMS4.1 Even in the early works by Jenkins [20,22 I,II, 32℄ the eÆ
ien
y of thenotion of the module of a family of several 
urve 
lasses in 
ombinationwith results of the symmetrization method has been with the example ofthe solution of diÆ
ult extremal problems for univalent fun
tion theory.These results are mentioned in Se
. 5.1.4.2 In [39 I, II℄ Jenkins established a general prin
iple, whi
h states therelationship between the quadrati
 di�erentials and an important 
lass ofmodules for multiple 
urve families.It played a de�ning role for develop-ment of the method of modules of 
urve families. In this method, problemson the extremal de
omposition are 
onsidered. These problems are relatedwith �nding the maximum of a fun
tional de�ned on the family D of sys-tems Di asso
iated with a family H of homotopy 
lasses of 
urves Hi; thisfun
tional is a linear 
ombination
∑i �2iMi(Di)
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tions of the domains Di (modules or redu
ed modules of Di asso
i-ated with the 
lasses Hi), the �2i being real parameters.Citing a theorem from [39, I℄, we preserve the Jenkins' formulationsalmost word for word. We need some de�nitions.Let R be a �nite Riemann surfa
e, and let there be given a set A =
{�k}nk=1 of distin
t points. On R

′ = R \ A we 
onsider a free family
H = {Hk}n1+n2k=1 of homotopi
 
lasses of lo
ally re
ti�able 
urves of thefollowing two types. The �rst type 
onsists of 
lasses Hi, i = 1; : : : ; n1;of 
losed Jordan 
urves not homotopi
 to zero on R

′. If R a
tually hasboundary 
omponents, then the se
ond type 
onsists of 
lasses Hi; i =n1+1; : : : ; n1+n2; of ar
s on R
′ 
onne
ting some boundary element of R.Let {�k}n1+n2k=1 be a system of positive numbers.First 
onsider the module problem P (�1; : : : ; �n1+n2) 
onsisting of �nd-ing the module M(�1; : : : ; �n1+n2) de�ned as inf ∫∫R �2dA in the 
lass ofmetri
s satis�ed the 
ondition

∫
k �|dz| > �kfor every re
ti�able 
urve 
k ∈ Hk; k = 1; : : : ; n1 + n2.Now 
onsider a problem on extremal de
omposition in an admissiblefamily of domains asso
iated with the family H. This family is de�ned infollowing way.We 
all a doubly-
onne
ted domain D lying on R
′ asso
iated with thehomotopy 
lass H of the �rst type if the 
lass of simple 
losed 
urveslying in D and separating its boundary 
omponents is 
ontained in H . Inthis 
ase, we refer to the module of D for this 
lass of 
urves as likewiseasso
iated with H . We 
all a quadrangleD lying on R
′ asso
iated with thehomotopy 
lass H of the se
ond type if a pair of opposite sides of D liesrespe
tively on the boundary 
omponents of R joined by ar
s in H andif the 
lass of ar
s lying in D and joining these sides is 
ontained in H .Inthis 
ase, we refer to the module of D for this 
lass of 
urves as likewiseasso
iated with H .By an admissible family D of domains asso
iated with a free familyof homotopy 
lasses Hi; i = 1; : : : ; n1 + n2; we mean a �nite number ofdomains ea
h asso
iated with a 
lass Hi ( a doubly-
onne
ted domain orto whether quadrangle a

ording as Hi is of �rst or se
ond type)and no
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iated with any su
h 
lass.Let Mk(Dk) be the moduleof Dk asso
iated with the 
lass Hk; k = 1; : : : ; n1 + n2.We ask for the maximum of n1+n2∑k=1 �2kMk(Dk) in the family D.The following theorem shows that these two values are the same, and aunique extremal 
on�guration 
orresponds to a positive quadrati
 di�er-ential on R.Theorem 4.1. Let the previous 
onditions be ful�lled. Then for the mod-ule problem P (�1; : : : ; �n1+n2), there exists an extremal metri
 �∗(w)|dw|:This metri
 has the form |Q(w)|1=2|dw| where Q(w)dw2 is a quadrati
 dif-ferential on R regular apart from possible simple poles at the distinguishedpoints.If R is not a 
losed surfa
e of genus 1 or a doubly-
onne
ted domain (ineither 
ase without distinguished points), then the traje
tories of Q(w)dw2whi
h have limiting end points at its �nite 
riti
al points together withthose whi
h pass through distinguished points divide R into an admissiblefamily D∗ of domains D∗i ; i = 1; : : : ; n1 + n2; asso
iated with the givenfree family of homotopy 
lasses H i: If M∗i is the asso
iated module for thedomain D∗i , then
M(a1; : : : ; ak) = n1+n2

∑i=1 �2iMi(D∗i ):For an admissible family D of domains Di; i = 1; : : : ; n1 + n2, asso
iatedwith a given free family of homotopy 
lasses Hi, if Mi is the asso
iatedmodule for the domain Di, thenn1+n2
∑i=1 �2iMi(Di) 6 M(a1; : : : ; �n1+n2): (4:1)Subje
t to the previous ex
lusions, equality in (4:1) may o

ur only for thefamily D∗.The proof of Theorem 4.1 in [39 I℄ was obtained with the help of S
hif-fer's variational method, the proof in [39 II℄ is based on the method of theextremal metri
 only.Similarly to the GCT, Theorem 4.1 establishes the determining role ofquadrati
 di�erentials in the 
onformal mapping problems. Later, investi-gations of many authors were devoted to various questions of the theory of
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 di�erentials in
luding its role in problems on extremal de
om-position and their 
onne
tions with topology and di�erential geometry.Renelt [222℄ 
onsidered the problem on the greatest lower bound of thesum
∑i �2iM−1i (Di)(we use the former notation). In this 
onne
tion, see the Jenkins' work[119℄. Tamrazov [245℄ obtained a supplement to the GCT in the 
ase wherethe asso
iated quadrati
 di�erential Q(z)dz2 does not have poles of ordergreater than 1.Let us give some examples of another 
hara
ter. Many results on qua-drati
 di�erentials are 
olle
ted in the Strebel monograph [242℄. A holo-morphi
 quadrati
 di�erential on a 
ompa
t Riemann surfa
e su
h thatall of its traje
tories explaining the 
riti
al ones are 
losed is 
alled theJenkins{Strebel di�erential by some authors. In 1974, Strebel 
onje
turedthat on a 
ompa
t Riemann surfa
e su
h di�erentials are dense in the spa
eof all holomorphi
 quadrati
 di�erentials. This was proved by Douady andHubbard [131℄. The properties of the Jenkins{Strebel di�erentials havebeen studied in many papers. We does not dwell on these papers.Even in [39 I℄, it has been mentioned that the result of this paper 
anbe extended to the 
ase of a family H of homotopy 
lasses Hi of 
urveson a Riemann surfa
e R of three types: the family H 
ontains, along withthe 
lasses Hi 
onsidered above,the 
lasses Hl of 
losed 
urves homotopi
to point 
ontours at distinguished points bl ∈ R. Properties of quadrati
di�erentials with 
losed traje
tories and se
ond order poles were 
onsideredby Strebel. Mention one of his results. Let Q be a quadrati
 di�erential ona 
ompa
t Riemann surfa
e with 
losed traje
tories whi
h has double polesPj . The 
riti
al traje
tories will 
ut out 
ertain simply 
onne
ted domainsDj 
ontaining Pj . Let rj be the 
onformal radius of Dj with respe
t to Pjin term of a given lo
al parameter at Pj . Strebel proved the existen
e of aunique di�erential Q for whi
h the ratios of the rj have pres
ribed values(see [242℄).A simple proof of the general result whi
h is the extension of Theo-rem 4.1 indi
ated above in the 
ase of a planar surfa
e S where S = Cor S is a simply 
onne
ted domain on C, was given by the author [194,Theorems 0.1 and 0.2℄. More pre
isely, Theorem 0.1 in [194℄ establishesthat in the 
ase R = C, the extremal metri
 problem for a family H asabove is equivalent to an extremal de
omposition problem that deals with
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tional involving a linear 
ombination of modules ofdoubly 
onne
ted domains and the redu
ed modules of simply 
onne
teddomains Dl with respe
t to some points bl ∈ Dl. The extremal systemof domains of this problem is de�ned by an asso
iated quadrati
 di�eren-tial having at the points bl poles of se
ond order with 
ir
led stru
ture oftraje
tories.The result of [194℄ have found a great number of appli
ations (some ofthem are mentioned below).In the works of several authors [148,156,238℄, the results in [39,194℄ wereextended to a more general 
ase where the family H 
onsists of 
lasses offour or more types and the asso
iated quadrati
 di�erential has poles ofse
ond order with the radial or spiral stru
ture of traje
tories.To give a 
omplete statement of the problem in question, we need somede�nitions. To make the presentation simpler for understanding, we pre-serve the stile of the presentation from [39 I℄. For brevity, we have not
onsidered the 
ase of the spiral stru
ture of traje
tories.4.3. In the sequel, R is a �nite Riemann surfa
e. LetA = {ak}nk=1; B(0) = {b(0)l }ml=1; B = {bk}rk=1be some sets of distin
t points on R and on the boundary of R if thelatter is nonempty, where the points from B(0) and B belong to R (one ortwo of these sets may be empty, but not all). We assume that a �xed lo
alparameter is 
hosen in the vi
inity of ea
h point from A ∪B(0) ∪B.Let R
′ = R \ {A ∪ B(0) ∪ B}. On R

′, we 
onsider homotopi
 
lassesof lo
ally re
ti�able Jordan 
urves of the following four types. The 
lassesH1; : : : ; Hn1 of the �rst type and the 
lasses Hn1+1; : : : ; Hn1+n2 of these
ond type and domains asso
iated with these 
lasses (doubly-
onne
teddomains and quadrangles) are de�ned as in Theorem 4.1.The third type 
onsists of 
lasses Hn1+n2+1; : : : ; Hn1+n2+m of 
losed
urves, ea
h of whi
h 
onsists of 
urves separating one of the points b(0)l ∈B from the other distinguished points on R and from the boundary of Rif it exists, hen
e they are homotopi
 to the pointwise 
urve at the pointb(0)l . A simply 
onne
ted domain D on R
′ ∪ b(0)l ; b(0)l ∈ D, will be 
alledasso
iated with a 
lass H of the third type if the family of 
losed Jordan
urves separating the point b(0)l from the boundary of D is 
ontained in H .Finally, if B 6= ∅, then the fourth type 
onsists of 
lasses Hn1+n2+m+s =H(1)s ; s = 1; : : : ; p, of ar
s on R′ with ends at not ne
essarily distin
t points



204 G. V. KUZ'MINAbk′(s); bk′′(s) ∈ B. It is assumed that ea
h one of the points bk ∈ B is anend of ar
s belonging to one or several of the 
lasses of the fourth type.A bigon D on R
′ having verti
es at the points of the set B is 
alledasso
iated with a 
lass H of the fourth type if the family of ar
s in D
onne
ting the verti
es of D is 
ontained in H . In this 
ase, we assumethat the domain D satis�es 
ondition (∗) with respe
t to its verti
es (seethe de�nition of Se
.1.3).A

ording to whi
h one of the four 
ases indi
ated above takes pla
e,the moduleM(D) of the doubly 
onne
ted domainD for the 
lass of 
urvesseparating its boundary 
omponents, the moduleM (1)(D) of the quadran-gle D for the 
lass of ar
s 
onne
ting its opposite sides on the boundaryof R, the redu
e module M(D; b(0)l ) of the simply 
onne
ted domain Dwith respe
t to the point b(0)l ∈ D, or the redu
e module M(D; bk′ ; bk′′) ofthe bigon D with respe
t to its verti
es bk′ ; bk′′ will be 
alled asso
iatedwith the 
lass H . The values of all these modules are de�ned by the 
hoi
eof a �xed lo
al parameter in the vi
inity of ea
h one of the points fromA ∪ B(0) ∪ B. We assume that all 
lasses Hi are determined by systemsof points A;B(0),and B in su
h a way that for ea
h one of the domains Dasso
iated with one of these 
lasses, the module of D asso
iated with this
lass is bounded from above (and from below in the 
ase of the redu
edmodule of a bigon) by some 
onstant that depends only on the position ofthe points from A;B(0), and B but not on the 
hoi
e of the domain D.By an admissible system of domains Di asso
iated with a family Hof 
lasses Hi, i = 1; : : : ; n1 + n2 + m + p; we mean a �nite number ofnonoverlapping domains on R

′ ∪B(0) su
h that ea
h of them is asso
iatedwith a 
ertain 
lass Hi and no two are asso
iated with the same 
lass. Iffor a 
ertain 
lass Hi of the �rst or the se
ond type none of the domainsindi
ated is asso
iated with Hi, then the 
orresponding domain Di is saidto be degenerate, and by the module asso
iated with su
h a 
lass Hi wemean 0.The family of all admissible systems of domains Di, i = 1; : : : ; n1+n2+m+ p, asso
iated with the family H, is denoted by DR.Let � = {�i}n1+n2+mi=1 ; h = {hs}ps=1



GEOMETRIC FUNCTION THEORY 205be two given sets of positive numbers, and let�k(h) = ∑s∈Ik hs;where Ik is the set of all indi
es s ∈ {1; : : : ; p} su
h that the ar
s from the
lassHn1+n2+m+s := H(1)s have limiting endpoints in one or two dire
tionsat the point b(1)k (in the latter 
ase, the 
orresponding index s o

urs in Iktwi
e).We assume that the interior angles �k of the bigons D(1)s ; s = 1; : : : ; p,at the verti
es b(1)k satisfy the 
ondition�k = 2� hk�k(h) ; k = k′(s); k′′(s):The family of systems of domains in DR that satisfy this 
ondition isdenoted by DR(h).For �xed systems � and h, we 
onsider the following fun
tional on thefamily DR(h):FR(�; h) = n1
∑i=1 �2iM(Di) + n1+n2

∑i=n1+1�2iM (1)(Di)+ m
∑l=1 �2n1+n2+lM(Dn1+n2+l; b(0)l )− p

∑s=1 h2sM(D(1)s ; bk′(s); bk′′(s)): (4.2)Now we 
an state the theorem on the extremal de
omposition in thefamily DR(h). Below, by a 
riti
al traje
tory of the quadrati
 di�erentialQ(z)dz2 we mean a traje
tory that has its limiting endpoint at a zero or ata simple pole of this di�erential or passes through a point from the set A.Theorem 4.2. Let the above-formulated 
ondition be ful�lled. Then thereexists a meromorphi
 quadrati
 di�erential Q(z)dz2 on R uniquely deter-mined by the following 
onditions.The di�erential Q(z)dz2 has simple poles at the points aj ∈ A (possibly,not at all of these points), double poles at ea
h one of the points b(0)l ∈ B(0)and bs ∈ B, and has no other points on R.Let �R be the union of all 
riti
al traje
tories and ar
s of 
riti
al traje
-tories of Q(z)dz2 lying on R, and let �R be the 
losure of �R. The inner
losure �̂R of the set �R is empty and R\�R is the union of the domainsD∗i ; i = 1; : : : ; n1 + n2 +m+ p, of the family DR(h).



206 G. V. KUZ'MINAIt is assumed that none of the domains D∗i , i = 1; : : : ; n1 + n2; aredegenerate. The lengths of the traje
tories of Q(z)dz2 in the domain D∗i ,i = 1; : : : ; n1, the 
losures of the ar
s of the traje
tories of Q(z)dz2 in thedomain D∗i , i = n1+1; : : : ; n1+n2;, and the traje
tories of Q(z)dz2 in thedomain D∗i , i = n1+n2+1; : : : ; n1+n2+m; are equal to �i. The lengthsin the Q-metri
 of the 
losures of the ar
s of the orthogonal traje
tories ofQ(z)dz2 in the domain D∗n1+n2+m+s, s = 1; : : : ; p; are equal to hs.The system of domains {D∗i }n1+n2+m+pi=1 is the only system realizing themaximum of the fun
tional (4:2) in the family DR(h).Corollary 4.1. From the metri
al 
onditions of Theorem 4.1, we obtaindi�erential equations for the fun
tions gi(z) mapping the domains D∗i ontoa 
ir
ular ring, a quadrangle, a disk, or a strip,respe
tively.In terms of a lo
al parameter z su
h that z(b(0)l ) (respe
tively, z(bk) =0), the fun
tion Q(z) has the expansionsQ(z) = − �2i4�2 z−2 + : : : if b(0)l ∈ B(0);Q(z) = �k(h)24�2 z−2 + : : : if bk ∈ B:Remark 4.1. Theorem 4.2 was �rst proved by Emel'yanov [148℄ (in the
ase R = C). In the paper of Emelyanov and the author[156℄, Theorem4.2 was extended to the 
ase where the family of domains in question
ontains biangles asso
iated with 
lasses of ar
s asymptoti
ally similar atthe distinguished point on R to logarithmi
 spirals of given slopes. Solynin[238℄ proved the theorem on extremal de
omposition of R in the family ofdomains of six types; along with the domains 
onsidered in Theorem 4.2,this family 
ontains triangles with the verti
es on R and �R.Return to Theorem 4.2. In the 
ase R = C, the homotopy 
lasses ofthe se
ond type (
onsequently, the se
ond sum in (4.1)) are absent and wehave a simple analyti
 expression for the di�erential Q(z)dz2. The familyof domains D
C
(h) and the fun
tional F

C
(�; h) are denoted simply by D(h)and F (�; h).Theorem 4.3. Let R = C. Suppose that the assumptions of Theorem 4:2are ful�lled, n + 2(m + r) 6 4. There exists a quadrati
 di�erential on C



GEOMETRIC FUNCTION THEORY 207of the formQ(z)dz2 = P (z){ n
∏k=1(z − ak) m

∏l=1(z − b(0)l )2 r
∏k=1(z − bk)2}−1dz2 (4:3)(where P (z) is a polynomial of degree at most n + 2(m + r) − 4) thatis uniquely determined by the 
onditions indi
ated in Theorem 5:1. Thesystem of domains D∗i ; i = 1; : : : ; n1+m+ p; whi
h form the set C \� forthe di�erential Q(z)dz2 is the only system realizing the maximum of thefun
tional F (�; h) on the family D(h).It is assumed that none of the domains D∗i , i = 1; : : : ; n1; are degener-ated. Let � = gi(z)(respe
tively, � = gn1+l(z) and � = gn1+m+s(z) denotea 
onformal homeomorphism of the doubly-
onne
ted domain D∗i onto the
ir
ular annulus 1 < |�| < Mi (respe
tively,of the simply 
onne
ted domainDn1+l onto the disk |�| < Rl, gn1+l(b(0)l ) = 0, g′n1+l(b(0)l ) = 1, and of thebigon D∗n1+m+s onto the strip −1=2 < Im � < 1=2, gn1+m+s(bk′(s)) = −∞,gn1+m+s(bk"(s)) = +∞). In the domain D∗i , i = 1; : : : ; n1 +m; we have�2i d�2 = −4�2Q(z)dz2;and in the domain D∗n1+m+s; s = 1; : : : ; p; we haveh2sd�2 = Q(z)dz2:For the maximum F ∗(�; h) of the fun
tional F (�; h) on D(h), we haveF ∗(�; h) = n

∑i=1 �2iM(D∗i ) + m
∑l=1 �2n1+lM(D∗n1+l; b(0)l )

−
p

∑s=1 h2sM(D(1)∗s ; bk′(s); bk"(s)): (4.4)Remark 4.1. In the 
ase R = C the relations of Corollary 4.1 give alge-brai
 
onditions for the polynomial P (z) in (4.3). In simplest spe
ial 
ases,these 
onditions determine the polynomial P (z) entirely.If the set B is empty and the 
lasses of fourth type are absent, thenTheorem 4.3 was proved in [194℄; in this 
ase, the fourth sum in (4.4) isabsent.Theorem 4.3 
ompletely 
hara
terizes the extremal system of domainsand the mapping fun
tions for a wide range of extremal de
omposition



208 G. V. KUZ'MINAproblems. Some simple examples of the extremal problem solved with thehelp of Theorem 4.3 are given in Se
.5 of this survey.4.5. Dwell on a 
ertain 
orollary to the previous theorem. Let A = {a�}n�=1and B = {bk}mk=1 be given systems of distin
t points on C; n+m > 4.Westudy the relation between two extremal problems. Let � = {�k}mk=1 be agiven system of positive numbers. The �rst problem 
onsists of �nding themaximum M∗1(�) of the fun
tional
M1(�) = m

∑k=1�2kM(Dk; bk)over the family D1 of all systems of nonoverlapping simply 
onne
ted do-mains {Dk}mk=1 on C \A, bk ∈ Dk, k = 1; : : : ;m:Now, let H be a family of homotopi
 
lasses Hs; s = 1; : : : ; p; of ar
s on
C

′ = C \ {A ∪ B}, the limiting endpoints of whi
h are the 
orrespondingpoints bk′(s); bk"(s) of the set B.It is assumed that in the 
ase where bk′(s) =bk"(s) = bk(s) the 
urves in Hs 
annot be 
ontra
ted on C ′ to the pointbk(s). Let h = {hs}ps=1 be a given system of positive numbers. The se
ondproblem 
onsists of �nding the maximum M∗2(h) of the fun
tional
M2(h) = −

m
∑s= h2sM2( ~Ds;~bk′(s);~bk"(s))over the family D(2)(h) of all admissible systems of domains { ~Ds}ps=1 as-so
iated with the family H, where the domains ~Ds; s = 1; : : : ; p; satisfy
ondition (∗) and their interior angles at the boundary elements ~bk withsupports at the points bk are�k = 2�hs= ∑t∈Ik ht; k = k′(s); k"(s):The following theorem due to Emel'yanov [149℄establishes the relation-ship between these problems.Theorem 4.4. Let H be a family of homotopi
 
lasses Hs; s = 1; : : : ; p; oflo
ally re
ti�able ar
s on C of the form des
ribed above. Let h = {hs}ps=1be an arbitrary system of positive numbers, and let � = �(h) = {�k}mk=1,where �k = ∑s∈Ik hs; k = 1; : : : ;m:
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M∗1(�(h) 6 −M∗2(h):Let { ~Ds} be any system of domains in the family D2(h). Then

M∗1(�(h)) 6

p
∑s=1 h2sM (2)( ~Ds;~bk′(s);~bk"(s)): (4:5)Equality in (4:5) is attained only in the 
ase where the domains ~Ds; s =1; : : : ; p, are bounded by the 
losures of orthogonal traje
tories of the dif-ferential Q(z)dz2, whi
h determines the extremal system of domains forthe problem on M∗1(�(h)).Theorem 4.4 has a large number of appli
ations (see,for instan
e, [?℄). Amore general result devoted to the \orthogonal" extremal de
ompositionproblem is obtained by Solynin [238℄.4.6. In appli
ations of the method of modules, as a rule, the distinguishedpoints on the surfa
e S o

urring in the de�nitions of the homotopy 
lassesof 
urves are free parameters of the problem under study. In the results ofthe method of modules, these parameters a
quire a 
lear geometri
 mean-ing, being the poles of the asso
iated quadrati
 di�erential. The methodof modules allows one to study the dependen
e of the maxima of the fun
-tionals o

urring in extremal problems on the real parameters and thelo
ation of the distinguished points on S.We dwell on this question in the 
ase of the fun
tional of Theorem 4.3.The maximum F ∗

C
(�; h) mentioned in this theorem will be denoted by

M(�; h;A;B(0); B). For short, we denote these quantities byM(�i),M(ak);et
., emphasizing the dependen
e of M on the parameter indi
ated. LetQ(z)dz2 denote the di�erential (4.3).The properties of the fun
tionM are des
ribed in the following theoremdue to Emel'yanov [148℄and Solynin [229, 238℄).Theorem 4.5. Let the notation of Theorem 4:3 be used. (1) Let �i ∈ �or hs ∈ h. Then ���iM(�i) = 2�iM(D∗i );��hsM(hs) = −2hsM(D∗n1+m+s; bk′(s); bk"(s)):



210 G. V. KUZ'MINA(2) Let ak ∈ A; ak 6= ∞: Then��akM(ak) = �Qk(ak) where Qk(z) = (z − ak)Q(z):(3) Let bl ∈ B(0)∪B; bl 6= ∞ (we write bm+k for b(1)k ). Then��blM(bl) = � ~Q′l(bl); where ~Ql(z) = (z − bl)2Q(z):Here Q(z)dz2 is the quadrati
 di�erential of Theorem 4:3.Note that assertion (2) of Theorem 4.5 has a simple geometri
 meaning:the gradient of the fun
tion M(ak) at the point a0k is dire
ted along thetangent to the 
riti
al traje
tory of the di�erential Q(z)dz2 starting at thepoint a0k. This 
lari�es the role of Theorem 4.5 in the extremal problemsin whi
h it is required to establish some symmetry in the lo
ation of thepoles of the asso
iated quadrati
 di�erential.5. THE METHOD OF MODULES OF CURVE FAMILIES.SOME ASPECTS OF APPLICATIONS OF THE METHODIn this se
tion, a brief a

ount of results obtained with the help ofthe module method in various questions of geometri
 fun
tion theory isgiven.The module method 
ombines very e�e
tive with variational andsymmetrization methods, some results obtained by su
h 
ombination arepresented below. We restri
t ourselves to the most easily formulated re-sults.As a rule, the modules method redu
es to a geometri
ally expli
it solu-tion, giving 
omplete information on the problem; however, obtaining ananalyti
ally impli
it solution may turn out to be suÆ
iently 
ompli
ated.5.1. The early results of Jenkins.In the early works of Jenkins, the approa
h based on 
onsideration of themodule of several 
lasses of 
urves in 
ombination with the symmetrizationmethod of P�olya and Szeg�o was applied. In this way, Jenkins [20,22,32℄solved a number of problems whi
h where not amenable to other methods.In [20℄, the solution of the Gronwall problem 
onsisting of �nding the exa
testimate of the modulus of a fun
tion in the 
lass S with a �xed value of themodulus of the se
ond 
oeÆ
ient 
2 in the expansion (1.1) was obtained.In [32℄, theorems on the boundary distortion for univalent 
onformalmappings of multiply 
onne
ted domains were established. The prototype



GEOMETRIC FUNCTION THEORY 211of the results is a well-known Lowner's Lemma on the boundary distortionfor a 
onformal mapping of the disk |z| < 1.In the same way, some extremal problems in the 
lass C of Bieberba
h-Eilenberg fun
tions were solved [22 I,II℄.5.2. The initial results in extremal de
omposition problems.First extremal de
omposition results are related to sums of redu
edmodulus.Let n > 2, and let a = {a1; : : : ; an} be a system of distin
t pointson C, � = {�1; : : : ; �n} be a system of positive numbers. Let Dn(a) bethe family of all systems Dn = {D1; : : : ; Dn} of nonoverlapping simply
onne
ted domains on C, ak ∈ Dk, k = 1; : : : ; n: The maximum of the sumn
∑i=1 �2iM(Di; ai) (5:1)in the family Dn(a) will be denoted byM(a1; : : : ; an;�1; : : : ; �n); M(a1; : : : ; an; 1; : : : ; 1)will be denoted by M(a1; : : : ; an).Lavrent'ev (1934) and Goluzin (1950) shoved that, in the family Dn(a),the exa
t inequalities hold:2

∏k=1R(Dk; ak) 6 |a1 − a2|2;3
∏k=1R(Dk; ak) 6

6481√3 |(a1 − a2)(a1 − a3)(a2 − a3)|: (5.2)In 1952, Kolbina [185℄ obtained exa
t estimates for the sum�21M(D1; a1) + �22M(D2; a2)in the family of pairs of nonoverlapping domains D1; D2 on C; ai ∈ Di; i =1; 2; and for the sum (5.1) in the family D(a) in the 
ase n = 3.The proofin [185℄ was one of the �rst appli
ations of the Goluzin variational method.Jenkins [19℄ gave a signi�
antly simpler proof by using of extremal metri

onsiderations and showed a sharpening of results in [185℄.In [41℄, Jenkins obtained a geometri
ally expli
it solution of the problemon the maximum of the sum (5.1) for n > 3 with the help of the GCT. Inthe present time, this result is a dire
t 
orollary of Theorem 4.3.



212 G. V. KUZ'MINAIn the 
ase n = 4, an analyti
ally impli
it solution of the problem onM(a1; : : : ; an) is obtained in [195℄ (see Se
. 5.7).With the problem on the maximum of the sum (5.1) in the family Dn(a),an extremal de
omposition problem in a family of systems of nonoverlap-ping bigons is immediately 
onne
ted.Let n > 3. Let a = {a1; : : : ; an} be a system of distin
t points on the
ir
le |z| = 1, enumerated in the order of in
reasing argument. Let Pn(a)be a family of systems of nonoverlapping bigons Pk; k = 1; : : : ; n, on the z-sphere, where Pk has its verti
es at the points ak; ak+1. It is assumed thatthe bigon Pk; k = 1; : : : ; n; is asso
iated with the 
lass of ar
s homotopi
 on
C\{a1; : : : ; an} to the ar
 
k = {z : |z| = 1; argak < arg z < argak+1} andhas at the verti
es ak; ak+1 the inner angles equal to �. LetM(Pk; ak; ak+1)be the redu
ed module of the bigon Pk with respe
t to the 
lass of ar
s
onne
ting its sides.The results of Lavrent'ev and Goluzin 
ited above are supplemented bythe following simple theorem [208℄.Let a1; a2 be distin
t points of C. In the family P2(a) we have the in-equality 2

∑k=1M(Pk; ak; ak+1)− 2� log |a1 − a2|2 > 0:Let a1; a2; a3 be distin
t points of C. In the family P3(a) we have the in-equality3
∑k=1M(Pk; ak; ak+1)− 2� log |(a1 − a2)(a1 − a3)(a2 − a3)| >

2� log 6481√3 :(5:3)As shown in [204 III℄, the minimum of the linear 
ombinationn
∑k=1h2kM(Pk; ak; ak+1)in the family Pn(a) in the 
ase n = 3 for every nonnegative h1; h2; h3 isequal to the maximum of the weight sum of redu
ed modules3

∑k=1�2kM(Dk; ak); where �1 = h1 + h3; �2 = h1 + h2; �3 = h2 + h3;



GEOMETRIC FUNCTION THEORY 213of domains in the family D3(a) of domains D1; D2; D3 . In the 
ase n > 4the situation is di�erent, this is observed already for n = 4 (see [204 III℄).Dwell on the extremal de
omposition problem in the family of domainsof distin
t stru
ture, many extremal problems in 
lasses of 
onformal map-pings are 
onne
ted with this problem. Consider the fun
tional�21M(D;∞) + �22M(D2) (�1 > 0; �2 > 0; �1 + �2 > 0) (5:4)de�ned on the family � of all pairs of nonoverlapping domains D1; D2 on
C

′ = C \ {−1; 1; a}; a 6= +1;−1, where D1 is a simply 
onne
ted domain,
∞ ∈ D1; D2 is a doubly-
onne
ted domains, separating the pairs of points
−1; 1 and a;∞ and belonging to a pres
ribed homotopi
 
lass. In various
ases, solutions of this problem are given in [184, 163,196℄. Let �(1);�(2)be two families of pairs of domains D1; D2 in � su
h that the domainsD2 are doubly- 
onne
ted and are asso
iated with the simplest homotopy
lasses H(1) and H(2) of 
losed Jordan 
urves on C

′. ( In the 
ase whereRea > 0; Ima > 0, the 
lasses H(1) and H(2) 
onsist, respe
tively, of
urves homotopi
 on C to the slit along the segment [−1; 1℄ and to theslit along the broken line with verti
es −1; ta and 1, where t > 0.) Let
{D(j)1 ; D(j)2 }, j = 1; 2; be the 
on�guration providing the maximumM(j) =
M(j)(�1; �2; a) for the fun
tional (5.4) over the family �(j). Let E(−1; 1; a)be the 
ontinuum of minimal 
apa
ity 
ontaining the points −1; 1; a.For�2=�1 6 �(j), where �(j) depend on a and are de�ned in terms of 
onditionsdes
ribing 
ap E(−1; 1; a),the doubly-
onne
ted domains D(j)2 degenerate,namely, D(j)1 = C \ E(−1; 1; a), D(j)2 = ∅: For �1 = 0, D(j)1 = ∅ and thedomain D(j)2 realizes the maximum of the 
onformal module in the familyof doubly-
onne
ted domains on C

′ asso
iated with the 
lass H(2)j ; aboutthe Chebotarev problem on the 
ontinuum of minimal 
apa
ity and theTei
hmuller problem on the maximum of the 
onformal module we shallspeak in the following se
tions.For any �1; �2 the quantity M (j) monotoni
ally depends on a in thesame way as does the 
ap E(−1; 1; a) (see Se
.5.2).5.3. Problem on the 
ontinuum of minimal 
apa
ity and relatedproblems.With the problems mentioned in the previous Se
tion a problem indi-
ated in the title is 
onne
ted. Let a1; : : : ; an; n > 2, be distin
t points of
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C. By E(a1; : : : ; an) we denote the 
ontinuum of minimal 
apa
ity 
on-taining the points a1; : : : ; an. The domain D = C \ E(a1; : : : ; an) realizesthe maximum of the redu
ed module M(D;∞) in the family of all simply
onne
ted domains on C \ {a1; : : : ; an}. Goluzin obtained a geometri
allyexpli
it solution of the problem on E(a1; : : : ; an): he established an analyt-i
al expression for the asso
iated quadrati
 di�erential and the 
onditionde�ned its parameters. This result is a parti
ular 
orollary to Theotem 4.3.The problem of obtaining of an analyti
ally impli
it solution of the prob-lem on E(a;1; : : : ; an) for arbitrary a1; : : : ; anin the 
ase of large n is of
onsiderable diÆ
ulty.In the 
ase n = 3, a 
omplete solution of the problem is obtained.Theorem 4.3 implies the following result. The 
ontinuum E(a1; a2; a3) isthe �-set for the quadrati
 di�erentialq(z)dz2 = − z − 
(z − a1)(z − a2)(z − a3)dz2;for whi
h the zero 
 = 
(a1; a2; a3) is de�ned by the 
ondition of the
onne
tivity of �-set for the di�erential 
onsidered. This geometri
ally ex-pli
it result yelds a des
ription of geometri
 properties of the 
ontinuumE(a1; a2; a3) (see the paper of Pirl [217℄), and an analyti
ally impli
it so-lution of the problem [194℄. Namely, for the fun
tion � = g(z) mappingthe domain C \ � onto the disk |�| < 1, we have the equationq(z)dz2 = −4�2d�2=�2:Therefore, 
 = 
(a1; a2; a3) and 
ap E(a1; a2; a3) are found from a systemof equations 
ontaining ellipti
 fun
tions [194, Theorem 1.6℄. In the sym-metri
 
ase, the solution is simpler. The 
ontinuum E(0; ei ; e−i ); 0 6 6 �=2, is the �-set for the quadrati
 di�erentialq(z;  ) = − z − 
( )z(z − ei )(z − e− )dz2;where 1 > 
( ) > 0. For 
 = 
( ) and H( ) = 
apE(0; ei ; e−i ), we havea simpler system of equations [194,Theorem 1.5℄.Many extremal problems are 
onne
ted with the problem onE(a1; a2; a3).We restri
t ourselves to the following two examples. Let SR be the 
lassof fun
tions f ∈ S with real 
oeÆ
ients 
2; 
3; : : : in the expansion (1.1).Let K(SR) be the Koebe set for this 
lass of fun
tions, i.e.,the exa
t do-main 
overed by the image f(U) of the disk U under every f ∈ SR. The
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apE(0; ei ; e−i ). Wehave the following theorem [194℄.The set K(SR) is bounded by the 
urve w = r( )ei ;−�=2 6  6 3�=2,where r( ) = H(| |) for −�=2 6  6 �=2; r( ) = H(|� −  |) for �=2 6 6 3�=2.The set K(SR) was found �rst by Jenkins [48℄by means of the Gen-eral CoeÆ
ient Theorem. The set K(SR) is symmetri
 with respe
t toboth 
oordinate axes. Let w = r( )ei ; 0 6  6 �=2; be boundarypoints of K(SR). The value r( ); 0 6  6 �=2; is de�ned by the fol-lowing 
ondition. Let the domain D( ) realize the maximum of the re-du
ed module M(D( ); 0) in the family of all simply 
onne
ted domainson C \ {0; r( )ei ; r( e−i )}: Then r( ); 0 6  6 �=2, is determinedby the 
ondition M(D( ); 0) = 1. As was shown in [48℄, D( ) = C \ �,where � is the union of 
losures of the 
riti
al traje
tories of the quadrati
di�erentialQ(w; )dw2 = r2( )a( ) w − a( )w2(w − r( )ei )(w − r( )e−i )dw2; (5:5)where a( ) is uniquely determined by the 
ondition of 
onne
tivity of theset � indi
ated.For 0 <  < �=2 ; a( ) > 0 and the 
riti
al traje
tories of the dif-ferential (5.3)are the ray w > a( ) and the traje
tories T1 and T2 havingrespe
tive limiting end points at a( ); r( )ei and a( ); r( )e−i . Fur-ther, a(0) = r(0); a(�=2) = ∞, when
e r(0) = 1=4; r(�=2) = 1=2.The same des
ription of the domain D( ) follows immediately fromTheorem 4.3. It is easily seen that the mapping z → r( )=z maps thedomain D( ) into the exterior of the 
ontinuum E(0; ei ; e−i ) of the
apa
ity H( ), when
e the boundary ar
 of the set K(S;R) is determinedby the 
ondition r( ) = H( ); 0 6  6 �=2.From Theorem 4.5 and simple geometri
 properties of the 
ontinuumE(a1; a2; a3) (see,for instan
e, [194℄), the following re�nement of the resultin [221℄ follows. This result is due to Emel'yanov [147℄ and Solynin [229℄.Let a point a move along an ar
 of the ellipse with fo
uses −1; 1, so thatarga in
reases from 0 to �=2. Then 
apE(−1; 1; a) stri
tly in
reases.Let C be the Bieberba
h{Eilenberg 
lass, i.e.,the 
lass of fun
tions f(z)regular in the disk U = {z : |z| < 1} and su
h that f(0)=0; f(z1)f(z2) 6=1



216 G. V. KUZ'MINAfor z1; z2 ∈ U . Let C(�) be the sub
lass of fun
tions f(z) ∈ C with
|f ′(0)| = �; 0 < � 6 1: In a similar way as above, the author found[197℄ that the Koebe set in the 
lass C(�); 0 < � 6 1, is bounded by the
urve w = R(�; �)ei , where R(�; �); 0 < R(�; �) < 1, is a solution of theequation
apE(−1; 1; 1=2[R( ; �)ei + 1=R( ; �)e−i ℄) = 1=(2�):5.4. The Tei
hm�uller problem and the Vuorinen problem.The Tei
hmuller problem 
an be formulated as foll ows.Find the maximum of the 
onformal module in the family of doubly-
onne
ted domains on the z-sphere separating the point pairs −1; 1 anda;∞.We assume that a ∈ I , where I = {z : Re z > 0; Im z > 0}; a 6= 1: LetM(a) be the desired maximum. In [194℄, the following theorem is proved.logM(a) = �K′(k)K(k) ; k2 = 2a+ 1 ;where the ellipti
 integralsK(k) and K′(k) are understood to be fun
tionsthat are positive for k2 ∈ (0; 1) and de�ned for other k2 by suitable analyti

ontinuation (for the exa
t formulation see [194℄).An extremal domain D(a) of this problem is bounded by the 
losures of
riti
al traje
tories of the quadrati
 di�erentialQ(z)dz2 = ei�(a)dz2(z2 − 1)(z − a) ; (5:6)where �(a) = − arg k2K2(k):In the 
ase a =∈ [0; 1) the domain D(a) is unique, in the 
ase a ∈ [0; 1) theextremal domains are D(a) and the domain D(a) symmetri
 to D(a) withrespe
t to the real axis.This result is obtained from Theorem 4.3 and properties of the ellipti
modular fun
tions, these properties determine the 
hoi
e of the homotopy
lass of 
urves with whi
h the extremal domain is asso
iated.In the 
ases a > 1 and a = ih, h > 0; the domainD(a) is symmetri
 withrespe
t to both 
oordinate axes. In the �rst 
ase, the boundary 
omponentsof D(a) are the segment [−1; 1℄ and the ray z > a, in the se
ond 
ase thear
 {z : |z − a| = (1 + h2)1=2; Im z 6 0} and the ray z = at; t > 1.
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uses −1; 1.If a point a moves along an ar
 of the ellipse E in su
h a way that arga in
reases, remaining in I, then M(a) stri
tly in
reases.This assertion easily follows from Theorem 4.4. Indeedarg gradM(a) = arg a2 − 1ei�(a)and from the expression for �(a) it follows that0 < arg gradM(a)− arg√a2 − 1 < �=2;arg√a2 − 1 is the argument of the normal to the ellipse E at the point a.A hyperboli
 analog of the Tei
hmuller problem is the Vuorinen prob-lem. It 
an be formulated by the following way.Let 1 < R < ∞. As a model of the hyperboli
 plane let us take thedisk UR = {z : |z| < R} with the metri
 de�ned by the line elementds = |dz|=√1−R−2|z|2. Let CR = {z : |z| = R}; IR = {z : z ∈ UR;Re z >0; Im z > 0}.Let a ∈ IR; a 6= 1: Let DR(a) be the family of all doubly-
onne
teddomains in the disk UR, separating the points −1; 1 from the point a andthe 
ir
le CR. Find the maximum MR(a) of the 
onformal module in thefamily DR(a) and the domains, realizing this maximum, and investigatethe properties of MR(a) as a fun
tion of a.A solution of this problem is obtained by Emel'yanov and the author[157℄ and is as follows. Theorem 4.3 establishes a solution of this problemformulated in terms of hyperellipti
 fun
tions [157℄. In the 
ases a ∈ (1; R)and a = ih; h ∈ (0; R), the extremal 
on�gurations are symmetri
 andMR(a) is expressed in expli
it form by the ellipti
 integrals.Let ER be a hyperboli
 ellipse with fo
uses −1; 1 and HR be a 
onfo-
al hyperboli
 hyperbola. The following result [157℄ establishes the role ofsymmetri
 
on�gurations indi
ated above in the problem under 
onsider-ation.The fun
tional MR(a) stri
tly in
reases if the point a moves along anar
 of a hyperboli
 ellipse ER belonging to IR and if the point a movesalong an ar
 of a hyperboli
 hyperbola HR belonging to the same set, sothat Im a in
reases.
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properties of traje
tories of asso
iated quadrati
 di�erentials for the givenproblem and Theorem 4.4.The extremal 
on�gurations of some problems on extremal de
omposi-tions of the disk with three distinguished points have the same propertiesas the extremal 
on�gurations in the Vuorinen problem. Two su
h prob-lems was 
onsidered by Emel'yanov [155℄. Dwell on one of them.Let p ∈ U , Re p > 0, Im p > 0, 0 < x < 1. Find domains D1; D2 in thedisk U , realizing maximum M(p) of the sumM(D1) + �2M(D2); � > 0;in the family of all pairs D of nonoverlapping doubly-
onne
ted domainsD1; D2, where the domain D1 separates the points −x; x from p, the do-main D2 separates the points p;−x; x from the 
ir
le |z| = 1.There are the numbers �− and �+; �− < 1 < �+, for whi
h respe
tivelythe domain and the domain degenerate, for � = 1 the point p is notsingular and the domains D1(1); D2(1) are joined into one domain, whi
his U \ [−x; x℄. The domain D1(�−) is the extremal domain of the Vuorinenproblem. In [155℄, the following theorem is proved.The fun
tional M(p) stri
tly in
reases if the point p moves along an ar
of the hyperboli
 ellipse with fo
uses −x; x in the dire
tion to the imaginaryaxes.Let p ∈ E;Re p > 0; Im p > 0, and let p0 and p1 = i√(p20 − x2)=(1− p20)be the points of interse
tion of the ellipse E with the 
oordinate axe. Bythe last theorem,
M(p0; �) <M(p; �) <M(p1; �):The valuesM(p; �) andM(p1; �) are easily determinated by the Q-lengthsof orthogonal traje
tories and their ar
s of the asso
iated quadrati
 di�er-ential for a given problem.5.5. Extremal problems in the 
lasses of univalent fun
tions.Many extremal problems in the basi
 
lasses of univalent mappings are
onne
ted with simple problems of the extremal de
omposition; about su
hextremal de
omposition problems we shall speak in Se
. 5.2. The examplesof results obtained owing to the indi
ated 
onne
tion are the results on themaximum and minimum of |f(z0)| in the 
lass R(�) obtained by Gavrilyuk



GEOMETRIC FUNCTION THEORY 219amd Solynin [163℄; a result on the region of values f(z0) in the 
lass SR,say, �(SR; z0), is due to Fedorov [160℄.Dwell on the last result.A geometri
ally expli
it result in the problemon �(SR; z0) was obtained by Jenkins [48℄ with the help of the GCT.The last problem was 
onsidered later by Chernikov [130℄, who used theGoluzin variational method. As is well known, �(SR; z0) is 
ontained in�(T; z0), where �(T; z0) is the region of values f(z0) in the 
lass T oftypi
al real fun
tions, and part of the boundary of �(SR; z0) belongs tothe boundary of �(T; z0). Finding the remaining part of the boundary of�(SR; z0) turned out to be diÆ
ult. Fedorov [160℄ su

eeded in investi-gating the boundary of �(SR; z0) and obtained in this way a 
ompletesolution of the problem. The proof in [160℄ is based on the simultaneous
onsideration of two extremal de
omposition problems: the above problemon M (j) for pure imaginary values of a (see Se
. 5.2) and the problem onthe maximum of the sum (5.4)over another family of pairs of domains (thelatter problem is 
onne
ted with the problem on a 
ontinuum of minimal
apa
ity, whi
h was solved in [159℄).A number of problems on regions of values of fun
tional systems on the
lasses of univalent fun
tions are studied in the book of A.Vasil'ev [250℄.In [250℄, the set of values of the system
{|f(z1)|; |f(z2|}; 0 < z1 < z2 < 1;in the 
lass SR is found. The lower bound of this set is easily established by
onsidering of the redu
ed module of the bigon U \ {[−1; r1℄∩ [r2; 1℄} withboth verti
es at z = 0 and its image for the extremal mapping. The upperbound is found with the help of 
onsidering the problem on the maximumof the sum (5.4) in the 
ase a > 1 and the problem of the maximum of the
orresponding fun
tional in the family of pairs of domains, de�ned on thesphere with distinguished points −1; 1; a1; 
1;∞, where 0 < a1 < 
1 <∞:By the same module approa
h the regions of values of some fun
tionalsystems in the 
lass S(M) of bounded fun
tions from the 
lass S and in theMontel 
lass of fun
tions f(z) = a1z + a2z2 + : : : , regular and univalentin U and satisfying the 
ondition f(!) = !; 0 < ! < 1, are found [250℄.Jenkins [41℄ introdu
ed the 
lass �(r) of fun
tions f(z) from the 
lass�, whi
h map |z| > 1 onto a domain whose 
omplement 
ontains thedomain with the inner 
onformal radius with respe
t to the origin at leastr, 0 < r < 1. In [41, 50℄, exa
t estimates for |�0| and |�1| in the 
lass �(r)were obtained. The 
lass �(r) is parti
ularly 
onvenient for applying the
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lass. Solynin [233℄ obtained an exa
t estimatefor the diameter of level 
urves, i.e., for the fun
tional
|f(z1)− f(z2)|; |z1| = |z2| = � > 1;in the 
lass �(r).In the 
lass �, a distortion theorem is known (z = �ei�):(1− �−2)24�2(1 + �−2)2 6

|f ′(z)f ′(−z)|
|f(z)− f(−z)|2 6

(1 + �−2)24�2(1− �−2)2 : (5:7)Extending this result, Suita [243℄ obtained the inequalities(1− �−3)3√3�3(1 + �−3)3 6

3
∏k=1 |f ′(z!k−1)|f(z!k−1)− f(z!k)| 6

(1 + �−3)33√3r3(1− �−3)3 ; (5:8)where z = �ei�; � > 1 and ! = e2i�=3, and showed all equality 
ases. Suitaobtained inequalities (5.6) with the help of the GCT of Jenkins. Howeverthe inequalities (5.6) are simple 
orollaries to the Goluzin inequality (seethe se
ond inequality in (5.2)) and inequality (5.3).In [200, 208℄, the upper and the lower estimates for the fun
tional in(5.7) in the 
lass �(r) are obtained. Under limit passage for �→ ∞, fromthe indi
ated result in [233℄ and the result in [200℄ the maximum of |�1|in the 
lass �(r) is found. Earlier the indi
ated maximum was obtained in[50℄ by means of the GCT (in the Extended Form). Note that the extensionof inequalities (5.8) to the 
lass �(r) leads to an estimate of |�2| in the
lass �(r).5.6. Harmoni
 measures and triad modules.There are various 
onne
tions between harmoni
 measures and modules.Of importan
e is the relationship between harmoni
 measures of a 
ertaintype and triad modules.A number of Jenkins' results [42, 80, 103 I, II, III; 120℄ and relatedworks of various authors were devoted to problems 
on
erning harmoni
measures.By a triad (P; �;D), the 
on�guration 
onsisting of a simply 
onne
teddomain D of hyperboli
 type, an open border ar
 � of D, and a point Pinterior to D is meant (the triads of Jenkins). We denote the harmoni
measure of � taken in P with respe
t to D by !(P; �;D). By the moduleM(P; �;D) we mean the module of the 
lass of lo
ally re
ti�able open ar
s
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k to � and separating P from the 
losedborder ar
 �∗ 
omplementary to �. This module is 
alled a triad module;this term was introdu
ed by Jenkins [42℄. There is a stri
tly monotonein
reasing fun
tion that relates !(P; �;D) to M(P; �;D).In [103 I℄ the following simple property of a triad module is noted. LetU = {|z| < 1} and let � be the ar
 on the unit 
ir
le from e−i�=2 to ei�=2(in the positive sense), 0 < � < 2�. Consider the triad (0; �; U), and letM(0; �; U) be its triad module. The quadrati
 di�erentialdz2z(z − ei�=2)(z − e−i�=2)determines the extremal 
on�guration of the Mori problem 
on
erningthe maximum of the module in the family of doubly-
onne
ted domainsseparating pairs of points 0;∞ and ei�=2; ei(2�−�=2) (see Se
. 5.4). Fromthe de�nition of the triad module it follows that the desired triad moduleis equal to twi
e of the mentioned maximum. Hen
e forM(0; �; U) we havea relation in terms of the ellipti
 integrals:M(0; �; U) = 12K′(
os�=4)=K(
os�=4):Dwell on the result in [80℄. Let U = {|z| < 1}, and let � be a half-openar
 in U with end points � ∈ U and 1. Let G = U \�. Gaier [162℄ 
onsideredthe problem of estimating from below the harmoni
 measure !(0; �;G) ofthe ar
 � with respe
t to G at the origin, and he gave an expli
it but notsharp estimate for this quantity. Jenkins showed that the problem is mostnaturally stated in terms with topology determination, and he �rst solvedthe problem when the 
hange in the argument on the ar
 � from 1 to �has an assigned value. Shortly, this solution is stated as follows.Let � be an ar
 in U \ {0} with end points � ∈ U and 1. Further weassume that the 
hange of argument ��(arg z) has the assigned value Æ.Then !(0; �;��) > !(0; �∗; G�∗);where �∗ is a 
ompeting ar
 uniquely determined as follows. There is aunique point ei�; � is real,su
h that the quadrati
 di�erentialQ(z)dz2 = 
(z − ei�)[z(z − �)(z − �−1)(z − 1)℄−1dz2with the 
onstant 
(6= 0) is real in the unit 
ir
umferen
e and �∗ 
onsistsof a traje
tory of Q(z)dz2 on |z| = 1 from 1 to ei� and a traje
tory in D
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ur only if �
oin
ides with �∗.Fu
hs (see [127℄) raised the problem of �nding the greatest lower boundof the harmoni
 measure at the origin of a set in |z| 6 1 whi
h meets ev-ery radius. This problem has been investigated by Marshal and Sundberg[213℄. For a 
ontinuum, a geometri
 expli
it solution of this problem isobtained by Jenkins [103 I℄. In this paper it is shown that the result in [80℄
ited above readily gives a 
hara
terization of the extremal in the problemof Fu
hs. Solynin [236℄ extended this result, 
onsidering the above 
ontin-uum whose index about the origin is a half integer n=2; he obtained ananalyti
ally impli
it solution. Jenkins [120℄ simpli�ed Solynin's proof andgave a geometri
ally expli
it identi�
ation of the extremal 
on�guration.A new approa
h to the problem of Fu
hs provides the Jenkins result[116℄ devoted to the n-fold symmetrization. In [120℄, Jenkins simpli�es theproof in [236℄ and gives a geometri
ally expli
it 
hara
terization of theextremal 
on�guration.In this 
onne
tion, see also the papers of Liao [211℄, the Jenkins refer-en
es [223, Se
. 9℄, Solynin's arti
le [236℄.5.7. Problems with free poles of quadrati
 di�erential.Let E be a 
ontinuum on C, and let Dn(E); n > 2, be the nth diameterof E: dn(E) = { max
k;
l∈E ∏16k<k6n |
k − 
l|}2=[n(n−1)℄:The problem on the maximum of dn(E) in the family of all 
ontinua E ofthe unit 
apa
ity is an example of the problem with free poles of asso
iatedquadrati
 di�erential: Goluzin showed that an extremal 
ontinuum of thisproblem is the �-set for the quadrati
 di�erentialQ(z)dz2 = −
∑16k<l6n 1(z − 
k)(z − 
l)dz2;here 
k, i.e., the Fekete points on E, are unknown parameters of the givenproblem, Rei
h and S
hi�er [221℄ shoved that the ea
h extremal 
ontinuumof the problem under 
onsiderations possesses this property. The extremal
on�guration is unique up a linear transformation and it is the 
ontinuumof minimal 
apa
ity for its Fekete points. The problem is solved for n =2; 3; 4. By the Faber theorem, in the 
ase n = 2 an extremal 
ontinuum



GEOMETRIC FUNCTION THEORY 223is the segment E∗2 = [−2; 2℄, Goluzin showed that in the 
ase n = 3, this
ontinuum is E∗3 = ∪3k=1[0; 41=3!k−1; ! = e2�=3. The problem on d4(E)is solved by the author [194℄. The extremal 
ontinuum E∗4 is symmetri
with respe
t to both 
oordinate axes and it is 
onne
ted with a suitable
ontinuum of minimal 
apa
ity by the 
onditionE∗4 = {z : H(�))z2 ∈ E(0; ei�0 ; e−i�0)};where �0; 0 < �0 < �=2; is the solution of the equation
(�) = 13 
os�(see notation in Se
.(5.3)). In the proof in [194℄, various methods of inves-tigation were used.Let a = {a1; : : : ; an} be a system of distin
t points on C,and let � =
{�1; : : : ; �n} be a system of positive numbers. As above, let Dn(a) bethe family of all systems D = {D1; : : : ; Dn} of nonoverlapping simple 
on-ne
ted domains on C; ak ∈ Dk; k = 1; : : : ; n. The �rst results of the modulemethod in the problems of the maximum M(a1; : : : ; an;�1; : : : ; �n) of thesum (5.1) over the family Dn(a) were mentioned in Se
.5.2. The indi
atedmaximum will be denoted by M(a;�);M(a;1) will be denoted by M(a).The problem on M(a) will be 
alled the problem An.The problem on the maximum of the 
onformal invariant2� n

∑k=1M(Dk; ak)− 2n− 1 ∑16k<l6n log |ak − al|in the family D(a) with respe
t to every point system a = {a1; : : : ; an}will be 
alled the problem Bn.In the 
ases n = 2; 3, the problems An and Bn are equivalent, and wehave the results of Lavrent'ev, Golusin, and Kolbina (for their proofs, see
omments of Jenkins [19℄).Theorem 4.3 has led to a 
omplete solution of the problems An and Bnfor n = 4 [195℄. The maximum in the problem A4 is expressed in termsof the problem on E(−1; 1; a), where a is expressed by the 
ross-ratio ofthe quadrangle of points under 
onsideration. It allowed one to �nd thelargest value of the above maximum for all values of a, and thus also tosolve the problem B4; see [195℄ and the paper of Fedorov [158℄, as well.



224 G. V. KUZ'MINAFor n > 5, the problems An and Bn remain unsolved. Under theadditional assumption that the systems of points {a1; : : : ; a5} are sym-metri
 with respe
t to a 
ir
le or a line, the maximum I∗5 was found bythe author [199℄ and Dubinin [138℄; in this 
ase, the extremal system is
{1; !; !2; 0;∞}, where !3 = 1. It is plausible that this system of points isalso extremal for the problem B5 in the general 
ase.An investigation of some 
andidates for the extremal 
on�gurations ofthe problem Bn is given in [206℄.Let now a = {a1; : : : ; an} be a system of distin
t points of the disk U ,and let � = {�1; : : : ; �n} be a system of positive numbers. Let DU (a) bethe family of all systems D = {D1; : : : ; Dn} of nonoverlapping simply 
on-ne
ted domains in U; ak ∈ Dk; k = 1; : : : ; n. The problem on the maximumof the sum (5.4) for all systems a of points ak ∈ U and systems of domainsDk of the family DU (a) will be 
alled the problem Kn. The problem of themaximum of the fun
tionalJn = 2� n

∑k=1M(Dk; ak)− { 23(n− 1) ∑16k<l6n log(|ak − al||1− akal|)+ 13 n
∑k=1 log(1− |ak|2)}in the family DU (a) with respe
t to every system a = {a1; : : : ; an} of thepoints in U will be 
alled the problem Ln.The diÆ
ulty in solving Problems Bn;Kn, and Ln for suÆ
iently largen is 
onne
ted with the presen
e of various admissible 
on�gurations, sat-isfying the ne
essary 
onditions, but not realizing the desired maximum.Therefore, it is of interest to establish additional 
onditions that the ex-tremal 
on�gurations must satisfy. These 
onditions are given by the fol-lowing theorem, due to Kuznetsov [190, 193℄.The asso
iated quadrati
 di�erential in Problem Bn does not have mul-tiple zeros. The bound every from domains of the extremal system in Prob-lems Bn and Knis a 
losed Jordan 
urve.Geometri
ally, this theorem shows that the domains indi
ated do nothave interior slits and "holes".An addition to the previous theorem, see [193℄.In the 
ase n = 2, the maximum of the sum (5.4) in the family DU (a)was found by Kufarev and Falles [189℄. Using their results 
ited above,



GEOMETRIC FUNCTION THEORY 225Kuznetsov [193℄ obtained a simple solution of the problem K2 for any�1; �2. The solution of the problem K3 in the 
ase � = 1 was obtainedby Kostyu
henko [186℄. In addition to theoreti
 fun
tion reasonings, thissolution was needed some 
omputer 
al
ulation.5.8. Problems in the presen
e of a symmetri
 
onditions.As it was indi
ated above, the extremal de
ompositions problems inthe 
ase of large number of free parameters are of 
onsiderable diÆ
ulty.Therefore it is natural to 
onsider these problems for the 
ondition thatthe disposition of the points ak satis�es 
ome additional 
onditions. Firstresult in this dire
tion belongs to Dubinin [134℄, and it is given by thefollowing theorem.Let a = {a1; : : : ; an}; n > 2, be a system of the points of C. In the family
D(a)

M(a1; : : : ; an) 6
n2� log 4n: (5:9)Equality in (5.9) o

urs only in the 
ase where the points a1; : : : ; an areuniformly distributed on C.This result is supplemented by the following theorem [204 III℄ in thefamily Pn(a) (see Se
.(5.2)).Let a = {a1; : : : ; an} be a system of points on C; n > 3. In the family

Pn(a) we have the inequalitymaxa min
Pn(a) n

∑k=1M(Pk; ak; ak+1) 6
2n� log 4n: (5:10)Equality in (5:10) o

urs only in the same 
ase as in (5:9).Dubinin [134℄ showed that the maximum of every of the fun
tionals

M(0; a1; : : : ; an) and M(0; a1; : : : ; an;∞;�; 1; : : : ; �); �2 = 1=2, wherea1; : : : ; an are points of C, o

urs only in the 
ase of indi
ated symmet-ri
 disposition of the points a1; : : : ; an. This gave simple expressions fordesired maxima.The author [203, 202 I℄ established, that the mentioned property issatis�ed for the fun
tional M(0; a1; : : : ; an;�; 1; : : : ; 1) for 0 < � 6 1 andfor the se
ond of the indi
ated fun
tionals for �2 6
n28 .



226 G. V. KUZ'MINAIn the proof, Dubinin used the method of separating transformation of
ondensers and domains, the author used Theorem 4.4, whi
h establishesthe 
onne
tion between two extremal de
omposition problems.Con
erning the 
ondition �2 6 n2=8 in the problem on the fun
tional
M(0; a1; : : : ; an;�; 1; : : : ; 1; �), the following theorem is proved [202, I℄.The maximum M(0; ei�; e−i� ;∞), where 0 6 � 6 �=2, is attained for� = �0, where �0; �=6 < �0 < �=2, is the solution of the equation 
(�) =1=2; 
(�) is the zero of the quadrati
 di�erential, de�ning the 
ontinuumof minimal 
apa
ity E(0; ei� ; e−i�), 0 6 � 6 �=2.A number of extremal de
omposition problems in the presen
e of 
ertainsymmetry in the 
ondition of the problem under 
onsideration is solved in[149, 204{207℄.5.9. Problems for whi
h asso
iated quadrati
 di�erential is a 
om-plete square.In de
omposition problems 
ited in the title the module method, as arule,immediately yields a 
omplte solution. We shall indi
ate some su
hresults, following the presentation in Emel'yanov's arti
le [151℄.Let P = {a1; : : : ; an} be a system of distinguished points on C and let
C

′ = C\P . Let P be the family of all systems D = {D1; : : : ; Dn1 ; D(1)1 ; : : : ;D(1)n2 } of nonoverlapping domains, where Dj is a simply 
onne
ted domainon C
′ ∪ {aj} su
h that aj ∈ Dj for j = 1; : : : ; n1(n1 6 n); D(1)k ; k =1; : : : ; n2; is a doubly 
onne
ted domain on C

′. It is assumed that thefamily P is asso
iated with a given family of homotopy 
lasses of 
losedJordan 
urves on C. Let � = {�1; : : : ; �n1} and l = {l1; : : : ; ln2} be twogiven systems of positive numbers.Let D∗ = {D∗1; : : : ; D(1)∗n2 } be the system of domains realizing the max-imum value of the fun
tionalF (D) = n1
∑j=1 �2jM(Dj ; aj) + n2

∑k=1 l2kM(D(1)k )in the family P . Here M(D(1)k ) denotes the module of the domain D(1)kwith respe
t to the family of 
urves separating its boundary 
omponents.It is known that the extremal system D∗ is unique, and where existsa unique quadrati
 di�erential asso
iated with the problem su
h that his
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omposes C onto domains forming the system D∗. This di�erentialis of the form Q(w)dw2 = n
∑j=1 ( Aj(w − aj)2 + �j(w − aj))dw2;where Aj = −�2j=4�2 if j 6 n1 and Aj = 0 otherwise.Let
M(P ) = F (D∗);and 
onsider the fun
tionalJ(P ) =M(P ) + 14� ∑j;k;j 6=k �k;j log |ak − aj |2; �k;j = �j;k; (5:12)where the �k;j are some real numbers. We assume that the 
ondition

∑k;k 6=j �k;j = −�2j ; j = 1; : : : ; n;holds, where we set �j = 0 for n1 < n 6 n2. In this 
ase, the fun
tionalJ(P ) is 
onformally invariant.If the fun
tional (5.12) is bounded from above then exists an extremalsystems of points P ∗ = {a∗1; : : : ; a∗n} and an asso
iated quadrati
 di�eren-tial QP∗(w)dw2.The following preposition is valid [151℄.Let P ∗ = {a∗1; : : : ; a∗n} be an extremal system of points for the fun
tional(5:12). Then the quadrati
 di�erential QP∗(w)dw2 has the formQP∗(w)dw2 = 14�2 n
∑k;j=1;k<j �k;j( 1w − a∗k − 1w − a∗j )2:If P ∗ = {a∗1; : : : ; a∗n;∞},thenQP∗(w)dw2 = 14�2(

n
∑k;j=1;k<j �k;j( 1w − a∗k − 1w − a∗j )2+ n

∑j=1 �j;n+1 1(w − a∗j )2)dw2:By means of obtained expressions for QP∗(w)dw2 , in [151℄, the inequali-ties in the 
lass � are obtained whi
h are generalizations of the inequalitiesof Golusin and Grunsfy, respe
tively.



228 G. V. KUZ'MINADwell on another results in [151℄. The following lemma is valid.Let P = {a1; : : : ; an;∞} be a set of distinguished points on C, let F (D)be a fun
tional of the form (5:11) of the extremal de
omposition problem
orresponding to the set P , and let QP (z)dz2 be the asso
iated quadrati
di�erential. If QP (z)dz2 = − 14�2(

n
∑j=1 �jz − aj )2;then

M(P ) = F (D∗) = − 12� n
∑p;q=1;p 6=q �p�q log |ap − aq |:As it is noted in [151℄, this lemma follows of [143, Theorem 1℄. In [151℄,a not 
ompli
ated proof of this lemma by the module method is given.Now let P = {a1; a2; a3;∞} be a system of distin
t points of C. Con-sider the problem of the extremal de
omposition of the z-sphere in thefamily of all nonoverlapping simply 
onne
ted domains Dj ; aj ∈ Dj ; j =1; : : : ; 4(a4 =∞), with the fun
tionalF (D) =M(D1; a1) +M(D2; a2) +M(D3; a3) + 9M(D4;∞):Let D∗ = {D∗1; : : : ; D∗4} be the extremal systems of domain, M(P ) =F (D∗). SetJ(P ) = M(P ) + 12� (log |a2 − a1|2 + log |a3 − a1|2 + log |a1 − a3|2):The fun
tional J(P ) is bounded from above [151, Theorem 1℄. By The-orem 4.3, an asso
iated quadrati
 di�erential of this problem is a 
ompletesquare. We have the following theorem [151℄.Let T = T0 ∪ T+ ∪ T−, where T0 = [−2; 1℄,T+ = {z : |z − !| = √3; z > 0}; T− = {z : z ∈ T+};here ! = e2�=3. The maximum of the fun
tional J(P ) is equal to 0 and itis attained at every systems of pointsPa = {!; !; a;∞}; a ∈ T;and also at systems of points obtained from the indi
ated systems of pointsby linear-fra
tional transformations and only at su
h systems of points.
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onsider the de
omposition problem of the w-sphere into simply
onne
ted domains Dj ; j = 1; : : : ; 4, su
h that aj ∈ Dj and a doubly-
onne
ted domain D. The domain D has to separate two pairs of pointsa1; a3 and a2;∞ and is asso
iated with the 
lass 
losed Jordan 
urveshomotopi
 on C \ {a1; a2; a3} to the slit along the segment [a1; a3℄. Set~F (D) =M(D1; a1) +M(D2; a2) +M(D3; a3) + 9M(D4;∞) + 4M(D);~M(P ) = ~F (D∗):Let the fun
tional ~J(P ) be de�ned similarly to (5.13), i.e.,~J(P ) = ~M(P ) + 12� (log |a2 − a1|2 + log |a3 − a2|2 + log |a1 − a3|2: (5:14)The fun
tional ~J(P ) is bounded from above. Let 
1;3 denote the 
om-ponent of C \ T 
ontaining the point w = ∞. The following statement isan easy 
onsequen
e of the last theorem.The maximum value of the fun
tional ~J(P ) is equal to 0. The fun
-tional ~J(P ) a
hieves its maximal value at systems of points obtained fromthe system Pa = {!; !; a;∞}, where a ∈ 
1;3, by linear-fra
tional trans-formations and only at su
h system s of points.By means of the last theorem and its 
orollary, an inequality for a
ombination of initial 
oeÆ
ients of the expansion of a fun
tion f(z) ∈ �is obtained in [151℄. In 
ontrary to the analog inequality obtaining with theuse of the GCT of Jenkins, this inequality is valid without any restri
tionson the �rst 
oeÆ
ients of this expansion.Some extremal de
omposition problems in multiply 
onne
ted domainsfor whi
h the asso
iated quadrati
 di�erentials are 
omplete squares are
onsidered by Emel'yanov in [154℄.5.10. Solution of some isoperimetri
 problems.By means of the method of modules, a solution of a number of isoperi-metri
 problems was obtained. We shall indi
ate some appli
ation of thenotion of the redu
ed module of a triangle introdu
e by Solynin [230, 238℄.In [218℄, P�olya and Szeg�o posed the problem of �nding the maximum ofthe 
onformal radius R(�n; 0) over the family of all n-gons �n(0 ∈ �n) ofa given area. For n = 3; 4, this problem was solved in [218℄ with the help ofthe Steiner symmetrization;for n > 4, the proof in [218℄ fails. Solynin [230℄obtained a solution of this isoperimetri
 problem for all n simultaneously;



230 G. V. KUZ'MINAthe maximum is attained only in the 
ase where �n is a regular n-gonwith 
enter at the origin. In [234℄, some inequalities between geometri
 andfun
tional 
hara
teristi
s of n-gons, su
h as the perimeter, diameter, innerradius, trans�nite diameter, torsion rigidly, and ele
trostati
 
apa
ity, wereestablished. The proof uses the notion of dissymmetrization introdu
ed byDubinin [132℄.Some diÆ
ult isoperimetri
 problems for n-gons were solved by Solyninand Zalgaller [240,241℄. In the �rst paper, the authors proved that amongall n-gons �n with �xed area, the regular n-gon, and only this one, hasminimal logarithmi
 
apa
ity. This result was 
onje
tured by P�olya andSzeg�o [218℄ (and was proved by them for n = 3; 4). Let C�n be the un-bounded 
omponent of C \ �n. The proof uses the 
onne
tion betweenthe redu
ed module of C�n and the redu
ed modules of the trilateralsasso
iated with a spe
ial triangulation of an n-bigon �n; this approa
hwas developed by Solynin in an earlier work [230℄).In [241℄ the authors prove various isometri
 inequalities for a 
urvilinearpolygon with n sides, ea
h of whi
h is a smooth ar
 of 
urvature at most k.The proof relies on the method of dissymmetrization and on a spe
ialpurely geometri
 theorem for the polygons under 
onsideration.5.11. Con
luding remarks.In the theory of the module method, presented in Se
.4, the asso
iatedquadrati
 di�erentials have poles of order not ex
eeding 2. The open ques-tion is to extend this theory to quadrati
 di�erentials with poles of higherorder.In a number of 
ases, extremal de
omposition problems in whi
h the as-so
iated quadrati
 di�erentials have poles of higher orders 
an be redu
edto problems in whi
h the quadrati
 di�erentials have poles of orders 6 2.Su
h a redu
tion is based on the fa
t that a quadrati
 di�erential with apole f order n > 4, say, at the point z = 0, 
an be approximated by a qua-drati
 di�erential with n− 2 poles of se
ond order that are symmetri
allylo
ated on the 
ir
le |z| = � (in the 
ase n = 3, also there is a simple poleat the origin). This approa
h was used in [200, 208℄ for the estimate of the
oeÆ
ient �1 in the 
lass �(r).Another approa
h 
onsist of the introdu
tion of redu
ed modules of do-mains similar to the end and strip domains of a quadrati
 di�erentials withpoles of high order, and of the 
onsideration of a de
omposition problem
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ontaining the domains indi
ated. The preliminaryresult in this dire
tion was obtained in [209℄. This result 
an be regardedas an analog of the Jenkins GCT.6. OTHER RESULTS OF J.A.JENKINSJenkins is the author of more than 130 of s
ienti�
 papers.These papersare devoted to various questions of GFT. They are prominant appli
ationsof the method of the extremal metri
 and related approa
hes.On the general CoeÆ
ient Theorem, its extensions and generalizations,we said in Se
. 3. The general prin
iple stated in [39 I, II℄ and its develop-ments were presented in Se
. 4. Dwell brie
y on other results of Jenkins.6.1. Jenkins made a large 
ontribution to the development of the methodof symmetrization.Let us give one of the results of Jenkins in the symmetrization methodof P�olya and Szeg�o.Let D be a doubly-
onne
ted domain in the w-sphere, and let P be apoint and � be a ray with end point at P . Let D∗ be the domains asso
i-ated with D by the 
ir
ular symmetrization determined by P and � (seede�nitions in [41℄). Let M(D) and M(D∗) be the modules of D and D∗,in ea
h 
ase for the 
lass of 
urves separating the boundary 
omponents.Then (P�olya and Szeg�o) M(D) 6 M(D∗): (6:1)Jenkins obtained the following uniqueness result [44℄.Let the 
ir
ular symmetrization be de�ned by the origin and the positivereal axis. Equality in (6.1) o

urs only if D∗ is obtained from D by a rigidrotation about the point w = 0.Analogous results are valid for the symmetrization of quadrangles.As it was be noted (see Se
. 5.1) in early papers of Jenkins [22 ?,20,32℄,the eÆ
ien
y of the 
ombination of the general extremal metri
 prin
iplewith the symmetrization method of P�olya and Szeg�o was demonstratedwith examples of the solution of diÆ
ult problems.6.2. Some results of the GFT express the fa
t that a given set has a mini-mal 
apa
ity ( or possesses an analogous extremal property) in some familyof planar sets satisfying one or another geometri
 
ondition. The examples



232 G. V. KUZ'MINAare many of 
overing theorems. Jenkins [11℄ obtained the following resultby a symmetrization argument.Let f ∈ S and let L(f; r) denote the Lebesgue length measure of theset of values on |w| = r not 
overed by the image of |z| < 1 under themapping w = f(z). For 1=4 < r < 1, we have the sharp boundL(f; r) 6 2r ar

os(8r1=2 − 8r − 1)with equality only for fun
tions given expli
itly in [11℄.This work has had a number of 
ontinuations.In this 
onne
tion, see there
ent paper of Dubinin [140℄.6.3. In [65℄, Jenkins gave a simple proof of a 
riterion for a 
losed set Eto have minimal 
apa
ity in a given 
lass of admissible sets and obtainedthe 
orresponding uniqueness assertion. This 
riterion is formulated as
onditions on E and on the 
omparison sets that are expressed in terms ofthe topology of the orthogonal traje
tories to the level 
urves of the Greenfun
tion for the domain D = C \E. Con
eptually, the paper of Tamrazow[205℄ on 
overing of 
urves under 
onformal mapping is 
lose to this paper.The paper [71℄ is devoted to geometri
 questions related to 
apa
ity.The results of this paper, very simple in formulation, led to signi�
ant re-�nements in a number of previously known results of the 
overing theoremtype in the 
lasses � and S.6.4. A number of Jenkins' results [42,80,103I,II,III;120℄ were devoted toproblems 
on
erning harmoni
 measures. Some of these results were sitedin Se
. 5.6.6.5. The method of the extremal metri
 has various forms. Using a formof this method 
lose to the area method, Jenkins [63℄ proved the Spe
ialCoeÆ
ient Theorem. This result does not 
ontain many of the most in-teresting appli
ations of the General CoeÆ
ient Theorem, but it makespossible to 
onsider a number of other problems.In [61℄, Jenkins applied a modi�ed form of the methods of the extremalmetri
 to obtain generalizations of the usual span theorems for multiply
onne
ted domains. In this way, it was possible to prove for the �rst timetheorems of this kind for fun
tions regular in a domain (previously, su
hproblems had been 
onsidered only for fun
tions having given singulari-ties).



GEOMETRIC FUNCTION THEORY 2336.6. A number of Jenkins' papers is devoted to the theory of Riemann sur-fa
es, results on the boundary 
orresponden
e, appli
ations of the methodof the extremal metri
 to nonunivalent fun
tions, and other questions.Many of his papers dealt with the theory of quasi
onformal mappings.A short a

ount by Jenkins [100℄ and his fundamental survey arti
le[123℄ have been devoted to the method of the extremal metri
 in its variousaspe
ts. These publi
ations re
e
ted many results of Jenkins.PUBLICATIONS OF JAMES A. JENKINS1. Some problems in 
onformal mapping. Thesis (Ph.D.) HarvardUniversity. 1948.2. Some problem in 
onformal mapping. | Trans. Amer. Math. So
.67 (1949), 327{350.3. Positive quadrati
 di�erentials in triply-
onne
ted domains. |Ann. Math. (2) 53 (1951), 1{3.4. Hyperellipti
 traje
tories (jointly with D. C. Spen
er). | Ann.Math. (2) 53 (1951), 4{35.5. On an inequality of Goluzin. | Amer. J. Math. 73 (1951), 181{185.6. On the topologi
al theory of fun
tions.|Canad. J. Math. 3 (1951),276{289.7. On a theorem of Spen
er. | J. London Math. So
. 26 (1951),313{316.8. Generalization of a theorem of Mandelbrojt. | Amer. J. Math. 73(1951), 807{812.9. Remarks on \Some problems in 
onformal mapping." | Pro
.Amer. Math. So
. 3 (1952), 147{151.10. Contour equivalent pseudoharmoni
 fun
tions and pseudo
onju-gates (jointly with M. Morse). | Amer. J. Math. 74 (1952), 23{51.11. On values omitted by univalent fun
tions. | Amer. J. Math. 75(1953), 406{408.12. Various remarks on univalent fun
tions. | Pro
. Amer. Math.So
. 4 (1953), 595{599.13. A symmetrization results for some 
onformal invariants.| Amer.J. Math. 75 (1953), 510{522.14. Some results related to extremal length. Contributions to the theoryof Riemannn surfa
es, pp. 87{94. Annals of Mathemati
s Studies,No. 30. Prin
eton University Press, Prin
eton, N.J., 1953.
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al methods on Riemann surfa
es. Pseudoharmoni
 fun
-tions (jointly with Marston Morse). Contributions to the theory ofRiemann surfa
es, pp. 111{139. Annals of Mathemati
s Studies,No. 30. Prin
eton University Press, Prin
eton, N.J., 1953.16. Another remarks on \Some problems in 
onformal mapping." |Pro
. Amer. Math. So
. 4 (1953), 978{981.17. Conjgate nets,
onformal stru
ture, and interior transformationson open Riemann surfa
es (jointly with M.Morse) | Pro
. Nat.A
ad. S
i. U.S.A. 39 (1953), 1261{1268.18. Curve families F ∗ lo
ally the level 
urves of a pseudoharmoni
fun
tion (jointly with M.Morse). | A
ta Math. 91 (1954), 1{42.19. A re
ent note of Kolbina. | Duke Math. J. 21 (1954), 155{162.20. On a problem of Gronvall. | Ann. Math.(2) 59 (1954), 490{504.21. On the lo
al stru
ture of the traje
tories of a quadrati
 di�erential.| Pro
. Amer. Math. So
. 5 (1954), 357{362.22. On Bieberba
h{Eilenberg fun
tions. I, II, III. | Trans. Amer.Math. So
. 76 (1954), 389{396; 78 (1955), 510{515; 119 (1965),195{215.23. A general 
oeÆ
ient theorem. | Trans. Amer. Math. So
. 77(1954), 262{280.24. Some uniqueness in the theory of symmetrization. I, II. | Ann.Math. (2) 61 (1955), 106{115; 75 (1962), 223{230.25. On 
ir
umferentially mean p-valent fun
tions. | Trans. Amer.Math. So
. 79 (1955), 423{428.26. On 
ir
ularly symmetri
 fun
tions. | Pro
. Amer. Math. So
. 6(1955), 620{624.27. On a lemma of R. Huron. | J. London Math. So
. 30 (1955),382{384.28. Sur quelques aspe
ts globaux du theoreme de Pi
ard. | Ann. S
i.E
ole Norm. Sup. (3) 72 (1955), 151{161.29. On a problem of Luzin. | Mi
higan Math. J. 3 (1955{1956), 187{189.30. On expli
it bound s in S
hottky's theorem. | Canad. J. Math.7(1955), 76{82.31. Conjugate nets on an open Riemann surfa
e (jointly with M. Mor-se). | Le
tures on fun
tions of a 
omplex variable, pp. 123{185.The University of Mi
higan Press, Ann Arbor, 1955.
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.81 (1956), 477{500.33. On quasi
onformal mappings. | Rational Me
h. Anal. 5 (1956),343{352.34. On a result on Keogh.| J. London Math. So
.31 (1956), 391{399.35. On empli
it bounds in Landau's theorem. I, II. | Canad. J. Math.8(1956), 423{425; 33 (1981), 559{562.36. Some new 
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