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152 R. HAZRAT, N. VAVILOV, Z. ZHANGEverybody knows there is no �neness or auray of suppression;if you hold down one thing you hold down the adjoining.Saul Bellow
§1. IntrodutionLet A be a ring and I be a two sided ideal of A. In his seminal paper [16℄,�fty years ago, Bass laid out a theory now known as the lassial alge-brai K-theory (as opposed to the higher algebrai K-theory introduedby Quillen [89℄). He onsidered the stable general linear group GL(A) =

∞
⋃n=1GL(n;A) and its stable elementary subgroup E(A) = ∞

⋃n=1E(n;A) andde�ned the stable K1(A) as the quotient GL(A)=E(A) (see §4 for details).Relating the group struture of GL(A) to the ideal struture of A, he wenton to establish an exat sequene naturally relating K1 to the group K0,previously de�ned by Grothendiek and Serre. In order the oset spaeK1(A) to be a well-de�ned group, Bass proved his famous \Whiteheadlemma" ( [16, Theorem 3.1℄, see Lemma 6), i.e.,E(A; I) = [E(A); E(A; I)℄ = [GL(A);GL(A; I)℄:In partiular when I = A, it follows that E(A) is a normal subgroup ofGL(A).He further proved that if n > max{sr(A); 3}, where sr(A) is the stablerange of A, then E(n;A; I) = [GL(n;A); E(n;A; I)℄: (1)Again, when I = A, it follows that E(n;A) is a normal subgroup ofGL(n;A).The next natural question arose was whether E(n;A) is a normal sub-group of GL(n;A) below the stable range as well. In the non-stable ase,there is no \room" available for manoeuvring as in the stable ase (seethe proof of Whitehead Lemma 6). Thus, one is fored to put some �nite-ness assumption on the ring. Indeed, Gerasimov [33℄ produed examplesof rings A for whih, for any n > 2, E(n;A) is as far from being normal inGL(n;R), as one an imagine.A major ontribution in this diretion ame with the work of Suslin [105,114℄ who showed that if A is a module �nite ring, namely, a ring that is�nitely generated as module over its entre, and n > 3, then E(n;A) is anormal subgroup of GL(n;A). That Suslin's normality theorem (and themethods developed to prove it) implies the standard ommutator formulae



THE COMMUTATORS OF CLASSICAL GROUPS 153of the type (1) in full fore was somewhat later observed independently byBorewiz{Vavilov [23℄ and Vaserstein [115℄. In these work it was establishedthat, for a module �nite ring A and a two-sided ideal I of A and n > 3,we have (see §6) [E(n;A);GL(n;A; I)℄ = E(n;A; I):The fous then shifted to the relative ommutators with two ideals. In hispaper, Bass already proved that for a ring A and two sided ideals I; J , andn > max(sr(A) + 1; 3),[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄: (2)Mason and Stothers, building on Bass' result improved the formula,with the same assumptions, to[GL(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:Later, in a series of the papers, the authors with A. Stepanov proved thatthe ommutator formula (2) is valid for any module �nite ring A and n > 3(see Theorem 1A).Sine Suslin's work, �ve major notieably di�erent methods have beendeveloped for arbitrary rings to prove suh ommutator formulae results(and arried out in di�erent lassial groups):
• Suslin's diret fatorisation method [105, 106, 61℄ (see also [37℄);
• Suslin's fatorisation and pathing method [114, 59, 15℄;
• Quillen{Suslin{Vaserstein's loalisation and pathing method [105, 115,110, 107℄;
• Bak's loalisation-ompletion method [10, 38, 14℄;
• Stepanov{Vavilov{Plotkin's deomposition of unipotents [124, 128, 99,125℄.Suslin's result makes it possible to de�ne the non-stableK1;n := GL(n;A)=E(n;A), when n > 3, for module �nite rings. The studyof these non-stable K1's is known to be very diÆult. There are examplesdue to van der Kallen [56℄ and Bak [10℄ whih show that non-stable K1an be non-abelian and the natural question is how non-abelian it an be?The breakthrough ame with the work of Bak [10℄, who showed thatK1;n is nilpotent by abelian if n > 3 and the ring satis�es some dimen-sion ondition (e.g. has a entre with �nite Krull dimension). His methodonsists of some \onjugation alulus" on elementary elements, plus si-multaneously applying loalisation-pathing and ompletion. This is the



154 R. HAZRAT, N. VAVILOV, Z. ZHANGmethod whih opened doors to establishing the so alled, higher ommu-tator formulas and will be employed in this paper.Loalisation is one of the most powerful ideas in the study of lassialgroups over rings. It allows to redue many important problems over var-ious lasses of rings subjet to ommutativity onditions, to similar prob-lems for semi-loal rings. Both methods { the Quillen-Suslin and Bak'sapproah (partiularly the latter){ rely on a large body of ommon alu-lations, and tehnial fats, known as onjugation alulus and ommutatoralulus. Often times these alulations are even referred to as the yoga ofonjugation, and the yoga of ommutators, to stress the overwhelming feel-ing of tehnial strain and exertion. We use variations of these methodsto prove multiple ommutator formulas for general linear group of thefollowing type (see §10):
[E(n;A; I0);GL(n;A; I1);GL(n;A; I2); : : : ;GL(n;A; Im)]= [E(n;A; I0); E(n;A; I1); E(n;A; I2); : : : ; E(n;A; Im)]: (3)First note that one an produe examples of a ommutative ring A andideals I; J and K suh that (see §7)[E(n;A; I); E(n;A; J)℄ 6= E(n;A; IJ);and (see §11)

[[E(A; I); E(A; J)℄; E(A;K)] 6= [E(A; I); [E(A; J); E(A;K)℄]:So higher ommutator formulas of the form (3) is far from trivial. We willobserve that using some ommutator alulus, and indution, the proof of(3) redues to prove the base of indution, i.e., to prove
[[E(n;A; I);GL(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: (4)The proof of (4) onstitutes the bulk of work and uses a variation of loal-isation method �rst developed in [10℄.The path to full-sale generalisation of these results from general lineargroups to other lassial groups was anything but straightforward. Forinstane, in the unitary ase, due to the following irumstanes,

• the presene of long and short roots,
• ompliated elementary relations,
• non-ommutativity,
• non-trivial involution,



THE COMMUTATORS OF CLASSICAL GROUPS 155
• non-trivial form parameter,these yoga alulations tend to be espeially lengthy, and highly involved.In this paper, for a omparison, we only provide one proof in the ase ofunitary groups (whih has not been appeared before). Namely, whereas theproof of Lemma 1A in the setting of general linear groups is only a halfof a page, the proof of its ounterpart in the unitary setting, Lemma 1B,onstitutes more than 4 pages.The aim of this note is to start with the original Bass' Whitehead lemmaand ontinue to establish the (higher) ommutator formulas. We trae theliterature on this theme, provide proofs to the main results in the settingof the general linear group and formulate the results in other lassial-like groups. We aim to provide a self-ontained soure from the resultssattered in the literature.

§2. The groups, an overviewIn this paper we onsider algebrai-like or lassial-like group funtorsG. We let G(A) to be the group of points of G over a ring A. Note thatgroups of types other than Al only exist over ommutative rings. Typially,G(A) is one of the following groups.A. General linear group GL(n;A) of degree n over a ring A.In this ontext the ring A does not have to be ommutative. However,we have to impose some ommutativity onditions for our results to hold.One of the well behaved lasses is the lass of quasi-�nite rings. Reall,that a ring A is alled module �nite if it is �nitely generated as a moduleover its entre. Quasi-�nite rings are diret limits of indutive systemsof module �nite rings (see §3.3). To avoid unneessary repetitions, in thesequel, speaking of ideals of an assoiative ring A, we always mean two-sided ideals of A.B. Unitary groups GU(2n;A;�) over a form ring (A;�).In this setting A is a [not neessarily ommutative℄ ring with involution: A → A and a form parameter � (see §5). As in the ase of general lineargroups, we usually assume that A is module �nite over a ommutative ringR. In general, � is not an R-module. Thus, R has to be replaed by itssubring R0, generated by all �� with � ∈ R.C. Chevalley groups G(�; A) of type � over a ommutative ring A.Chevalley groups are indeed algebrai, and the ground rings are ommu-tative in this ase, whih usually makes life easier.



156 R. HAZRAT, N. VAVILOV, Z. ZHANGTogether with the algebrai-like group G(A) we onsider the followingsubgroups.
• First of all, the elementary group E(A), generated by elementaryunipotents.
◦ In the linear ase, the elementary generators are elementary [linear℄transvetions eij(�), 1 6 i 6= j 6 n, � ∈ A.
◦ In the unitary ase, the elementary generators are elementary uni-tary transvetions Tij(�), 1 6 i 6= j 6 −1, � ∈ A. In the evenhyperboli ase they ome in two modi�ations. They an be shortroot type, i 6= ±j, when the parameter � an be any element ofA. On the other hand, for the long root type i = −j and the pa-rameter � must belong to [something de�ned in terms of℄ the formparameter �.
◦ Finally, for Chevalley groups, the elementary generators are theelementary root unipotents x�(�) for a root � ∈ � and a ringelement � ∈ A.Further, let I E A be an ideal of A. We also onsider the followingrelative subgroups.
• The elementary group E(I) of level I , generated by elementaryunipotents of level I .
• The relative elementary group E(A; I) = E(I)E(A) of level I .
• The prinipal ongruene subgroups G(A; I) of level I , the kernelof redution homomorphism �I : G(A) −→ G(A=I).
• The full ongruene subgroups C(A; I) of level I , the inverse imageof the entre of G(A=I) with respet to �I .We use the usual notation for these groups in the above ontexts A{C asshown below.G(A) GL(n;A) GU(n;A;�) G(�; A)E(A) E(n;A) EU(n;A;�) E(�; A)E(I) E(n; I) FU(n; I;�) E(�; I)E(A; I) E(n;A; I) EU(n; I;�) E(�; A; I)G(A; I) GL(n;A; I) GU(n; I;�) G(�; A; I)C(A; I) C(n;A; I) CU(n; I;�) C(�; A; I)There are two more general ontexts, where loalisation methods havebeen suessfully used, in partiular,



THE COMMUTATORS OF CLASSICAL GROUPS 157D. Isotropi redutive groups G(A),E. Odd unitary groups U(V; q),however we don't pursue these groups here (see [84{87, 74, 96℄).
§3. PreliminariesWe gather here basi results in group and ring theory, whih will beused throughout this note.3.1. Commutators. Let G be a group. For any x; y ∈ G, xy = xyx−1denotes the left x-onjugate of y. Let [x; y℄ = xyx−1y−1 denote the om-mutator of x and y. Sometimes the double ommutator [[x; y℄; z℄ will bedenoted simply by [x; y; z℄ and[[A;B℄; C℄ = [A;B;C℄:Thus we write [A1; A2; A3; : : : ; An℄ for [ : : : [[A1; A2℄; A3℄; : : : ; An℄ and allit the standard form of the multiple ommutator formulas.The following formulas will be used frequently (sometimes without giv-ing a referene to them),(C1) [x; yz℄ = [x; y℄(y [x; z℄).(C1+) An easy indution, using identity (C1), shows that[x; k
∏i=1ui℄ = k

∏i=1 i−1
∏j=1 uj [x; ui℄;where by onvention 0

∏j=1 uj = 1.(C2) [xy; z℄ = (x[y; z℄)[x; z℄.(C2+) As in (C1+), we have[ k
∏i=1 ui; x℄ = k

∏i=1 k−i
∏j=1 uj [uk−i+1; x℄:(C3) (the Hall-Witt identity): x[[x−1; y℄; z℄ z [[z−1; x℄; y℄ y[[y−1; z℄; x℄=1;(C4) [x;y z℄ =y [y−1x; z℄;(C5) [yx; z℄ =y [x;y−1 z℄.(C6) If H and K are subgroups of G, then [H;K℄ = [K;H ℄.



158 R. HAZRAT, N. VAVILOV, Z. ZHANG(C7) If F , H and K are subgroups of G, then
[[F;H ℄;K]

6
[[F;K℄; H][F; [H;K℄]:In §11.1 we will provide an example that even in the setting ofelementary subgroups of a linear group

[[F;H ℄;K]

6= [F; [H;K℄]:(C8) (xy)2 = x2y2[y−1; x−1][[x−1; y−1℄y−1]:One an write numerous identities involving ommutators. The readeris referred to [51, 52℄ for more samples of these identities.3.2. Let A be a ring and I , J and K be two sided ideals. We denote byI ◦ J := IJ + JI;the symmetrised produt of ideals I; J E A. In the ommutative ase itoinides with their usual produt. In general, the symmetrised produt isnot assoiative. Thus, when writing something like I ◦ J ◦ K we have tospeify the order in whih produts are formed.3.3. Limit of rings. An R-algebra A is alled module �nite over R, if Ais �nitely generated as an R-module. An R-algebra A is alled quasi-�niteover R if there is a diret system of module �nite R-subalgebras Ai of Asuh that lim
−→

Ai = A.Suppose A is an R-algebra and I is an index set. By a diret system ofsubalgebras Ai=Ri, i ∈ I , of A, we shall mean a set of subrings Ri of Rand a set of subrings Ai of A suh that eah Ai is naturally an Ri-algebraand suh that given i; j ∈ I , there is a k ∈ I suh that Ri 6 Rk, Rj 6 Rk,Ai 6 Ak, and Aj 6 Ak .Proposition 1. An R-algebra A is quasi-�nite over R if and only if itsatis�es the following equivalent onditions:(1) There is a diret system of subalgebras Ai=Ri of A suh that eahAi is module �nite over Ri and suh that lim
−→

Ri = R and lim
−→

Ai =A.(2) There is a diret system of subalgebras Ai=Ri of A suh that eahAi is module �nite over Ri and eah Ri is �nitely generated as a
Z-algebra and suh that lim

−→
Ri = R and lim

−→
Ai = A.



THE COMMUTATORS OF CLASSICAL GROUPS 1593.4. Stable rank of rings. Let us reall the linear ase �rst. These re-sults are most onveniently stated in terms of the new type of dimensionfor rings, introdued by Bass, stable rank. Sine later we shall disussgeneralisations of this notion, we reall here its de�nition.A row (a1; : : : ; an) ∈ nA is alled unimodular if the elements a1; : : : ; angenerate A as a right ideal, i.e. a1A+ · · ·+anA = A, or, what is the same,there exist b1; : : : ; bn ∈ A suh that a1b1 + · · ·+ anbn = 1.A row (a1; : : : ; an+1) ∈ n+1A is alled stable, if there exist b1; : : : ; bn ∈ Asuh that the right ideal generated by a1+an+1b1; : : : ; an+an+1bn oinideswith the right ideal generated by a1; : : : ; an+1.One says that the stable rank of the ring A equals n and writes sr(A) = nif every unimodular row of length n + 1 is stable, but there exists a non-stable unimodular row of length n. If suh n does not exist (i.e. there arenon-stable unimodular rows of arbitrary length) we say that the stablerank of A is in�nite.It turned out that stable rank, on one hand, most naturally arises in theproof of results pertaining to linear groups and, on the other hand, it an beeasily estimated in terms of other known dimensions of a ommutative ringA, say of its Krull dimension dim(A), or its Jaobson dimension j(A) =dim(Max(A)). Here, Max(A) is the subspae of all maximal ideals of thetopologial spae Spe(A), the set of all prime ideals of A, equipped withthe Zariski Topology. Then j(A) is the dimension of the topologial spaeMax(A). Let us state a typial result in this spirit due to Bass.Theorem 2. Let A be a ring �nitely generated as a module over a om-mutative ring R. Then sr(A) 6 dim(Max(R)) + 1.The right hand side should be thought of as a ondition expressing(a weaker form of) stability for not neessarily unimodular rows. In [28℄and [57℄ it is shown that already asr(A) 6 dim(Max(R))+1, where asr(A)stands for the absolute stable rank.
§4. General linear groupsLet G = GL(n;A) be the general linear group of degree n over anassoiative ring A with 1. Reall that GL(n;A) is the group of all two-sided invertible square matries of degree n over A, or, in other words, themultipliative group of the full matrix ring M(n;A). When one thinks ofA 7→ GL(n;A) as a funtor from rings to groups, one writes GLn. In thesequel for a matrix g ∈ G we denote by gij its matrix entry in the position



160 R. HAZRAT, N. VAVILOV, Z. ZHANG(i; j), so that g = (gij), 1 6 i; j 6 n. The inverse of g will be denoted byg−1 = (g′ij), 1 6 i; j 6 n.A ruial role is played by the elementary subgroup of GL(n;A). Asusual we denote by e (or sometimes 1) the identity matrix of degree n andby eij a standard matrix unit, i.e., the matrix that has 1 in the position(i; j) and zeros elsewhere. An elementary matries ei;j(�) is a matrix ofthe form ei;j(�) = e+ �eij ; � ∈ A; 1 6 i 6= j 6 n:An elementary matries ei;j(�) only di�ers from the identity matrix inthe position (i; j), i 6= j, where it has � instead of 0. In other words,multipliation by an elementary matrix on the left/right performs whatin an undergraduate linear algebra ourse would be alled a row/olumnelementary transformation `of the �rst kind'.If there is no danger we simply write eij(�) instead of ei;j(�).The elementary subgroup E(n;A) of the general linear group GL(n;A)is generated by all the elementary matries. That is,E(n;A) = 〈eij(�); � ∈ A; 1 6 i 6= j 6 n〉:Both for the development of the theory and for the sake of appliationsone has to extend these de�nitions to inlude relative groups. For a two-sided ideal I of A, one de�nes the orresponding redution homomorphism�I : GL(n;A) −→ GL(n;A=I); (gij) 7→ (gij + I):Now the prinipal ongruene subgroupGL(n;A; I) of level I is the kernel ofredution homomorphism �I , while the full ongruene subgroup C(n;A; I)of level I is the inverse image of the entre of GL(n;A=I) with respet tothis homomorphism. Clearly both are normal subgroups of GL(n;A).Again, let I E A be a two-sided ideal of A, and let x = eij(�) be anelementary matrix. Somewhat loosely we say that x is of level I , provided� ∈ I . One an onsider the subgroup generated in GL(n;A) by all theelementary matries of level I :E(n; I) = 〈eij(�); � ∈ I; 1 6 i 6= j 6 n〉:This group is ontained in the absolute elementary subgroup E(n;A) anddoes not depend on the hoie of an ambient ring A with 1. However, ingeneral E(n; I) has little hanes to be normal in GL(n;A). The relativeelementary subgroup E(n;A; I) is de�ned as the normal losure of E(n; I)



THE COMMUTATORS OF CLASSICAL GROUPS 161in E(n;A): E(n;A; I) = 〈eij(�); � ∈ I; 1 6 i 6= j 6 n〉E(n;A):We have the following relations among elementary matries whih willbe used in the paper. We refer to these relations in the text by (E).(E1) ei;j(a)ei;j(b) = ei;j(a+ b):(E2) [ei;j(a); ek;l(b)℄ = 1 if i 6= l; j 6= k.(E3) [ei;j(a); ej;k(b)℄ = ei;k(ab) if i 6= k.Essentially , the following result was �rst established in the ontext ofChevalley groups by Mihael Stein [97℄. The next approximation is the pa-per by Jaques Tits [112℄, where it is proven that E(n;A; I) is generatedby its intersetions with the fundamental SL2. Nevertheless, the earliestreferene, where we ould trae this result, was the paper by Leonid Vaser-stein and Andrei Suslin [121℄. We follow the proof given in [10, Lemma 4.8℄(see also in [132, Theorem 11℄).Lemma 3. Let A be a ring and I be a two-sided ideal of A. Then E(n;A; I)is generated as a group by the elementszij(a; �) := eji(a)eij(�) = eji(a)eij(�)eji(−a);where i 6= j, a ∈ A and � ∈ I.Proof. By de�nition, E(n;A; I) is generated by the elements eeij(�),where i 6= j, e ∈ E(n;A), and � ∈ I . If e is the identity matrix, letl(e) = 0 and otherwise, let l(e) denote the least number of elementary ma-tries required to write e as a produt of elementary matries. The proofis by indution on l(e).We need the following identity in order to redue the length of e in theindution proof. Let i, j, k be distint natural numbers and a; b ∈ A and� ∈ I . Then one an hek by straightforward multipliation thateij(a)eji(b)eij(�) = ekj(−�(1 + ba))eki(�b)eik(−ab�b)eij(ab�)
× (ejk(b)ekj(�))eij(�)eik((ab− 1)�b)ejk(b�b)(eij (a)eji(−b�b))

× (eki(1)eik(�b))ekj (�ba)eij(�ba): (5)We proeed by indution. If l(e) = 0, there is nothing to prove. Supposel(e) = 1. Then e = ekl(a) for some 1 6 k 6= l 6 n. If (k; l) = (j; i), there isnothing to prove. If (k; l) 6= (j; i) then by (E), ekl(a)eij(�) is either eij(�)or ei′j′(�′)eij(�) for an elementary matrix ei′j′(�′) suh that �′ ∈ I .



162 R. HAZRAT, N. VAVILOV, Z. ZHANGSuppose l(e) > 2. Write e = e′emn(b)ekl(a), where l(e′) = l(e) − 2. If(k; l) 6= (j; i), then applying the paragraph above, one an �nish by indu-tion on l(e). Suppose (k; l) = (l; i). If (m;n) = (i; j) then applying (5),one an �nish by indution on l(e). Suppose (m;n) 6= (i; j). If m 6= i andn 6= j then by (E) emn(b)eji(a) = eji(a)emn(b):It is not possible that (m;n) = (j; i), beause then it would follow thate = e′eji(b + a) and thus, that l(e) 6 l(e′) + 1. Sine (m;n) 6= (j; i),it follows from (E) that emn(b)eij(q) is either eij(�) or ei′j′ (�′)eij(�), foran elementary matrix ei′j′(�′), where �′ ∈ I and one is done again byindution on l(e). There remain now two ases to hek; namely, (m;n) =(m; j) with m 6= i and (m;n) = (i; n) with n 6= j. In the �rst ase,emj(b)eji(a)eij(�) = emi(ba)eji(a)emj (b)eij(�)= emi(ba)eji(a)eij(�)= eji(a)emi(ba)eij(�)= eji(a)(emj(ba�)eij(�)):Thus, one an �nish by indution on l(e). The seond ase is hekedsimilarly. �Using Lemma 3, it is not hard to prove that E(n;A; I2) 6 E(n; I)(see [10, Corollary 4.9℄ and [112, Proposition 2℄). This ontainment an beslightly generalised to the ase of two ideals. This will be established inLemma 1A whih will be used throughout the paper.The �rst step in the onstrution of algebrai K-theory was done byHyman Bass in [16℄ almost half entury ago. There is a standard embeddingGL(n;A) −→ GL(n+ 1; A); g 7→

( g 00 1 ) ; (6)alled the stabilisation map, whih allows us to identify GL(n;A) with asubgroup in GL(n + 1; A). Now we an onsider the stable general lineargroup GL(A) = lim
−→n GL(n;A);whih is the diret limit (e�etively the union) of the GL(n;A) under thestabilisation embeddings.



THE COMMUTATORS OF CLASSICAL GROUPS 163Sine the stabilisation map sends E(n;A) to E(n+1; A), we an de�nethe stable elementary group E(A) = lim
−→

E(n;A). This subgroup is alledthe (absolute) elementary group of degree n over A.Applying the stabilisation embeddings to the families GL(n;A; I) andE(n;A; I) generates stable versions GL(A; I) and E(A; I), respetively,of these groups. There is no stable version of C(n;A; I), though, as thestability map does not send C(n;A; I) into C(n+ 1; A; I).A ruial observation known as the Whitehead lemma, asserts that mod-ulo E(A) the produt of two matries in GL(n;A) is the same as theirdiret sum, and in partiular, E(A) = [GL(A);GL(A)℄. Suh identities inthe stable ase an be established easily, as there is enough room to ar-range the matries inside GL(A). For the pedagogial reason we inludethe proof of the following identity (see Lemma 6)E(A; I) = [E(A); E(A; I)℄ = [GL(A); E(A; I)℄ = [GL(A);GL(A; I)℄:The main theme of this note is to establish the non-stable identities of thistype.First, we need some lemmas.Lemma 4. Let A be a ring and I be a two sided ideal of A. Any n × nupper/lower triangular matrix with 1 on the main diagonal and elementsof I as non-zero entries belong to E(n; I).Proof. Let x be an upper triangular matrix with 1 on the diagonal andelements of I as non-zero entries, i.e., x = (aij) ∈ Mn(A) with aii = 1,1 6 i 6 n and aij ∈ I for j > i. Then the matrixx′ = (a′ij) = xe12(−a12)e23(−a23) : : : en−1;n(−an−1;n) (7)is still upper triangular with 1 on the main diagonals and 0 on j − i = 1.Note that sine aij ∈ I , all the elementary matries in (7) are in E(n; I).Now the matrixx′′ = (a′′ij) = x′e13(−a′13)e24(−a′24) : : : en−2;n(−a′n−2;n);is again upper triangular with 1 on the main diagonals and 0 on j − i =1; 2. Here also a′ij ∈ I and so all the elementary matries are in E(n; I).Continuing in this fashion, by indution, x(n−1) is the identity matrix.Note that all elementary matries involved are in E(n; I). It follows thatA ∈ E(n; I). The lower triangular ase is similar. �



164 R. HAZRAT, N. VAVILOV, Z. ZHANGLemma 5. Let A be an assoiative ring and let I E A be a two-sided idealof A. Then for any x; y ∈ GL(n;A; I) one has
(xyx−1y−1 00 1) ∈ E(2n;A; I): (8)Proof. Following Bass [16, Lemma 1.7℄, we �rst show that

(xy 00 1) ≡

(x 00 y) (mod E(2n;A; I)); (9)and
(yx 00 1) ≡

(x 00 y) (mod E(2n;A; I)); (10)whih then immediately implies (8).Write y = 1 + q, where q ∈Mn(I). Furthermore, let� = (yx 00 1) ; � = (x 00 y) ; �1 = (1 (yx)−1q0 1 ) ;�2 = (1 −x−1q0 1 ) ; �3 = ( 1 0
−y−1qx 1) ; � = (1 0x 1) :By Lemma 4, �1; �2; �3 ∈ E(2n; I), � ∈ E(2n;A) and thus by de�nition�−1�2� ∈ E(2n;A; I). We get � := �1�−1�2��3 ∈ E(2n;A; I). Now asimple matrix alulation shows��1 = (yx q0 1) ; ��1�−1 = (yx− qa q

−x 1) = ( x q
−x 1) ;��1�−1�2 = ( x −q + q

−x 1 + q ) = ( x 0
−x y) ;��1�−1�2� = ( x 0yx− x y) = ( x 0qx b) :Finally �� = ��1�−1�2��3 = (x 00 y) = �:This shows the Identity (10). Plugging x = y−1 into this identity we obtain

( y−1 00 y )

∈ E(2n;A; I):Thus
(xy 00 1) ≡

(xy 00 1) (y−1 00 y) ≡

(x 00 y) ;



THE COMMUTATORS OF CLASSICAL GROUPS 165whih is Identity (9). �Lemma 6. For an assoiative ring A and an ideal I E A one hasE(A; I) = [E(A); E(A; I)℄ = [GL(A); E(A; I)℄ = [GL(A);GL(A; I)℄: (11)Proof. The elements of E(A; I) are generated by xeij(�)x−1, whereeij(�) ∈ E(I) and x ∈ E(A). Writingxeij(�)x−1=[x; eij(�)℄eij(�)=[x; eij (�)℄[eik(1); ekj(�)℄∈[E(A); E(A; I)℄;it follows that E(A; I) 6 [E(A); E(A; I)℄:Thus we haveE(A; I) 6 [E(A); E(A; I)℄ 6 [GL(A); E(A; I)℄ 6 [GL(A);GL(A; I)℄:We show [GL(A);GL(A; I)℄ 6 E(A; I). Let x ∈ GL(A) and y ∈ GL(A; I).Then for a suÆiently large n, x ∈ GL(n;A) and y ∈ GL(n;A; I). ByLemma 5,
(xyx−1y−1 00 1) ∈ E(2n;A; I) 6 E(A; I):This �nishes the proof. �At this point Bass de�nesK1(A) = GL(A)=E(A) = GL(A)=[GL(A);GL(A)℄as the abelianisation of GL(A). Indeed algebrai K-theory was born asBass observed that the funtors K0 and K1 together with their relativeversions �t into a uni�ed theory with important appliations in algebra,algebrai geometry and number theory. In the same manner, the relativeK1-funtor of a pair (A; I) is de�ned asK1(A; I) = GL(A; I)=E(A; I):As one of important appliations in algebra, Bass [16℄ relates the normalsubgroup struture of GL(A) to the ideal struture of A. This leap ingenerality is onsidered as the starting point of the modern theory of lineargroups.Theorem 7. Let A be an arbitrary assoiative ring and H 6 GL(A) bea subgroup normalised by the elementary group E(A). Then there exists aunique ideal I E A suh, thatE(A; I) 6 H 6 GL(A; I):



166 R. HAZRAT, N. VAVILOV, Z. ZHANGConversely, any subgroup H satisfying these inlusions is (by Lemma 6)normal in GL(A).Quite remarkably this result holds for arbitrary assoiative rings. Thus,an expliit enumeration of all normal subgroups of GL(A) amounts to thealulation of K1(A; I) for all ideals I in A.The group K1 answers essentially the question as to how far GL(n;A)falls short of being spanned by elementary generators. A few years laterMilnor [80, 81℄, building on the work of Steinberg [103, 104℄ and Moore[82℄, introdued the group K2, whih measures essentially to whih extentall relations among elementary generators follow from the obvious ones.For any assoiative ring A, a two-sided ideal I E A and a �xed n weonsider the quotientK1(n;A; I) = GL(n;A; I)=E(n;A; I):In general, the elementary subgroup E(n;R; I) does not have to be normalin the ongruene subgroup GL(n;A; I). In partiular, K1(n;A; I) is apointed set, rather than a group. However, we will see when A is quasi-�nite and n > 3, the K1(n;A; I) is a group. Similarly, we de�neSK1(n;A; I) = SL(n;A; I)=E(n;A; I);onsult [10℄ for the de�nition of SL(n;A; I) for quasi-�nite rings.The stability embedding of the general linear groups (see (6)) sendsE(n;A; I) inside E(n+ 1; A; I). In partiular, by the homomorphism the-orem it indues stability map n : K1(n;A; I) −→ K1(n+ 1; A; I);whih is a group homomorphism when both sides are groups. Clearly,  nrestrits to a map between SK1(n;A; I)'s.The following results, known as the surjetive and injetive stability forK1 are due to Bass and to Bass{Vaserstein, respetively.Lemma 8. Let A be an assoiative ring and let I E A be a two-sided idealof A. Consider the stability map n : K1(n;A; I) −→ K1(n+ 1; A; I):Then(1) If n > sr(A) , then  n is surjetive. In other wordsGL(n+ 1; A; I) = GL(n;A; I)E(n+ 1; A; I):



THE COMMUTATORS OF CLASSICAL GROUPS 167(2) If n > sr(A) + 1, then  n is injetive. In other wordsGL(n;A; I) ∩ E(n+ 1; A; I) = E(n;A; I):
§5. Unitary groupsThe notion of �-quadrati forms, quadrati modules and generalisedunitary groups over a form ring (A;�) were introdued by Anthony Bakin his Thesis who studied their K-theory (see [7, 8℄).Although the quadrati setting is muh more ompliated than the lin-ear one, it is being gradually established that most results onerning theK-theory of general linear groups an be arried over to the K-theory ofgeneral quadrati groups.In this setion we briey review the most fundamental notation andresults that will be onstantly used in the present paper. We refer to [8,37, 60, 15, 38, 44, 111, 66℄ for details, proofs, and further referenes.5.1. Let R be a ommutative ring with 1, and A be an (not nees-sarily ommutative) R-algebra. An involution, denoted by , is an anti-homomorphism of A of order 2. Namely, for �; � ∈ A, one has �+ � =�+�, �� = �� and � = �. Fix an element � ∈ Cent(A) suh that �� = 1.One may de�ne two additive subgroups of A as follows:�min = {�− �� | � ∈ A}; �max = {� ∈ A | � = −��}:A form parameter � is an additive subgroup of A suh that(1) �min 6 � 6 �max,(2) ��� 6 � for all � ∈ A.The pair (A;�) is alled a form ring.5.2. Let I E A be a two-sided ideal of A. We assume I to be involutioninvariant, i.e., suh that I = I . Set�max(I) = I ∩ �; �min(I) = {� − �� | � ∈ I}+ 〈��� | � ∈ I; � ∈ �〉:A relative form parameter � in (A;�) of level I is an additive group of Isuh that(1) �min(I) 6 � 6 �max(I),(2) ��� 6 � for all � ∈ A.



168 R. HAZRAT, N. VAVILOV, Z. ZHANGThe pair (I;�) is alled a form ideal.In the level alulations we will use sums and produts of form ideals.Let (I;�) and (J;�) be two form ideals. Their sum is artlessly de�ned as(I + J;� +�), it is immediate to verify that this is indeed a form ideal.Guided by analogy, one is tempted to set (I;�)(J;�) = (IJ;��). How-ever, it is onsiderably harder to orretly de�ne the produt of two relativeform parameters. The papers [35, 36, 38℄ introdue the following de�nition�� = �min(IJ) + J� + I�;where J� = 〈��� | � ∈ J〉; I� = 〈��� | � ∈ I〉:One an verify that this is indeed a relative form parameter of level IJ ifIJ = JI .However, in the present paper we do not wish to impose any suh om-mutativity assumptions. Thus, we are fored to onsider the symmetrisedprodutsI ◦ J = IJ + JI; � ◦� = �min(IJ + JI) + J� + I�The notation � ◦ � { as also �� is slightly misleading, sine in fat itdepends on I and J , not just on � and �. Thus, stritly speaking, oneshould speak of the symmetrised produts of form ideals(I;�) ◦ (J;�) = (IJ + JI;�min(IJ + JI) + J� + I�):Clearly, in the above notation one has(I;�) ◦ (J;�) = (I;�)(J;�) + (J;�)(I;�):5.3. A form algebra over a ommutative ring R is a form ring (A;�),where A is an R-algebra and the involution leaves R invariant, i.e., R = R.A form algebra (A;�) is alled module �nite, if A is �nitely generatedas an R-module. A form algebra (A;�) is alled quasi-�nite, if there is adiret system of module �nite R-subalgebras Ai of A suh that lim
−→

Ai = A(see §3.3).In general � is not an R-module. This fores us to replae R by itssubring R0, generated by all �� with � ∈ R. Clearly, all elements in R0are invariant with respet to the involution, i. e. r = r, for r ∈ R0.It is immediate, that any form parameter � is an R0-module. Thissimple fat will be used throughout. This is preisely why we have toloalise in multipliative subsets of R0, rather than in those of R itself(see §12.4).



THE COMMUTATORS OF CLASSICAL GROUPS 169We now reall the basi notation and fats related to Bak's generalisedunitary groups and their elementary subgroups.5.4. Let, as above, A be an assoiative ring with 1. For natural m;n wedenote byM(m;n;A) the additive group of m×n matries with entries inA. In partiular M(m;A) = M(m;m;A) is the ring of matries of degreem over A. For a matrix x ∈ M(m;n;A) we denote by xij , 1 6 i 6 m,1 6 j 6 n, its entry in the position (i; j). Let e be the identity matrix andeij , 1 6 i; j 6 m, be a standard matrix unit, i.e. the matrix whih has 1in the position (i; j) and zeros elsewhere.As usual, GL(m;A) = M(m;A)∗ denotes the general linear group ofdegree m over A. The group GL(m;A) ats on the free right A-moduleV ∼= Am of rank m. Fix a base e1; : : : ; em of the module V . We may thinkof elements v ∈ V as olumns with omponents in A. In partiular, eiis the olumn whose i-th oordinate is 1, while all other oordinates arezeros.In the unitary setting, we are only interested in the ase, when m = 2nis even. We usually number the base as follows: e1; : : : ; en; e−n; : : : ; e−1.All other ourring geometri objets will be numbered aordingly. Thus,we write v = (v1; : : : ; vn; v−n; : : : ; v−1)t;where vi ∈ A; for vetors in V ∼= A2n.The set of indies will be always ordered aordingly,
 = {1; : : : ; n;−n; : : : ;−1}. Clearly, 
 = 
+⊔
−, where 
+ = {1; : : : ; n}and 
− = {−n; : : : ;−1}. For an element i ∈ 
 we denote by "(i) the signof 
, i.e. "(i) = +1 if i ∈ 
+, and "(i) = −1 if i ∈ 
−.5.5. For a form ring (A;�), one onsiders the hyperboli unitary groupGU(2n;A;�), see [15, §2℄. This group is de�ned as follows:One �xes a symmetry � ∈ Cent(A), �� = 1 and supplies the moduleV = A2n with the following �-hermitian form h : V × V −→ A,h(u; v) = u1v−1 + · · ·+ unv−n + �u−nvn + · · ·+ �u−1v1:and the following �-quadrati form q : V −→ A=�,q(u) = u1u−1 + · · ·+ unu−n mod �:In fat, both forms are engendered by a sesquilinear form f ,f(u; v) = u1v−1 + · · ·+ unv−n:Now, h = f + �f , where f(u; v) = f(v; u), and q(v) = f(u; u) mod �.



170 R. HAZRAT, N. VAVILOV, Z. ZHANGBy de�nition, the hyperboli unitary group GU(2n;A;�) onsists ofall elements from GL(V ) ∼= GL(2n;A) preserving the �-hermitian formh and the �-quadrati form q. In other words, g ∈ GL(2n;A) belongs toGU(2n;A;�) if and only ifh(gu; gv) = h(u; v) and q(gu) = q(u); for all u; v ∈ V:When the form parameter is not maximal or minimal, these groups arenot algebrai. However, their internal struture is very similar to that of theusual lassial groups. They are also often times alled general quadratigroups, or lassial-like groups.The groups introdued by Bak in his Thesis [7℄ gather all even lassialgroups under one umbrella. Linear groups, sympleti groups, (even) or-thogonal groups, (even) lassial unitary groups, are all speial ases of hisonstrution. Not only that, Bak's onstrution allows to introdue a wholenew range of lassial like groups , taking into aount hybridisation, de-fet groups, and other suh phenomena in harateristi 2, whih before [7℄were onsidered pathologial, and required separate analysis outside of thegeneral theory.To give the idea of how it works, let us illustrate how Bak's onstrutionspeialises in the ase of hyperboli groups.
• In the ase when involution is trivial, � = −1, � = �max = R, onegets the split sympleti group G(2n;R;�) = Sp(2n;R).
• In the ase when involution is trivial, � = 1, � = �min = 0, one getsthe split even orthogonal group G(2n;R;�) = O(2n;R).
• In the ase when involution is non-trivial, � = −1, � = �max, onegets the lassial quasi-split even unitary group G(2n;R;�) = U(2n;R).
• Let Ro be the ring opposite to R and Re = R⊕Ro. De�ne an involutionon Re by (x; yo) 7→ (y; xo) and set � = (1; 1o). Then there is a unique formparameter � = {(x;−xo) | x ∈ R}. The resulting unitary groupG(2n;Re;�) = {(g; g−t) | g ∈ GL(n;R)}may be identi�ed with the general linear group GL(n;R).Thus, in partiular the hyperboli unitary groups over Chevalley groupsof types Al, Cl and Dl.5.6. Elementary unitary transvetions Tij(�) orrespond to the pairsi; j ∈ 
 suh that i 6= j. They ome in two stoks. Namely, if, moreover,



THE COMMUTATORS OF CLASSICAL GROUPS 171i 6= −j, then for any � ∈ A we setTij(�) = e+ �eij − �("(j)−"(i))=2�e−j;−i:These elements are also often alled elementary short root unipotents . Onthe other side for j = −i and � ∈ �−("(i)+1)=2� we setTi;−i(�) = e+ �ei;−i:These elements are also often alled elementary long root elements .Note that � = ��. In fat, for any element � ∈ � one has � = −��and thus � oinides with the set of produts ��, � ∈ �. This means thatin the above de�nition � ∈ � when i ∈ 
+ and � ∈ � when i ∈ 
−.Subgroups Xij = {Tij(�) | � ∈ A}, where i 6= ±j, are alled short rootsubgroups . Clearly, Xij = X−j;−i. Similarly, subgroups Xi;−i = {Ti;−i(�) |� ∈ �−("(i)+1)=2�} are alled long root subgroups .The elementary unitary group EU(2n;A;�) is generated by elemen-tary unitary transvetions Tij(�), i 6= ±j, � ∈ A, and Ti;−i(�), � ∈�−("(i)+1)=2�, see [15, §3℄.5.7. Elementary unitary transvetions Tij(�) satisfy the following ele-mentary relations , also known as Steinberg relations . These relations willbe used throughout this paper.(R1) Tij(�) = T−j;−i(−�("(j)−"(i))=2�),(R2) Tij(�)Tij(�) = Tij(� + �),(R3) [Tij(�); Thk(�)℄ = e, where h 6= j;−i and k 6= i;−j,(R4) [Tij(�); Tjh(�)℄ = Tih(��), where i; h 6= ±j and i 6= ±h,(R5) [Tij(�); Tj;−i(�)℄ = Ti;−i(�� − �−"(i)��), where i 6= ±j,(R6) [Ti;−i(�); T−i;j(�)℄ = Tij(��)T−j;j(−�("(j)−"(i))=2���), wherei 6=±j.Relation (R1) oordinates two natural parameterisations of the sameshort root subgroup Xij = X−j;−i. Relation (R2) expresses additivity ofthe natural parameterisations. All other relations are various instanesof the Chevalley ommutator formula. Namely, (R3) orresponds to thease, where the sum of two roots is not a root, whereas (R4), and (R5)orrespond to the ase of two short roots, whose sum is a short root, and along root, respetively. Finally, (R6) is the Chevalley ommutator formulafor the ase of a long root and a short root, whose sum is a root. Observethat any two long roots are either opposite, or orthogonal, so that theirsum is never a root.



172 R. HAZRAT, N. VAVILOV, Z. ZHANG5.8. There is a standard embeddingG(2n;A;�) −→ G(2(n+ 1); A;�); ( a b d )

7→









a 0 0 b0 1 0 00 0 1 0 0 0 d 





alled the stabilisation map. In fat some other soures may give a slightlydi�erent piture of the right hand side. How the right hand side exatlylooks, depends on the ordered basis we hoose. With the ordered basiswhih is used in [8℄, the standard embedding has the formG(2n;R;�) −→ G(2(n+ 1); R;�); ( a b d )

7→









a 0 b 00 1 0 0 0 d 00 0 0 1 







:De�ne G(A;�) = lim
−→n G(2n;R;�)and E(A;�) = lim
−→n E(2n;R;�):The groups G(I;�) and E(I;�) are de�ned similarly.One ould ask, whether one an arry over Bass' results disussed in §4to the unitary ase? Bak, and in a slightly narrower situation, Vaserstein,established unitary versions of Whitehead's lemma, whih in partiularimplies the following result.Theorem 9. Let (A;�) be an arbitrary form ring, and (I;�) be its formideal, thenE(I;�)=[E(A;�); E(I;�)℄ = [G(A;�); E(I;�)℄=[G(A;�); G(I;�)℄:Now, similarly to the linear ase, this allows one to introdue the unitaryK-funtor K1(I;�) = G(I;�)=E(I;�):A version of unitary K-theory modelled upon the unitary groups has beensystematially developed by Bass in [18℄. Note that, in some literature, thenotation KU is used to denote the unitary K-groups. In other literature,the funtor above is alled a quadrati K-funtor and the notation KQ isused. (For a lexion of notations, see [8, §14℄).



THE COMMUTATORS OF CLASSICAL GROUPS 173As another piee of struture, parallel to the linear situation, let usmention the desription of normal subgroups in G(A;�), that holds overan arbitrary ring.Theorem 10. Let (A;�) be an arbitrary form ring. If H 6 G(A;�) is asubgroup normalised by E(A;�), then for a unique form ideal (I;�), onehas E(I;�) 6 H 6 G(I;�):Conversely, these inlusions guarantee that H is automatially normal inG(A;�).
§6. Towards non-stable K-theoryOne of the major ontributions toward non-stable K-theory of ringsis the work of Suslin [105, 114℄. He proved that if A is a module �nitering, namely, a ring that is �nitely generated as a module over its enter,and n > 3, then E(n;A) is a normal subgroup of GL(n;A). Therefore thenon-stable K1-group, i.e., GL(n;A)=E(n;A), is well-de�ned. Later, Bore-vih and Vavilov [23℄ and Vaserstein [115℄, building on Suslin's method,established the standard ommutator formula:Theorem 11 (Suslin, Borevih{Vavilov, Vaserstein). Let A be a module�nite ring, I a two-sided ideal of A and n > 3. Then E(n;A; I) is normalin GL(n;A), i.e., [E(n;A; I);GL(n;A)℄ = E(n;A; I):Furthermore, [E(n;A);GL(n;A; I)℄ = E(n;A; I):One natural question that arises here is whether one has a \�ner" mixedommutator formula involving two ideals. In fat this had already been es-tablished by Bass for general linear groups of degrees suÆiently largerthan the stable rank, when he proved his elebrated lassi�ation of sub-groups of GLn normalized by En (see [16, Theorem 4.2℄):Theorem 12 (Bass). Let A be a ring, I; J two-sided ideals of A andn > max(sr(A) + 1; 3). Then[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:Later, Mason and Stothers, building on Bass' result, proved ([78, The-orem 3.6, Corollary 3.9℄, and [76, Theorem 1.3℄).



174 R. HAZRAT, N. VAVILOV, Z. ZHANGTheorem 13 (Mason-Stothers). Let A be a ring, I; J two-sided ideals ofA and n > max(sr(A) + 1; 3). Then[ GL(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:As the Bass Theorem 12 and the Mason and Stothers Theorem 13 arethe starting point of this paper, below we present a new proof of Theo-rem 13.Lemma 14. For any n > 1 one has[GL(n;A; I);GL(n;A; J)℄ 6 [GL(n;A; I); E(2n;A; J)℄:Proof. Indeed, if x ∈ GL(n;A; I) and y ∈ GL(n;A; J). By Whiteheadlemma one hasy = (y 00 e) ≡

(e 00 y) (mod E(2n;A; J)):Sine E(2n;A; J) is normal in GL(2n;A; J), one hasy = (y 00 e) = (e 00 y) z;for some z ∈ E(2n;A; J). Sine the �rst fator on the right ommutes withx = (x 00 e) one has [x; y℄ = [x; z℄, as laimed. �Lemma 15. For any n > max(sr(A) + 1; 3) the stability map[E(n;A; I); E(n;A; J)℄=E(n;A; IJ + JI)
−→ [E(n+ 1; A; I); E(n+ 1; A; J)℄=E(n+ 1; A; IJ + JI)is an isomorphism.Proof. Clearly,[E(n;A; I); E(n;A; J)℄=E(n;A; IJ + JI)

6 GL(n;A; IJ + JI)=E(n;A; IJ + JI) = K1(n;A; IJ + JI):By Theorem 3A, [E(n;A; I); E(n;A; J)℄ is generated by [E(2; A; I),E(2; A; J)℄ as a normal subgroup of GL(n;A). Sine K1(n;A; IJ + JI)is entral in the quotient GL(n;A)=E(n;A; IJ + JI), for n > sr(A), thestability map is surjetive and beomes an isomorphism one step further,when the stability mapK1(n;A; IJ + JI) −→ K1(n+ 1; A; IJ + JI)



THE COMMUTATORS OF CLASSICAL GROUPS 175beomes an isomorphism by Lemma 8. �Lemma 1A. Let A be a ring and I; J be two-sided ideals of A. ThenE(n;A; IJ + JI) 6 [E(n; I); E(n; J)℄ 6 [E(n;A; I); E(n;A; J)℄
6 [E(n;A; I);GL(n;A; J)℄ 6 [GL(n;A; I);GL(n;A; J)℄
6 GL(n;A; IJ + JI):Proof. We �rst showE(n;A; IJ + JI) 6 [E(n; I); E(n; J)℄: (12)By Lemma 3, let ei;j (a)ej;i(�) be a generator of E(n;A; IJ+JI), where a ∈A and � ∈ IJ+JI . It suÆes to show that ei;j(a)ej;i(��)∈[E(n; I); E(n; J)℄,where � ∈ I and � ∈ J . Using (E3), we haveei;j (a)ej;i(��) = ei;j (a)[ej;k(�); ek;i(�)]= [ei;j (a)ej;k(�); ei;j (a)ek;i(�)]= [[ei;j(a); ej;k(�)℄ej;k(�); ek;i(�)[ek;i(−�); ei;j(a)℄]= [ei;k(a�)ej;k(�); ek;i(�)ek;j(−�a)]

∈ [E(n; I); E(n; J)℄:This shows (12). We are left to show that[GL(n;A; I);GL(n;A; J)℄ 6 GL(n;A; IJ + JI): (13)Let x ∈ GL(n;A; I) and y ∈ GL(n;A; J). Then x = e + x1 and x−1 =e+ x2 for some x1; x2 ∈M(n; I) suh that x1 + x2 + x1x2 = 0. Similarly,y = e+ y1 and y−1 = e+ y2 for some y1; y2 ∈M(n; J) suh that y1+ y2+y1y2 = 0. Then the following equality holds modulo IJ + JI .[x; y℄ = (e+ x1)(e+ y1)(e+ x2)(e+ y2)= e+ x1 + x2 + x1x2 + y1 + y2 + y1y2 = ewhih proves (13). �A stable version of Lemma 1A implies that[E(R; I); E(R; J)℄=E(R; I ◦ J)lives inside K1(R; I ◦ J).



176 R. HAZRAT, N. VAVILOV, Z. ZHANGProof of Theorem 13. By Lemma 14 one hasE(n;A; IJ + JI) 6 [E(2n;A; I); E(2n;A; J)℄
6 [GL(n;A; I);GL(n;A; J)℄ 6 [GL(n;A; I); E(2n;A; J)℄

6 [GL(2n;A; I); E(2n;A; J)℄ = [E(2n;A; I); E(2n;A; J)℄:By Lemma 1A one has [GL(n;A; I);GL(n;A; J)℄ 6 GL(n;R; IJ+JI). Onthe other hand, by Lemma 15[E(2n;A; I); E(2n;A; J)℄ ∩GL(n;R; IJ + JI) 6 [E(n;A; I); E(n;A; J)℄;so that [GL(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄;as laimed. �There are (ounter)examples that the Mason{Stothers Theorem doesnot hold for an arbitrary module �nite ring [10℄. However, reently Stepa-nov and Vavilov [129℄ proved Bass' Theorem 12 for any ommutative ringand n > 3. The authors, using Bak's loalisation and pathing method,extended the theorem to all module �nite rings [49℄. Then in [131℄, usingthe Hall-Witt identity, a very short proof for this theorem was found. Weinlude this proof here. We refer to Bass' Theorem in this setting as thegeneralised ommutator formula.Theorem 1A (Generalized ommutator formula). Let A be a module �-nite R-algebra and I; J be two-sided ideals of A. Then[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:Proof. We �rst prove[E(n;A; I);GL(n;A; J)℄ 6 [E(n;A; I); E(n;A; J)℄: (14)Writing E(n;A; I) = [E(n;A); E(n;A; I)℄ by Theorem 11 and then usingthe three subgroup lemma, i.e., [[F;H ℄; L℄ 6 [[F;L℄; H ℄[F; [H;L℄℄ for threenormal subgroups F;H and L of a group G, we have[E(n;A; I);GL(n;A; J)℄ = [[E(n;A); E(n;A; I)℄;GL(n;A; J)]
6

[[E(n;A);GL(n;A; J)℄; E(n;A; I)][E(n;A); [E(n;A; I);GL(n;A; J)℄]:But using Theorem 11,
[[E(n;A);GL(n;A; J)℄; E(n;A; I)] = [E(n;A; I); E(n;A; J)℄:



THE COMMUTATORS OF CLASSICAL GROUPS 177On the other hand using Theorem 1A twie, along with Theorem 11 again,we get
[E(n;A); [E(n;A; I);GL(n;A; J)℄] 6 [E(n;A);GL(n;A; IJ + JI)℄

6 E(n;A; IJ + JI) 6 [E(n;A; I); E(n;A; J)℄:The inlusion (14) now follows. The opposite inlusion is obvious. �In the similar manner one an establish the generalised ommutatorformula in the setting of unitary groups and Chevalley groups. Again, inthese setting the alulations are more hallenging. We inlude the proofof the unitary version of Lemma 1A as an indiation of omplexity ofalulations. Reall from §5 that(I;�) ◦ (J;�) = (IJ + JI;�min(IJ + JI) + J� + I�):Lemma 1B. Let (I;�) and (J;�) be two form ideals of a form ring(A;�). ThenEU(2n; (I;�) ◦ (J;�)) 6 [FU(2n; I;�);FU(2n; J;�)℄
6 [EU(2n; I;�);EU(2n; J;�)℄ 6 [GU(2n; I;�);GU(2n; J;�)℄

6 GU(2n; (I;�) ◦ (J;�)):Proof. We �rst showEU(2n; (I;�) ◦ (J;�)) 6 [FU(2n; I;�);FU(2n; J;�)℄: (15)It is well known that EU(2n; (I;�)◦(J;�)) is generated by Ti;j(�)Tj;i(�)with � ∈ I ◦ J , � ∈ A when i 6= ±j and with � ∈ �−("(i)+1)=2� ◦ � and� ∈ �("(i)−1)=2� when i = −j. We divide the proof into ases aordingthe length of the elementary element.Case I. Ti;j(�) is a short root, namely i 6= ±j. Then � ∈ I ◦ J . It issuÆient show that Ti;j(a1b1 + a2b2)Tj;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄for any a1; a2 ∈ I and b1; b2 ∈ J . By (R2), we haveTi;j(a1b1 + a2b2)Tj;i(�) = Ti;j(a1b1)Ti;j (�)Ti;j(a2b2)Tj;i(�):We will show the �rst fator of the right hand side of the above equation,and left the seond to the reader. Choose a k 6= ±i;±j. Using (R4), the



178 R. HAZRAT, N. VAVILOV, Z. ZHANG�rst fator an be rewritten as a ommutatorTi;j(a1b1)Tj;i(�) = [Ti;k(a1); Tk;j(b1)℄Tj;i(�)= [Ti;k(a1)Tj;i(�); Tk;j(b1)Tj;i(�)℄:= [[Ti;k(a1); Tj;i(−�)℄Ti;k(a1); [Tk;j(b1); Tj;i(−�)℄Tk;j(b1)]:Again by (R4), we have
[[Ti;k(a1); Tj;i(−�)℄Ti;k(a1); [Tk;j(b1); Tj;i(−�)℄Tk;j(b1)]= [Tj;k(a1�)Ti;k(a1); Tk;i(−�b1)Tk;j(b1)]:Clearly a1�; a1 ∈ I and −�b1; b1 ∈ J , thusTi;j(a1b1)Tj;i(�) = [Tj;k(a1�)Ti;k(a1); Tk;i(−�b1)Tk;j(b1)]

∈ [FU(2n; I;�);FU(2n; J;�)℄: (16)This �nishes the proof of Case I.Case II. Ti;j(�) is a long root, namely i = −j. Therefore we have � ∈�−("(i)+1)=2� ◦ �. Without loss of generality, we may assume that i < 0.Hene � ∈ � ◦�. By de�nition,� ◦� = �J +�I + �min(IJ + JI):It suÆes to show thatTi;−i(�1 + �2 + �3)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄with �1 ∈ �J , �2 ∈ �I and �2 ∈ �min(IJ + JI). By (R2),Ti;−i(�1+�2+�3)T−i;i(�)=Ti;−i(�1)T−i;i(�)Ti;−i(�2)T−i;i(�)Ti;−i(�3)T−i;i(�):We prove one by one that eah of the fators above belongs to[FU(2n; I;�);FU(2n; J;�)℄:Sine �1 ∈ �J , we may rewrite �1 = aa with a ∈ J and  ∈ �.Therefore Ti;−i(�1)T−i;i(�) = Ti;−i(aa)T−i;i(�):Choose a j 6= i and j < 0. Equation (R6) implies thatTi;−i(aa)T−i;i(�) = (Ti;−j(−a)[Ti;j(a); Tj;−j()℄)T−i;i(�)= Ti;−j(−a)T−i;i(�)[Ti;j(a); Tj;−j()℄T−i;i(�)= [Ti;−j(−a); T−i;i(�)℄Ti;−j(−a)[Ti;j(a); Tj;−j()℄T−i;i(�): (17)



THE COMMUTATORS OF CLASSICAL GROUPS 179Again by (R6), the �rst fator[Ti;−j(−a); T−i;i(�)℄ = T−j;j(−�a�a)T−i;−j(��a):Beause a�a ∈ �min(I ◦ J) and ��a ∈ I ◦ J , we haveT−j;j(−�a�a)T−i;−j(��a) ∈ FU(2n; (I;�) ◦ (J;�))
6 [FU(2n; I;�);FU(2n; J;�)℄:Furthermore, a ∈ I ◦ J implies the seond fator of (17)Ti;j(−a) ∈ FU(2n; (I;�) ◦ (J;�)) 6 [FU(2n; I;�);FU(2n; J;�)℄:As for the last fator of (17),[Ti;j(a); Tj;−j()℄T−i;i(�) = [Ti;j(a)T−i;i(�); Tj;−j()T−i;i(�)℄= [[Ti;j(a); T−i;i(�)℄Ti;j(a); Tj;−j()]:Apply (R6) to the �rst omponent of the ommutator above shows that[Ti;j(a); T−i;i(�)℄Ti;j(a) = T−j;j(�a�a)T−i;j(−�a)Ti;j(a) ∈ FU(2n; J;�):Thus Ti;−i(�1)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:A similar argument, whih is left to the reader, shows thatTi;−i(�2)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:For the third fator of (16), we haveTi;−i(�3)T−i;i(�) ∈ Ti;−i(�min(IJ + JI))T−i;i(�):By de�nition,�min(IJ + JI) = {a− �a | a ∈ IJ + JI}+ 〈bb | b ∈ IJ + JI;  ∈ �〉:Hene, we shall show that for any given �4 and �5 whih belong to the�rst and seond summands of the above equation, respetively, one hasTi;−i(�4)T−i;i(�) and Ti;−i(�5)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:For the �rst inlusion, take a typial generator 1d1+d21−�1d1 + d22 of

{a− �a | a ∈ IJ + JI} with 1; 2 ∈ I and d1; d2 ∈ J . It suÆes to provethatTi;−i(1d1 + d22 − �1d1 + d22)T−i;i(�)= Ti;−i(1d1 − �1d1)T−i;i(�)Ti;−i(d22 − �d22)T−i;i(�)



180 R. HAZRAT, N. VAVILOV, Z. ZHANGbelongs to above relative ommutator subgroup. We shall prove this in-lusion for Ti;−i(1d1 − �1d1)T−i;i(�) and the rest follows by the samearguments.Choose a j 6= i and j < 0. Using (R5), we getTi;−i(1d1 − �1d1)T−i;i(�) = [Ti;j(1); Tj;−i(d1)℄T−i;i(�)= [Ti;j(1)T−i;i(�); Tj;−i(d1)T−i;i(�)℄= [[Ti;j(1); T−i;i(�)℄Ti;j(1); [Tj;−i(d1); T−i;i(�)℄Tj;−i(d1)]:By (R6), [Ti;j(1); T−i;i(�)℄ an be written as a produt of elements fromFU(2n; I;�) and [Tj;−i(d1); T−i;i(�)℄ a produt of elements fromFU(2n; J;�). ThusTi;−i(�4)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:Finally, as �5 ∈ 〈bb | b ∈ IJ +JI;  ∈ �〉, we redue our proof by (R2)to the ase �5 = (

∑k ak)(∑k ak); with ak ∈ IJ + JI:By indution, it an be further redued to�5 = (a1b1 + b2a2)a1b1 + b2a2with a1; a2 ∈ I and b1; b2 ∈ J . The above equation an be rewritten as�5 = a1b1a1b1 + b2a2b2a2 + a1b1a2b2 + a2b2a1b1= a1b1a1b1 + b2a2b2a2 + (a1b1a2b2 − �a1b1a2b2):The last summand is of the same form as �4's, hene it follows immediatelyby the proof of �4 thatTi;−i(a1b1a2b2 − �a1b1a2b2)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:Now onsider the �rst two summands. Note thata1b1a1b1 = a1(b1b1)a1and b2a2b2a2 = b2(a2a2)b2:



THE COMMUTATORS OF CLASSICAL GROUPS 181By the de�nition of relative form parameter, a1(b1b1)a1 and b2(a2a2)b2belong to �I and �J respetively. The proofs for �1 and �2 show thatTi;−i(a1(b1b1)a1)T−i;i(xi)Ti;−i(a2(b2b2)a2)T−i;i(xi)
∈ [FU(2n; I;�);FU(2n; J;�)℄:This proves (15). We are left to show that[GU(2n; I;�);GU(2n; J;�)℄ 6 GU(2n; (I;�) ◦ (J;�)): (18)We �rst show that (18) holds for the stable unitary groups, namely that[GU(I;�);GU(J;�)℄ 6 GU((I;�) ◦ (J;�)): (19)In the stable level, we have inlusionsEU((I;�) ◦ (J;�)) 6 [EU(I;�);EU(J;�)℄ 6 [GU(I;�);GU(J;�)℄ (20)and [EU(I;�);EU(J;�)℄ 6 GU((I;�) ◦ (J;�)): (21)Sine the subgroup [GU(I;�);GU(J;�)℄ is normalized by E(A;�), ap-plying Theorem 10, we an onlude that there exists a unique form ideal(K;
) suh thatEU(K;
) 6 [GU(I;�);GU(J;�)℄ 6 GU(K;
): (22)By Identity (C7), we get[[GU(I;�);GU(J;�)℄;EU(A;�)℄

6 [[GU(I;�);EU(A;�)℄;GU(J;�)℄ · [[GU(J;�);EU(A;�)℄;GU(I;�)℄:But the absolute ommutator formula implies that[[GU(I;�);EU(A;�)℄;GU(J;�)℄ · [[GU(J;�);EU(A;�)℄;GU(I;�)℄= [EU(I;�);EU(J;�)℄: (23)Thus, [[GU(I;�);GU(J;�)℄;EU(A;�)℄ 6 [EU(I;�);EU(J;�)℄: (24)Again by the general ommutator formula and (21), we haveEU((I;�) ◦ (J;�)) = [EU((I;�) ◦ (J;�));EU(A;�)℄
6 [[EU(I;�);EU(J;�)℄;EU(A;�)℄

6 [GU((I;�) ◦ (J;�));EU(A;�)℄ = EU((I;�) ◦ (J;�)): (25)



182 R. HAZRAT, N. VAVILOV, Z. ZHANGForming another ommutator of (24) with EU(A;�) and applying theinequalities obtained in (25) we get
[[[GU(I;�);GU(J;�)℄;EU(A;�)℄;EU(A;�)] = EU((I;�) ◦ (J;�)):Using inlusions (22), we see thatEU(K;
) = [[EU(K;
);EU(A;�)℄;EU(A;�)℄
6

[[[GU(I;�);GU(J;�)℄;EU(A;�)℄;EU(A;�)] = EU((I;�) ◦ (J;�))= [[EU((I;�) ◦ (J;�));EU(A;�)℄;EU(A;�)℄
6

[[[GU(I;�);GU(J;�)℄;EU(A;�)℄;EU(A;�)]
6 [[GU(K;
);EU(A;�)℄;EU(A;�)℄ = EU(K;
):Thus, we an onlude that EU(K;
) = EU((I;�) ◦ (J;�)). This impliesthat (K;
) = (I;�) ◦ (J;�), see the seond paragraph of the proof of [37,Theorem 5.4.10℄. Substituting this equality in (22), we see that inlusion(19) holds at the stable level, as laimed.Let ' denote the usual stability embedding ' :GU(2n;A;�)→GU(A;�).Then'([ GU(2n; I;�);GU(2n; J;�)℄) = ['( GU(2n; I;�)); '(GU(2n; J;�))℄< [ GU(I;�);GU(J;�)℄:In partiular, the result at the stable level implies that'([ GU(2n; I;�);GU(2n; J;�)℄) 6 '( GU(2n;A;�)) ∩GU((I;�) ◦ (J;�)):On the other hand,'(GU(2n;A;�)) ∩GU((I;�) ◦ (J;�)) = '(GU(2n; (I;�) ◦ (J;�))):Sine ' is injetive, we an onlude that[GU(2n; I;�);GU(2n; J;�)℄ 6 GU(2n; (I;�) ◦ (J;�)):This �nishes the proof. �We an state the unitary version of generalised ommutator formula.Theorem 1B. Let n > 3, R be a ommutative ring, (A;�) be a form ringsuh that A is a module �nite R-algebra. Further, let (I;�) and (J;�) betwo form ideals of the form ring (A;�). Then[ EU(2n; I;�);GU(2n; J;�)℄ = [EU(2n; I;�);EU(2n; J;�)℄:



THE COMMUTATORS OF CLASSICAL GROUPS 183Atually, in the ommutative ase the prinipal ongruene subgroup inthe left hand side of the equalities an be replaed by the full ongruenesubgroup. In other words, when R is ommutative, one has[E(n;R; I); C(n;R; J)℄ = [E(n;R; I); E(n;R; J)℄:Similarly, when A is ommutative, one has[ EU(2n; I;�);CU(2n; J;�)℄ = [EU(2n; I;�);EU(2n; J;�)℄:On the other hand, it is easy to onstrut non-ommutative ounter-examples to these stronger assertions, see [76℄.Finally, for Chevalley groups the orresponding result was �rst oÆiallystated by You Hong [138, Theorem 1℄, see also [46, Lemmas 17,19℄.Lemma 1C. Let rk(�) > 2. In the ases � = B2;G2 assume that R doesnot have residue �elds F2 of 2 elements and in the ase � = B2 assumeadditionally that any  ∈ R is ontained in the ideal 2R+ 2R.Then for any two ideals I and J of the ring R one has the followinginlusionE(�; R; IJ) 6 [E(�; R; I); E(�; R; J)℄ 6 [E(�; R; I); G(�; R; J)℄
6 [G(�; R; I); C(�; R; J)℄ 6 G(�; R; IJ):For groups of rank 2, these additional assumptions are indeed neessary.It is lassially known that when the ground ring R has residue �elds of2 elements, the groups of types B2 and G2 are not perfet. Thus, theleft-most inlusion fails even at the absolute level, when I = J = R.The seond assumption for B2 is not visible at the absolute level. Butwithout that assumption the upper and lower levels of the relative om-mutator subgroup [E(�; R; I); E(�; R; J)℄ do not oinide, so that the left-most inlusion in the above lemma should be replaed byE(�; R; IJ; I2J + 2IJ + IJ2) 6 [E(�; R; I); E(�; R; J)℄:Here, E(�; R; I; J) is the elementary subgroup orresponding to an admis-sible pair (I; J) in the sense of Abe, where I is an ideal of R, expressingthe short root level (= upper level), whereas a Jordan ideal J , expressingthe long root level (= lower level), plays the role of a form parameter. Notto ompliate things any further, in the sequel we always impose theseadditional restritions on R, when � = B2;G2. These two ases, espeiallythat of the group Sp(4; R), require separate analysis anyway, [143, 144℄.



184 R. HAZRAT, N. VAVILOV, Z. ZHANGSine Chevalley groups of types other than Al are only de�ned overommutative rings, we an state the next result with the full ongruenesubgroup right from the outset. It is (essentially) [46, Theorem 3℄, withslightly weaker assumptions for Chevalley groups of rank 2.Theorem 1C. Let � be a redued irreduible root system, rk(�) > 2.Further, let R be a ommutative ring, and I; J E R be two ideals of R.In the ases � = B2;G2 assume that R does not have residue �elds F2 of2 elements and in the ase � = B2 assume additionally that any  ∈ R isontained in the ideal 2R+ 2R. Then[E(�; R; I); C(�; R; J)℄ = [E(�; R; I); E(�; R; J)℄:Atually, relative standard ommutator formulas an be proven by lo-alisation, as in [49, 45, 46℄, and this is preisely the proof on whih mostgeneralisations are based. Otherwise, they an be redued to the absolutestandard ommutator formulas by level alulations, as in [138, 131, 45,46℄. Of ourse, the usual proofs of the absolute ommutator formulas them-selves in this generality involve some forms of loalisation, at least in thenon-ommutative ase.Before proeeding to higher generalisations, we dwell a bit more on thestruture and generation of the relative ommutator subgroups [E(R; I),E(R; J)℄ that appear in these theorems. These results are essentially ele-mentary, sheer abstrat or algebrai group theory, and do not use loali-sation. But they are useful and amusing, and serve to motivate, prove oramplify our main theorems.
§7. Relative ommutator subgroups are not elementaryIn view of Theorem 1A, it is natural to ask, whether the ommutatorsof relative elementary subgroups are themselves elementary of the orre-sponding level, in other words, whether[E(A; I); E(A; J)℄ = E(A; I ◦ J) (26)holds?This is known to be the ase in many important lassial situations, forinstane, at the absolute level, where I = A or J = A. In fat, this equalityholds under muh weaker assumptions. Spei�ally, it is easily veri�edwhen the ideals I and J are omaximal, I + J = A. We will reproduethe proof of this fat in the setting of general linear group from [131℄. The



THE COMMUTATORS OF CLASSICAL GROUPS 185proof in the setting of unitary groups and Chevalley groups an be nowfound in [45, Theorem 3℄, and [46, Theorem 3℄, respetively.Theorem 2A. Let A be a quasi-�nite ring, n > 3. Then for any twoomaximal ideals I; J E A, I + J = A, one has[E(n;A; I); E(n;A; J)℄ = E(n;A; I ◦ J):Proof. First observe that an appliation of (E1) shows that for any idealsI and J of A, we haveE(n;A; I)E(n;A; J) = E(n;A; I + J): (27)Sine I and J are omaximal, from (27) it follows E(n;A; I)E(n;A; J) =E(n;A).NowE(n;A; I) = [E(n;A; I); E(n;A)℄ = [E(n;A; I); E(n;A; I)E(n;A; J)℄:Thus using Lemma 1A we an writeE(n;A; I) 6 [E(n;A; I); E(n;A; I)℄[E(n;A; I); E(n;A; J)℄
6 [E(n;A; I); E(n;A; I)℄ GL(n;A; IJ + JI):Commuting this inlusion with E(n;A; J), we see that[E(n;A; I); E(n;A; J)℄

6
[[E(n;A; I); E(n;A; I)℄; E(n;A; J)][GL(n;A; IJ + JI); E(n;A; J)]:Applied to the seond fator, the standard ommutator formula, Theo-rem 11, shows that[GL(n;A; IJ + JI); E(n;A; J)℄

6 [GL(n;A; IJ + JI); E(n;A)℄ = E(n;A; IJ + JI):On the other hand, applying Lemma 1A to the �rst fator, and theninvoking the standard ommutator formula again, we have
[[E(n;A; I); E(n;A; J)℄; E(n;A; I)] 6 [GL(n;A; IJ + JI); E(n;A; I)℄

6 [GL(n;A; IJ + JI); E(n;A)℄ = E(n;A; IJ + JI):Thus we have [E(n;A; I); E(n;A; J)℄ 6 E(n;A; IJ + JI):Combining this with Lemma 1A, the proof is omplete. �



186 R. HAZRAT, N. VAVILOV, Z. ZHANGTheorem 2B. Let n > 3, and (A;�) be an arbitrary form ring for whihabsolute standard ommutator formulae are satis�ed. Then for any twoomaximal form ideals (I;�) and (J;�) of the form ring (A;�), I+J = A,one has the following equality[EU(2n; I;�);EU(2n; J;�)℄ = EU(2n; IJ + JI; J�+ I�+�min(IJ + JI)):Theorem 2C. Let � be a redued irreduible root system, rk(�) > 2.Further, let A be a ommutative ring, and I; J E A be two ideals of A.In the ases � = B2;G2 assume that A does not have residue �elds F2 of2 elements. Then for any two omaximal ideals I; J E A, I + J = A, onehas the following equality[E(�; A; I); E(�; A; J)℄ = E(�; A; IJ):Observe, that unlike Theorem 1C, in Theorem 2C the extra assumptionon R for type B2 turned out to be redundant (due to more aurate levelalulations in terms of admissible pairs).7.1. Despite Theorem 2A, the relative ommutator subgroup [E(A; I),E(A; J)℄ annot be always elementary of the form (26). We reproduefrom [78, 76℄ one suh example based on the alulation of relative K1-funtors for Dedekind rings of arithmeti type by Hyman Bass, John Mil-nor and Jean-Pierre Serre [17℄. We do not make any attempt to reall theexpliit formula forSK1(n;A; I) = SL(n;A; I)=E(n;A; I)in the general ase. Instead, we ite the expliit answer for the �rst non-trivial ase of Gaussian integers A = Z[i℄. Consider the prime ideal p =(1 + i)A. Then for any n > 3 and any ideal I E A one hasSK1(n;A; I) = SK1(n;A; ps); s = ordp(I):On the other hand,
| SK1(n;A; ps)| = 









1; s 6 3;2; s = 4; 5;4; s > 6:Now a straightforward alulation shows thatE(n;Z[i℄; p6) < [E(n;Z[i℄; p3); E(n;Z[i℄; p3)℄= [SL(n;Z[i℄; p3); SL(n;Z[i℄; p3)℄ < SL(n;Z[i℄; p6);



THE COMMUTATORS OF CLASSICAL GROUPS 187where both inlusions are strit. In fat, both indies are equal to 2.This, and many further examples of arithmeti and algebra-geometrinature show that in general the relative ommutator subgroup [E(n;A; I),E(n;A; J)℄ is stritly larger than the relative elementary subgroupE(n;A; I ◦ J).In partiular, it follows that in general[E(n;A; I); E(n;A; J)℄ 6= [E(n;A;K); E(n;A; L)℄for two pairs of ideals (I; J) and (K;L), suh that I ◦ J = K ◦ L. Infat, this already follows from the previous example, for pairs (I; J) and(K;L) = (I ◦ J;A), but it is easy to onstrut many further examples,muh fanier than that.Summarising the above, we an onlude that in general the doublerelative ommutator subgroups do not redue to relative elementary sub-groups, and reveal some new layers of the internal struture of K1(A; I).Amazingly, all higher multiple ommutator subgroups redue to dou-ble ommutator subgroups. In other words, forming suessive ommu-tators of relative elementary subgroups never results in anything new in-side K1(A;K), apart from the groups[E(A; I); E(A; J)℄=E(A;K) 6 K1(A;K);for some other ideals I and J , suh that I ◦ J = K. We will disuss thisin §11.
§8. Generators of relative ommutator subgroupsHere, we desribe generators of relative ommutator subgroups [E(A; I),E(A; J)℄ as normal subgroups of E(A). These results are elementary alge-brai group theory, but they are an essential omplement to Theorem 1A,an important tool in the proof of multiple ommutator formula, and thestarting point for results on relative ommutator width.By Lemma 1A the relative ommutator subgroup [E(A; I); E(A; J)℄ontains the elementary subgroup E(A; I ◦ J). In partiular, it ontainsthe generators of that group. However, we know that in general [E(A; I),E(A; J)℄ may be stritly larger, than E(A; I ◦J) (see §7). Thus, we have toprodue the missing generators. As in the ase of the relative elementarysubgroups E(A; I) themselves, these generators will sit in the fundamen-tal SL2's and are in fat ommutators of some elementary generators ofE(�; A; I) and E(�; A; J).



188 R. HAZRAT, N. VAVILOV, Z. ZHANGLemma 2A. Let A be a ring and I; J be two-sided ideals of A. Then[E(n;A; I); E(n;A; J)℄is generated as a group by the elements of the form[ej;i(�); ei;j (a)ej;i(�)];[ej;i(�); ei;j(�)℄;ei;j(��);ei;j(��); 





















(28)where 1 6 i 6= j 6 n, � ∈ I, � ∈ J , a ∈ A and  ∈ E(n;A).Proof. A typial generator of [E(n;A; I); E(n;A; J)℄ is of the form [e; f ℄,where e ∈ E(n;A; I) and f ∈ E(n;A; J). Thanks to Lemma 3, we mayassume that e and f are produts of elements of the formei =ep′;q′ (a) eq′;p′(�) and fj =ep;q(b) eq;p(�);where a, b ∈ A, � ∈ I and � ∈ J , respetively. Applying (C1+) and then(C2+), it follows that [E(n;A; I); E(n;A; J)℄ is generated by elements ofthe form [ei′;j′ (a)ej′;i′(�); ei;j (b)ej;i(�)℄;where  ∈ E(n;A). Furthermore,[ei′;j′ (a)ej′;i′(�); ei;j (b)ej;i(�)℄ =ei′;j′ (a) [ej′;i′(�); ei′;j′ (−a)ei;j(b)ej;i(�)℄:The normality of E(n;A; J) implies that ei′;j′ (−a)ei;j(b)ej;i(�) ∈ E(n;A; J),whih is a produt of ep;q(a)eq;p(�), a ∈ A and � ∈ J by Lemma 3. Againby (C1+), one redues the proof to the ase of showing that[ei′;j′(�); ei;j (a)ej;i(�)℄is a produt of the generators listed in (28). We need to onsider thefollowing ases:
• If i′ = j; j′ = i: Then there is nothing to prove.
• if i′ = j; j′ 6= i:[ej;j′(�); ei;j (a)ej;i(�)℄ = ei;j(a)[ei;j (−a)ej;j′(�); ej;i(�)℄= ei;j(a)[[ei;j(−a); ej;j′(�)℄ej;j′ (�); ej;i(�)℄= ei;j(a)[ei;j′ (−a�)ej;j′(�); ej;i(�)℄:



THE COMMUTATORS OF CLASSICAL GROUPS 189Applying now (C2),[ei;j′(−a�)ej;j′ (�); ej;i(�)℄=(ei;j′ (−a�)[ej;j′ (�); ej;i(�)℄)[ei;j′(−a�); ej;i(�)℄=[ei;j′(−a�); ej;i(�)℄=[ej;i(�); ei;j′ (−a�)℄−1=ej;j′(−�a�)−1=ej;j′(�a�):Thus [ej;j′ (�); ei;j (a)ej;i(�)℄ = ei;j (a)ej;j′(�a�)whih satis�es the lemma.
• if i′ 6= j; j′ = i: The argument is similar to the previous ase.
• if i′ 6= j; j′ 6= i: We onsider four ases:{ if i′ = i; j′ = j:[ei;j(�); ei;j (a)ej;i(�)℄ = ei;j (a)[ei;j(�); ej;i(�)℄:{ if i′ = i; j′ 6= j:[ei;j′(�); ei;j (a)ej;i(�)℄ = ei;j(a)[ei;j′ (�); ej;i(�)℄= ei;j(a)ej;j′(−��):{ if i′ 6= i; j′ = j:[ei′;j(�); ei;j (a)ej;i(�)℄ = ei;j(a)[ei′;j(�); ej;i(�)℄= ei;j(a)ei;i′(��):{ if i′ 6= i; j′ 6= j:[ei′;j′ (�); ei;j (a)ej;i(�)℄ = 1:This �nishes the proof. �Theorem 3A. Let A be a quasi-�nite R-algebra with 1, let n > 3, andlet I, J be two-sided ideals of A. Then the mixed ommutator subgroup[E(n;A; I); E(n;A; J)℄ is generated as a group by the elements of the form[eji(�); eij (a)eji(�)℄;[eji(�); eij(�)℄;zij(��; a);zij(��; a); (29)



190 R. HAZRAT, N. VAVILOV, Z. ZHANGwhere 1 6 i 6= j 6 n, � ∈ I, � ∈ J , a ∈ A.Proof. By Lemma 2A, the urrent generating set (29) generates[E(n;A; I); E(n;A; J)℄ as a normal subgroup. Therefore, it suÆes to showthat any onjugates of the generators (29) is a produt of these generators.Let g be a generator listed in (29), and  ∈ E(n;A). Lemma 1A shows thatg ∈ GL(n;A; I ◦ J). Now applying the general ommutator formula (seeTheorem 11), one obtains[; g℄ ∈ [GL(n;A; I ◦ J); E(n;A)℄ = E(n;A; I ◦ J):Therefore by Lemma 3, [; g℄ is a produt of zij(��; a) and zij(��; a) with� ∈ I , � ∈ J , a ∈ A. It follows immediately that g−1 is a produt of thegenerators listed in (29). This ompletes the proof. �A loser look at the generating set in Theorem 3A reveals an interest-ing fat that all the generators are taken from [E(n; I); E(n;A; J)℄. Thisimplies the following orollary.Corollary 1A. Let A be a module �nite ring and I and J two sided idealsof A. Then[E(n; I); E(n;A; J)℄ = [E(n;A; I); E(n; J)℄ = [E(n;A; I); E(n;A; J)℄:Corollary 16. Let A be an quasi-�nite algebra with identity, n > 3, andlet I, J be two-sided ideals of A. Then the absolute mixed ommutatorsubgroup [E(n; I); E(n; J)℄ is a normal subgroup of E(n;A).Proof. Let g be a typial element in [E(n; I); E(n; J)℄ and let  ∈ E(n;A).As in the proof of Theorem 3A, we have[; g℄ ∈ E(n;A; I ◦ J) 6 [E(n; I); E(n; J)℄:It follows immediately that g−1 ∈ [E(n; I); E(n; J)℄. Thus[E(n; I); E(n; J)℄ is a normal subgroup of E(n;A). �A similar result for unitary groups is [47, Theorem 9℄, whih is moretehnial. To somewhat shorten the next statement, we desribe onditionson the generators in the form Tji(�) ∈ EU(2n; I;�). Reall that (as in [15,38, 44℄) that this means that � ∈ I , for i 6= ±j, and � ∈ �, for i = −j.Lemma 2B. Let (A;�) be a form ring and (I;�), (J;�) be two formideals of (A;�). Then as a normal subgroup of EU(2n;R;�), n > 3, themixed ommutator subgroup [ EU(2n; I;�);EU(2n; J;�)℄ is generated bythe elements of the form
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• [Tji(�); Tij (�)Tji(�)℄,
• [Tji(�); Tij(�)℄,
• Tij(��) and Tij(��),where Tji(�) ∈ EU(2n; I;�), Tji(�) ∈ EU(2n; J;�), Tij(�) ∈ EU(2n;A;�),and Tij(�) ∈ EU(2n; (I;�) ◦ (J;�)).The proof for Chevalley groups is similar, with some additional ompli-ations in the rank 2 ase. The following result is of [48, Theorem 2℄.Lemma 2C. Let rk(�) > 2 and let I, J be two ideals of a ommutativering R. In the ases � = B2;G2 assume that R does not have residue�elds F2 of 2 elements and in the ase � = B2 assume additionally thatany  ∈ R is ontained in the ideal 2R+ 2R.Then as a normal subgroup of the elementary Chevalley group E(�; R)the mixed ommutator subgroup [E(�; R; I); E(�; R; J)℄ is generated by theelements of the form
• [x�(�); x−�(�)x�(�)℄,
• [x�(�); x−�(�)℄,
• x�(��),where � ∈ �, � ∈ I, � ∈ J , � ∈ R.Atually, the proof of this result in [48℄ replaes most of expliit �d-dling with the Chevalley ommutator formula and ommutator identities,by a referene to some obvious properties of paraboli subgroups, whihmakes it onsiderably less omputational, than the proofs of Lemma 1Aand Lemma 1B in [50, 46℄.We sketh the proof of Lemma 2C as well. First of all, observe that theseelements indeed belong to the relative ommutator subgroups [E(R; I),E(R; J)℄ by Lemma 1C. Next, reall that the elementary generators of theelementary groups E(R; I) themselves are lassially known, and look asfollows:
• zji(�; �) = eij(�)eji(�)eij(−�), for GLn, (see Lemma 3).
• Zji(�; �) = Tij(�)Tji(�)Tij(−�), for unitary groups, (see [15℄).
• z�(�; �) = x−�(�)x�(�)x−�(−�), for Chevalley groups, (see [97,112, 117, 3℄).Observe, that these generators are preisely the seond fators of the�rst type of generators in the above Lemma 2C, and we use this shorthandnotation in the sequel. The usual ommutator identities imply that as a



192 R. HAZRAT, N. VAVILOV, Z. ZHANGnormal subgroup [E(�; R; I); E(�; R; J)℄is generated by the ommutators of the form [z�(�; �); z�(�; �)℄. Sine weare working up to elementary onjugation, we an replae these generatorsby [x�(�); x−�(−�)z�(�; �)℄:Sine the groups E(�; R; J) are normal in E(�; R), the onjugatesx−�(−�)z�(�; �) an be again expressed as produts of elementary gene-rators. One more applying ommutator identities, we see that as a nor-mal subgroup [E(�; R; I); E(�; R; J)℄ is generated by the ommutators[x�(�); z�(�; �)℄. At this point, we are left with three options:
• � = �, and we get the �rst type of generators,
• � = −�, and we get the seond type of generators, up to onjuga-tion,
• � 6= ±�. If � and � are stritly orthogonal, then [x�(�); z�(�; �)℄ =e. Thus, we an assume that � and � generate an irreduible rootsystem of rank 2, and �ddle with the Chevalley ommutator for-mula therein. Alternatively, we an hoose an order suh that � isfundamental, whereas � is positive. Then [x�(�); z�(�; �)℄ sits in-side the unipotent radial U� of the minimal (=rank 1) standardparaboli subgroup P� . On the other hand, by Lemma 1C it sitsinside G(�; R; IJ). Clearly, U� ∩ G(�; R; IJ) 6 E(�; IJ). Thus,in this last ase [x�(�); z�(�; �)℄ is a produt of generators of thethird type.Theorem 3B. Let n > 3, R be a ommutative ring, (A;�) be a form ringsuh that A is a quasi-�nite R-algebra. Further, let (I;�) and (J;�) betwo form ideals of the form ring (A;�).Then the mixed ommutator subgroup [ EU(2n; I;�);EU(2n; J;�)℄ isgenerated as a group by the elements of the form
• [Tji(�); Zji(�; �)℄,
• [Tji(�); Tij(�)℄,
• Zij(�; �),where Tji(�) ∈ EU(2n; I;�), while Tij(�); Zji(�; �) ∈ EU(2n; J;�), andZij(�; �) ∈ EU (2n; (I;�) ◦ (J;�)).Theorem 3C. Let rk(�) > 2 and let I, J be two ideals of a ommutativering A. In the ases � = B2;G2 assume that A does not have residue



THE COMMUTATORS OF CLASSICAL GROUPS 193�elds F2 of 2 elements and in the ase � = B2 assume additionally thatany  ∈ A is ontained in the ideal 2A+ 2A.Then the mixed ommutator subgroup [E(�; A; I); E(�; A; J)℄ is gener-ated as a group by the elements of the form
• [x�(�); z�(�; �)℄,
• [z�(�); z−�(�)℄,
• z�(��; �),where � ∈ �, � ∈ I, � ∈ J , �;∈ A.Let us sketh the proof of Theorem 3C. From this proof, it will be lear,why a similar slik argument does not prove Theorem 3A and Theorem 3Bfor arbitrary assoiative rings or arbitrary form rings.The set desribed in this theorem ontains the set desribed inLemma 2C, whih already generates [E(�; A; I); E(�; A; J)℄ as a normalsubgroup of E(�; A). Therefore, it suÆes to show that elementary onju-gates of the above generators are themselves produts of suh generators.Let g be one of these generators and let h ∈ E(�; A). By Lemma 2C, onehas g ∈ G(�; A; IJ). Now the [absolute℄ standard ommutator formulaimplies that [h; g℄ ∈ [G(�; A; IJ); E(�; A)℄ = E(�; A; IJ):Being an element E(�; A; IJ), the ommutator [h; g℄ is a produt of someelementary generators z�(��; �), where � ∈ �, � ∈ I , � ∈ J , � ∈ A. Thus,any onjugate hgh−1 = [h; g℄g is a produt of some generators of the thirdtype and the generator g itself.In fat, mostly this argument relied on elementary alulations, suh asthe one needed to prove Lemma 2C and Theorem 3C. But at one instanewe had to invoke a speial ase of Theorem 1C, the [absolute℄ standardommutator formula. This last result is not elementary, and ertainly itdoes not hold over arbitrary assoiative rings. There are expliit ounter-examples to the standard ommutator formula in this generality, the �rstof them by Vitor Gerasimov [33℄.It seems inongruous that [what appears to be℄ a pure group theoretiresult should depend on ommutativity onditions. This poses the followingproblem.Problem 1. Find elementary proofs of Theorems 3A and 3B that workover arbitrary assoiative rings/form rings.



194 R. HAZRAT, N. VAVILOV, Z. ZHANGBy juggling with ommutator identities, we sueeded in proving aslightly weaker version of Theorem 3A, with a somewhat larger set ofgenerators, all of them still sitting inside fundamental GL2's. However, astraightforward alulation, based on indution on the length of the on-jugating element, is so long and appalling, that it strongly disouraged usfrom any attempt to prove the tehnially muh fanier Theorem 3B forarbitrary form rings along these lines.A loser look at the generators in Theorems 3A{3C shows that all ofthem in fat belong already to [E(�; I); E(�; A; J)℄. By symmetry, we mayswith the role of fators. In partiular, this means that Theorems 3A{3Cimply the following urious orollaries.Corollary 1B. Let n > 3, R be a ommutative ring, (A;�) be a formring suh that A is a quasi-�nite R-algebra. Further, let (I;�) and (J;�)be two form ideals of the form ring (A;�). Then one has[FU(2n; I;�);EU(n; J;�)℄ = [EU(2n; I;�);FU(n; J;�)℄= [EU(2n; I;�);EU(n; J;�)℄:Corollary 1C. Let rk(�) > 2 and let I, J be two ideals of a ommutativering A. In the ases � = B2;G2 assume that A does not have residue�elds F2 of 2 elements and in the ase � = B2 assume additionally thatany  ∈ A is ontained in the ideal 2A+ 2A. Then one has[E(�; I); E(�; A; J)℄ = [E(�; A; I); E(�; J)℄ = [E(�; A; I); E(�; A; J)℄:
§9. Higher ommutatorsOne we understand double ommutators, it is natural to onsiderhigher ommutators of relative elementary subgroups and ongruene sub-groups. Let G be a group and H1; : : : ; Hm 6 G be its subgroups. Thereare many ways to form a higher ommutator of these groups, dependingon where we put the brakets. Thus, for three subgroups F;H;K 6 Gone an form two triple ommutators [[F;H ℄;K℄ and [F; [H;K℄℄. For foursubgroups F;H;K;L 6 G one an form 5 suh ommutators[[[F;H ℄;K℄; L℄; [[F; [H;K℄℄; L℄; [[F;H ℄; [K;L℄℄;[F; [H; [K;L℄℄℄; [F; [[H;K℄; L℄℄: (30)



THE COMMUTATORS OF CLASSICAL GROUPS 195To be exat, there are as many as the Catalan numberm = 1(m+ 1)(2mm )ways to arrange the brakets involving m + 1 subgroups in a meaningfulway.Usually, we write [H0; H1; : : : ; Hm℄ for the left-normed ommutator, de-�ned indutively by[H0; : : : ; Hm−1; Hm℄ = [[H0; : : : ; Hm−1℄; Hm℄:To stress that we onsider any ommutator of these subgroups, with anarbitrary plaement of brakets, we write [[H0; H2; : : : ; Hm℄℄. Thus, for in-stane, [[F;H;K;L℄℄ refers to any of the �ve arrangements in (30).Atually, a spei� arrangement of brakets usually does not play majorrole in our results { and in fat any role whatsoever over ommutative rings!{ apart from one important attribute. Namely, what will matter a lot isthe position of the outermost pairs of inner brakets. Namely, every higherommutator subgroup [[H0; H2; : : : ; Hm℄℄ an be uniquely written as[[H0; H2; : : : ; Hm℄℄ = [[[H0; : : : ; Hh℄℄; [[Hh+1; : : : ; Hm℄℄];for some h = 1; : : : ;m−1. This h will be alled the ut point of our multipleommutator. Thus, among the quadruple ommutators [[F;H;K;L℄℄, twoarrangements, [[[F;H ℄;K℄; L℄ and [[F; [H;K℄℄; L℄, ut at 3; one,[[F;H ℄; [K;L℄℄, uts at 2; and the remaining two, [F; [H; [K;L℄℄℄[F; [[H;K℄; L℄℄, ut at 1.Now, let Ii, i = 0; 1; : : : ;m, be ideals of the ring A. Our ultimate obje-tive is to ompute the ommutator subgroups of ongruene subgroups[[G(A; I0); G(A; I1); : : : ; G(A; Im)℄℄;but that is a highly strenuous enterprise. So far, we have done it only forthe ase G = GLn, provided that m is stritly lager than the Bass{Serredimension of A.In §10 we embark on the [somewhat easier℄ alulation of higher om-mutators of relative elementary subgroups[[E(A; I0); E(A; I1); : : : ; E(A; Im)℄℄:Even this turns out to be a rather non-trivial task. In fat, we do not seeany other way to do that, but to prove a higher analogue of the standard



196 R. HAZRAT, N. VAVILOV, Z. ZHANGommutator formula, viz.[[E(A; I0); G(A; I1); : : : ; G(A; Im)℄℄ = [[E(A; I0); E(A; I1); : : : ; E(A; Im)℄℄:This multiple ommutator formula will be disussed in §10 and §11. Un-like the general multiple ommutator formula in whih we are ultimatelyinterested, and whih only works for �nite-dimensional rings, this weakerformula holds over arbitrary quasi-�nite/ommutative rings.Amazingly, the resultingmultiple ommutator subgroups will always o-inide with some double relative ommutator subgroups, depending not onthe ideals Ii themselves, but only on two symmetrised produts of theseideals. Sine the symmetrised produt of ideals is not assoiative, sometraes of the initial arrangment will still be visible in these symmetrisedproduts. However, for ommutative rings the symmetrised produt be-omes the usual produt of ideals, whih is assoiative, so that the resultwill not depend on the arrangement itself either, but only on its ut point.We disuss these results in §11.
§10. Multiple ommutator formulaThe following theorem is the main result of the paper [50℄. Initially, itwas oneived as part of the answer to a problem proposed in [129, 131℄.As a matter of fat, it turned out to be of signi�ant independent interest.The proof of the following result in [50℄ is based on a further enhanementof relative loalisation whih we outline in §13.Theorem 17. Let A be a quasi-�nite R-algebra with identity and Ii, i =0; :::;m, be two-sided ideals of A. Then

[E(n;A; I0);GL(n;A; I1);GL(n;A; I2); : : : ;GL(n;A; Im)]= [E(n;A; I0); E(n;A; I1); E(n;A; I2); : : : ; E(n;A; Im)]: (31)Proof. We prove the statement by indution. For m = 1 this is the gen-eralised ommutator formula Theorem 1A[E(n;A; I0);GL(n;A; I1)℄ = [E(n;A; I0); E(n;A; I1)℄:For m = 2, this will be proved in Theorem 6A whih will be the �rst stepof indution. Suppose the statement is valid for m − 1 (i.e., there are mideals in the ommutator formula). To prove (31), using Theorem 6A, we
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[

[[E(n;A; I0);GL(n;A; I1)℄;GL(n;A; I2)];GL(n;A; I3);: : : ;GL(n;A; Im)]=[

[[E(n;A; I0); E(n;A; I1)℄;E(n;A; I2)];GL(n;A; I3);: : : ;GL(n;A; Im)]:By Lemma 1A, [E(n;A; I0); E(n;A; I1)℄ 6 GL(n;A; I0I1 + I1I0). Thus
[

[[E(n;A; I0); E(n;A; I1)℄; E(n;A; I2)];GL(n;A; I3); : : : ;GL(n;A; Im)]
6

[

[GL(n;A; I0I1+I1I0); E(n;A; I2)];GL(n;A; I3); : : : ;GL(n;A; Im)]:Sine there arem ideals involved in the ommutator subgroups in the righthand side, by indution we get
[

[GL(n;A; I0I1 + I1I0); E(n;A; I2)];GL(n;A; I3); : : : ;GL(n;A; Im)]= [

[E(n;A; I0I1 + I1I0); E(n;A; I2)]; E(n;A; I3); : : : ; E(n;A; Im)]:Finally again by Lemma 1A,E(n;A; I0I1 + I1I0) 6 [E(n;A; I0); E(n;A; I1)℄:Replaing this in the above equation we obtain that the left hand sideof (31) is ontained in the right hand side. The opposite inlusion is obvi-ous. This ompletes the proof. �Theorem 4A. Let n > 3, let A be a quasi-�nite ring with 1 and letIi E A, i = 0; : : : ;m, be ideals of A. Then one has[[E(n;A; I0);GL(n;A; I2); : : : ;GL(n;A; Im)℄℄= [[E(n;A; I0); E(n;A; I2); : : : ; E(n;A; Im)℄℄:In this theorem the arrangement of brakets on the left hand side maybe arbitrary. But it is essential that the plaement of brakets on the righthand side oinides with that on the left hand side. Without this assump-tion the equality may fail dramatially, even if all fators are elementary,as we shall see in §11.1. Of ourse, the same observation applies to thetheorems below.For unitary groups, similar result is established in [47℄, by essentiallythe same method. However, as one ould expet, the neessary alulationsare tangibly more ompliated and require a ompletely di�erent level oftehnial strain.



198 R. HAZRAT, N. VAVILOV, Z. ZHANGTheorem 4B. Let n > 3 and let (A;�) be a form ring suh that A isa quasi-�nite R-algebra over a ommutative ring R. Further, let (Ii;�i),i = 0; : : : ;m, be form ideals of (A;�). Then[[EU(2n; I0;�0);GU(2n; I1;�1); : : : ;GU(2n; Im;�m)℄℄= [[EU(2n; I0;�0);EU(2n; I1;�1); : : : ;EU(2n; Im;�m)℄℄:Finally, let us pass to Chevalley groups. We believe that at this point wepossess two independent proofs of the following result. One of them, by theauthors, is onventional, and involves a further elaboration of the relativeommutator alulus in the style of [46℄. Another one, by A. Stepanov, issomewhat shorter, and employs his method of universal loalisation [98℄.But the de�nitive expositions are still missing.Theorem 4C. Let rk(�) > 2 and let Ii E A, i = 0; : : : ;m, be ideals of aommutative ring A. In the ases � = B2;G2 assume that A does not haveresidue �elds F2 of 2 elements and in the ase � = B2 assume additionallythat any  ∈ A is ontained in the ideal 2A+ 2A.Then one has[[E(�; A; I0); G(�; A; I); : : : ; G(�; A; Im)℄℄= [[E(�; A; I0); E(�; A; I1); : : : ; E(�; A; Im)℄℄:These theorems are broad generalisations of the double ommutatorformulas. Let us explain, why they do not redue to the double formula.Consider three ideals I; J;K of A and form the ommutator [[E(A; I),G(A; J)℄, G(A;K)℄. The double ommutator formula implies that[[E(A; I); G(A; J)℄; G(A;K)℄ = [[E(A; I); E(A; J)℄; G(A;K)℄:But as we know, the relative ommutator subgroup [E(A; I); E(A; J)℄ maybe stritly larger, than E(A; I ◦ J) (see §7.1), so it is not at all lear, whythe equality[[E(A; I); E(A; J)℄; G(A;K)℄ = [[E(A; I); E(A; J)℄; E(A;K)℄should hold.This is indeed the key new leap in the proof of Theorem 17, and theommutator alulus developed in [49, 45, 46℄ is not powerful enough here.This step requires a new layer of the relative ommutator alulus, whihwe disuss in §13.
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§11. Multiple  double11.1. In onnetion with Theorems 6 and 7 it is natural to ask, whetherthe equality[[E(A; I); E(A; J)℄; E(A;K)℄ = [E(A; I); [E(A; J); E(A;K)℄℄ (32)holds for any three ideals I , J and K of A. If this were the ase, one oulddrop the requirement that the arrangement of brakets on the left handside and the right hand side of these theorems should oinide.However, in general this equality fails, as an be shown by easy exam-ples. Let us retreat to the ase of GLn. In fat, setting here K = A we seethatE(n;A; I ◦ J) = [E(n;A; I ◦ J); E(n;A)℄

6 [[E(n;A; I); E(n;A; J)℄; E(n;A)℄ 6 [GL(n;A; I ◦ J); E(n;A)℄= [E(n;A; I ◦ J); E(n;A)℄ = E(n;A; I ◦ J):This shows that in this ase one has[[E(A; I); E(A; J)℄; E(A;K)℄ = E(n;A; I ◦ J):On the other hand, for K = A, we have[E(A; I); [E(A; J); E(A;K)℄℄ = [E(A; I); [E(A; J)℄:Thus, in this ase if the assoiativity of ommutators (32) holds, we obtain[E(n;A; I); E(n;A; J)℄ = E(n;A; I ◦ J):However, as we know from the example provided in §7.1, this equality doesnot hold, in general.11.2. To motivate the next theorem, let us alulate these triple om-mutators. Combining Lemma 1A and Theorem 1A, we see that[E(n;A; I ◦ J); E(n;A;K)℄ 6 [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]
6 [GL(n;A; I ◦ J); E(n;A;K)℄ = [E(n;A; I ◦ J); E(n;A;K)℄:In other words,

[[E(n;A; I); E(n;A; J)℄; E(n;A;K)] = [E(n;A; I ◦ J); E(n;A;K)℄:Similarly, one an verify that
[E(n;A; I); [E(n;A; J); E(n;A;K)℄] = [E(n;A; I); E(n;A; J ◦K)℄:



200 R. HAZRAT, N. VAVILOV, Z. ZHANGPlugging in the above alulation Theorem 4A instead of Theorem 1A,we get the following amazing orollary. It asserts that multiple ommuta-tors of relative elementary subgroups an always be expressed as doubleommutators of suh subgroups, orresponding to some symmetrised prod-ut ideals. The following is observed in [42℄.Theorem 5A. Let A be a quasi-�nite ring with 1 and let Ii E A, i =0; : : : ;m, be ideals of A. Consider an arbitrary on�guration of brakets[[: : : ℄℄ and assume that the outermost pairs of brakets between positions hand h+ 1. Then one has[[E(n;A; I0); E(n;A; I1); : : : ; E(n;A; Im)℄℄= [E(n;A; I0 ◦ : : : ◦ Ih); E(n;A; Ih+1 ◦ · · · ◦ Im)℄;where the braketing of symmetrised produts on the right hand side oin-ides with the braketing of the ommutators on the left hand side.Proof. Alternated appliation of Lemma 1A and Theorem 1A shows that
[

JE(n;A; I0); E(n;A; I1); : : : ; E(n;A; Ik)K;
JE(n;A; Ik+1); : : : ; E(n;A; Im)K]
6

[GL(n;A; I0 ◦ · · · ◦ Ik); JE(n;A; Ik+1); : : : ; E(n;A; Im)K]= [E(n;A; I0 ◦ · · · ◦ Ik); JE(n;A; Ik+1); : : : ; E(n;A; Im)K]
6 [E(n;A; I0 ◦ · · · ◦ Ik);GL(n;A; Ik+1 ◦ · · · ◦ Im)℄= [E(n;A; I0 ◦ · · · ◦ Ik); E(n;A; Ik+1 ◦ · · · ◦ Im)℄
6

[

JE(n;A; I0); E(n;A; I1); : : : ; E(n;A; Ik)K;
JE(n;A; Ik+1); : : : ; E(n;A; Im)K];as laimed. �For the unitary ase it is [47, Theorem 7℄.Theorem 5B. Let (A;�) be a quasi-�nite ring with 1 and let (Ii;�i),i = 0; : : : ;m, be form ideals of the form ring (A;�). Consider an arbitraryon�guration of brakets [[: : : ℄℄ and assume that the outermost pairs ofbrakets between positions h and h+ 1. Then one has[[EU(2n; I0;�0);EU(2n; I1;�1); : : : ;EU(2n; Im;�m)℄℄= [EU(2n; (I0;�0)◦ · · ·◦ (Ih;�h));EU(2n; (Ih+1;�h+1)◦ · · ·◦ (Im;�m))℄:



THE COMMUTATORS OF CLASSICAL GROUPS 201Of ourse, similar result also holds in the ontext of Chevalley groups,one we have Theorem 6C.Theorem 6C. Let A be a ommutative ring with 1 and let Ii E A, i =0; : : : ;m, be ideals of A. Consider an arbitrary on�guration of brakets[[: : : ℄℄ and assume that the outermost pairs of brakets between positions hand h+ 1. Then one has[[E(�; A; I0); E(�; A; I1); : : : ; E(�; A; Im)℄℄= [E(�; A; I0 : : : Ih); E(�; A; Ih+1 : : : Im)℄:
§12. Loalisation12.1. In this paper we only use entral loalisation. Namely, for an R-algebra A, we onsider the loalisation with respet to a multipliativelosed subset of R.First, we �x some notation. Let R be a ommutative ring with 1, S be amultipliative losed subset in R and A be an R-algebra. Then S−1R andS−1A are the orresponding loalisation. We mostly use loalisation withrespet to the two following types of multipliative systems.

• Prinipal loalisation: S oinides with 〈s〉 = {1; s; s2; : : : }, for somenon-nilpotent s ∈ R, in this ase we usually write 〈s〉−1R = Rs and
〈s〉−1A = As.

• Loalisation at a maximal ideal: S = R \ m, for some maximal ideal
m ∈ Max(R) in R, in this ase we usually write (R \ m)−1R = Rm and(A \ m)−1A = Am.We denote by FS : A −→ S−1A the anonial ring homomorphismalled the loalisation homomorphism. For the two speial ases above, wewrite Fs : A −→ As and Fm : A −→ Am, respetively.When we write an element as a fration, like a=s or as we always thinkof it as an element of some loalisation S−1A, where s ∈ S. If s wereatually invertible in R, we would have written as−1 instead.Ideologially, all proofs using loalisations are based on the interplay ofthe three following observations:

• Funtors of points A G(A) are ompatible with loalisation,g ∈ G(A) ⇐⇒ Fm(g) ∈ G(Am); for all m ∈ Max(A):
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• Elementary subfuntors A E(A) are ompatible with fatorisation,for any I E A the redution homomorphism �I : E(A) −→ E(A=I) issurjetive.
• On a [semi-℄loal ring A the values of semi-simple groups and theirelementary subfuntors oinide, G(A) = E(A).The following property of the funtors G and E will be ruial for whatfollows: they are ontinuous funtors, i.e., they ommute with diret limits .In other words, if A = lim

−→
Ai, where {Ai}i∈I is an indutive system of rings,then G(lim

−→
Ai) = lim

−→
G(Ai); E(lim

−→
Ai) = lim

−→
E(Ai):We use this property in the two following situations.

• Noetherian redution: let Ai be the indutive system of all �nitelygenerated subrings of A with respet to inlusion. ThenG(A) = lim
−→

G(Ai); E(A) = lim
−→

E(Ai):This allows to redue most of the proofs to the ase of Noetherian rings.
• Redution to prinipal loalisations : let S be a multipliative losedset in R and let As, s ∈ S, be the orresponding indutive system withrespet to the prinipal loalisation homomorphisms: Ft : As −→ Ast.Then G(S−1A) = lim

−→
G(As); E(S−1A) = lim

−→
E(As):This redues loalisation in any multipliative system to the prinipal lo-alisation.12.2. Injetivity of loalisation homomorphism. Most loalisationproofs rely on the injetivity of loalisation homomorphism FS . As ob-served in §12.1, we an only onsider prinipal loalisation homomorphismsFs. Of ourse, Fs is injetive when s is regular. Thus, loalisation proofsare partiularly easy for integral domains. A large part of what follows arevarious devies to �ght with the presene of zero-divisors.When s is a zero-divisor, Fs is not injetive on the group G(A) itself.But its restritions to appropriate ongruene subgroups often are. Hereis an important typial ase, i.e., Noetherian ring.Lemma 18. Let A be a module �nite R-algebra, where R is a ommutativeNoetherian ring. Then for any s ∈ R, there exists a positive integer l suhthat the homomorphism Fs : GL(n;A; slA) −→ GL(n;As) is injetive.



THE COMMUTATORS OF CLASSICAL GROUPS 203Proof. The homomorphism Fs : GL(n;A; slA) −→ GL(n;As) is injetivewhenever Fs : skA −→ As is injetive. Let ai = AnnR(si) be the annihila-tor of si in A. Sine R is Noetherian, and A is �nite over R, A is Noetherianand so there exists k suh that ak = ak+1 = · · · . If ska vanishes in As,then siska = 0 for some i. But sine ak+i = ak, already ska = 0 and thusskA injets in As. �Another important trik to override the presene of zero-divisors on-sists in throwing in polynomial variables. Namely, instead of the ring Ritself we onsider the polynomial ring R[t℄ in the variable t. In that ring t isnot a zero-divisor, so that the loalisation homomorphism Ft is injetive.We an use that, and then speialise t to any s ∈ R.Atually, throwing in polynomial variables has more than one use. Theelementary subfuntors R E(R) are ompatible with loalisation, i.e.,g ∈ E(R) =⇒ Fm(g) ∈ E(Rm); for all m ∈ Max(R);but the onverse impliation does not hold, for otherwise E(R) wouldoinide with the [semi-simple part of℄ G(R) for all ommutative rings.The following remarkable observation was due to Daniel Quillen at thelevel of K0, and was �rst applied by Andrei Suslin at the level of K1, in theontext of solving Serre's onjeture, and its higher analogues [105℄. See [63℄for a desription of Quillen{Suslin's idea in its historial development. Werefer to the following result as Quillen{Suslin's lemma.Theorem 19. Let g ∈ G(R[t℄; tR[t℄). Then g ∈ E(R[t℄) if and only ifFm(g) ∈ E(Rm[t℄), for all m ∈ Max(R):12.3. Let (A;�) be a form algebra over a ommutative ring R with 1,and let S be a multipliative subset of R0 (see §5.3). For any R0-moduleMone an onsider its loalisation S−1M and the orresponding loalisationhomomorphism FS : M −→ S−1M . By de�nition of the ring R0 both Aand � are R0-modules, and thus an be loalised in S.12.4. Loalisation of form rings. In the setting of form rings, we needto adjust the ground �eld of the loalisation. For a form ring (A;�), whereA is an R-algebras, the form � is not neessarily an R-module (see §5.3).This fores us to replae R by its subring R0, generated by all �� with � ∈R. Clearly, all elements in R0 are invariant with respet to the involution,i. e. r = r, for r ∈ R0. Furthermore, � is an R0-module.



204 R. HAZRAT, N. VAVILOV, Z. ZHANGAs in the setting of general linear group (§12.1), we mostly use loal-isation in the unitary setting with respet to the following two types ofmultipliative losed subsets of R0.
• Prinipal loalisation: for any s ∈ R0 with s = s, the multipliativelosed subset generated by s is de�ned as 〈s〉 = {1; s; s2; : : : }. The loalisa-tion of the form algebra (A;�) with respet to multipliative system 〈s〉 isusually denoted by (As;�s), where as usual As = 〈s〉−1A and �s = 〈s〉−1�are the usual prinipal loalisations of the ring A and the form parameter�. Notie that, for eah � ∈ As, there exists an integer n and an elementa ∈ A suh that � = asn , and for eah � ∈ �s, there exists an integer mand an element � ∈ � suh that � = �sm .
• Maximal loalisation: onsider a maximal ideal m ∈ Max(R0) of R0and the multipliative losed set Sm = R0\m. We denote the loalisation ofthe form algebra (A;�) with respet to Sm by (Am;�m), whereAm = S−1

m Aand �m = S−1
m � are the usual maximal loalisations of the ring A and theform parameter, respetively.In these ases the orresponding loalisation homomorphisms will bedenoted by Fs and by Fm, respetively.The following fat is veri�ed by a straightforward omputation.Lemma 20. For any s ∈ R0 and for any m ∈ Max(R0) the pairs (As;�s)and (Am;�m) are form rings.

§13. Triple Commutators/Base of indutionWe prove Theorem 17 by indution on m. The ase of m = 2 is preiselythe relative ommutator formula, Theorem 1A. However, the base of in-dution for Theorem 17 is m = 2, and it is the most demanding part of theindution step. In fat, the proof of the following speial ase onstitutesbulk of the paper [50℄.Theorem 6A. Let n > 3, and let A be a quasi-�nite ring. Further, let I,J and K be three two-sided ideals of A. Then
[[E(n;A; I);GL(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:



THE COMMUTATORS OF CLASSICAL GROUPS 205As we have just observed, the standard ommutator formula, Theo-rem 1A, implies that
[[E(n;A; I);GL(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄;GL(n;A;K)]:Thus, to prove Theorem 6A it remains to establish the following equality
[[E(n;A; I); E(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: (33)However, this last equality does not follow from the standard ommutatorformula. To establish this, we shall use the general \yoga of ommutators"whih is developed in [49℄ based on the work of Bak on loalisation andpathing in general linear groups (see [10, 40℄ and [44, §13℄). In order tomake use of this method, one needs to overome two problems: �rstly todevise an appropriate onjugation alulus to approah the identity (33)and seondly to perform the atual alulations. Both of these problemsare equally hallenging as the nature of the onjugation alulus dependson the problem in hand. In fat the term yoga of ommutators is hosento stress the overwhelming feeling of tehnial strain and exertion.In this setion we prove Theorem 6A, following [50℄. We need the fol-lowing elementary onjugation alulus, whih are Lemmas 7, 8 and 11from [49℄, respetively. Note that in Equations 34, 35 and 36 the alula-tions take plae in the group E(n;At).Reall, that for an additive subgroup A of R we denote by EL(n;A)the subset (not a subgroup!) of GL(n;R) onsisting of produts of 6 Lelementary generators tij(�), 1 6 i 6= j 6 n, � ∈ A.Lemma 21 (f. [49℄). Let A be a module �nite R-algebra, I; J two-sidedideals of A, a; b;  ∈ A and t ∈ R. If m; l are given, there is an integer psuh that E1(n; tm )E(n; tpA; tp〈a〉) 6 E(n; tlA; tl〈a〉); (34)there is an integer p suh thatE1(n; tm )[E(n; tpA; tp〈a〉); E(n; tpA; tp〈b〉)℄
6 [E(n; tlA; tl〈a〉); E(n; tlA; tl〈b〉)℄; (35)and there is an integer p suh that

[E(n; tpA; tpI); E1(n; Jtm )] 6 [E(n; tlA; tlI); E(n; tlA; tlJ)℄: (36)



206 R. HAZRAT, N. VAVILOV, Z. ZHANGBy Lemma 21, one easily obtains the following result. The proof is leftto the reader.Lemma 22. Let A be a module �nite R-algebra, I; J two-sided ideals ofA and t ∈ R. If m; l; L are given, there is an integer p suh that
[E(n; tpA; tpI);EL(n; Atm )E1(n; Jtm )]

6 [E(n; tlA; tlI); E(n; tlA; tlJ)℄:(37)Denote by EL(n; Atm ; Ktm ) the produt of 6 L elements of the formE1(n; Atm )E1(n; Ktm ):In the following two Lemmas, as in Lemma 21, all the alulations takeplae in the fration ring At. All the subgroups of GL(n;At) used in theLemmas, suh as the ones denoted by E(n;A; I) or GL(n;A; J), are infat the homomorphi images of these subgroups in GL(n;A) under thenatural homomorphism A → At. Sine lemmas suh as Lemma 1A and thegeneralised ommutator formula (Theorem 1A) hold for these subgroupsin GL(n;A), they also hold for their orresponding homomorphi imagesin GL(n;At).Lemma 23. Let A be an R-algebra, I; J two-sided ideals of A, and t ∈ R.For any given e ∈ GL(n;At; Jt) and an integer l, there is an integer p suhthat for any g ∈ GL(n;A; tpI)[e; g℄ ∈ GL (n;A; tl(IJ + JI)):Proof. Note that all the entries of g−1 and g−1−1 are in tpI (to emphasizeour onvention, they are in the image of tpI under the homomorphism� : A → At) and all the entries of e − 1 and e−1 − 1 are in Jt. Choosek ∈ N suh that one an write all the entries of e − 1 and e−1 − 1 in theform j=tk, j ∈ J . Letg = 1 + " and g−1 = 1 + "′e = 1 + Æ and e−1 = 1 + Æ′:A straightforward omputation shows that"+ "′ + ""′ = "+ "′ + "′" = 0Æ + Æ′ + ÆÆ′ = Æ + Æ′ + Æ′Æ = 0:



THE COMMUTATORS OF CLASSICAL GROUPS 207By the equalities above, one has[e; g℄ = [1 + Æ; 1 + "℄ = 1 + Æ′"′ + "Æ′ + "Æ′"′ + ÆÆ′"′ + Æ"Æ′ + Æ"Æ′"′:So the entries of [e; g℄ − 1 belong to tp−2k(IJ + JI). We �nish the proofby hoosing p > l+ 2k. �Lemma 24. Let A be a module �nite R-algebra, I; J;K two-sided idealsof A and t ∈ R. For any given e2 ∈ E(n;At;Kt) and an integer l, there isa suÆiently large integer p, suh that[e1; e2℄ ∈ [[E(n;A; tlI); E(n;A; tlJ)℄; E(n;A; tlK)]; (38)where e1 ∈ [E(n; tpI); E(n;A; J)℄.Proof. For any given e2 ∈ E(n;At;Kt), one may �nd some positive inte-gers m and L suh that e2 ∈ EL(n; Atm ; Ktm ):Applying the identity (C1+) and repeated appliation of (34) in Lemma 21,we redue the problem to show that
[[E(n; tpI); E(n;A; J)℄; ei′;j′( tm )]

6
[[E(n;A; tlI); E(n;A; tlJ)℄; E(n;A; tlK)];where  ∈ E1(n; Atm ) and  ∈ K. We further deomposeei′;j′( tm ) = [ei′;k(tp′); ek;j′( tm+p′ )]for some integer p′. Then

[e1; ei′;j′( tm )] = [e1; [ei′;k(tp′); ek;j′( tm+p′ )℄]:We use a variant of the Hall{Witt identity (see (C3))[x; [y−1; z℄℄ = y−1x[[x−1; y℄; z℄ y−1z[[z−1; x℄; y℄;to obtain
[e1; [ei′;k(tp′); ek;j′( tm+p′ )]]= y−1x[[e−11 ; ei′;k(−tp′)]; ek;j′( tm+p′ )]

× y−1z[[ek;j′( −tm+p′ ); e1]; ei′;k(−tp′)]; (39)



208 R. HAZRAT, N. VAVILOV, Z. ZHANGwhere x = e1, y = ei′;k(−tp′), z = ek;j′ ( tm+p′ ) and as before  ∈E1(n; Atm ) 6 E1(n; Atm+p′ ). We will look at eah of the two fators of (39)separately.By (34) in Lemma 21, for any given p′′, one may �nd a suÆiently largep′ suh that y = ei′;k(−tp′) ∈ E(n; tp′′A; tp′′A) 6 E(n;A): (40)Then
[e−11 ; ei′;k(−tp′)] ∈ [[E(n; tpI); E(n;A; J)℄; E(n;A)℄

6 [ GL(n;A; tp(IJ + JI)); E(n;A)℄
6 E(n;A; tp(IJ + JI)):Set p1 = p. Thanks to Lemma 1A,E(n;A; tp1(IJ + JI)) 6 [E(n; t⌊ p12 ⌋A); E(n; t⌊ p12 ⌋(IJ + JI))]

6 E(n; t⌊ p12 ⌋A; t⌊ p12 ⌋(IJ + JI)): (41)Hene we obtain thaty−1x[[e−11 ; ei′;k(−tp′)]; ek;j′( tm+p′ )]
∈ y−1x[E(n; t⌊ p12 ⌋A; t⌊ p12 ⌋(IJ + JI)); ek;j′( tm+p′ )];where x ∈ [E(n; tp1I); E(n;A; J)℄, y ∈ E(n; tp′′A; tp′′A). By Lemma 22,for any given integer l′ we may �nd a suÆiently large p1 suh thaty−1x[E(n; t⌊ p12 ⌋A; t⌊ p12 ⌋(IJ + JI)); ek;j′( tm+p′ )]

∈ y−1x[E(n; t2l′A; t2l′(IJ + JI)); E(n; t2l′A; t2l′K)]
6 y−1x[[E(n; tl′A; tl′I); E(n; tl′A; tl′J)℄; E(n; t2l′A; t2l′K)]
6 y−1x[[E(n; tl′A; tl′I); E(n; tl′A; tl′J)℄; E(n; tl′A; tl′K)]= [[y−1xE(n; tl′A; tl′I); y−1xE(n; tl′A; tl′J)℄; y−1xE(n; tl′A; tl′K)];where by de�nition y−1x ∈ E(n; At0 ; At0 ). By (34) in Lemma 21, for anygiven integer l, we may �nd a suÆiently large l′ suh thaty−1x[[E(n; tl′A; tl′I); E(n; tl′A; tl′J)℄; E(n; tl′A; tl′K)]

6
[[E(n; tlA; tlI); E(n; tlA; tlJ)℄; E(n; tlA; tlK)]:



THE COMMUTATORS OF CLASSICAL GROUPS 209This shows that for any given l, one may �nd a suÆiently large p1 suhthat the �rst fator of (39)y−1x[[e−11 ; ei′;k(−tp′)]; ek;j′( tm+p′ )]
∈

[[E(n; tlA; tlI); E(n; tlA; tlJ)℄; E(n; tlA; tlK)]:Next we onsider the seond fator of (39),y−1z[[ek;j′( −tm+p′ ); e1]; ei′;k(−tp′)]:Set p2 = p. Note thate1 ∈ [E(n; tp2I); E(n;A; J)℄ 6 GL(n;A; tp2(IJ + JI))and ek;j′( tm+p′ ) ∈
E1(n; Atm+p′ )E1(n; Ktm+p′ );where p′ is given by (40) from the �rst part of the proof. We may applyLemma 23 to �nd a suÆiently large p2 suh that

[ek;j′( −tm+p′ ); e1] ∈ GL (n;A; tp′′(K(IJ + JI) + (IJ + JI)K)) (42)for any given p′′. Using the ommutator formula together with (40), onegetsy−1z[[ek;j′( −tm+p′ ); e1]; ei′;k(−tp′)]
∈ y−1zE(n;A; tp′′(K(IJ + JI) + (IJ + JI)K)):Applying Lemma 1A twie, one getsE(n;A; tp′′(K(IJ + JI) + (IJ + JI)K))

6

[E(n; t⌊ 2p′′3 ⌋((IJ + JI) + (IJ + JI))); E(n; t⌊ p′′3 ⌋K)

]

6

[

[E(n; t⌊ p′′3 ⌋I); E(n; t⌊ p′′3 ⌋J)]; E(n; t⌊ p′′3 ⌋K)]:



210 R. HAZRAT, N. VAVILOV, Z. ZHANGHene, we havey−1z[[ek;j′( −tm+p′ ); e1]; ei′;k(−tp′)]
6

y−1z[[E(n; t⌊ p′′3 ⌋I); E(n; t⌊ p′′3 ⌋J)]; E(n; t⌊ p′′3 ⌋K)]= [

[y−1zE(n; t⌊ p′′3 ⌋I); y−1zE(n; t⌊ p′′3 ⌋J)]; y−1zE(n; t⌊ p′′3 ⌋K)]:Now applying (34) in Lemma 21 to every omponent of the ommutatorabove, we may �nd a suÆiently large p′′ suh that for any given l,
[

[y−1zE(n; t⌊ p′′3 ⌋I); y−1zE(n; t⌊ p′′3 ⌋J)]; y−1zE(n; t⌊ p′′3 ⌋K)]
6

[[E(n; tlA; tlI); E(n; tlA; tlJ)℄; E(n; tlA; tlK)]:Choose p2 in (42) aording to this p′′ and then onsider p to be the largerof p1 and p2. This �nishes the Lemma. �The proof of this result, as also the proofs of similar results for othergroups, are mostly prestidigitation and tightrope walking, and similar inspirit to the relative ommutator alulus in [49℄. However, this piee ofommutator alulus operates at a di�erent level of tehnial sophistia-tion. For instane, now we have to plug in not just the elementary gener-ators, or their onjugates, as in [49, 45, 46℄, but also the other two typesof generators onstruted in Theorem 3.Proof of Theorem 7A. The funtors En and GLn ommute with diretlimits. By Proposition 1 and §12.1, one redues the proof to the ase whereA is �nite over R and R is Noetherian.First by the generalized ommutator formula (Theorem 1A), we have[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄: (43)Thus it suÆes to prove the following equation
[[E(n;A; I); E(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:



THE COMMUTATORS OF CLASSICAL GROUPS 211By Lemma 2A, [E(n;A; I); E(n;A; J)℄ is generated by the onjugates inE(n;A) of the following four types of elementse = [ej;i(�); ei;j (a)ej;i(�)];e = [ej;i(�); ei;j(�)℄;e = ei;j(��);e = ei;j(��); (44)where i 6= j, � ∈ I , � ∈ J and a ∈ A. We laim that for any g ∈GL(n;A;K), [e; g℄ ∈ [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: (45)Let g ∈ GL(n;A;K). For any maximal ideal m of R, the ring Am on-tains Km as an ideal (K being an ideal of A). Consider the natural ho-momorphism �m : A → Am whih indues a homomorphism (all it �magain) on the level of general linear groups, �m : GL(n;A) → GL(n;Am).Therefore, �m(g) ∈ GL(n;Am;Km). Sine Am is module �nite over theloal ring Rm, Am is semiloal [19, III(2.5), (2.11)℄, therefore its stablerank is 1. It follows that GL(n;Am;Km) = E(n;Am;Km)GL(1; Am;Km)(see [37, Th. 4.2.5℄). So �m(g) an be deomposed as �m(g) = "h, where" ∈ E(n;Am;Km) and h is a diagonal matrix all of whose diagonal oef-�ients are 1, exept possibly the k-th diagonal oeÆient, and k an behosen arbitrarily. By (§12.1), there is a tm ∈ R\m suh that�tm(g) = "h; (46)where " ∈ E(n;Atm ;Ktm), and h is a diagonal matrix with only one non-trivial diagonal entry whih lies in Atm .For any maximal ideal m � R, hoose tm ∈ R\m as above and an arbi-trary positive integer pm. (We will later hoose pm aording to Lemma 24.)Sine the olletion of all {tpm

m | m ∈ max(R)} is not ontained in anymaximal ideal, we may �nd a �nite number of tpsms ∈ R\ms and xs ∈ R,s = 1; : : : ; k, suh that k
∑s=1 tpsmsxs = 1:



212 R. HAZRAT, N. VAVILOV, Z. ZHANGIn order to prove (45), �rst we onsider the generators of the �rst kindin (44), namely e = [ej;i(�); ei;j (a)ej;i(�)]. Considere = [ej;i(�); ei;j (a)ej;i(�)] = [ej;i(( k
∑s=1 tpsmsxs)�); ei;j(a)ej;i(�)]= [

k
∏s=1 ej;i(tpsmsxs�); ei;j (a)ej;i(�)]:By (C2+) identity, e = [

k
∏s=1 ej;i(tpsmsxs�); ei;j (a)ej;i(�)] an be written as aprodut of the following form:e=(ek[ej;i(tpkmkxk�); ei;j (a)ej;i(�)])(ek−1[ej;i(tpk−1mk−1xk−1�); ei;j (a)ej;i(�)])

× · · · ×
(e1[ej;i(tp1m1x1�); ei;j (a)ej;i(�)]); (47)where e1; e2; : : : ; ek ∈ E(n;A). Note that from (C2+) it is lear that all es,s = 1; : : : ; k, are produts of elementary matries of the form ej;i(A). Thuses = ej;i(as), where as ∈ A and s = 1; : : : ; k, whih learly ommutes withej;i(x) for any x ∈ A. So the ommutator (47) is equal toe=([ej;i(tpkmkxk�); ek ei;j (a)ej;i(�)])([ej;i(tpk−1mk−1xk−1�); ek−1ei;j (a)ej;i(�)])

× · · · ×
([ej;i(tp1m1x1�); e1 ei;j(a)ej;i(�)]): (48)Using (C2+) and in view of (48) we obtain that [e; g℄ is a produt of theonjugates in E(n;A) ofws = [

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; g];where as ∈ A and s = 1; : : : ; k.For eah s = 1; : : : ; k, onsider �tms (ws) whih we still write as ws butkeep in mind that this image is in GL(n;Atms ).Note that all [ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)], s = 1; : : : ; k, di�er fromthe identity matrix only in the ith, jth rows and the ith, jth olumns. Sinen > 2, we an hoose h in the deomposition (46) so that it ommutes with
[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]:This allows us to redue �tms (ws) to

[

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; "];



THE COMMUTATORS OF CLASSICAL GROUPS 213where " ∈ E(n;Atms ;Ktms ). By Lemma 24, for any given ls, there is asuÆiently large ps, s = 1; : : : k, suh that
[

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; "]
∈

[[E(n;A; tlsI); E(n;A; tlsJ)℄; E(n;A; tlsK)]:Let us hoose ls to be large enough so that by Lemma 18 the restritionof �tms : GL(n;A; tlsmsA) → GL(n;Atms )be injetive. Then it is easy to see that for any s, we have
[

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; g]
∈

[[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:Sine relative elementary subgroups En are normal in GL(n;A) (Theo-rem 11), it follows that [e; g℄ ∈ [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:When the generator is of the seond kind, e = [ei;j(�); ej;i(�)℄, a similarargument goes through, whih is left to the reader.Now onsider the generators of the 3rd and 4th kind, namely, the on-jugates of the following two types of elements,e = ei;j(��); or e = ei;j(��):By the normality of E(n;A; IJ+JI), the onjugates of e are inE(n;A; IJ+JI). Then [e; g℄ ∈ [E(n;A; IJ + JI);GL(n;A;K)℄:By the generalized ommutator formula (Theorem 1A), one obtains[E(n;A; IJ + JI);GL(n;A;K)℄ = [E(n;A; IJ + JI); E(n;A;K)℄:Now applying Lemma 1A, we �nally get[E(n;A; IJ + JI); E(n;A;K)℄ 6 [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:Therefore [e; g℄ ∈
[[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: This proves ourlaim. Thus we established (45) for all type of generators e of (44).To �nish the proof, lete ∈ [E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄;and g ∈ GL(n;A;K). Then by Theorem 3A,e = e1 × e2 × · · · × ek



214 R. HAZRAT, N. VAVILOV, Z. ZHANGwith ei takes any of the forms in (29). Thanks to (C2+) identity and thenormality of relative elementary subgroups En, it suÆes to show that[ei; g℄ ∈ [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]; i = 1; : : : ; k:But this is exatly what has been shown above. This ompletes the proof.
�Similar result for unitary groups is [47, Theorem 7℄.Theorem 6B. Let n > 3, R be a ommutative ring, (A;�) be a formring suh that A is a quasi-�nite R-algebra. Further, let (I;�), (J;�) and(K;
) be three form ideals of a form ring (A;�). Then

[[ EU(2n; I;�);GU(2n; J;�)℄;GU(2n;K;
)]= [[ EU(2n; I;�);EU(2n; J;�)℄;EU(2n;K;
)]:The proof of Theorem 6B is even more toilsome, than that of Theo-rem 6A. In fat, just the proof of the unitary analogue of the above tripleommutator lemma, [47, Lemma 13℄, onsists of some six solid pages ofalulations.After Theorem 6B is established, Theorem 4A, 4B follows by 2{3 pagesof artless formal juggling with level alulations and ommutator identities,the details of alulations an be found in [49, 47℄. For Chevalley groupsthey are still unpublished. Referenes1. E. Abe, Whitehead groups of Chevalley groups over polynomial rings. | Comm.Algebra 11 (1983), no. 12, 1271{1308.2. E. Abe, Chevalley groups over ommutative rings. | In: Radial Theory, (Sendai1988), Uhida Rokakuho, Tokyo, 1989, 1{23.3. E. Abe, Normal subgroups of Chevalley groups over ommutative rings. | Con-temp. Math. 83 (1989), 1{17.4. M. Akhavan-Malayeri, Writing ertain ommutators as produts of ubes in freegroups. | J. Pure Appl. Algebra 177 (2003), no. 1, 1{4.5. M. Akhavan-Malayeri, Writing ommutators of ommutators as produts of ubesin groups. | Comm. Algebra 37 (2009), 2142{2144.6. H. Apte, A. Stepanov, Loal-global priniple for ongruene subgroups of Chevalleygroups. | Central European J. Math. 12:6 (2014), 801{812.7. A. Bak, The stable struture of quadrati modules. Thesis, Columbia University,1969.
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