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G. Seregin

REMARK ON WOLF’S CONDITION FOR BOUNDARY
REGULARITY OF NAVIER-STOKES EQUATIONS

ABSTRACT. We prove Wolf’s regularity condition up to the bound-
ary for solutions to the Navier—Stokes equations satisfying non-slip
boundary condition.

§1. INTRODUCTION

The note is inspired by an interesting result by J. Wolf, see [9]. Tt reads
the following. Let a pair u and p be a suitable weak solution to the Navier—
Stokes system in the parabolic cylinder Q(zo, R) = B(wo, R)xJto — R%, to],
where B(zg, R) is a ball of radius R centred at point zo € R3. There exists
a positive constant e such that if
% / lu(2)]?dz < e

Q(z0,R)
then v € Loo(Q(%0, R/2)).

At the first glance, the condition and the result are independent of
pressure p. But it is wrong impression as one can see from an elementary
example in which R =1, 2 = (0,0),

u(z,t) = c(t)Vh(z),  p(x,t) = —(t)h(z) + %Cz(t)IVh(x)lza

and h is a harmonic function. If there is no restriction on pressure, then
the above assumption does not provide regularity. But of course there is
an assumption on the pressure that is hidden in the definition of suitable
weak solution. Let me recall it.

Definition 1.1. A suitable weak solution u and p to the classical Navier—
Stokes system in Q(zo, R) possess the following properties:

U € Lnoo(Q(20, B)) NW5°(Q(20, R),  p€ L3(Q(20,R));

Key words and phrases: Navier-Stokes equations, suitable weak solutions, Wolf’s
condition.
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Ou+u-Vu— Au = —Vp, divu =0
in Q(zo0, R) in the sense of distributions;
for a.a. t €]ty — R%, ty],

O (x, t)|u(x, t)*de + 2 / / ©*|Vul|? dr ds
B(mo,R) to—R2 B(.’L‘o,R)
¢
< / / [u|?(0p0* + AQ®) +u - V2 (|u|® + 2p) dx ds
t07R2 B(IO7R)
for all ¢ € C§°(B(zo, R)x]to — R?, 1o + R?)).

As we can see, p must have finite Lg -norm. The exponent 3/2 is conve-
nient but not a unique choice of a function class for the pressure. It would
interesting to know how constants in the Wolf’s condition depends on the
pressure. For example, the classical Caffarelli-Kohn—Nirenberg condition,

see [1], tells that there are two universal positive constants €1 and ¢; such
that if

1 3
7 [ WP+ b blanlHd<a
Q(ZUaR)
then c
1
g_
u(a) < %

for all z = (z,t) € Q(20,R/2). The latter condition is also invariant
with respect the natural Navier-Stokes scaling u(x,t) — Au(Az, \2t) and
p(x,t) — X2p(Ax, A?%t).

Now, we would like to reformulate Wolf’s condition in the above scale
invariant style.

Theorem 1.2. Let u and p be a suitable weak solution to the Navier—
Stokes equations in QQ(zo, R). Given M > 0, there exist posilive numbers
ex = (M) and ¢, = c,(M) such that if two conditions

m [ fdedt <o
Q(z0,R)
and . 3
B2 / P = [PlB(2o,r) |2 ddt < M

Q(z0,R)
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hold, then u is Holder continuous is the closure of Q(zo, R/2). Moreover,
« (M
swpJu(z)] < =80,
2€Q(20,R/2) R

Certainly, Theorem 1.2 implies Wolf’s condition if we let

1 3
E:&‘*(l-i-ﬁ / |p—[p]B(IO7R)|§dardt).
Q(z0,R)

This type of theorems in the case of interior regularity appeared in [6], for
further developments, see, for example, [3,8], and [2].

In the note, we shall study boundary regularity that perhaps cannot be
treated by Wolf’s method.

§2. BOUNDARY REGULARITY

We shall study regularity up to a flat part of the boundary only. The fol-
lowing notation will be used in what follows: B*(zg, R) := {z = (', 23) €
R?: x € B(xo, R), 203 < 23}, BT(r) := B¥(0,r), BT := BT(1).

Definition 2.1. A suitable weak solution u and p to the classical Navier—
Stokes system in QT (29, R) = BT (zo, R)x]to— R?,to[ possess the following
properties:
U € Lo,oo (@ (20, R) N Wy (@ (20,R)),  p € Lg(Q" (20, R));
Oiu +u - Vu — Au = —Vp, divu =0
in Q% (20, R) in the sense of distributions;
u(z’,0,¢) =0

or all |z’ — x))| < R and t €]ty — R?,ty[, where ' = (x1,x3);
0
for a.a. t €]ty — R%, ty],

t
/ O*(z, t)|u(x, t)|* do + 2 / / ©*|Vul|? dr ds
B+(m0,R) to—R2 B+(Io,R)
¢

S / / [ul?(8p” + Ap?) + u - Vo (Jul” + 2p) dw ds
to—R? B+(z0,R)

for all ¢ € C§°(B(xo, R)x]to — R?,to + R?[).
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Our aim is to show the following.

Theorem 2.2. Let u and p be a suitable weak solution to the Navier—
Stokes equations in QT (zo, R). Given M > 0, there exist positive numbers
ex = (M) and ¢, = c.(M) such that if two conditions

% / |u|® dz dt < e.(M)
Qt (20,R)
and
1 ]
i [ Pl dede <
Q+(20,R)

hold, then u is Hélder continuous in the closure of Q (20, R/2). Moreover,

sup lu(z)] < —=—
2€Q+(20,R/2) R

We start with the proof of the following auxiliary statement.
Proposition 2.3. Let u and p be a suitable weak solution to the Navier—

Stokes equations in QT := QV(0,1). Given M > 0, there exist positive
numbers € = (M) and ¢ = ¢(M) such that if two conditions

/ lu|® dz dt < e(M)
o+

and

/@—Mmﬁmm<M
Q+

hold, then z = 0 is a regular point of u and therefore u is Hélder continuous
in the closure of a parabolic vicinity of z = 0. Moreover,

u(0)] < e(M).
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Proof. From the local energy inequality with a suitable choice of the cut-
off function ¢, it follows that

uf3 g+ () = sUP /IU(w,t)IQda:Jr / |Vul|? dz dt
—r2<t<0
B (r) QF(r)

2

< c(r)[(/ |ul? dz) C 4+ / lu|?® dz

Q+ Q+
1 2
s [upaz) ([ 1o wlseltd) "] < etrydie,

Qt Qt

for any r €]0,1[, where Q% (r) := QT (0,r) and
d(e,M) :=¢% +c+e5 M.
Using standard multiplicative inequalities, one can show
lu Vull 5 o+ 2y < clul3 gr(z) < ed(e, M). (2.1)

Next, as in paper [5], let us pick up a domain Q with smooth boundary
such that BT(4/5) C © C B™(5/6) and consider the following initial
boundary value problem

o' — Avt + V¢ = —u- Vu, dive! =0 (2.2)
in Qo = 2x] — (5/6)%,0[ and
v' =0 (2.3)

ond'Qo = (Ax{t=—(5/6)?}) U002 x [—(5/6)2,0]). For solutions to (2.2),
(2.3), the following estimate is valid:

100w 12,5.00 + IV 25,00 + IVe 12,5.0, <cllu-Vulls s g, (24)

Letting v* = u—v! and ¢> = p— ¢!, we observe that the above introduced
functions satisfy the following relations

Ov? — Av? +V¢? =0, dive? =0
in B*(4/5)x] — (4/5)%,0[, and
v?(2',0,t) =0
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for |2'| < 4/5 and t €] — (4/5)2,0[. According to [4] and [7], ¢> obeys the
estimate

IVa*llo,2

s 0+/1) < VP23 g+ (ass) + 107

15 2,Q%(4/5)
+¢® = @18+ s lz,g+a5) < clIVulls griays) + ulls gr s
+ o = Pla+asmllz.or s + 1IV0 13,0 g5 + 10 12,0+ /s

+lla' = [a']B+ss) |z .0+ ay5)-

Assuming 0 < £ < 1, we find elementary bounds:

IVullz g @ss) + lullz o+ /s < clulzgr < (M),
lp — [plB+ 4/5)”5,@‘*—(4/5 <clp—Ip ]B+||g,Q+ < cM.
Next, from (2.1), (2.4), and the elliptic embedding, it follows that:

Vo] s

.o+ T 10 z.gvam < S <e(M)

and

la" —[a']B+as5) 3,0+ as5) < IVE'll2 3.0+ ys) < (M)
So, finally, we find

IVe?|

0,2,0+(3/4) < c(M). (2.5)

It is worthy to notice that the right hand side is independent of €.
We then have for 0 < r < 2/3

1 3
LoV 5 [ (o + 1= plav il d:
QT(r)
1 3 ; 3
<ot [ U0 =Dl +16 =~ (@l ) d2).

Qt(r)

By Poincare inequality,

0
1 3 1 9 3
2 / la" — [a"]+(n? d2<cr—% / ( / |Vq1|gda:) dt
Qt(r) —r2  Bt(r)
< c_3||v(]1||§7%7Q0 g C—3 d(EvM)
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For the second part of the pressure, we have the same arguments plus
estimate (2.5)

0
1 . . 1
2 / ¢® — [@°]p+(n|? dz < or? / ( / |Vq2|9dx)6dt
Q+(r) —r2  B7*(r)
<er?|[VeP|lg s

19

Q*(3/4) < C(M)TQ.
So, we find
11 \
L(r) < c(—zs + = d(e, M)) +e(M)r (2.6)
r re

for any 0 < e < 1 and for any 0 < r < 2/3.
Let us state the following condition of local boundary regularity proved
in [5].

Proposition 2.4. Let w and 7 be a suitable weak solution to the Navier—
Stokes system in QT (R). There exist two universal posilive constants €
and co such that if

1

R?

Qt(R)

then the function z — w(z) is Holder continuous in the closure of QT (R/2)
and

(| + |7 — [7]p+m)|?) dz < e,

sup  |w(z)] < .
2€Q+(R/2) R
Let us select a positive number r = r(M) < 1/2 such that
c(M)r? < %0.
Then we can pick up € = (M) such that
C<T(]\14)26+ r(]\14)§ d(s,M)) < %0.

From Proposition 2.4 and from (2.6), it follows that the function z — u(z)
is Holder continuous in the closure of QT (r(M)/2) and

|u(0)] < (M) =2¢o/r(M).

The scaled version of Proposition 2.3 is as follows.
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Proposition 2.5. Let v and p be a suitable weak solution to the Navier—
Stokes equations in QT(R). Given M > 0, there exist positive numbers
e=¢e(M) and ¢ = c¢(M) such that if two conditions

1 3

o lu|” dzdt < e(M)
Q+(R)

and
1

i3 / Ip — [p]B+(R)|% drdt <M

QT (R)
hold, then z = 0 is a regular point of u and therefore u is Hélder continuous
in the closure of a parabolic vicinity of z = 0. Moreover,

c(M)
0)] < .
Now, we wish to show the following.

Proposition 2.6. Let u and p be a suitable weak solution to the Navier—
Stokes equations in Q. Given M > 0, there exist posilive numbers e, =
e1(M) and ¢1 = c1 (M) such that if two conditions
/ luf® de dt < &1 (M)
o+
and
[ 1o~ ns o < 01
Q+

hold, then u is Holder continuous in the closure of Q% (1/2). Moreover,

sup |u(z)] < 1 (M).
Qt(1/2)

Proof. For zg = (zg,tp) € §+(1/2), we have

1
W / |U|3 dz < 4/ |U/|3 dz < 451(M)
Q*(30,1/2) o
and
1 s s
T [ Bt <de [ o= plaefF s < dear
Q+(30,1/2) o+
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We complete the proof by letting
1
e1(M) = —e(4eM), (M) = 2¢(4eM). O
T

Now, Theorem 2.2 follows from obvious scaling and shift and from
Proposition 2.6.
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