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H. Mikayelyan

STABILIZATION TECHNIQUE APPLIED TO CURVE
SHORTENING FLOW IN THE PLANE

ABSTRACT. The method proposed by T. I. Zelenjak is applied to
the mean curvature flow in the plane. A new type of monotonicity
formula for star-shaped curves is obtained.

1. INTRODUCTION

One of the classical problems combining geometry and PDEs is the mean
curvature flow. Gerhard Huisken proved that convex surfaces converge in
finite time to points in asymptotically spheric fashion (see [3]). In dimen-
sion two this result was proven by M. Gage and R. Hamilton in [1]. In [2]
Grayson showed that in the plane any closed embedded curve shrinks to
a convex one in finite time and thus also shrinks to a point. This result is
not true in higher dimensions where other types of singularities may occur
if the initial curve is not convex (see [6]).

A powerful tool in proving many properties of solutions is the mono-
tonicity formula of Gerhard Huisken (see [4]). In the present paper we
apply a general method developed by T. Zelenjak in [5] to mean curvature
flow in the plane, and derive the monotonicity formula of Huisken. We also
derive a new monotonicity formula for star-shaped curves. The presented
approach is general and systematic, and we believe can be very useful in
generalizations of the mean curvature flow, where no monotonicity formula
is known. Our main motivation was the derivation of such a monotonic-
ity formula for the anisotropic mean curvature flow, which still remains a
challenge.

2. THE FORMULATION OF THE PROBLEM

We consider a closed curve in R? moving by its curvature with an
anisotropy given by a function g:

3t7 = g(”)lﬂja
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where 7 : Ry x S! — R? is the curve parametrization, & is the curvature
and v is the normal vector.

Note that in this form we fix a certain parametrization which has no
tangential component. For a general parametrization we will get

Oy v =gk (1)

If we take now ~(t,z) = ( Zlg’x
2\t
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) we get the following

where ' means the z-derivative.
Assume the first singularity appears at point 0 after finite time 7. We
rescale the parametrization in the following way

7 =—log(T —t),3(r,z) = (T — t)" 2~(t, 2)

and arrive at

2 \_1( w vl oy (b
i ‘ ‘ 2
( B, s > 5 s +9(U17Uz) (v{2+véz)2 Ui > ( )

where 7(r, z) = ( v(7,2) )

U2 (7—7 :L’)
In the paper we will carry out a significant part of the computations for
the anisotropic flow, but we are able to do the final part of the computa-
tions only for the isotropic case.

Remark 1. Note that in the isotropic case g = 1 the stationary solution
of (2) is the circle with the radius v/2.

Main result. For the solutions of (2), with g = 1, which are star-shaped
with respect to the origin, we prove the monotonicity formula

d v+ o2 log(v? 4 v2 v? + 02
E/ 1 2 (f(¢)+( g(v 3) L a Z)COS’(/J)d.T
Sl

v+ v 2 4
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FOO=x*sin(x)+cos(x)*1oglcos(x))
g{x)=x*sin{x)
hi{x)}=cos{x)*log{(cos{x))

18,4

Fig. 1

where 1 is the angle between the outer normal direction (v5, —v) and the
position vector (v, vs), and

f(@) = ¢siny + cosep log(cos ) (4)
is a positive, even and convex function defined in the interval (=%, %) (see
Figure 1).

Remark 2. One can check numerically that the function

f(@) + acostp,

is positive and strictly convex in the interval (—7/2,7/2) for @ < 1. Since
in the limit the curve will converge to a circle with radius v/2, the coefficient
of the cost-term in the left hand side of the formula (3) will be

log(vi +v3) v?4+v3 log2 1
~ — = 0.8465...
5 + 1 5 + 5 0.8465
This means that the quantity depending on ¢ on the left-hand side of (3),
at least for large times, is a convex function with minimum in the origin,
and thus measures the W'2-deviation of the curve from its final limit,
which is the circle.
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3. MONOTONICITY FORMULA BY ZELENJAK’S APPROACH

In this section we adapt the method proposed by T. I. Zelenjak in [5]
to the mean curvature flow in the plane.

For the system (2) we want to obtain a monotonicity formula of the
form

a
dr

F(v1, 02,0, v5)dw = —/Iarv-VIQp(vl,vz,vaé)dw, (5)
St St

where p is positive.
Note that in the isotropic case g = 1 the well-known Huisken’s mono-
tonicity formula (see [4,6]) in this notations will correspond to

_le?
F(€17£27n17n2):p(£17€27n17n2):e 4 |77|

Differentiating the left hand side of (5) and integrating by parts we get

9F  OF , »F , &PF , PF ,

Orvs {5_51 960, e 06 0m Y2 o3 e Omon: Uz] (6)
oF  F , OF , PF , OF ,

02 [@ T 0GoR " 9&0m,  dmom ' o3 ”2] - @

In the right hand side of (5) using (2) we obtain

—0rv1vh + drvgvi [ —vivh + vavi —o{'vh + vy}
_p(é:ﬂ?) 2 12y1 2 oL +g(viavé)ﬁ = (8)
(vi®+vh*)2 2(v]° +vh°)2 CAETIS):
B L S L RSV S S A U S
ey T e T
(9)
1}21}12 — vV vh v vh 'Uiz
— pOrva | —A5——2 — (v}, v5) —5 =) + g(v],v5) —5——— vy
pO7V2 2(0]2 + v)2) g(vi, 2)(U§Z—|—U§2)2 1+ g(v, 2)(%2—0—@32)2 2
(10)

Remark 3. Note that we do not use (2) but its weak form similar to (1),
which means that what we obtain will work for any parametrization of the
curve.



MONOTONICITY FORMULA FOR CURVE SHORTENING FLOW 93

We now require that the square brackets of (6) and (9) as well as (7)
and (10) be equal. Moreover, we require that

( 27732)2 *( 27]17]22)2

2 _ T +

DyF(&m) = p(&mg(n) | ™ e
(n+n3)? (n+n3)?

= p(&mgm ="' D*In|  (11)

where g is homogeneous of order 0.
Introducing radial coordinates (|n|, ¢) for n it is easy to check that for
a given p one can find an F satisfying (11) if and only if

p(&,n) = c(&n)nl,

where ¢ is homogeneous of order 0 with respect to 1, and
27 27
[ ete o6 cosodo = [ c(é. 019(6) sin oo = 0. for il ¢
0 0
Moreover, F' is homogeneous of order 1 in 7 variable and we can write
F(&n) = f(& ¢)|n|. The formula (11) becomes now
D*F = (D6 f + [)D?|n| = c(&, ¢)g9(¢) D? |- (12)

The solution of f” + f = h can be calculated by the following formula

4]
F(8) = c1 008 b + ¢ 5in 6 + / h(r) sin(6 — 7)dr. (13)
0

What now remains to achieve our aim of (6)=(9) and (7)=(10), is to
make sure that
OF 82F 82F 7511’]5 + 521’]17’]2

- _ _ = i 14
o0& 3513771171 8523771172 P 2(’7%"‘773) 14

and
oF 0*F O’F —&Lm+&Gmne
& 06 0m e 0&20m2 "= 2(n7 +n3)
After differentiating this equations in 1; and 7 respectively we obtain
_oF  OPF P < &3 + 52771772)
A T G T )

(15)
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and

__OF  OF —5 < 5277%+€1771772>
oao" oo V2w )

where we can substitute the value of D?,F from (11). The two equations

turn out to be the same and can be written in terms of ¢ as follows

29(n)(n, Dec) — [n|* (€, Dyc) = —c- (&,m). (16)

Remark 4. If we differentiate (14) with respect to 7> and add (15) dif-
ferentiated with respect to 71 we will get the same as (16).

Taking ¢ = e’ and rewriting (16) in polar coordinates in n variable we
arrive at

29(¢) cos ¢
Veie,0b- 2g(¢) sin ¢ = —& cosd — &y sin .
& sing — &y cos

The coordinate transformation

& =& cos+ &sing

S =& sing —&cos¢

p=2¢
brings us to the following first order linear PDE

29(¢) — & )
v5.15.2,¢b ’ €1~£2 =& (17)
&
In the isotropic case g = 1 the solution b(é, @) = f% gives us Huisken’s
famous monotonicity formula.

It remains a challenge to find a solution to (17) in the general anisotropic
case which would correspond to the Huisken’s one.

4. A NEW MONOTONICITY FORMULA

Let us observe that another obvious solution to (17) different from
Huisken’s one is

b€, §) = —log |&|. (18)

This gives the function

B B [ _ P
p(&m) = Inlelen) = T sl — Tl
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where 7, is the vector n rotated by 90 degrees clockwise and thus showing
in outer normal direction.

From now on we will consider the isotropic case g = 1. Obviously we
cannot solve (12) globally because p is not integrable, but if we assume
that our domain is always star-shaped with respect to the origin and the
angle ¢ between & and 7, remains between —7/2 and 7/2, we can solve
(12) locally. Now we just solve the equation

1

Oppf+f= pr— (19)
in the interval (—n/2,7/2). The general solution is
f(@) + a(§) cosyp + b(E) sinep, (20)
where
f@) = siny + cos log(cos ). (21)

Let us first take a = b= 0.
As mentioned before f(v) is a positive, bounded, convex, even function
in the interval (—7w/2,7/2) (see Figure ). The corresponding function F is

F(é,n) = %f(w) - %(w sintp + cos v log(cos 1)),

where ¢ is the angle between position vector £ = (v1,vs) and the outer
normal v showing in the direction (12, —11) = (v}, —v}).

Now we need to check whether the function F' satisfies the equations
(14) and (15). The answer is no. We obtain in (14) and (15)

mo,
€]2 2

and
o m
€2 " 2

respectively (see Remark 4). This means we have an additional term in
the formula (5)

v 4 v |
— d Ory - —— d
v +v3 (w)x+/| i v + v2 cosp
g1
1 1
__ /(U;aTm ~i0,0) (5 + e, (22)

2 v} 4 vl
S1
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5. THE “REPAIRED” FORMULA

In order to obtain a monotonicity formula without additional terms we
need to go back to the general solution of (19). The idea is that by adding
a term linear in 1 to F' we do not create problems in (11), so let us find a
function a(r) such that the function

Fle,n) = mﬂw+mwwmw

solves (14) and (15), so we do not have additional terms. Substituting F'

we obtain
- m (o) + A5 =
and
e (e + ) =
respectively, and now need to solve
@(r) +alr) = 5 + % (23)

The solution is a(r) = § + IO—E—T and

P& = )+ bl (5 + 2 cosv.

Thus we obtain the following monotonicity formula

log(v? +v3) ¥ + v
d’l’/ v} +vz W) + ( 2 * 4 )COS¢)dm

2o 1
/|3T’y \/ U1 + v3 coswdm (24)
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