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V. A. Solonnikov

PROOF OF SCHAUDER ESTIMATES FOR PARABOLIC
INITIAL-BOUNDARY VALUE MODEL PROBLEMS VIA
O. A. LADYZHENSKAYA’S FOURIER MULTIPLIERS
THEOREM

ABSTRACT. The paper is concerned with estimates of the Holder
norms of solutions of model parabolic initial-boundary value prob-
lems in a half-space. The proof is based on the theorem on the
Fourier multipliers in anisotropic Hoélder spaces due to O. A. La-
dyzhenskaya and on K. K. Golovkin’s theorem on equivalent norms
in these spaces.

§1. INTRODUCTION AND THE SCALAR CASE.

O. A. Ladyzhenskaya [1] has proved the following theorem on the Fourier
multipliers in the Holder spaces of functions.

Theorem 1. Let C%®7(R™*1) be the space with the norm

[l gorvaniny = (W)W + sup [u(z, b)), (1.1)
Rn+1
where
W)@ = gup [u(X) —u(¥)]
Rn

(x,v)ernt1 p2(X =Y) 7

p(X - Y):Z |$k - yk|+|t7 T|’Ya X = (xat)u Y = (yaT)a v, € (07 ]-)
k=1
(1.2)

Consider the convolution operator

v(z) = (mxu) = / m(x —y,t — 1)uly, 7)dy dr (1.3)

Rn+1
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134 V. A. SOLONNIKOV

with
m(x,t) = / e/ &N (¢, Lo)dédgo = F~ (€, &),
Rr41 (1.4)
E=(&,...,&) e R™
Assume that -
||F71Mj”L1(R"+1) <y (1.5)

where j ={0,£1,+2,...},

Mj = m(2]£17 .y 2]/’Y£0)X(£7 50)7 (16)

and x(€,&) = 0((p(€.6)), p(€, &) = ké 66| + 1€0]7, 6 € CE°(Ry), 6 -
[0,00) — [0,1], 8(p) =1 for p € [1/2,1], 8(p) = 0 for 6 € [0,1/4] U [4,00).
Then

)t < e(n, v, Q) () (1.7)

This theorem has been used in [1,2] for estimating the solution of the
Cauchy problem for generalized Stokes equations.

The multipliers theorem in the Holder spaces with a homogeneous met-
rics p(&) = €| (i.e., with v = 1) is due to L. Hérmander [3].

We estimate the L;-norm of M; by the inequality

M1, sy < c/.../||A1(h1)...An(hn)Ao(ho)M||L2(Rn+1) (1.8)
0 0

dhy dhg ~

=7 3 = M|

A
(see [4] and Section 3 of the present paper), where

Ak(hk)u(xv t) = u(xla S T+ hku v 7xn7t) - U(ZL’, t)a

Ag(ho)u(z,t) = u(x,t + ho) — u(x,t) and hg, hq,... are the incremental
steps. Estimate (1.8) is an analog of the Szdsz theorem concerning the
uniform convergence of the Fourier series [5]. By (1.7) and (1.8),

(0) {227 < esup ||| M| () e (1.9)
J

In particular, sup |H.7\A/f]||\ is finite, if the multiplier m is homogeneous,
J
ie.,

MAEANY &) = m(E, &), YA >0,
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and

De,,,...Dg, (€ &)x(€,&) € La(R™1). (1.10)

In the present paper, we use Theorem 1 for deriving the Schauder estimates
of solutions of 2b- parabolic model initial-boundary value problems in a
half-space. This simplifies the arguments in the paper [6], where potential-
theoretic methods for obtaining such estimates are used. We work with
the “parabolic” anisotropic spaces, which corresponds to v = 1/2b. We
assume that m is a function of ¢ € R™ and s € C holomorphic with
respect to s in the domain Res > —6|¢[?*, § > 0. Moreover, to ensure

n

(1.10), we replace p(€,&) = > & + |&]Y/?* by a more regular function
i=1

p(€, o) = (& +[€[*)/*.

To clarify our arguments, we restrict ourselves in this section with the
scalar case and consider model problems of the form

o 0 .
L(a_xaﬁ)u(‘rvt) —f(l’,t), z€R ) te (0700)7
o 0 B , .
q(a_x7&)u(mﬂt)|w3:()_éq(x7t)7 q—l,...bT, (111)
‘T/ = ('Tla s 7xn—1) € Rn717
67“—1

uli=0 = ug(z), =u,_1(x), xeRY,

S-vrs ] N
where L is a 2b-parabolic operator in the sense of Petrovskii of order r
with respect to ¢ and of order 2br with respect to the spatial variables;
the B, are boundary operators of order o, + 2br with arbitrary integral
o4 such that o4 + 2br > 0. It is assumed that L(i{,s) and B, (i, s) are
homogeneous in the following sense:

L(iEX, sA®) = NPT L(i€,s),  B,(i€), sA?") = A7 T2 B (ig,s), VA >0,

and, moreover, the complementing condition (Lopatinskii condition) is sat-
isfied.

We recall that, according to the parabolicity condition, the roots of
the polynomial L(i&, s) with respect to s, p;(§), i = 1,...,r, satisfy the
inequality

Rep; < —0[¢*", VE€R™, §>0.

It follows that for arbitrary & = (&1,...,&,-1) € R*! and s € C with
Res > —6|¢'|?® the polynomial L(i¢’,s,iT) has br roots with respect to
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T with positive and br with negative imaginary part. The complementing
condition means in particular that the homogeneous problem (1.36) has
only a trivial solution.

It is proved in [6] that under some necessary compatibility conditions
for the data u;, ®,, f, the solution of (1.11) satisfies coercive Schauder
type estimates

(I4+2br,1/2b+r) ll/2b) 2b (r—k)+1)
()l <c((n) Z (1.12)

br
I—04,l/2b—04/2b
DI S >),

where | > max(0,01,...,0), (u)%}’ll/%) and (u)%}i are principle parts
of the norms in C"-11/2%(Qr), and C!(R?), respectively, l and [; are not
integers, R7, = R%? x (0,T), R}~ = R*~! x (0,T), R? = {z, > 0},
T < 00, ¢ is a constant independent of T'.

According to K. K. Golovkin’s results [7,8], the norm (u >(l l/2b) ,RY o
R} x Ry, can be defined as

(u) ’““—Zsup sup I |AP(R)u(z,8)| + sup sup hy />’ |AB(ho)u(z, t)|

n n
Th>ORE ho>OR™

+ oo
_ Z YO () /20
- — zj R" tRi

(1.13)
with arbitrary p > [, po > 1/2b (also for integral [), where

P
Ap(h)u(a:,t) = Z(—l)p’k(]gu(m + k’ejh,t), €e; = (53',1),1:17___7”,

J
0
Po

k=0
are finite differences of the function u with respect to z; and ¢. The above
semi-norms are equivalent for arbitrary p > [ and py > [/2b, respectively.
Another semi-norm equivalent to (1.13) (and used more often) is
<U>I(Rlnl/2b) Z <Dju>(lf[l]) + <D1[5!/2b]u>(l/2b7[l/2b})_

. xR tRE
l71=[1
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Moreover, the inequalities

<Dngu>§i—ljl_2bk’(l_m)/%_k) < C<u>]§§l;l/2b), lj| + 2bk < 1,

3
and
i vk l l 1/2b .
(DIDf) g <o)y +e@ (a0 +@IE ), j<,
J#q
n
i Nk 2b 1/2b l l
(DIDFL" < o)) +eeo) D () gy k< [5],
g=1

(1.14)
hold with arbitrary e, > 0, if p = [(1— 4L — 2tk) > 0 (see for instance [9,
Lemma 2]). Finally, we mention “the inverse trace theorem” for the Holder
spaces. In principle, results of this type are well known. However, for the

sake of completeness we present the respective result and the proof below.

Proposition 1. If u, € C*mth=20k(Rn) k= 0,...m, I} < 2b, then
there exists a function U(x,t) defined in R, = {x € R™,t > 0} such that

DFUljmo = up, k=0,...,m (1.15)
and
m
<U>]g§2nbm+l1,m+l1/2b) < Cz<uk>gfm+ll—2bk). (1.16)
k=0

Proof. In the proof given below, the Hérmander multiplier theorem is
applied to the following Cauchy problem for U:

m—+1
(% + (—1)”Ab) U(z,t) =0, xzcR"™  t>0,

DiUlj=o = ur, k=0,...,m, x€R"

(1.17)

The Fourier transform with respect to € R™ converts (1.17) into

d 2bym4177 d* ~ 7
(a—i_'fl )m U(f,t):O, d?Ult:():uka k:07"'7m7 geRn

(1.18)
The general solution of the equation (% + |€?*)™ U = 0 has the form

U, t)=(co+ert+--+ cmtm)e_tlglzb.
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The constants ¢; are found from the initial conditions. After some calcu-
lations, we obtain

U(&,t) = Upth (1 + Po_p (£21))e €7,

NE
o

o~
I

0

where P; is a polynomial of degree j with constant coefficients and
P,,—(0) = 0. Hence

m

QT =V(6,t) =Y (&) Ex(&,1), (1.19)
k=0
where Ek (5) = %igqmgﬂ-l e iEQ2bm+[ll]ﬁk7 Q(E) = iflh c 'i£Q2bm+[ll]’

qi:]-u"'anu

Ei (5’ t) = ig‘h T iéan tk(]- + mek(ggbt))e_lglzbt.

The function Fj is a C*(R™)-multiplier for arbitrary ¢ > 0, because
E(27¢,t) = Bi(€,2°%t) and

ER(€,2°78)6(|¢)

is uniformly bounded together with its derivatives with respect to &;.
Therefore,

VR <edwp), A=h—[h], vt=0,
k=0

by the Hérmander theorem, which implies

U™ < e ST )@ vt > 0. (1.20)
k=0

Now, we estimate the norm (U)gfﬂrgh/%). We notice that e=¢" is the
Fourier transform of the fundamental solution Go(z,t) of the equation
(2 + (-1)?Ab)u = 0. As it was shown by O. A. Ladyzhenskaya in [10]
(see also [6]), G is subject to the inequalities

2b
. . b—
IDEDIGo(, t)] < et —n—1iD/2b=k expy ( i ) (1.21)

T
The expressions Eji(&,t) is the Fourier transfrom of the kernel G(x,t) sat-
isfying similar inequalities.
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We consider the convolution W (x,t) f G(z —y,t)e(y) dy. Since

/G y'Ll xil)"'(yiqixiq)dy:07 Q<2bu

we have

where
1 & p(x)
)‘szl Ox ko 1_xk1)+ r Z Bg;'klaa;'kQ (ykl _$k1)(yk2—$k2)+
1 1,k2=
” Mg ()
+oT a-'ﬂk[l ] (ykl _$k1)(yk2 _$k2) s (yk[zl] _xk[h]).
1

-1 8:L‘klf9il‘k2 e

This implies that

t+h

|z — y|"r drdy 1 11/2b !
W, t4h) = xt|<6// (T + ]z —yl?) (n+2b)/2b<¢>]§§%><6hl/ ()it

(1.22)
Since (6t) U can be represented as a linear combination of |§|2b m—k)g B,
where Fj, is a function of the same type as Ej,, we use (1.22), and arrive
at the estimate

<U>§7]§;H1/2b) < CZ<Uk>]§f(m_k)+h)'
=0
Together with (1.20), this inequality proves (1.16). O

Now, we return to the estimate of the convolution integral (1.3).
Proposition 2. If m(\, A20&) = m(€,&) and (1.10) holds, then
(0)gats” < elu) 2" (1.23)

for arbitrary non-integral I. If m(AE, A2°&) = A~“m (€, &), withw > 1 and
|Dg,, - De, D | < ep™=972%(€,&), k=0,1, then

()i T < el (1:24)
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Proof. We apply (1.9) (setting v = 1/2b) to AY(h)v(x,t) with arbitrarily
fixed h > 0 and p > [ and assuming that « < [. This gives

R sup hy® sup | A ()AL (h)v(z, 1)

h1>0 Rn+1
< c(h"+"‘ > sup hy® sup |AP(B)AR (hy)u(z, t)| (1.25)
h1>0 nt1
k=1 1> R

+ A sup hz_a/2b| sup |A§(h)Af2 (hz)u(x,tﬂ),
h2>0 Rn+1

where p1 > [, p2 > [/2b. Tt is clear that (1.25) implies

h~" sup |A§+p1(h)v(az,t)|

Rn+1

n
< c(sup h~" sup |A(R)u(z,t)| + Z sup hy! sup | A (B )u(z, 1)
h>0  Rn+l T hi>0 et

+ sup hy/* sup [AF (ho)u(e, 1)),

ha>0 Rn+1
(1.26)
and, consequently,
l L/2b .
<U>EL‘]‘)7R"+1 < C<’“’>]§Qn-i/—1 )7 ] = 1, ceey T

The inequality
)2 < oy 20

tReD N Rr+1

is established in the same way, which completes the proof of (1.23).
To prove (1.24), we consider the equations

(ei&Zh - 1)175 = (ei&Zh - l)pm(£’€0)57 p > l+ w, q= 17 B ) (1 27)
(00 — )75 = ("0 — 1P (E, &), po > (I +w)/2b '
and estimate the norms (1.8) of the multipliers
M; = x(&,&)(e &P — 1yrm(27¢’, 22,
and
Mjy, = x(& &) (e €0t — 1) (27¢ 22 gy).
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We can show that these norms are controlled by ch®” and chf;/ 2b, respec-
tively. We have

[M(27€, 2% o) e 2 — 17 <277 (|€o] + [€]7°) T/ * (27hlg, ) <ch”,

kE ~ /ojs o2bj i29¢,h p w 1€q]”
|(D§k1 ~-~D£de§0m(2 5,2 Eo))(e a” 1) |<Ch (|€0|+|€|2b)(w+d1)/2b’
. w—1
k ~ (0js o2bj i27 &, h |€q]
|(Dey, ... Dg,, D¢, m(27°€,277 &0)) De, (e 59" —1)P| < ch” (|€o+ |E[2b) (@ Fd) 2B

(1.28)
where k£ = 0,1, d; = d+ 2kb. In the expression (1.8), we split each integral

with respect to hy I into two parts: from 0 to 1 and from 1 to co, and in
the first integral we use the relation

1
Ag(hp) M;(€) = hk/ngﬂj(gl,...gk + shy, ... &) ds
0

for Mj = m(29¢,22956,) (e’ &b — 1)Py(€,&). In this way, we estimate
[||M;]]] by the sum of the terms

1 1 o]
c/ hkld/hk1 /hkmd/hkm /dhk/m+1
3/2 3/2 3/2
b T b M P
® N dhy,, (1.29)
/HDkl ...kaMj||L2(]Rn+1) h3/2+1
1 knt1

g Clll)k1 .. kaMjHL2(Rn+1),

where k, # kg forp#q, ki =0,1,...,n, Dy, = %. In view of (1.28), each
term is controlled by ch®. Hence

ALY < ehe )P g =1, .m,
which implies

() < e, g=1,.

zg RPN Rr—1 > SRERLS

The norm of M, = m(27¢,2200¢,)(ef2" €ho — 1)Poy (¢, &) is estimated in
the same way, and as a result we obtain (AL° (h@v}%ﬂfl)) < ch@t (u)&;}ﬁb).
This completes the proof of (1.24) and of the proposition. O
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Now we proceed to the proof of the estimate (1.12), which is the main
result of the section.

Theorem 2. Assume that

f c Cl l/Zb( . oo) u, € C2b(r7q)+l(R:z_)’ ®, € 070k+l’70k/2b+l/2b(Rggl)

with a positive non-integer | > max(0,01,...,0) and the compatibility
conditions
a\*k 8k<I>q l—oy
(&) =zt =0, k:o,...,[ = } (1.30)

are satisfied, where atk |t o are found from the initial conditions if k <

r — 1, and from 2 atk O (Lu — f)lemo = 0 if r < k < r +1/2b. Then the
solution of (1.11) satisfies (1.12) with T = co.

Proof. In view of Proposition 1 (with m = r+[l/2b], [y = 1—2b[l/2b]), the

theorem is easily reduced to the case uy = %hzo =0,k=0,...,r+ [QLIJ .
By the definition of wuy,

r[1/20] b)) r—1 br— ) +1) [1/2b] 8kf )
2b(r—k)+1 2b(r—k)+1 l 2bk
LZ <Uk>R1 g C(LZ<U]§>R1 + = 8tk ‘t 0 )
o—r =0

We extend uy into R™ with preservation of class and construct the function
U as in Proposition 1. Since 881;» (LU — f)‘t:O =0fori=0,...,[l/2b] and
T (BU—®,)|,_, = 0for j =0,...,[l/2b—0y/2b], we obtain for v = u—U

the initial- boundary value problem

o 0 n
L(a Bt)v g(z,t), zeRY, t>0,
ak

atk |t 0

(g 7)7 =

x—(xl,...,xn,l) e R*™ 1, t>0, ¢g=1,...,m,

_ . n
=0, k=0,,,m—-1, =zeR}, (1.31)

where g = f — LU, ¥, = &, — B,U|;=0 are functions satisfying the condi-
tions

0 . 0
— = kE=0,...,[1/2b —
(6t) g|t=0 07 07 7[/ ]7 (at

J=0,...,[l/2b—04/2b], q=1,...,br.

)jlpq‘tzo =0,
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We construct the solution of (1.31) in the form v = w + z, where w is
a solution of the Cauchy problem

(88 gt)w—g(a:,t), zeR” t>0, (1.32)
3k
(%k|t0 0, k=0,....,r—1, zeR"

and g* is the extension of g into R” with preservation of class, i.e., such
that

)

<g*>]géi/2b) < C<g>§§l;l/2b)

+,00
g*(z,t) = 0 for t < 0. The function z is defined as a solution of

L(%, %)z(x,t) =0,

k
TERT, >0, %\H:o,
(8 0

5 pr)7 = a0,
¥ =(xy,...,xn 1) ER" t>0, q=1,...,0br

with ¢, = ¥, — Byw|, —0-
To estimate w(x,t), we perform the Fourier-Laplace transformation

o0

=w(E,s) = /e*“dt/e*ig'zu(x,t) dz

0 R»
n (1.32) with Res = a > 0. Then (1.32) is converted into

~x

&=
L(i€,s)
For a large class of g*, the function (1.34) is holomorphic with respect to
s for Res > 0, hence w(z,t) vanishes for ¢ < 0. We set @ = 0 in (1.34)

and make use of Proposition 2. Since L(£, i) satisfies the assumptions of
Proposition 2 with w = 2br, we obtain

()Y < g LD < )41

X

( ll/2b) TZ 2br k+l)

(1.34)

oo

(1.35)
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We pass to the estimate of z. The Fourier-Laplace transform with re-
spect to (z',t) converts (1.33) into

L(if’,s, i)g(g',s,xn) =0, x>0,

(1.36)
(Zé- S, )Z|$n—0 _¢Q(Z€ ) q:1,~-~,b7", f:)oga
The solution of Problem (1.36) is given by the formula
br
_ 1 My o(€,8,7) 0~
/ _ = pak (¢! g itEng 1.37
Z(£737x7’l) o q;l (5,8) M+(£/,S,T) T¢k ( )
Y= ~+

br
= Z mk(fla S, xn)akgl’ S)
k=1

(see [11]), where T is the contour enclosing all the roots T;r of L(i¢,s,iT)
with positive imaginary part,

MHEs,7) =TI (7 — 7 zak 5y

P

and M (¢, s,7) = > ap(€,s)7°~%. We introduce the br x br matrix
k=0

B(¢', s) which entries by, are coefficients in the decomposition

By(¢',s, ) quk = By (i€, s,it)(mod M),

where By are the remainders arising from the division of B,(i¢’, s,i7) by
M. Finally, b are the elements of B~!. According to the complementing
condition, the polynomials B,(i¢’,s,ir) should be linearly independent
modulo the polynomial M*(¢',s,7), i.e., det B # 0 for arbitrary ¢ € R*~!
and s € C such that Res > —4|¢/|?P.

The roots 7; F(¢, ) are homogeneous: T TN A%5) = /\T (¢, s) and

cr(Js + [€7)?" < Tmrf (€,5) < |7 (&, )] < ea]s| + [€17)1 /2.
Hence the contour 4+ can be chosen in such a way that

1 3 . .
Serlls]+ 62 < T < [r] < Sealls] + )1/
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for 7 € 4. Since by (A, A2s) = ATat20r—k+1p (¢ 5) (and if kK —1 >
o4 + 2br, then by, = 0), we have

bZ:I(Jq+2br—(q—1))/2b

| det B| > ¢(|s| + |£']*?) (1.38)

br
with > (o4 +2br — (¢ — 1)) > 0. It follows that
qg=1

RN \2bg) = A—or—2brH (= Dpik(¢/ o)
DH(E, 8)] < effs] + €m0,
Moreover, we have
api N X25) = Ny (€,5),  lans (€, )| < ells] + ¢/,
MmN N8, ) = A% 720 (€5, A, (1.39)
[k (€', 8, 0)| < (]3] + €[ TR 72020

The coefficients ay(¢',5) of M+ depend on symmetric functions of the
roots T;_ and are smooth functions of ¢’ and s (see [12]); the functions b7*

are smooth as well. Hence
IDLDLP g€, s,0)| < efls|+ g2 2ol (Lag)

and for arbitrary x, > 0.

Since the functions (1.37) are analytic in s for Res > 0, the correspond-
ing functions z(x, t) vanish for ¢ < 0. We set a = 0 and notice that the mul-
tipliers my, satisfy the assumptions of Proposition 2 with wy = 2br+oy > 0.
Therefore,

br

(2(omn) i <N () LY v > 0. (141)
k=1

It remains to estimate Ny = (D;?fﬂl]z)g’:%g

. We use the equation
Lz = 0 and the interpolation inequalities. In view of the above equation,
Ny does not exceed the linear combination of the norms

. Pk ([
N(j. k) = (DiDfz){ )
where |j| + 2bk = 2br + [I], jn < 2br + [I]. In turn, every such norm is
controlled by
(2br+1,r+1/2b)
Rg.o—l ?

eNp + ¢(e) sup0<zq(-, Tn))
Ty >
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in view of (1.14). Taking ¢ sufficiently small and making use of (1.41), after
simple calculations we arrive at

br
<Z>(2br+l,r+l/2b) <ec Zwk)(lﬂrk,l/%wk/%) ) (1.42)
k=1

RY oo R

The estimate (1.12) with T' = oo follows from this inequality and from
(1.35) and (1.16). O

Remark. Since w and Z given by (1.34) and (1.37) are holomorphic func-
tions of s for Re s > 0, the inequality (1.12) holds for arbitrary T' < oo
(see details in [13]).

§2. MODEL PROBLEMS FOR PARABOLIC SYSTEMS.

We pass to a short discussion of model problems for systems which are
parabolic in the sense of I. G. Petrovskii [14]. We write these systems in

the form 5 &
Yu(e,t) = fz,t) = (fi,-- fm)", (2.1)

L, =
(890 ot
where £ is a m X m matrix, which elements lkj(a%’ %) are differential

operators of order 2br; with respect to x; and of the order r; with respect
to t. They satisfy the homogeneity condition

1 (INE, X0s) = NP5 115 (i€, ).

The polynomial L(i£,s) = det L(i£,s) is assumed to satisfy the same
parabolicity condition as in Section 1. Moreover, we assume that

lkj(if, 8) = 5kjsr’“ + l;cg (Zé., S),
where [}, ; do not contain s”7. In other words, the system (2.1) has the form

Oup , 10 0 B B

e
8111,_7‘

where [}, ;u; do not contain higher order derivatives —;5*. From the para-

bolicity condition it follows that for arbitrary ¢ € R*~! and s € C such
that

Res > —4|¢/|?" (2.2)
the polynomial L(i¢’,s,ir) has br roots 7;"(¢/,s) and br roots 7, (£, 5)

m
with positive and negative imaginary part, respectively, where r = > r;.
i=1
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The Cauchy problem and the model initial-boundary value problem in
a half-space for system (2.1) are stated as follows:

6 0
(%7 a)u(xat) = f(xat)u S Rna t> 07
&y,
Wiékhzochkj(x)u ZL’E]R”, k:1727"'7m7 j:Ow-'ark*]—a

(2.3)

8 .
ﬁ(a—,a)u(x,t):f(x,t), zERY, >0,

8Juk X
50 o lt=0 = py(x), xeRY, k=1,2,....m, j=0,....,rp—1,
0 90 _
(a at)um,o =®(,t), o €R™, t>0.
(2.4)
. el el .
The elements of the matrix B = (By; (52, 8t)) brjet...n AT€ dif-

ferential operators of order 2br; + 0,; we assume that 2brj + aq > 0. They
are also homogeneous:

qu(i)\fl,)\Qb ) )\Uq+2bT'JB (7/5 )

and the following complementing condition is satisfied: the rows of the ma-
trix B(i¢,it, s)L(i¢',it,s) where £ = (det £)£~" is the co-factor matrix of
L are linearly independent modulo the polynomial M+ (¢, s,7) = H?Tzl (r—
T;r (¢, 5)) for arbitrary & € R™! and s € C satisfying (2.2). The equiva-
lent formulation of this condition is as follows let A= BEA(modM T) be

the (br xm)-matrix the elements Ag;(§,s,7)= Z (m)( ,8)7™ L of which

are the remainders resulting from the div1510n of the elements of BL by
M. Then the rank of the matrix

(1) (br) (1) albr) (1) (br)

a%l) ‘e a%g ) a%g) ‘e %172 ) - a%n; - a%gn)

1 r 1 r 1 T

(5% cee Aoy (5% cen Qoo £ ¢ 5 Yo
A =

(1) (bf’) (1) (br) (1) (br)

Apr1 cee Oy Appy -+ Oppo cee Qpry eee Qg

is equal to br for arbitrary & € R*! and s € C satisfying (2.2).
We proceed with an analog of Theorem 2.
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Theorem 3. Assume that f; € C’vl/Qb(Rﬁ

o0

o € 0217(7’]'7k)+l,rjfk+l/2b(R1)’ by € Cl=o0l/2b=0q/2b(Rn—1y
where
j=1,....m, k=0,...,r;—1, ¢=1,...,br, [>max(0,01,...,0p).

Let the compatibility conditions

m

(G (3 B = 24)| L, =0 p=0.0 [

j=1

be satisfied, where g—;uﬂt:(} = ;i () are found from the initial conditions
if k <rj;, and from

() (S5

ifk=rj,...,r; +[1/2b]. Then the solution of (2.4) satisfies the inequality

=0, p=0,...,[l/20],

o ( /20)
2br;+l,r;+1/2b

ZW@')R;OC
i=1

m m br;—1
<C<Z (ll/zb +Z Z i) (zb(m k)+1,ri —k+1/2b) (2.5)

i=1 i=1 k=0

br

+ Z<q> >]¥n ‘71qa(l ‘Tq)/Zb))
1

Sketch of the proof. As in Theorem 2, we reduce (2.4) to a similar
problem with ¢;; = 0 by constructing auxiliary functions U; such that

(2)*Uili=o = @i (@), k= 0,..., 7 + [£], and

m m r;—1 [21,]

Z<U>]§Q2nbr,+l rH/2b) C(Z Zwlk Rznb (ri—k)+1) +Z 3tk ‘t . l 2bk))
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For v = u — U, we obtain the problem
( o 0
oz’ Ot

8 k
(5) vilico =0, i=1,....m, k=0,....r;—1,  (26)

)'v—g—f LU,

0 0 ,
(a m)mzn_o = U(2,t) = ® — BU|,, .
The functions g;, ¥, satisfy additional conditions
0 .
((9t) gili=o=0, i=1,....m, k=0,...,[1/2b],
O \k
(E) lIlq|t:():07 q:17...,b7“, k’ZO,,[(l—Uq)/Qb]
As in Theorem 2, (2.6) is reduced to the Cauchy problem
L2 Dyw =g ). zerr,
Ox’ Ot
9., (2.7)
((‘%) wz|t0 0 i:1,...,m, k’ZO,...,’Fi—l,
where g* is the extension of g, and to the initial-boundary value problem
0 0
= g = R"™
E(a b 8t)z 07 T e ?
(gt) Zzlt 0= O i:1,...,m, k’:O,...,Ti—l, (28)
0 0 ~
B(5-, 5)2le,=0 = (2, t) = ¥ — Bw,, .

Oz’ Ot

Using the Fourier-Laplace transform, solution of (2.7) is obtained in
the form

o _ L, 5)g"
w=——0-,
L(i€, s)
and it is easy to show (as in Theorem 2), that

m

Z< >(2bm+ln+l/2b)< Z (ll/zb <CZ (ll/zb (2.9)

i=1
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We proceed with problem (2.8). Making the Fourier transform with
respect to 2’ and the Laplace transform in ¢, we reduce (2.8) to

. d .
L€, s, d—)z =0, z,>0,
‘2" (2.10)
B(ifla S, d—)g|zn=O = ¢(£/7 8)7 z — 0.
Ln Ty — 00
The explicit formula for the solution of this problem is
br m
1 =~ d
~ .ol
Zj(fusaxn) = %ZLJP(/L&-VS’ dl'n)
k=1 p=1
ITEy -
!/ !
/Npk(€ ,SaT)de%(f ,8) (2.11)
Nt
br "
= Z m]'k (fla S, mn)¢k (gl’ 8)
k=1
(see [6]), where j = 1,...,m, v is the contour enclosing all the roots T;L,
br
Ny = hz_:l aglpk)Mbtfh(f’, s5,7), and agpk) are elements of the matrix
T
A A R
- ay . ap a; ceeoag ey "
B I N (BN L B (S I )
(2.12)

whic is the right inverse to 2. The existence of 2~! follows from the
complementing condition but in general 21~! is not unique. Since

i Tj_letjith = .
i M+ ks

Nt



PROOF OF SCHAUDER ESTIMATES 151

we have (as in the scalar case)

m

. d .
ZBQJ(Zfla S, E)Z](gla Saxn)|$n=0

n

T

1 n ~
or | Al€5 DIN(E'5,7) Sl 0 € 5)

BB Gu(E,s) = AATG(E,8)y = $y(€,5).

Now we turn to the construction of A~1. Let 2; be distinct matrices of
order br composed of columns of 2 and let det2(; = A;(¢/,s). Since

0l (Mg, APs) = Arat =it (¢l ), (2.13)

aj
the determinant A; is homogeneous: A;(A',A?s) = MDA (¢, s). Let
(i) be integers such that s(i)k(i) = K is independent of ¢. In view of the
complementing condition, the expression

D(E,s) = AFOE )87 s)
is subject to
ID(¢,9)] = c(|s| + €' /" > 0

for arbitrary non-zero (¢’, s) satisfying (2.2). The right inverse matrix 2!
can be defined by

A7 8 (¢ s)
D(¢', 5)

where B; is the matrix of dimensions brm x br consisting of purely zero

rows and rows of the co-factor matrix 2; in such a way that

AB; = Ajly,

(Ip, is the identity matrix of order br). Clearly, A~
form (2.12). From (2.13) and (2.14) it follows that

Cll(-jk) ()\gl’ )\st) _ )\—Jq—Zbr+i—1a(jk) (517 s),

?

Al =

Bi(¢'s9), (2.14)

i

I can be written in the

and
(A A8, 20) = AT 2 (€ 5, Aa,).
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We also need to show that the functions mj; are holomorphic with
respect to s in the domain defined by (2.2). These functions solve the
problem (2.10) with $q = 041. We fix arbitrary so satisfying (2.2) and a
small neighborhood U of sy. The matrix

AT e, )R ¢ 50)
-1 _ i ) i » 20 N7
A7 = i D(f’, s, 80) %2(5 73)
with '
D(€, 5, 50) ZA A7 s0)

is a right inverse of (&', s), prov1ded that s € U is close to sp. It is a
holomorphic function of s € U, and so are my;, because of uniqueness of
the solution of (2.10).

We set a = 0 and make use of Proposition 2. Since 2br; + o, > 0, we
have

<Z‘>(2brj+l,rj+l/2b l o, (1=0k)/2b)
J/gn;t ]R" t

for arbitrary z,, > 0. Now, using the equatlon Lz = 0 and the interpolation
inequality (1.14), we prove (as in Section 1) that

m

Z (zbr]+l rj+1/2b) Z (l o, (I—ow)/2b)
]Rn 1

j=1
This completes the proof of Theorem 3.
§3. PROOF OF INEQUALITY (1.8).
We prove (1.8) for functions defined in R™. Since
U R(k
k1,...
where k; = 0,£1,+2, ...,
Rk)={z cR": 2871 |zl <2}, i=1,..,n

and |R(k)| = mes R(k) = 2”117, (2% — 2%i—1) = TI7_, 2% we have

/|M|d:z:— /|M )| de < Z 23 (it ’»> /|M| d:z:
Rn

Ivlv i) nR k17 7
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If 2k =1 |a;| < 2% then |z;]/2%F! € [1/4,1/2) and | sin(7rz; /2% +1)| €
[1/v/2,1). It follows that

5 TX1 ) Ty,
2 sin?

n o
1 <2"sin SRS ST

for z € R(k) and in view of the Parceval formula
—
/ M do < 2" / M@ sind S5 do

= /|A1 ) A M)

This implies

/|M(x)|dx<7rn/2 Z 93 (k1+...kn)
R

E1yerkin
sup ... sup  [[Ar(t1) ... Ap(t) Mg
0<t1<m/2k1 0<ty <7 /2kn
x/2k1—1 7 /2kn 1
= dh, / —  dh,
<e(n —_ .. su Av(t) .. . Ap(En) M||lre —=
( )k kz:zfoo / hi)/z 0<ti£)hi H 1( 1) ( ) HR him
ook 2k n/2kn
dh 7 dhn,
=ci(n —_ .. sup ... su Aq(ty). M
i )0/ B3/ ) 0<t1£)h1 0<tn£)hn [81(02) - An(tn) Mllee 12
= Cl(ﬂ)J(),
(3.1)
where || - ||g» denotes the norm in Ly (R").

It remains to prove that the last integral is controlled by |||M]||. For

n = 1 this is shown in [7] in the following way. Let v = M. From the
identity

w(§ +h) —u(§) = (uE+h) —ul§ +n)) + (€ +n) —u)),

it follows that

[u(€ + h) — u()

mlv—\

h
/ (€ + B) — (€ + )| + [u(€ + ) — u(©))dn,
0
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h

O /(IIA(h nyul + | A@m)ul)d / IA@uld,  (3.2)

0

where || - || is the norm in Ly(R). Using (3.2) we obtain the estimate

n
2
sip A@ul < sup 2 / |A ulldr

h/2<n<h h/2<n<h

h L
< %/HATUHdT:4/|\A(h9)u|\d9,
0 0

which implies

r dh r dh
/ sup [|A()ull 7575 < 4/91/zd9/|m (ho)u 3/12.
h/2<n<h
0 0
Hence
r [ dh
sup ||A(nu||—= < su Au|| ===
[ e I8l < [ s iatuly,
0 0
r dh
+/ sup ||A(nu||—= 3.3
s Al (33
[ dh
< / e 8l 7 + e [ 1Awul
0
and

o0

a2 [ dh V2 |~
A —— < — [|A)u|| s = ——]|||IM]||. (3.4
!0335h| ()l ﬁlo/” (il = =L (34
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In the case n = 2, we start with the inequality similar to (3.3):
Jo < J1 + Js + J3 + Jy, where

TT dhy dhs
J, :// sup sup ||A A: ul|lge ——7,
0 /[ ocnaocna, 1AL (1) Az (n2)ul|r IR
7T dhydh.
n= [ sw s 184 Aa(m)ulse 7
o 01 <he /2 0<n2<ha /2 h
i dhy dh.
ng// sup sup ||A1(n1)A2(n2)u||R2ﬁ
A 01 <hi/2 ha/2<n2<he hs
T dhydh.
J3 :// sup sup ||A1(771)A2(772)U||R2ﬁ
2 h1/2<n1<h1 0<n2<ha /2
7T dhy dhs
a= [ s s A Asmule S T
20 h1/2<n1<h1 ha /2<n2<hs h

It is clear that J; =27 1Jy, J4 < Cl|||ﬂ|||7
<m<hi

rr dhydh

Jo < o // sup || Aq m)AQ(h2)UHR23/;4}ﬁ/22 = Jao,
0 :
0 0 2

< G2
0<n2<he

T dhydh
[ s 1A At S g = T
0 2

The integrals Jag and Jsp can be estimated by ||| M]]| in the same way as

oo

dh
sup ||A(nul|—=
0/ s Al 7y

in the one-dimensional case. Hence Jy < Jo/2+¢3|||M||| and Jo < 2¢s]||M]]|.
Following the same scheme we can prove that Jy < ¢|||M||| for arbitrary
n.
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