
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 444, 2016 Ç.H. MikayelyanSTABILIZATION TECHNIQUE APPLIED TO CURVESHORTENING FLOW IN THE PLANEAbstrat. The method proposed by T. I. Zelenjak is applied tothe mean urvature ow in the plane. A new type of monotoniityformula for star-shaped urves is obtained.1. IntrodutionOne of the lassial problems ombining geometry and PDEs is the meanurvature ow. Gerhard Huisken proved that onvex surfaes onverge in�nite time to points in asymptotially spheri fashion (see [3℄). In dimen-sion two this result was proven by M. Gage and R. Hamilton in [1℄. In [2℄Grayson showed that in the plane any losed embedded urve shrinks toa onvex one in �nite time and thus also shrinks to a point. This result isnot true in higher dimensions where other types of singularities may ourif the initial urve is not onvex (see [6℄).A powerful tool in proving many properties of solutions is the mono-toniity formula of Gerhard Huisken (see [4℄). In the present paper weapply a general method developed by T. Zelenjak in [5℄ to mean urvatureow in the plane, and derive the monotoniity formula of Huisken. We alsoderive a new monotoniity formula for star-shaped urves. The presentedapproah is general and systemati, and we believe an be very useful ingeneralizations of the mean urvature ow, where no monotoniity formulais known. Our main motivation was the derivation of suh a monotoni-ity formula for the anisotropi mean urvature ow, whih still remains ahallenge. 2. The formulation of the problemWe onsider a losed urve in R
2 moving by its urvature with ananisotropy given by a funtion g:�t = g(�)��;Key words and phrases: mean urvature ow, monotoniity formula.89



90 H. MIKAYELYANwhere  : R+ × S1 → R
2 is the urve parametrization, � is the urvatureand � is the normal vetor.Note that in this form we �x a ertain parametrization whih has notangential omponent. For a general parametrization we will get�t · � = g(�)�: (1)If we take now (t; x) = ( u1(t; x)u2(t; x) ) we get the following

( �tu1�tu2 ) = g(u′1; u′2)−u′′1u′2 + u′1u′′2(u′12 + u′22)2 (

−u′2u′1 )where ′ means the x-derivative.Assume the �rst singularity appears at point 0 after �nite time T . Weresale the parametrization in the following way� = − log(T − t); ~(�; x) = (T − t)− 12 (t; x)and arrive at
( ��v1��v2 ) = 12 ( v1v2 )+ g(v′1; v′2)−v′′1v′2 + v′1v′′2(v′12 + v′22)2 (

−v′2v′1 ) ; (2)where ~(�; x) = ( v1(�; x)v2(�; x) ).In the paper we will arry out a signi�ant part of the omputations forthe anisotropi ow, but we are able to do the �nal part of the omputa-tions only for the isotropi ase.Remark 1. Note that in the isotropi ase g ≡ 1 the stationary solutionof (2) is the irle with the radius √2.Main result. For the solutions of (2), with g ≡ 1, whih are star-shapedwith respet to the origin, we prove the monotoniity formuladd� ∫S1 √v′21 + v′22v21 + v22 (f( ) + ( log(v21 + v22)2 + v21 + v224 ) os )dx= −
∫S1 |�� · �|2√v′21 + v′22v21 + v22 1os dx; (3)
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Fig. 1where  is the angle between the outer normal diretion (v′2;−v′1) and theposition vetor (v1; v2), andf( ) =  sin + os log(os ) (4)is a positive, even and onvex funtion de�ned in the interval (−�2 ; �2 ) (seeFigure 1).Remark 2. One an hek numerially that the funtionf( ) + � os ;is positive and stritly onvex in the interval (−�=2; �=2) for � < 1. Sinein the limit the urve will onverge to a irle with radius√2, the oeÆientof the os -term in the left hand side of the formula (3) will belog(v21 + v22)2 + v21 + v224 ≈ log 22 + 12 = 0:8465:::This means that the quantity depending on  on the left-hand side of (3),at least for large times, is a onvex funtion with minimum in the origin,and thus measures the W 1;2-deviation of the urve from its �nal limit,whih is the irle.



92 H. MIKAYELYAN3. Monotoniity formula by Zelenjak's approahIn this setion we adapt the method proposed by T. I. Zelenjak in [5℄to the mean urvature ow in the plane.For the system (2) we want to obtain a monotoniity formula of theform dd� ∫S1 F (v1; v2; v′1; v′2)dx = −
∫S1 |�� · �|2�(v1; v2; v′1; v′2)dx; (5)where � is positive.Note that in the isotropi ase g ≡ 1 the well-known Huisken's mono-toniity formula (see [4, 6℄) in this notations will orrespond toF (�1; �2; �1; �2) = �(�1; �2; �1; �2) = e− |�|24 |�|:Di�erentiating the left hand side of (5) and integrating by parts we get��v1 [ �F��1 − �2F��1��1 v′1 − �2F��2��1 v′2 − �2F��21 v′′1 − �2F��1��2 v′′2] (6)+��v2 [ �F��2 − �2F��1��2 v′1 − �2F��2��2 v′2 − �2F��1��2 v′′1 − �2F��22 v′′2] : (7)In the right hand side of (5) using (2) we obtain

− �(�; �)−��v1v′2 + ��v2v′1(v′12 + v′22) 12 (

−v1v′2 + v2v′12(v′12 + v′22) 12 + g(v′1; v′2)−v′′1 v′2 + v′′2 v′1(v′12 + v′22) 32 ) = (8)
− ���v1 [ v1v′22 − v2v′1v′22(v′12 + v′22) + g(v′1; v′2) v′22(v′12 + v′22)2 v′′1 − g(v′1; v′2) v′1v′2(v′12 + v′22)2 v′′2 ](9)
− ���v2 [ v2v′12 − v1v′1v′22(v′12 + v′22) − g(v′1; v′2) v′1v′2(v′12 + v′22)2 v′′1 + g(v′1; v′2) v′12(v′12 + v′22)2 v′′2 ] :(10)Remark 3. Note that we do not use (2) but its weak form similar to (1),whih means that what we obtain will work for any parametrization of theurve.



MONOTONICITY FORMULA FOR CURVE SHORTENING FLOW 93We now require that the square brakets of (6) and (9) as well as (7)and (10) be equal. Moreover, we require thatD2�F (�; �) = �(�; �)g(�) �22(�21+�22)2 − �1�2(�21+�22)2
− �1�2(�21+�22)2 �21(�21+�22)2 

= �(�; �)g(�)|�|−1D2|�| (11)where g is homogeneous of order 0.Introduing radial oordinates (|�|; �) for � it is easy to hek that fora given � one an �nd an F satisfying (11) if and only if�(�; �) = (�; �)|�|;where  is homogeneous of order 0 with respet to �, and2�
∫0 (�; �)g(�) os�d� = 2�

∫0 (�; �)g(�) sin �d� = 0; for all �:Moreover, F is homogeneous of order 1 in � variable and we an writeF (�; �) = f(�; �)|�|. The formula (11) beomes nowD2F = (���f + f)D2|�| = (�; �)g(�)D2|�|: (12)The solution of f ′′ + f = h an be alulated by the following formulaf(�) = 1 os�+ 2 sin�+ �
∫0 h(�) sin(�− �)d�: (13)What now remains to ahieve our aim of (6)=(9) and (7)=(10), is tomake sure that�F��1 − �2F��1��1 �1 − �2F��2��1 �2 = �−�1�22 + �2�1�22(�21 + �22) (14)and �F��2 − �2F��1��2 �1 − �2F��2��2 �2 = �−�2�21 + �1�1�22(�21 + �22) : (15)After di�erentiating this equations in �1 and �2 respetively we obtain

− �3F��1��21 �1 − �3F��2��21 �2 = ��1 (�−�1�22 + �2�1�22(�21 + �22) )



94 H. MIKAYELYANand
− �3F��1��22 �1 − �3F��2��22 �2 = ��2 (�−�2�21 + �1�1�22(�21 + �22) ) ;where we an substitute the value of D2�F from (11). The two equationsturn out to be the same and an be written in terms of  as follows2g(�)〈�;D�〉 − |�|2〈�;D�〉 = − · 〈�; �〉: (16)Remark 4. If we di�erentiate (14) with respet to �2 and add (15) dif-ferentiated with respet to �1 we will get the same as (16).Taking  = eb and rewriting (16) in polar oordinates in � variable wearrive at

∇�1;�2;�b · 2g(�) os�2g(�) sin��1 sin�− �2 os�  = −�1 os�− �2 sin�:The oordinate transformation~�1 = �1 os�+ �2 sin�~�2 = �1 sin�− �2 os�~� = � ;brings us to the following �rst order linear PDE
∇~�1 ~�2;�b · 2g(�)− ~�22~�1 ~�2~�2 

 = −~�1: (17)In the isotropi ase g ≡ 1 the solution b(~�; �) = − |~�|24 gives us Huisken'sfamous monotoniity formula.It remains a hallenge to �nd a solution to (17) in the general anisotropiase whih would orrespond to the Huisken's one.4. A new monotoniity formulaLet us observe that another obvious solution to (17) di�erent fromHuisken's one is b(~�; �) = − log |~�2|: (18)This gives the funtion�(�; �) = |�|(�; �) = |�|
|�1 sin�− �2 os�| = |�|2

|〈�; ��〉| ;



MONOTONICITY FORMULA FOR CURVE SHORTENING FLOW 95where �� is the vetor � rotated by 90 degrees lokwise and thus showingin outer normal diretion.From now on we will onsider the isotropi ase g ≡ 1. Obviously weannot solve (12) globally beause � is not integrable, but if we assumethat our domain is always star-shaped with respet to the origin and theangle  between � and �� remains between −�=2 and �=2, we an solve(12) loally. Now we just solve the equation�  f + f = 1os (19)in the interval (−�=2; �=2). The general solution isf( ) + a(�) os + b(�) sin ; (20)where f( ) =  sin + os log(os ): (21)Let us �rst take a = b = 0.As mentioned before f( ) is a positive, bounded, onvex, even funtionin the interval (−�=2; �=2) (see Figure ). The orresponding funtion F isF (�; �) = |�|
|�| f( ) = |�|

|�| ( sin + os log(os ));where  is the angle between position vetor � = (v1; v2) and the outernormal � showing in the diretion (�2;−�1) = (v′2;−v′1).Now we need to hek whether the funtion F satis�es the equations(14) and (15). The answer is no. We obtain in (14) and (15)�2
|�|2 6= −�22and
− �1
|�|2 6= �12respetively (see Remark 4). This means we have an additional term inthe formula (5)dd� ∫S1 √v′21 + v′22v21 + v22 f( )dx+ ∫S1 |�� · �|2√v′21 + v′22v21 + v22 1os dx= −

∫S1 (v′2��v1 − v′1��v2)(12 + 1v21 + v22 )dx: (22)



96 H. MIKAYELYAN5. The \repaired" formulaIn order to obtain a monotoniity formula without additional terms weneed to go bak to the general solution of (19). The idea is that by addinga term linear in � to F we do not reate problems in (11), so let us �nd afuntion a(r) suh that the funtionF (�; �) = |�|
|�|f( ) + a(|�|)|�| os solves (14) and (15), so we do not have additional terms. Substituting Fwe obtain �2

|�|2 − �2(a′(|�|) + a(|�|)
|�| ) = −�22and

− �1
|�|2 + �1(a′(|�|) + a(|�|)

|�| ) = �12respetively, and now need to solvera′(r) + a(r) = r2 + 1r : (23)The solution is a(r) = r4 + log rr andF (�; �) = |�|
|�|f( ) + |�|( |�|4 + log |�|

|�| ) os :Thus we obtain the following monotoniity formuladd� ∫S1 √v′21 + v′22v21 + v22 (f( ) + ( log(v21 + v22)2 + v21 + v224 ) os )dx= −
∫S1 |�� · �|2√v′21 + v′22v21 + v22 1os dx: (24)Aknowledgment. The author is grateful to Georg Weiss and HyunsukKang for inspiring disussions.Referenes1. M. Gage, R. Hamilton, The heat equation shrinking onvex plane urves. | J.Di�erential Geom. 23 (1986), no. 1, 69{96.2. M. Grayson, The heat equation shrinks embedded plane urves to round points. |J. Di�erential Geom. 26 (1987), no. 2, 285{314.



MONOTONICITY FORMULA FOR CURVE SHORTENING FLOW 973. G. Huisken, Flow by mean urvature of onvex surfaes into spheres. | J. Di�er-ential Geom. 20 (1984), no. 1, 237{266.4. G. Huisken, Asymptoti behavior for singularities of the mean urvature ow. | J.Di�erential Geom. 31 (1991), no. 2, 285{299.5. T. I. Zelenjak, Stabilization of solutions of boundary value problems for a seond-order paraboli equation with one spae variable, Di�erenialnye Uravnenija, 4, 34{45, 1968.6. Xi-Ping Zhu, Letures on mean urvature ows. AMS/IP Studies in Advaned Math-ematis, 32. Amerian Mathematial Soiety, Providene, RI; 2002. x+150 pp.ðÏÓÔÕ�ÉÌÏ 29 ÓÅÎÔÑÂÒÑ 2015 Ç.Mathematal SienesThe University of Nottingham Ningbo ChinaTaikang Dong Lu Nr. 199, Ningbo 315100PR ChinaE-mail : Hayk.Mikayelyan�nottingham.edu.n


