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t. In his seminal paper, half a 
entury ago, Hyman Bassestablished a 
ommutator formula in the setting of (stable) gen-eral linear group whi
h was the key step in de�ning the K1 group.Namely, he proved that for an asso
iative ring A with identity,E(A) = [E(A); E(A)℄ = [GL(A);GL(A)℄;where GL(A) is the stable general linear group and E(A) is its el-ementary subgroup. Sin
e then, various 
ommutator formulas havebeen studied in stable and non-stable settings, and for a range of
lassi
al and algebrai
 like-groups, mostly in relation to subnormalsubgroups of these groups. The major 
lassi
al theorems and meth-ods developed in
lude some of the splendid results of the heroes of
lassi
al algebrai
 K-theory; Bak, Quillen, Milnor, Suslin, Swan andVaserstein, among others.One of the dominant te
hniques in establishing 
ommutator typeresults is lo
alisation. In this note we des
ribe some re
ent appli
a-tions of lo
alisation methods to the study (higher/relative) 
om-mutators in the groups of points of algebrai
 and algebrai
-likegroups, su
h as general linear groups, GL(n;A), unitary groupsGU(2n;A;�) and Chevalley groups G(�; A). We also state some ofthe intermediate results as well as some 
orollaries of these results.This note provides a general overview of the subje
t and 
oversthe 
urrent a
tivities. It 
ontains 
omplete proofs of several mainresults to give the reader a self-
ontained sour
e. We have borrowedthe proofs from our previous papers and expositions [38{50, 99, 100,129{132℄.Key words and phrases: general linear groups, unitary groups, Chevalley groups,elementary subgroups, elementary generators, lo
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152 R. HAZRAT, N. VAVILOV, Z. ZHANGEverybody knows there is no �neness or a

ura
y of suppression;if you hold down one thing you hold down the adjoining.Saul Bellow
§1. Introdu
tionLet A be a ring and I be a two sided ideal of A. In his seminal paper [16℄,�fty years ago, Bass laid out a theory now known as the 
lassi
al alge-brai
 K-theory (as opposed to the higher algebrai
 K-theory introdu
edby Quillen [89℄). He 
onsidered the stable general linear group GL(A) =

∞
⋃n=1GL(n;A) and its stable elementary subgroup E(A) = ∞

⋃n=1E(n;A) andde�ned the stable K1(A) as the quotient GL(A)=E(A) (see §4 for details).Relating the group stru
ture of GL(A) to the ideal stru
ture of A, he wenton to establish an exa
t sequen
e naturally relating K1 to the group K0,previously de�ned by Grothendie
k and Serre. In order the 
oset spa
eK1(A) to be a well-de�ned group, Bass proved his famous \Whiteheadlemma" ( [16, Theorem 3.1℄, see Lemma 6), i.e.,E(A; I) = [E(A); E(A; I)℄ = [GL(A);GL(A; I)℄:In parti
ular when I = A, it follows that E(A) is a normal subgroup ofGL(A).He further proved that if n > max{sr(A); 3}, where sr(A) is the stablerange of A, then E(n;A; I) = [GL(n;A); E(n;A; I)℄: (1)Again, when I = A, it follows that E(n;A) is a normal subgroup ofGL(n;A).The next natural question arose was whether E(n;A) is a normal sub-group of GL(n;A) below the stable range as well. In the non-stable 
ase,there is no \room" available for manoeuvring as in the stable 
ase (seethe proof of Whitehead Lemma 6). Thus, one is for
ed to put some �nite-ness assumption on the ring. Indeed, Gerasimov [33℄ produ
ed examplesof rings A for whi
h, for any n > 2, E(n;A) is as far from being normal inGL(n;R), as one 
an imagine.A major 
ontribution in this dire
tion 
ame with the work of Suslin [105,114℄ who showed that if A is a module �nite ring, namely, a ring that is�nitely generated as module over its 
entre, and n > 3, then E(n;A) is anormal subgroup of GL(n;A). That Suslin's normality theorem (and themethods developed to prove it) implies the standard 
ommutator formulae



THE COMMUTATORS OF CLASSICAL GROUPS 153of the type (1) in full for
e was somewhat later observed independently byBorewi
z{Vavilov [23℄ and Vaserstein [115℄. In these work it was establishedthat, for a module �nite ring A and a two-sided ideal I of A and n > 3,we have (see §6) [E(n;A);GL(n;A; I)℄ = E(n;A; I):The fo
us then shifted to the relative 
ommutators with two ideals. In hispaper, Bass already proved that for a ring A and two sided ideals I; J , andn > max(sr(A) + 1; 3),[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄: (2)Mason and Stothers, building on Bass' result improved the formula,with the same assumptions, to[GL(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:Later, in a series of the papers, the authors with A. Stepanov proved thatthe 
ommutator formula (2) is valid for any module �nite ring A and n > 3(see Theorem 1A).Sin
e Suslin's work, �ve major noti
eably di�erent methods have beendeveloped for arbitrary rings to prove su
h 
ommutator formulae results(and 
arried out in di�erent 
lassi
al groups):
• Suslin's dire
t fa
torisation method [105, 106, 61℄ (see also [37℄);
• Suslin's fa
torisation and pat
hing method [114, 59, 15℄;
• Quillen{Suslin{Vaserstein's lo
alisation and pat
hing method [105, 115,110, 107℄;
• Bak's lo
alisation-
ompletion method [10, 38, 14℄;
• Stepanov{Vavilov{Plotkin's de
omposition of unipotents [124, 128, 99,125℄.Suslin's result makes it possible to de�ne the non-stableK1;n := GL(n;A)=E(n;A), when n > 3, for module �nite rings. The studyof these non-stable K1's is known to be very diÆ
ult. There are examplesdue to van der Kallen [56℄ and Bak [10℄ whi
h show that non-stable K1
an be non-abelian and the natural question is how non-abelian it 
an be?The breakthrough 
ame with the work of Bak [10℄, who showed thatK1;n is nilpotent by abelian if n > 3 and the ring satis�es some dimen-sion 
ondition (e.g. has a 
entre with �nite Krull dimension). His method
onsists of some \
onjugation 
al
ulus" on elementary elements, plus si-multaneously applying lo
alisation-pat
hing and 
ompletion. This is the



154 R. HAZRAT, N. VAVILOV, Z. ZHANGmethod whi
h opened doors to establishing the so 
alled, higher 
ommu-tator formulas and will be employed in this paper.Lo
alisation is one of the most powerful ideas in the study of 
lassi
algroups over rings. It allows to redu
e many important problems over var-ious 
lasses of rings subje
t to 
ommutativity 
onditions, to similar prob-lems for semi-lo
al rings. Both methods { the Quillen-Suslin and Bak'sapproa
h (parti
ularly the latter){ rely on a large body of 
ommon 
al
u-lations, and te
hni
al fa
ts, known as 
onjugation 
al
ulus and 
ommutator
al
ulus. Often times these 
al
ulations are even referred to as the yoga of
onjugation, and the yoga of 
ommutators, to stress the overwhelming feel-ing of te
hni
al strain and exertion. We use variations of these methodsto prove multiple 
ommutator formulas for general linear group of thefollowing type (see §10):
[E(n;A; I0);GL(n;A; I1);GL(n;A; I2); : : : ;GL(n;A; Im)]= [E(n;A; I0); E(n;A; I1); E(n;A; I2); : : : ; E(n;A; Im)]: (3)First note that one 
an produ
e examples of a 
ommutative ring A andideals I; J and K su
h that (see §7)[E(n;A; I); E(n;A; J)℄ 6= E(n;A; IJ);and (see §11)

[[E(A; I); E(A; J)℄; E(A;K)] 6= [E(A; I); [E(A; J); E(A;K)℄]:So higher 
ommutator formulas of the form (3) is far from trivial. We willobserve that using some 
ommutator 
al
ulus, and indu
tion, the proof of(3) redu
es to prove the base of indu
tion, i.e., to prove
[[E(n;A; I);GL(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: (4)The proof of (4) 
onstitutes the bulk of work and uses a variation of lo
al-isation method �rst developed in [10℄.The path to full-s
ale generalisation of these results from general lineargroups to other 
lassi
al groups was anything but straightforward. Forinstan
e, in the unitary 
ase, due to the following 
ir
umstan
es,

• the presen
e of long and short roots,
• 
ompli
ated elementary relations,
• non-
ommutativity,
• non-trivial involution,
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• non-trivial form parameter,these yoga 
al
ulations tend to be espe
ially lengthy, and highly involved.In this paper, for a 
omparison, we only provide one proof in the 
ase ofunitary groups (whi
h has not been appeared before). Namely, whereas theproof of Lemma 1A in the setting of general linear groups is only a halfof a page, the proof of its 
ounterpart in the unitary setting, Lemma 1B,
onstitutes more than 4 pages.The aim of this note is to start with the original Bass' Whitehead lemmaand 
ontinue to establish the (higher) 
ommutator formulas. We tra
e theliterature on this theme, provide proofs to the main results in the settingof the general linear group and formulate the results in other 
lassi
al-like groups. We aim to provide a self-
ontained sour
e from the resultss
attered in the literature.

§2. The groups, an overviewIn this paper we 
onsider algebrai
-like or 
lassi
al-like group fun
torsG. We let G(A) to be the group of points of G over a ring A. Note thatgroups of types other than Al only exist over 
ommutative rings. Typi
ally,G(A) is one of the following groups.A. General linear group GL(n;A) of degree n over a ring A.In this 
ontext the ring A does not have to be 
ommutative. However,we have to impose some 
ommutativity 
onditions for our results to hold.One of the well behaved 
lasses is the 
lass of quasi-�nite rings. Re
all,that a ring A is 
alled module �nite if it is �nitely generated as a moduleover its 
entre. Quasi-�nite rings are dire
t limits of indu
tive systemsof module �nite rings (see §3.3). To avoid unne
essary repetitions, in thesequel, speaking of ideals of an asso
iative ring A, we always mean two-sided ideals of A.B. Unitary groups GU(2n;A;�) over a form ring (A;�).In this setting A is a [not ne
essarily 
ommutative℄ ring with involution: A → A and a form parameter � (see §5). As in the 
ase of general lineargroups, we usually assume that A is module �nite over a 
ommutative ringR. In general, � is not an R-module. Thus, R has to be repla
ed by itssubring R0, generated by all �� with � ∈ R.C. Chevalley groups G(�; A) of type � over a 
ommutative ring A.Chevalley groups are indeed algebrai
, and the ground rings are 
ommu-tative in this 
ase, whi
h usually makes life easier.



156 R. HAZRAT, N. VAVILOV, Z. ZHANGTogether with the algebrai
-like group G(A) we 
onsider the followingsubgroups.
• First of all, the elementary group E(A), generated by elementaryunipotents.
◦ In the linear 
ase, the elementary generators are elementary [linear℄transve
tions eij(�), 1 6 i 6= j 6 n, � ∈ A.
◦ In the unitary 
ase, the elementary generators are elementary uni-tary transve
tions Tij(�), 1 6 i 6= j 6 −1, � ∈ A. In the evenhyperboli
 
ase they 
ome in two modi�
ations. They 
an be shortroot type, i 6= ±j, when the parameter � 
an be any element ofA. On the other hand, for the long root type i = −j and the pa-rameter � must belong to [something de�ned in terms of℄ the formparameter �.
◦ Finally, for Chevalley groups, the elementary generators are theelementary root unipotents x�(�) for a root � ∈ � and a ringelement � ∈ A.Further, let I E A be an ideal of A. We also 
onsider the followingrelative subgroups.
• The elementary group E(I) of level I , generated by elementaryunipotents of level I .
• The relative elementary group E(A; I) = E(I)E(A) of level I .
• The prin
ipal 
ongruen
e subgroups G(A; I) of level I , the kernelof redu
tion homomorphism �I : G(A) −→ G(A=I).
• The full 
ongruen
e subgroups C(A; I) of level I , the inverse imageof the 
entre of G(A=I) with respe
t to �I .We use the usual notation for these groups in the above 
ontexts A{C asshown below.G(A) GL(n;A) GU(n;A;�) G(�; A)E(A) E(n;A) EU(n;A;�) E(�; A)E(I) E(n; I) FU(n; I;�) E(�; I)E(A; I) E(n;A; I) EU(n; I;�) E(�; A; I)G(A; I) GL(n;A; I) GU(n; I;�) G(�; A; I)C(A; I) C(n;A; I) CU(n; I;�) C(�; A; I)There are two more general 
ontexts, where lo
alisation methods havebeen su

essfully used, in parti
ular,
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 redu
tive groups G(A),E. Odd unitary groups U(V; q),however we don't pursue these groups here (see [84{87, 74, 96℄).
§3. PreliminariesWe gather here basi
 results in group and ring theory, whi
h will beused throughout this note.3.1. Commutators. Let G be a group. For any x; y ∈ G, xy = xyx−1denotes the left x-
onjugate of y. Let [x; y℄ = xyx−1y−1 denote the 
om-mutator of x and y. Sometimes the double 
ommutator [[x; y℄; z℄ will bedenoted simply by [x; y; z℄ and[[A;B℄; C℄ = [A;B;C℄:Thus we write [A1; A2; A3; : : : ; An℄ for [ : : : [[A1; A2℄; A3℄; : : : ; An℄ and 
allit the standard form of the multiple 
ommutator formulas.The following formulas will be used frequently (sometimes without giv-ing a referen
e to them),(C1) [x; yz℄ = [x; y℄(y [x; z℄).(C1+) An easy indu
tion, using identity (C1), shows that[x; k
∏i=1ui℄ = k

∏i=1 i−1
∏j=1 uj [x; ui℄;where by 
onvention 0

∏j=1 uj = 1.(C2) [xy; z℄ = (x[y; z℄)[x; z℄.(C2+) As in (C1+), we have[ k
∏i=1 ui; x℄ = k

∏i=1 k−i
∏j=1 uj [uk−i+1; x℄:(C3) (the Hall-Witt identity): x[[x−1; y℄; z℄ z [[z−1; x℄; y℄ y[[y−1; z℄; x℄=1;(C4) [x;y z℄ =y [y−1x; z℄;(C5) [yx; z℄ =y [x;y−1 z℄.(C6) If H and K are subgroups of G, then [H;K℄ = [K;H ℄.



158 R. HAZRAT, N. VAVILOV, Z. ZHANG(C7) If F , H and K are subgroups of G, then
[[F;H ℄;K]

6
[[F;K℄; H][F; [H;K℄]:In §11.1 we will provide an example that even in the setting ofelementary subgroups of a linear group

[[F;H ℄;K]

6= [F; [H;K℄]:(C8) (xy)2 = x2y2[y−1; x−1][[x−1; y−1℄y−1]:One 
an write numerous identities involving 
ommutators. The readeris referred to [51, 52℄ for more samples of these identities.3.2. Let A be a ring and I , J and K be two sided ideals. We denote byI ◦ J := IJ + JI;the symmetrised produ
t of ideals I; J E A. In the 
ommutative 
ase it
oin
ides with their usual produ
t. In general, the symmetrised produ
t isnot asso
iative. Thus, when writing something like I ◦ J ◦ K we have tospe
ify the order in whi
h produ
ts are formed.3.3. Limit of rings. An R-algebra A is 
alled module �nite over R, if Ais �nitely generated as an R-module. An R-algebra A is 
alled quasi-�niteover R if there is a dire
t system of module �nite R-subalgebras Ai of Asu
h that lim
−→

Ai = A.Suppose A is an R-algebra and I is an index set. By a dire
t system ofsubalgebras Ai=Ri, i ∈ I , of A, we shall mean a set of subrings Ri of Rand a set of subrings Ai of A su
h that ea
h Ai is naturally an Ri-algebraand su
h that given i; j ∈ I , there is a k ∈ I su
h that Ri 6 Rk, Rj 6 Rk,Ai 6 Ak, and Aj 6 Ak .Proposition 1. An R-algebra A is quasi-�nite over R if and only if itsatis�es the following equivalent 
onditions:(1) There is a dire
t system of subalgebras Ai=Ri of A su
h that ea
hAi is module �nite over Ri and su
h that lim
−→

Ri = R and lim
−→

Ai =A.(2) There is a dire
t system of subalgebras Ai=Ri of A su
h that ea
hAi is module �nite over Ri and ea
h Ri is �nitely generated as a
Z-algebra and su
h that lim

−→
Ri = R and lim

−→
Ai = A.



THE COMMUTATORS OF CLASSICAL GROUPS 1593.4. Stable rank of rings. Let us re
all the linear 
ase �rst. These re-sults are most 
onveniently stated in terms of the new type of dimensionfor rings, introdu
ed by Bass, stable rank. Sin
e later we shall dis
ussgeneralisations of this notion, we re
all here its de�nition.A row (a1; : : : ; an) ∈ nA is 
alled unimodular if the elements a1; : : : ; angenerate A as a right ideal, i.e. a1A+ · · ·+anA = A, or, what is the same,there exist b1; : : : ; bn ∈ A su
h that a1b1 + · · ·+ anbn = 1.A row (a1; : : : ; an+1) ∈ n+1A is 
alled stable, if there exist b1; : : : ; bn ∈ Asu
h that the right ideal generated by a1+an+1b1; : : : ; an+an+1bn 
oin
ideswith the right ideal generated by a1; : : : ; an+1.One says that the stable rank of the ring A equals n and writes sr(A) = nif every unimodular row of length n + 1 is stable, but there exists a non-stable unimodular row of length n. If su
h n does not exist (i.e. there arenon-stable unimodular rows of arbitrary length) we say that the stablerank of A is in�nite.It turned out that stable rank, on one hand, most naturally arises in theproof of results pertaining to linear groups and, on the other hand, it 
an beeasily estimated in terms of other known dimensions of a 
ommutative ringA, say of its Krull dimension dim(A), or its Ja
obson dimension j(A) =dim(Max(A)). Here, Max(A) is the subspa
e of all maximal ideals of thetopologi
al spa
e Spe
(A), the set of all prime ideals of A, equipped withthe Zariski Topology. Then j(A) is the dimension of the topologi
al spa
eMax(A). Let us state a typi
al result in this spirit due to Bass.Theorem 2. Let A be a ring �nitely generated as a module over a 
om-mutative ring R. Then sr(A) 6 dim(Max(R)) + 1.The right hand side should be thought of as a 
ondition expressing(a weaker form of) stability for not ne
essarily unimodular rows. In [28℄and [57℄ it is shown that already asr(A) 6 dim(Max(R))+1, where asr(A)stands for the absolute stable rank.
§4. General linear groupsLet G = GL(n;A) be the general linear group of degree n over anasso
iative ring A with 1. Re
all that GL(n;A) is the group of all two-sided invertible square matri
es of degree n over A, or, in other words, themultipli
ative group of the full matrix ring M(n;A). When one thinks ofA 7→ GL(n;A) as a fun
tor from rings to groups, one writes GLn. In thesequel for a matrix g ∈ G we denote by gij its matrix entry in the position



160 R. HAZRAT, N. VAVILOV, Z. ZHANG(i; j), so that g = (gij), 1 6 i; j 6 n. The inverse of g will be denoted byg−1 = (g′ij), 1 6 i; j 6 n.A 
ru
ial role is played by the elementary subgroup of GL(n;A). Asusual we denote by e (or sometimes 1) the identity matrix of degree n andby eij a standard matrix unit, i.e., the matrix that has 1 in the position(i; j) and zeros elsewhere. An elementary matri
es ei;j(�) is a matrix ofthe form ei;j(�) = e+ �eij ; � ∈ A; 1 6 i 6= j 6 n:An elementary matri
es ei;j(�) only di�ers from the identity matrix inthe position (i; j), i 6= j, where it has � instead of 0. In other words,multipli
ation by an elementary matrix on the left/right performs whatin an undergraduate linear algebra 
ourse would be 
alled a row/
olumnelementary transformation `of the �rst kind'.If there is no danger we simply write eij(�) instead of ei;j(�).The elementary subgroup E(n;A) of the general linear group GL(n;A)is generated by all the elementary matri
es. That is,E(n;A) = 〈eij(�); � ∈ A; 1 6 i 6= j 6 n〉:Both for the development of the theory and for the sake of appli
ationsone has to extend these de�nitions to in
lude relative groups. For a two-sided ideal I of A, one de�nes the 
orresponding redu
tion homomorphism�I : GL(n;A) −→ GL(n;A=I); (gij) 7→ (gij + I):Now the prin
ipal 
ongruen
e subgroupGL(n;A; I) of level I is the kernel ofredu
tion homomorphism �I , while the full 
ongruen
e subgroup C(n;A; I)of level I is the inverse image of the 
entre of GL(n;A=I) with respe
t tothis homomorphism. Clearly both are normal subgroups of GL(n;A).Again, let I E A be a two-sided ideal of A, and let x = eij(�) be anelementary matrix. Somewhat loosely we say that x is of level I , provided� ∈ I . One 
an 
onsider the subgroup generated in GL(n;A) by all theelementary matri
es of level I :E(n; I) = 〈eij(�); � ∈ I; 1 6 i 6= j 6 n〉:This group is 
ontained in the absolute elementary subgroup E(n;A) anddoes not depend on the 
hoi
e of an ambient ring A with 1. However, ingeneral E(n; I) has little 
han
es to be normal in GL(n;A). The relativeelementary subgroup E(n;A; I) is de�ned as the normal 
losure of E(n; I)



THE COMMUTATORS OF CLASSICAL GROUPS 161in E(n;A): E(n;A; I) = 〈eij(�); � ∈ I; 1 6 i 6= j 6 n〉E(n;A):We have the following relations among elementary matri
es whi
h willbe used in the paper. We refer to these relations in the text by (E).(E1) ei;j(a)ei;j(b) = ei;j(a+ b):(E2) [ei;j(a); ek;l(b)℄ = 1 if i 6= l; j 6= k.(E3) [ei;j(a); ej;k(b)℄ = ei;k(ab) if i 6= k.Essentially , the following result was �rst established in the 
ontext ofChevalley groups by Mi
hael Stein [97℄. The next approximation is the pa-per by Ja
ques Tits [112℄, where it is proven that E(n;A; I) is generatedby its interse
tions with the fundamental SL2. Nevertheless, the earliestreferen
e, where we 
ould tra
e this result, was the paper by Leonid Vaser-stein and Andrei Suslin [121℄. We follow the proof given in [10, Lemma 4.8℄(see also in [132, Theorem 11℄).Lemma 3. Let A be a ring and I be a two-sided ideal of A. Then E(n;A; I)is generated as a group by the elementszij(a; �) := eji(a)eij(�) = eji(a)eij(�)eji(−a);where i 6= j, a ∈ A and � ∈ I.Proof. By de�nition, E(n;A; I) is generated by the elements eeij(�),where i 6= j, e ∈ E(n;A), and � ∈ I . If e is the identity matrix, letl(e) = 0 and otherwise, let l(e) denote the least number of elementary ma-tri
es required to write e as a produ
t of elementary matri
es. The proofis by indu
tion on l(e).We need the following identity in order to redu
e the length of e in theindu
tion proof. Let i, j, k be distin
t natural numbers and a; b ∈ A and� ∈ I . Then one 
an 
he
k by straightforward multipli
ation thateij(a)eji(b)eij(�) = ekj(−�(1 + ba))eki(�b)eik(−ab�b)eij(ab�)
× (ejk(b)ekj(�))eij(�)eik((ab− 1)�b)ejk(b�b)(eij (a)eji(−b�b))

× (eki(1)eik(�b))ekj (�ba)eij(�ba): (5)We pro
eed by indu
tion. If l(e) = 0, there is nothing to prove. Supposel(e) = 1. Then e = ekl(a) for some 1 6 k 6= l 6 n. If (k; l) = (j; i), there isnothing to prove. If (k; l) 6= (j; i) then by (E), ekl(a)eij(�) is either eij(�)or ei′j′(�′)eij(�) for an elementary matrix ei′j′(�′) su
h that �′ ∈ I .



162 R. HAZRAT, N. VAVILOV, Z. ZHANGSuppose l(e) > 2. Write e = e′emn(b)ekl(a), where l(e′) = l(e) − 2. If(k; l) 6= (j; i), then applying the paragraph above, one 
an �nish by indu
-tion on l(e). Suppose (k; l) = (l; i). If (m;n) = (i; j) then applying (5),one 
an �nish by indu
tion on l(e). Suppose (m;n) 6= (i; j). If m 6= i andn 6= j then by (E) emn(b)eji(a) = eji(a)emn(b):It is not possible that (m;n) = (j; i), be
ause then it would follow thate = e′eji(b + a) and thus, that l(e) 6 l(e′) + 1. Sin
e (m;n) 6= (j; i),it follows from (E) that emn(b)eij(q) is either eij(�) or ei′j′ (�′)eij(�), foran elementary matrix ei′j′(�′), where �′ ∈ I and one is done again byindu
tion on l(e). There remain now two 
ases to 
he
k; namely, (m;n) =(m; j) with m 6= i and (m;n) = (i; n) with n 6= j. In the �rst 
ase,emj(b)eji(a)eij(�) = emi(ba)eji(a)emj (b)eij(�)= emi(ba)eji(a)eij(�)= eji(a)emi(ba)eij(�)= eji(a)(emj(ba�)eij(�)):Thus, one 
an �nish by indu
tion on l(e). The se
ond 
ase is 
he
kedsimilarly. �Using Lemma 3, it is not hard to prove that E(n;A; I2) 6 E(n; I)(see [10, Corollary 4.9℄ and [112, Proposition 2℄). This 
ontainment 
an beslightly generalised to the 
ase of two ideals. This will be established inLemma 1A whi
h will be used throughout the paper.The �rst step in the 
onstru
tion of algebrai
 K-theory was done byHyman Bass in [16℄ almost half 
entury ago. There is a standard embeddingGL(n;A) −→ GL(n+ 1; A); g 7→

( g 00 1 ) ; (6)
alled the stabilisation map, whi
h allows us to identify GL(n;A) with asubgroup in GL(n + 1; A). Now we 
an 
onsider the stable general lineargroup GL(A) = lim
−→n GL(n;A);whi
h is the dire
t limit (e�e
tively the union) of the GL(n;A) under thestabilisation embeddings.
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e the stabilisation map sends E(n;A) to E(n+1; A), we 
an de�nethe stable elementary group E(A) = lim
−→

E(n;A). This subgroup is 
alledthe (absolute) elementary group of degree n over A.Applying the stabilisation embeddings to the families GL(n;A; I) andE(n;A; I) generates stable versions GL(A; I) and E(A; I), respe
tively,of these groups. There is no stable version of C(n;A; I), though, as thestability map does not send C(n;A; I) into C(n+ 1; A; I).A 
ru
ial observation known as the Whitehead lemma, asserts that mod-ulo E(A) the produ
t of two matri
es in GL(n;A) is the same as theirdire
t sum, and in parti
ular, E(A) = [GL(A);GL(A)℄. Su
h identities inthe stable 
ase 
an be established easily, as there is enough room to ar-range the matri
es inside GL(A). For the pedagogi
al reason we in
ludethe proof of the following identity (see Lemma 6)E(A; I) = [E(A); E(A; I)℄ = [GL(A); E(A; I)℄ = [GL(A);GL(A; I)℄:The main theme of this note is to establish the non-stable identities of thistype.First, we need some lemmas.Lemma 4. Let A be a ring and I be a two sided ideal of A. Any n × nupper/lower triangular matrix with 1 on the main diagonal and elementsof I as non-zero entries belong to E(n; I).Proof. Let x be an upper triangular matrix with 1 on the diagonal andelements of I as non-zero entries, i.e., x = (aij) ∈ Mn(A) with aii = 1,1 6 i 6 n and aij ∈ I for j > i. Then the matrixx′ = (a′ij) = xe12(−a12)e23(−a23) : : : en−1;n(−an−1;n) (7)is still upper triangular with 1 on the main diagonals and 0 on j − i = 1.Note that sin
e aij ∈ I , all the elementary matri
es in (7) are in E(n; I).Now the matrixx′′ = (a′′ij) = x′e13(−a′13)e24(−a′24) : : : en−2;n(−a′n−2;n);is again upper triangular with 1 on the main diagonals and 0 on j − i =1; 2. Here also a′ij ∈ I and so all the elementary matri
es are in E(n; I).Continuing in this fashion, by indu
tion, x(n−1) is the identity matrix.Note that all elementary matri
es involved are in E(n; I). It follows thatA ∈ E(n; I). The lower triangular 
ase is similar. �



164 R. HAZRAT, N. VAVILOV, Z. ZHANGLemma 5. Let A be an asso
iative ring and let I E A be a two-sided idealof A. Then for any x; y ∈ GL(n;A; I) one has
(xyx−1y−1 00 1) ∈ E(2n;A; I): (8)Proof. Following Bass [16, Lemma 1.7℄, we �rst show that

(xy 00 1) ≡

(x 00 y) (mod E(2n;A; I)); (9)and
(yx 00 1) ≡

(x 00 y) (mod E(2n;A; I)); (10)whi
h then immediately implies (8).Write y = 1 + q, where q ∈Mn(I). Furthermore, let� = (yx 00 1) ; � = (x 00 y) ; �1 = (1 (yx)−1q0 1 ) ;�2 = (1 −x−1q0 1 ) ; �3 = ( 1 0
−y−1qx 1) ; � = (1 0x 1) :By Lemma 4, �1; �2; �3 ∈ E(2n; I), � ∈ E(2n;A) and thus by de�nition�−1�2� ∈ E(2n;A; I). We get � := �1�−1�2��3 ∈ E(2n;A; I). Now asimple matrix 
al
ulation shows��1 = (yx q0 1) ; ��1�−1 = (yx− qa q

−x 1) = ( x q
−x 1) ;��1�−1�2 = ( x −q + q

−x 1 + q ) = ( x 0
−x y) ;��1�−1�2� = ( x 0yx− x y) = ( x 0qx b) :Finally �� = ��1�−1�2��3 = (x 00 y) = �:This shows the Identity (10). Plugging x = y−1 into this identity we obtain

( y−1 00 y )

∈ E(2n;A; I):Thus
(xy 00 1) ≡

(xy 00 1) (y−1 00 y) ≡

(x 00 y) ;
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h is Identity (9). �Lemma 6. For an asso
iative ring A and an ideal I E A one hasE(A; I) = [E(A); E(A; I)℄ = [GL(A); E(A; I)℄ = [GL(A);GL(A; I)℄: (11)Proof. The elements of E(A; I) are generated by xeij(�)x−1, whereeij(�) ∈ E(I) and x ∈ E(A). Writingxeij(�)x−1=[x; eij(�)℄eij(�)=[x; eij (�)℄[eik(1); ekj(�)℄∈[E(A); E(A; I)℄;it follows that E(A; I) 6 [E(A); E(A; I)℄:Thus we haveE(A; I) 6 [E(A); E(A; I)℄ 6 [GL(A); E(A; I)℄ 6 [GL(A);GL(A; I)℄:We show [GL(A);GL(A; I)℄ 6 E(A; I). Let x ∈ GL(A) and y ∈ GL(A; I).Then for a suÆ
iently large n, x ∈ GL(n;A) and y ∈ GL(n;A; I). ByLemma 5,
(xyx−1y−1 00 1) ∈ E(2n;A; I) 6 E(A; I):This �nishes the proof. �At this point Bass de�nesK1(A) = GL(A)=E(A) = GL(A)=[GL(A);GL(A)℄as the abelianisation of GL(A). Indeed algebrai
 K-theory was born asBass observed that the fun
tors K0 and K1 together with their relativeversions �t into a uni�ed theory with important appli
ations in algebra,algebrai
 geometry and number theory. In the same manner, the relativeK1-fun
tor of a pair (A; I) is de�ned asK1(A; I) = GL(A; I)=E(A; I):As one of important appli
ations in algebra, Bass [16℄ relates the normalsubgroup stru
ture of GL(A) to the ideal stru
ture of A. This leap ingenerality is 
onsidered as the starting point of the modern theory of lineargroups.Theorem 7. Let A be an arbitrary asso
iative ring and H 6 GL(A) bea subgroup normalised by the elementary group E(A). Then there exists aunique ideal I E A su
h, thatE(A; I) 6 H 6 GL(A; I):



166 R. HAZRAT, N. VAVILOV, Z. ZHANGConversely, any subgroup H satisfying these in
lusions is (by Lemma 6)normal in GL(A).Quite remarkably this result holds for arbitrary asso
iative rings. Thus,an expli
it enumeration of all normal subgroups of GL(A) amounts to the
al
ulation of K1(A; I) for all ideals I in A.The group K1 answers essentially the question as to how far GL(n;A)falls short of being spanned by elementary generators. A few years laterMilnor [80, 81℄, building on the work of Steinberg [103, 104℄ and Moore[82℄, introdu
ed the group K2, whi
h measures essentially to whi
h extentall relations among elementary generators follow from the obvious ones.For any asso
iative ring A, a two-sided ideal I E A and a �xed n we
onsider the quotientK1(n;A; I) = GL(n;A; I)=E(n;A; I):In general, the elementary subgroup E(n;R; I) does not have to be normalin the 
ongruen
e subgroup GL(n;A; I). In parti
ular, K1(n;A; I) is apointed set, rather than a group. However, we will see when A is quasi-�nite and n > 3, the K1(n;A; I) is a group. Similarly, we de�neSK1(n;A; I) = SL(n;A; I)=E(n;A; I);
onsult [10℄ for the de�nition of SL(n;A; I) for quasi-�nite rings.The stability embedding of the general linear groups (see (6)) sendsE(n;A; I) inside E(n+ 1; A; I). In parti
ular, by the homomorphism the-orem it indu
es stability map n : K1(n;A; I) −→ K1(n+ 1; A; I);whi
h is a group homomorphism when both sides are groups. Clearly,  nrestri
ts to a map between SK1(n;A; I)'s.The following results, known as the surje
tive and inje
tive stability forK1 are due to Bass and to Bass{Vaserstein, respe
tively.Lemma 8. Let A be an asso
iative ring and let I E A be a two-sided idealof A. Consider the stability map n : K1(n;A; I) −→ K1(n+ 1; A; I):Then(1) If n > sr(A) , then  n is surje
tive. In other wordsGL(n+ 1; A; I) = GL(n;A; I)E(n+ 1; A; I):
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tive. In other wordsGL(n;A; I) ∩ E(n+ 1; A; I) = E(n;A; I):
§5. Unitary groupsThe notion of �-quadrati
 forms, quadrati
 modules and generalisedunitary groups over a form ring (A;�) were introdu
ed by Anthony Bakin his Thesis who studied their K-theory (see [7, 8℄).Although the quadrati
 setting is mu
h more 
ompli
ated than the lin-ear one, it is being gradually established that most results 
on
erning theK-theory of general linear groups 
an be 
arried over to the K-theory ofgeneral quadrati
 groups.In this se
tion we brie
y review the most fundamental notation andresults that will be 
onstantly used in the present paper. We refer to [8,37, 60, 15, 38, 44, 111, 66℄ for details, proofs, and further referen
es.5.1. Let R be a 
ommutative ring with 1, and A be an (not ne
es-sarily 
ommutative) R-algebra. An involution, denoted by , is an anti-homomorphism of A of order 2. Namely, for �; � ∈ A, one has �+ � =�+�, �� = �� and � = �. Fix an element � ∈ Cent(A) su
h that �� = 1.One may de�ne two additive subgroups of A as follows:�min = {�− �� | � ∈ A}; �max = {� ∈ A | � = −��}:A form parameter � is an additive subgroup of A su
h that(1) �min 6 � 6 �max,(2) ��� 6 � for all � ∈ A.The pair (A;�) is 
alled a form ring.5.2. Let I E A be a two-sided ideal of A. We assume I to be involutioninvariant, i.e., su
h that I = I . Set�max(I) = I ∩ �; �min(I) = {� − �� | � ∈ I}+ 〈��� | � ∈ I; � ∈ �〉:A relative form parameter � in (A;�) of level I is an additive group of Isu
h that(1) �min(I) 6 � 6 �max(I),(2) ��� 6 � for all � ∈ A.



168 R. HAZRAT, N. VAVILOV, Z. ZHANGThe pair (I;�) is 
alled a form ideal.In the level 
al
ulations we will use sums and produ
ts of form ideals.Let (I;�) and (J;�) be two form ideals. Their sum is artlessly de�ned as(I + J;� +�), it is immediate to verify that this is indeed a form ideal.Guided by analogy, one is tempted to set (I;�)(J;�) = (IJ;��). How-ever, it is 
onsiderably harder to 
orre
tly de�ne the produ
t of two relativeform parameters. The papers [35, 36, 38℄ introdu
e the following de�nition�� = �min(IJ) + J� + I�;where J� = 〈��� | � ∈ J〉; I� = 〈��� | � ∈ I〉:One 
an verify that this is indeed a relative form parameter of level IJ ifIJ = JI .However, in the present paper we do not wish to impose any su
h 
om-mutativity assumptions. Thus, we are for
ed to 
onsider the symmetrisedprodu
tsI ◦ J = IJ + JI; � ◦� = �min(IJ + JI) + J� + I�The notation � ◦ � { as also �� is slightly misleading, sin
e in fa
t itdepends on I and J , not just on � and �. Thus, stri
tly speaking, oneshould speak of the symmetrised produ
ts of form ideals(I;�) ◦ (J;�) = (IJ + JI;�min(IJ + JI) + J� + I�):Clearly, in the above notation one has(I;�) ◦ (J;�) = (I;�)(J;�) + (J;�)(I;�):5.3. A form algebra over a 
ommutative ring R is a form ring (A;�),where A is an R-algebra and the involution leaves R invariant, i.e., R = R.A form algebra (A;�) is 
alled module �nite, if A is �nitely generatedas an R-module. A form algebra (A;�) is 
alled quasi-�nite, if there is adire
t system of module �nite R-subalgebras Ai of A su
h that lim
−→

Ai = A(see §3.3).In general � is not an R-module. This for
es us to repla
e R by itssubring R0, generated by all �� with � ∈ R. Clearly, all elements in R0are invariant with respe
t to the involution, i. e. r = r, for r ∈ R0.It is immediate, that any form parameter � is an R0-module. Thissimple fa
t will be used throughout. This is pre
isely why we have tolo
alise in multipli
ative subsets of R0, rather than in those of R itself(see §12.4).
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all the basi
 notation and fa
ts related to Bak's generalisedunitary groups and their elementary subgroups.5.4. Let, as above, A be an asso
iative ring with 1. For natural m;n wedenote byM(m;n;A) the additive group of m×n matri
es with entries inA. In parti
ular M(m;A) = M(m;m;A) is the ring of matri
es of degreem over A. For a matrix x ∈ M(m;n;A) we denote by xij , 1 6 i 6 m,1 6 j 6 n, its entry in the position (i; j). Let e be the identity matrix andeij , 1 6 i; j 6 m, be a standard matrix unit, i.e. the matrix whi
h has 1in the position (i; j) and zeros elsewhere.As usual, GL(m;A) = M(m;A)∗ denotes the general linear group ofdegree m over A. The group GL(m;A) a
ts on the free right A-moduleV ∼= Am of rank m. Fix a base e1; : : : ; em of the module V . We may thinkof elements v ∈ V as 
olumns with 
omponents in A. In parti
ular, eiis the 
olumn whose i-th 
oordinate is 1, while all other 
oordinates arezeros.In the unitary setting, we are only interested in the 
ase, when m = 2nis even. We usually number the base as follows: e1; : : : ; en; e−n; : : : ; e−1.All other o

urring geometri
 obje
ts will be numbered a

ordingly. Thus,we write v = (v1; : : : ; vn; v−n; : : : ; v−1)t;where vi ∈ A; for ve
tors in V ∼= A2n.The set of indi
es will be always ordered a

ordingly,
 = {1; : : : ; n;−n; : : : ;−1}. Clearly, 
 = 
+⊔
−, where 
+ = {1; : : : ; n}and 
− = {−n; : : : ;−1}. For an element i ∈ 
 we denote by "(i) the signof 
, i.e. "(i) = +1 if i ∈ 
+, and "(i) = −1 if i ∈ 
−.5.5. For a form ring (A;�), one 
onsiders the hyperboli
 unitary groupGU(2n;A;�), see [15, §2℄. This group is de�ned as follows:One �xes a symmetry � ∈ Cent(A), �� = 1 and supplies the moduleV = A2n with the following �-hermitian form h : V × V −→ A,h(u; v) = u1v−1 + · · ·+ unv−n + �u−nvn + · · ·+ �u−1v1:and the following �-quadrati
 form q : V −→ A=�,q(u) = u1u−1 + · · ·+ unu−n mod �:In fa
t, both forms are engendered by a sesquilinear form f ,f(u; v) = u1v−1 + · · ·+ unv−n:Now, h = f + �f , where f(u; v) = f(v; u), and q(v) = f(u; u) mod �.



170 R. HAZRAT, N. VAVILOV, Z. ZHANGBy de�nition, the hyperboli
 unitary group GU(2n;A;�) 
onsists ofall elements from GL(V ) ∼= GL(2n;A) preserving the �-hermitian formh and the �-quadrati
 form q. In other words, g ∈ GL(2n;A) belongs toGU(2n;A;�) if and only ifh(gu; gv) = h(u; v) and q(gu) = q(u); for all u; v ∈ V:When the form parameter is not maximal or minimal, these groups arenot algebrai
. However, their internal stru
ture is very similar to that of theusual 
lassi
al groups. They are also often times 
alled general quadrati
groups, or 
lassi
al-like groups.The groups introdu
ed by Bak in his Thesis [7℄ gather all even 
lassi
algroups under one umbrella. Linear groups, symple
ti
 groups, (even) or-thogonal groups, (even) 
lassi
al unitary groups, are all spe
ial 
ases of his
onstru
tion. Not only that, Bak's 
onstru
tion allows to introdu
e a wholenew range of 
lassi
al like groups , taking into a

ount hybridisation, de-fe
t groups, and other su
h phenomena in 
hara
teristi
 2, whi
h before [7℄were 
onsidered pathologi
al, and required separate analysis outside of thegeneral theory.To give the idea of how it works, let us illustrate how Bak's 
onstru
tionspe
ialises in the 
ase of hyperboli
 groups.
• In the 
ase when involution is trivial, � = −1, � = �max = R, onegets the split symple
ti
 group G(2n;R;�) = Sp(2n;R).
• In the 
ase when involution is trivial, � = 1, � = �min = 0, one getsthe split even orthogonal group G(2n;R;�) = O(2n;R).
• In the 
ase when involution is non-trivial, � = −1, � = �max, onegets the 
lassi
al quasi-split even unitary group G(2n;R;�) = U(2n;R).
• Let Ro be the ring opposite to R and Re = R⊕Ro. De�ne an involutionon Re by (x; yo) 7→ (y; xo) and set � = (1; 1o). Then there is a unique formparameter � = {(x;−xo) | x ∈ R}. The resulting unitary groupG(2n;Re;�) = {(g; g−t) | g ∈ GL(n;R)}may be identi�ed with the general linear group GL(n;R).Thus, in parti
ular the hyperboli
 unitary groups 
over Chevalley groupsof types Al, Cl and Dl.5.6. Elementary unitary transve
tions Tij(�) 
orrespond to the pairsi; j ∈ 
 su
h that i 6= j. They 
ome in two sto
ks. Namely, if, moreover,



THE COMMUTATORS OF CLASSICAL GROUPS 171i 6= −j, then for any � ∈ A we setTij(�) = e+ �eij − �("(j)−"(i))=2�e−j;−i:These elements are also often 
alled elementary short root unipotents . Onthe other side for j = −i and � ∈ �−("(i)+1)=2� we setTi;−i(�) = e+ �ei;−i:These elements are also often 
alled elementary long root elements .Note that � = ��. In fa
t, for any element � ∈ � one has � = −��and thus � 
oin
ides with the set of produ
ts ��, � ∈ �. This means thatin the above de�nition � ∈ � when i ∈ 
+ and � ∈ � when i ∈ 
−.Subgroups Xij = {Tij(�) | � ∈ A}, where i 6= ±j, are 
alled short rootsubgroups . Clearly, Xij = X−j;−i. Similarly, subgroups Xi;−i = {Ti;−i(�) |� ∈ �−("(i)+1)=2�} are 
alled long root subgroups .The elementary unitary group EU(2n;A;�) is generated by elemen-tary unitary transve
tions Tij(�), i 6= ±j, � ∈ A, and Ti;−i(�), � ∈�−("(i)+1)=2�, see [15, §3℄.5.7. Elementary unitary transve
tions Tij(�) satisfy the following ele-mentary relations , also known as Steinberg relations . These relations willbe used throughout this paper.(R1) Tij(�) = T−j;−i(−�("(j)−"(i))=2�),(R2) Tij(�)Tij(�) = Tij(� + �),(R3) [Tij(�); Thk(�)℄ = e, where h 6= j;−i and k 6= i;−j,(R4) [Tij(�); Tjh(�)℄ = Tih(��), where i; h 6= ±j and i 6= ±h,(R5) [Tij(�); Tj;−i(�)℄ = Ti;−i(�� − �−"(i)��), where i 6= ±j,(R6) [Ti;−i(�); T−i;j(�)℄ = Tij(��)T−j;j(−�("(j)−"(i))=2���), wherei 6=±j.Relation (R1) 
oordinates two natural parameterisations of the sameshort root subgroup Xij = X−j;−i. Relation (R2) expresses additivity ofthe natural parameterisations. All other relations are various instan
esof the Chevalley 
ommutator formula. Namely, (R3) 
orresponds to the
ase, where the sum of two roots is not a root, whereas (R4), and (R5)
orrespond to the 
ase of two short roots, whose sum is a short root, and along root, respe
tively. Finally, (R6) is the Chevalley 
ommutator formulafor the 
ase of a long root and a short root, whose sum is a root. Observethat any two long roots are either opposite, or orthogonal, so that theirsum is never a root.



172 R. HAZRAT, N. VAVILOV, Z. ZHANG5.8. There is a standard embeddingG(2n;A;�) −→ G(2(n+ 1); A;�); ( a b
 d )

7→









a 0 0 b0 1 0 00 0 1 0
 0 0 d 






alled the stabilisation map. In fa
t some other sour
es may give a slightlydi�erent pi
ture of the right hand side. How the right hand side exa
tlylooks, depends on the ordered basis we 
hoose. With the ordered basiswhi
h is used in [8℄, the standard embedding has the formG(2n;R;�) −→ G(2(n+ 1); R;�); ( a b
 d )

7→









a 0 b 00 1 0 0
 0 d 00 0 0 1 







:De�ne G(A;�) = lim
−→n G(2n;R;�)and E(A;�) = lim
−→n E(2n;R;�):The groups G(I;�) and E(I;�) are de�ned similarly.One 
ould ask, whether one 
an 
arry over Bass' results dis
ussed in §4to the unitary 
ase? Bak, and in a slightly narrower situation, Vaserstein,established unitary versions of Whitehead's lemma, whi
h in parti
ularimplies the following result.Theorem 9. Let (A;�) be an arbitrary form ring, and (I;�) be its formideal, thenE(I;�)=[E(A;�); E(I;�)℄ = [G(A;�); E(I;�)℄=[G(A;�); G(I;�)℄:Now, similarly to the linear 
ase, this allows one to introdu
e the unitaryK-fun
tor K1(I;�) = G(I;�)=E(I;�):A version of unitary K-theory modelled upon the unitary groups has beensystemati
ally developed by Bass in [18℄. Note that, in some literature, thenotation KU is used to denote the unitary K-groups. In other literature,the fun
tor above is 
alled a quadrati
 K-fun
tor and the notation KQ isused. (For a lexi
on of notations, see [8, §14℄).
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e of stru
ture, parallel to the linear situation, let usmention the des
ription of normal subgroups in G(A;�), that holds overan arbitrary ring.Theorem 10. Let (A;�) be an arbitrary form ring. If H 6 G(A;�) is asubgroup normalised by E(A;�), then for a unique form ideal (I;�), onehas E(I;�) 6 H 6 G(I;�):Conversely, these in
lusions guarantee that H is automati
ally normal inG(A;�).
§6. Towards non-stable K-theoryOne of the major 
ontributions toward non-stable K-theory of ringsis the work of Suslin [105, 114℄. He proved that if A is a module �nitering, namely, a ring that is �nitely generated as a module over its 
enter,and n > 3, then E(n;A) is a normal subgroup of GL(n;A). Therefore thenon-stable K1-group, i.e., GL(n;A)=E(n;A), is well-de�ned. Later, Bore-vi
h and Vavilov [23℄ and Vaserstein [115℄, building on Suslin's method,established the standard 
ommutator formula:Theorem 11 (Suslin, Borevi
h{Vavilov, Vaserstein). Let A be a module�nite ring, I a two-sided ideal of A and n > 3. Then E(n;A; I) is normalin GL(n;A), i.e., [E(n;A; I);GL(n;A)℄ = E(n;A; I):Furthermore, [E(n;A);GL(n;A; I)℄ = E(n;A; I):One natural question that arises here is whether one has a \�ner" mixed
ommutator formula involving two ideals. In fa
t this had already been es-tablished by Bass for general linear groups of degrees suÆ
iently largerthan the stable rank, when he proved his 
elebrated 
lassi�
ation of sub-groups of GLn normalized by En (see [16, Theorem 4.2℄):Theorem 12 (Bass). Let A be a ring, I; J two-sided ideals of A andn > max(sr(A) + 1; 3). Then[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:Later, Mason and Stothers, building on Bass' result, proved ([78, The-orem 3.6, Corollary 3.9℄, and [76, Theorem 1.3℄).



174 R. HAZRAT, N. VAVILOV, Z. ZHANGTheorem 13 (Mason-Stothers). Let A be a ring, I; J two-sided ideals ofA and n > max(sr(A) + 1; 3). Then[ GL(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:As the Bass Theorem 12 and the Mason and Stothers Theorem 13 arethe starting point of this paper, below we present a new proof of Theo-rem 13.Lemma 14. For any n > 1 one has[GL(n;A; I);GL(n;A; J)℄ 6 [GL(n;A; I); E(2n;A; J)℄:Proof. Indeed, if x ∈ GL(n;A; I) and y ∈ GL(n;A; J). By Whiteheadlemma one hasy = (y 00 e) ≡

(e 00 y) (mod E(2n;A; J)):Sin
e E(2n;A; J) is normal in GL(2n;A; J), one hasy = (y 00 e) = (e 00 y) z;for some z ∈ E(2n;A; J). Sin
e the �rst fa
tor on the right 
ommutes withx = (x 00 e) one has [x; y℄ = [x; z℄, as 
laimed. �Lemma 15. For any n > max(sr(A) + 1; 3) the stability map[E(n;A; I); E(n;A; J)℄=E(n;A; IJ + JI)
−→ [E(n+ 1; A; I); E(n+ 1; A; J)℄=E(n+ 1; A; IJ + JI)is an isomorphism.Proof. Clearly,[E(n;A; I); E(n;A; J)℄=E(n;A; IJ + JI)

6 GL(n;A; IJ + JI)=E(n;A; IJ + JI) = K1(n;A; IJ + JI):By Theorem 3A, [E(n;A; I); E(n;A; J)℄ is generated by [E(2; A; I),E(2; A; J)℄ as a normal subgroup of GL(n;A). Sin
e K1(n;A; IJ + JI)is 
entral in the quotient GL(n;A)=E(n;A; IJ + JI), for n > sr(A), thestability map is surje
tive and be
omes an isomorphism one step further,when the stability mapK1(n;A; IJ + JI) −→ K1(n+ 1; A; IJ + JI)
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omes an isomorphism by Lemma 8. �Lemma 1A. Let A be a ring and I; J be two-sided ideals of A. ThenE(n;A; IJ + JI) 6 [E(n; I); E(n; J)℄ 6 [E(n;A; I); E(n;A; J)℄
6 [E(n;A; I);GL(n;A; J)℄ 6 [GL(n;A; I);GL(n;A; J)℄
6 GL(n;A; IJ + JI):Proof. We �rst showE(n;A; IJ + JI) 6 [E(n; I); E(n; J)℄: (12)By Lemma 3, let ei;j (a)ej;i(�) be a generator of E(n;A; IJ+JI), where a ∈A and � ∈ IJ+JI . It suÆ
es to show that ei;j(a)ej;i(��)∈[E(n; I); E(n; J)℄,where � ∈ I and � ∈ J . Using (E3), we haveei;j (a)ej;i(��) = ei;j (a)[ej;k(�); ek;i(�)]= [ei;j (a)ej;k(�); ei;j (a)ek;i(�)]= [[ei;j(a); ej;k(�)℄ej;k(�); ek;i(�)[ek;i(−�); ei;j(a)℄]= [ei;k(a�)ej;k(�); ek;i(�)ek;j(−�a)]

∈ [E(n; I); E(n; J)℄:This shows (12). We are left to show that[GL(n;A; I);GL(n;A; J)℄ 6 GL(n;A; IJ + JI): (13)Let x ∈ GL(n;A; I) and y ∈ GL(n;A; J). Then x = e + x1 and x−1 =e+ x2 for some x1; x2 ∈M(n; I) su
h that x1 + x2 + x1x2 = 0. Similarly,y = e+ y1 and y−1 = e+ y2 for some y1; y2 ∈M(n; J) su
h that y1+ y2+y1y2 = 0. Then the following equality holds modulo IJ + JI .[x; y℄ = (e+ x1)(e+ y1)(e+ x2)(e+ y2)= e+ x1 + x2 + x1x2 + y1 + y2 + y1y2 = ewhi
h proves (13). �A stable version of Lemma 1A implies that[E(R; I); E(R; J)℄=E(R; I ◦ J)lives inside K1(R; I ◦ J).



176 R. HAZRAT, N. VAVILOV, Z. ZHANGProof of Theorem 13. By Lemma 14 one hasE(n;A; IJ + JI) 6 [E(2n;A; I); E(2n;A; J)℄
6 [GL(n;A; I);GL(n;A; J)℄ 6 [GL(n;A; I); E(2n;A; J)℄

6 [GL(2n;A; I); E(2n;A; J)℄ = [E(2n;A; I); E(2n;A; J)℄:By Lemma 1A one has [GL(n;A; I);GL(n;A; J)℄ 6 GL(n;R; IJ+JI). Onthe other hand, by Lemma 15[E(2n;A; I); E(2n;A; J)℄ ∩GL(n;R; IJ + JI) 6 [E(n;A; I); E(n;A; J)℄;so that [GL(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄;as 
laimed. �There are (
ounter)examples that the Mason{Stothers Theorem doesnot hold for an arbitrary module �nite ring [10℄. However, re
ently Stepa-nov and Vavilov [129℄ proved Bass' Theorem 12 for any 
ommutative ringand n > 3. The authors, using Bak's lo
alisation and pat
hing method,extended the theorem to all module �nite rings [49℄. Then in [131℄, usingthe Hall-Witt identity, a very short proof for this theorem was found. Wein
lude this proof here. We refer to Bass' Theorem in this setting as thegeneralised 
ommutator formula.Theorem 1A (Generalized 
ommutator formula). Let A be a module �-nite R-algebra and I; J be two-sided ideals of A. Then[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄:Proof. We �rst prove[E(n;A; I);GL(n;A; J)℄ 6 [E(n;A; I); E(n;A; J)℄: (14)Writing E(n;A; I) = [E(n;A); E(n;A; I)℄ by Theorem 11 and then usingthe three subgroup lemma, i.e., [[F;H ℄; L℄ 6 [[F;L℄; H ℄[F; [H;L℄℄ for threenormal subgroups F;H and L of a group G, we have[E(n;A; I);GL(n;A; J)℄ = [[E(n;A); E(n;A; I)℄;GL(n;A; J)]
6

[[E(n;A);GL(n;A; J)℄; E(n;A; I)][E(n;A); [E(n;A; I);GL(n;A; J)℄]:But using Theorem 11,
[[E(n;A);GL(n;A; J)℄; E(n;A; I)] = [E(n;A; I); E(n;A; J)℄:
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e, along with Theorem 11 again,we get
[E(n;A); [E(n;A; I);GL(n;A; J)℄] 6 [E(n;A);GL(n;A; IJ + JI)℄

6 E(n;A; IJ + JI) 6 [E(n;A; I); E(n;A; J)℄:The in
lusion (14) now follows. The opposite in
lusion is obvious. �In the similar manner one 
an establish the generalised 
ommutatorformula in the setting of unitary groups and Chevalley groups. Again, inthese setting the 
al
ulations are more 
hallenging. We in
lude the proofof the unitary version of Lemma 1A as an indi
ation of 
omplexity of
al
ulations. Re
all from §5 that(I;�) ◦ (J;�) = (IJ + JI;�min(IJ + JI) + J� + I�):Lemma 1B. Let (I;�) and (J;�) be two form ideals of a form ring(A;�). ThenEU(2n; (I;�) ◦ (J;�)) 6 [FU(2n; I;�);FU(2n; J;�)℄
6 [EU(2n; I;�);EU(2n; J;�)℄ 6 [GU(2n; I;�);GU(2n; J;�)℄

6 GU(2n; (I;�) ◦ (J;�)):Proof. We �rst showEU(2n; (I;�) ◦ (J;�)) 6 [FU(2n; I;�);FU(2n; J;�)℄: (15)It is well known that EU(2n; (I;�)◦(J;�)) is generated by Ti;j(�)Tj;i(�)with � ∈ I ◦ J , � ∈ A when i 6= ±j and with � ∈ �−("(i)+1)=2� ◦ � and� ∈ �("(i)−1)=2� when i = −j. We divide the proof into 
ases a

ordingthe length of the elementary element.Case I. Ti;j(�) is a short root, namely i 6= ±j. Then � ∈ I ◦ J . It issuÆ
ient show that Ti;j(a1b1 + a2b2)Tj;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄for any a1; a2 ∈ I and b1; b2 ∈ J . By (R2), we haveTi;j(a1b1 + a2b2)Tj;i(�) = Ti;j(a1b1)Ti;j (�)Ti;j(a2b2)Tj;i(�):We will show the �rst fa
tor of the right hand side of the above equation,and left the se
ond to the reader. Choose a k 6= ±i;±j. Using (R4), the
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tor 
an be rewritten as a 
ommutatorTi;j(a1b1)Tj;i(�) = [Ti;k(a1); Tk;j(b1)℄Tj;i(�)= [Ti;k(a1)Tj;i(�); Tk;j(b1)Tj;i(�)℄:= [[Ti;k(a1); Tj;i(−�)℄Ti;k(a1); [Tk;j(b1); Tj;i(−�)℄Tk;j(b1)]:Again by (R4), we have
[[Ti;k(a1); Tj;i(−�)℄Ti;k(a1); [Tk;j(b1); Tj;i(−�)℄Tk;j(b1)]= [Tj;k(a1�)Ti;k(a1); Tk;i(−�b1)Tk;j(b1)]:Clearly a1�; a1 ∈ I and −�b1; b1 ∈ J , thusTi;j(a1b1)Tj;i(�) = [Tj;k(a1�)Ti;k(a1); Tk;i(−�b1)Tk;j(b1)]

∈ [FU(2n; I;�);FU(2n; J;�)℄: (16)This �nishes the proof of Case I.Case II. Ti;j(�) is a long root, namely i = −j. Therefore we have � ∈�−("(i)+1)=2� ◦ �. Without loss of generality, we may assume that i < 0.Hen
e � ∈ � ◦�. By de�nition,� ◦� = �J +�I + �min(IJ + JI):It suÆ
es to show thatTi;−i(�1 + �2 + �3)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄with �1 ∈ �J , �2 ∈ �I and �2 ∈ �min(IJ + JI). By (R2),Ti;−i(�1+�2+�3)T−i;i(�)=Ti;−i(�1)T−i;i(�)Ti;−i(�2)T−i;i(�)Ti;−i(�3)T−i;i(�):We prove one by one that ea
h of the fa
tors above belongs to[FU(2n; I;�);FU(2n; J;�)℄:Sin
e �1 ∈ �J , we may rewrite �1 = a
a with a ∈ J and 
 ∈ �.Therefore Ti;−i(�1)T−i;i(�) = Ti;−i(a
a)T−i;i(�):Choose a j 6= i and j < 0. Equation (R6) implies thatTi;−i(a
a)T−i;i(�) = (Ti;−j(−a
)[Ti;j(a); Tj;−j(
)℄)T−i;i(�)= Ti;−j(−a
)T−i;i(�)[Ti;j(a); Tj;−j(
)℄T−i;i(�)= [Ti;−j(−a
); T−i;i(�)℄Ti;−j(−a
)[Ti;j(a); Tj;−j(
)℄T−i;i(�): (17)
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tor[Ti;−j(−a
); T−i;i(�)℄ = T−j;j(−�
a�
a)T−i;−j(��
a):Be
ause 
a�
a ∈ �min(I ◦ J) and ��
a ∈ I ◦ J , we haveT−j;j(−�
a�
a)T−i;−j(��
a) ∈ FU(2n; (I;�) ◦ (J;�))
6 [FU(2n; I;�);FU(2n; J;�)℄:Furthermore, 
a ∈ I ◦ J implies the se
ond fa
tor of (17)Ti;j(−
a) ∈ FU(2n; (I;�) ◦ (J;�)) 6 [FU(2n; I;�);FU(2n; J;�)℄:As for the last fa
tor of (17),[Ti;j(a); Tj;−j(
)℄T−i;i(�) = [Ti;j(a)T−i;i(�); Tj;−j(
)T−i;i(�)℄= [[Ti;j(a); T−i;i(�)℄Ti;j(a); Tj;−j(
)]:Apply (R6) to the �rst 
omponent of the 
ommutator above shows that[Ti;j(a); T−i;i(�)℄Ti;j(a) = T−j;j(�a�a)T−i;j(−�a)Ti;j(a) ∈ FU(2n; J;�):Thus Ti;−i(�1)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:A similar argument, whi
h is left to the reader, shows thatTi;−i(�2)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:For the third fa
tor of (16), we haveTi;−i(�3)T−i;i(�) ∈ Ti;−i(�min(IJ + JI))T−i;i(�):By de�nition,�min(IJ + JI) = {a− �a | a ∈ IJ + JI}+ 〈b
b | b ∈ IJ + JI; 
 ∈ �〉:Hen
e, we shall show that for any given �4 and �5 whi
h belong to the�rst and se
ond summands of the above equation, respe
tively, one hasTi;−i(�4)T−i;i(�) and Ti;−i(�5)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:For the �rst in
lusion, take a typi
al generator 
1d1+d2
1−�
1d1 + d2
2 of

{a− �a | a ∈ IJ + JI} with 
1; 
2 ∈ I and d1; d2 ∈ J . It suÆ
es to provethatTi;−i(
1d1 + d2
2 − �
1d1 + d2
2)T−i;i(�)= Ti;−i(
1d1 − �
1d1)T−i;i(�)Ti;−i(d2
2 − �d2
2)T−i;i(�)
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ommutator subgroup. We shall prove this in-
lusion for Ti;−i(
1d1 − �
1d1)T−i;i(�) and the rest follows by the samearguments.Choose a j 6= i and j < 0. Using (R5), we getTi;−i(
1d1 − �
1d1)T−i;i(�) = [Ti;j(
1); Tj;−i(d1)℄T−i;i(�)= [Ti;j(
1)T−i;i(�); Tj;−i(d1)T−i;i(�)℄= [[Ti;j(
1); T−i;i(�)℄Ti;j(
1); [Tj;−i(d1); T−i;i(�)℄Tj;−i(d1)]:By (R6), [Ti;j(
1); T−i;i(�)℄ 
an be written as a produ
t of elements fromFU(2n; I;�) and [Tj;−i(d1); T−i;i(�)℄ a produ
t of elements fromFU(2n; J;�). ThusTi;−i(�4)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:Finally, as �5 ∈ 〈b
b | b ∈ IJ +JI; 
 ∈ �〉, we redu
e our proof by (R2)to the 
ase �5 = (

∑k ak)
(∑k ak); with ak ∈ IJ + JI:By indu
tion, it 
an be further redu
ed to�5 = (a1b1 + b2a2)
a1b1 + b2a2with a1; a2 ∈ I and b1; b2 ∈ J . The above equation 
an be rewritten as�5 = a1b1
a1b1 + b2a2
b2a2 + a1b1
a2b2 + a2b2
a1b1= a1b1
a1b1 + b2a2
b2a2 + (a1b1
a2b2 − �a1b1
a2b2):The last summand is of the same form as �4's, hen
e it follows immediatelyby the proof of �4 thatTi;−i(a1b1
a2b2 − �a1b1
a2b2)T−i;i(�) ∈ [FU(2n; I;�);FU(2n; J;�)℄:Now 
onsider the �rst two summands. Note thata1b1
a1b1 = a1(b1
b1)a1and b2a2
b2a2 = b2(a2
a2)b2:
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b1)a1 and b2(a2
a2)b2belong to �I and �J respe
tively. The proofs for �1 and �2 show thatTi;−i(a1(b1
b1)a1)T−i;i(xi)Ti;−i(a2(b2
b2)a2)T−i;i(xi)
∈ [FU(2n; I;�);FU(2n; J;�)℄:This proves (15). We are left to show that[GU(2n; I;�);GU(2n; J;�)℄ 6 GU(2n; (I;�) ◦ (J;�)): (18)We �rst show that (18) holds for the stable unitary groups, namely that[GU(I;�);GU(J;�)℄ 6 GU((I;�) ◦ (J;�)): (19)In the stable level, we have in
lusionsEU((I;�) ◦ (J;�)) 6 [EU(I;�);EU(J;�)℄ 6 [GU(I;�);GU(J;�)℄ (20)and [EU(I;�);EU(J;�)℄ 6 GU((I;�) ◦ (J;�)): (21)Sin
e the subgroup [GU(I;�);GU(J;�)℄ is normalized by E(A;�), ap-plying Theorem 10, we 
an 
on
lude that there exists a unique form ideal(K;
) su
h thatEU(K;
) 6 [GU(I;�);GU(J;�)℄ 6 GU(K;
): (22)By Identity (C7), we get[[GU(I;�);GU(J;�)℄;EU(A;�)℄

6 [[GU(I;�);EU(A;�)℄;GU(J;�)℄ · [[GU(J;�);EU(A;�)℄;GU(I;�)℄:But the absolute 
ommutator formula implies that[[GU(I;�);EU(A;�)℄;GU(J;�)℄ · [[GU(J;�);EU(A;�)℄;GU(I;�)℄= [EU(I;�);EU(J;�)℄: (23)Thus, [[GU(I;�);GU(J;�)℄;EU(A;�)℄ 6 [EU(I;�);EU(J;�)℄: (24)Again by the general 
ommutator formula and (21), we haveEU((I;�) ◦ (J;�)) = [EU((I;�) ◦ (J;�));EU(A;�)℄
6 [[EU(I;�);EU(J;�)℄;EU(A;�)℄

6 [GU((I;�) ◦ (J;�));EU(A;�)℄ = EU((I;�) ◦ (J;�)): (25)
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ommutator of (24) with EU(A;�) and applying theinequalities obtained in (25) we get
[[[GU(I;�);GU(J;�)℄;EU(A;�)℄;EU(A;�)] = EU((I;�) ◦ (J;�)):Using in
lusions (22), we see thatEU(K;
) = [[EU(K;
);EU(A;�)℄;EU(A;�)℄
6

[[[GU(I;�);GU(J;�)℄;EU(A;�)℄;EU(A;�)] = EU((I;�) ◦ (J;�))= [[EU((I;�) ◦ (J;�));EU(A;�)℄;EU(A;�)℄
6

[[[GU(I;�);GU(J;�)℄;EU(A;�)℄;EU(A;�)]
6 [[GU(K;
);EU(A;�)℄;EU(A;�)℄ = EU(K;
):Thus, we 
an 
on
lude that EU(K;
) = EU((I;�) ◦ (J;�)). This impliesthat (K;
) = (I;�) ◦ (J;�), see the se
ond paragraph of the proof of [37,Theorem 5.4.10℄. Substituting this equality in (22), we see that in
lusion(19) holds at the stable level, as 
laimed.Let ' denote the usual stability embedding ' :GU(2n;A;�)→GU(A;�).Then'([ GU(2n; I;�);GU(2n; J;�)℄) = ['( GU(2n; I;�)); '(GU(2n; J;�))℄< [ GU(I;�);GU(J;�)℄:In parti
ular, the result at the stable level implies that'([ GU(2n; I;�);GU(2n; J;�)℄) 6 '( GU(2n;A;�)) ∩GU((I;�) ◦ (J;�)):On the other hand,'(GU(2n;A;�)) ∩GU((I;�) ◦ (J;�)) = '(GU(2n; (I;�) ◦ (J;�))):Sin
e ' is inje
tive, we 
an 
on
lude that[GU(2n; I;�);GU(2n; J;�)℄ 6 GU(2n; (I;�) ◦ (J;�)):This �nishes the proof. �We 
an state the unitary version of generalised 
ommutator formula.Theorem 1B. Let n > 3, R be a 
ommutative ring, (A;�) be a form ringsu
h that A is a module �nite R-algebra. Further, let (I;�) and (J;�) betwo form ideals of the form ring (A;�). Then[ EU(2n; I;�);GU(2n; J;�)℄ = [EU(2n; I;�);EU(2n; J;�)℄:
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tually, in the 
ommutative 
ase the prin
ipal 
ongruen
e subgroup inthe left hand side of the equalities 
an be repla
ed by the full 
ongruen
esubgroup. In other words, when R is 
ommutative, one has[E(n;R; I); C(n;R; J)℄ = [E(n;R; I); E(n;R; J)℄:Similarly, when A is 
ommutative, one has[ EU(2n; I;�);CU(2n; J;�)℄ = [EU(2n; I;�);EU(2n; J;�)℄:On the other hand, it is easy to 
onstru
t non-
ommutative 
ounter-examples to these stronger assertions, see [76℄.Finally, for Chevalley groups the 
orresponding result was �rst oÆ
iallystated by You Hong [138, Theorem 1℄, see also [46, Lemmas 17,19℄.Lemma 1C. Let rk(�) > 2. In the 
ases � = B2;G2 assume that R doesnot have residue �elds F2 of 2 elements and in the 
ase � = B2 assumeadditionally that any 
 ∈ R is 
ontained in the ideal 
2R+ 2
R.Then for any two ideals I and J of the ring R one has the followingin
lusionE(�; R; IJ) 6 [E(�; R; I); E(�; R; J)℄ 6 [E(�; R; I); G(�; R; J)℄
6 [G(�; R; I); C(�; R; J)℄ 6 G(�; R; IJ):For groups of rank 2, these additional assumptions are indeed ne
essary.It is 
lassi
ally known that when the ground ring R has residue �elds of2 elements, the groups of types B2 and G2 are not perfe
t. Thus, theleft-most in
lusion fails even at the absolute level, when I = J = R.The se
ond assumption for B2 is not visible at the absolute level. Butwithout that assumption the upper and lower levels of the relative 
om-mutator subgroup [E(�; R; I); E(�; R; J)℄ do not 
oin
ide, so that the left-most in
lusion in the above lemma should be repla
ed byE(�; R; IJ; I2J + 2IJ + IJ2) 6 [E(�; R; I); E(�; R; J)℄:Here, E(�; R; I; J) is the elementary subgroup 
orresponding to an admis-sible pair (I; J) in the sense of Abe, where I is an ideal of R, expressingthe short root level (= upper level), whereas a Jordan ideal J , expressingthe long root level (= lower level), plays the role of a form parameter. Notto 
ompli
ate things any further, in the sequel we always impose theseadditional restri
tions on R, when � = B2;G2. These two 
ases, espe
iallythat of the group Sp(4; R), require separate analysis anyway, [143, 144℄.
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e Chevalley groups of types other than Al are only de�ned over
ommutative rings, we 
an state the next result with the full 
ongruen
esubgroup right from the outset. It is (essentially) [46, Theorem 3℄, withslightly weaker assumptions for Chevalley groups of rank 2.Theorem 1C. Let � be a redu
ed irredu
ible root system, rk(�) > 2.Further, let R be a 
ommutative ring, and I; J E R be two ideals of R.In the 
ases � = B2;G2 assume that R does not have residue �elds F2 of2 elements and in the 
ase � = B2 assume additionally that any 
 ∈ R is
ontained in the ideal 
2R+ 2
R. Then[E(�; R; I); C(�; R; J)℄ = [E(�; R; I); E(�; R; J)℄:A
tually, relative standard 
ommutator formulas 
an be proven by lo-
alisation, as in [49, 45, 46℄, and this is pre
isely the proof on whi
h mostgeneralisations are based. Otherwise, they 
an be redu
ed to the absolutestandard 
ommutator formulas by level 
al
ulations, as in [138, 131, 45,46℄. Of 
ourse, the usual proofs of the absolute 
ommutator formulas them-selves in this generality involve some forms of lo
alisation, at least in thenon-
ommutative 
ase.Before pro
eeding to higher generalisations, we dwell a bit more on thestru
ture and generation of the relative 
ommutator subgroups [E(R; I),E(R; J)℄ that appear in these theorems. These results are essentially ele-mentary, sheer abstra
t or algebrai
 group theory, and do not use lo
ali-sation. But they are useful and amusing, and serve to motivate, prove oramplify our main theorems.
§7. Relative 
ommutator subgroups are not elementaryIn view of Theorem 1A, it is natural to ask, whether the 
ommutatorsof relative elementary subgroups are themselves elementary of the 
orre-sponding level, in other words, whether[E(A; I); E(A; J)℄ = E(A; I ◦ J) (26)holds?This is known to be the 
ase in many important 
lassi
al situations, forinstan
e, at the absolute level, where I = A or J = A. In fa
t, this equalityholds under mu
h weaker assumptions. Spe
i�
ally, it is easily veri�edwhen the ideals I and J are 
omaximal, I + J = A. We will reprodu
ethe proof of this fa
t in the setting of general linear group from [131℄. The
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an be nowfound in [45, Theorem 3℄, and [46, Theorem 3℄, respe
tively.Theorem 2A. Let A be a quasi-�nite ring, n > 3. Then for any two
omaximal ideals I; J E A, I + J = A, one has[E(n;A; I); E(n;A; J)℄ = E(n;A; I ◦ J):Proof. First observe that an appli
ation of (E1) shows that for any idealsI and J of A, we haveE(n;A; I)E(n;A; J) = E(n;A; I + J): (27)Sin
e I and J are 
omaximal, from (27) it follows E(n;A; I)E(n;A; J) =E(n;A).NowE(n;A; I) = [E(n;A; I); E(n;A)℄ = [E(n;A; I); E(n;A; I)E(n;A; J)℄:Thus using Lemma 1A we 
an writeE(n;A; I) 6 [E(n;A; I); E(n;A; I)℄[E(n;A; I); E(n;A; J)℄
6 [E(n;A; I); E(n;A; I)℄ GL(n;A; IJ + JI):Commuting this in
lusion with E(n;A; J), we see that[E(n;A; I); E(n;A; J)℄

6
[[E(n;A; I); E(n;A; I)℄; E(n;A; J)][GL(n;A; IJ + JI); E(n;A; J)]:Applied to the se
ond fa
tor, the standard 
ommutator formula, Theo-rem 11, shows that[GL(n;A; IJ + JI); E(n;A; J)℄

6 [GL(n;A; IJ + JI); E(n;A)℄ = E(n;A; IJ + JI):On the other hand, applying Lemma 1A to the �rst fa
tor, and theninvoking the standard 
ommutator formula again, we have
[[E(n;A; I); E(n;A; J)℄; E(n;A; I)] 6 [GL(n;A; IJ + JI); E(n;A; I)℄

6 [GL(n;A; IJ + JI); E(n;A)℄ = E(n;A; IJ + JI):Thus we have [E(n;A; I); E(n;A; J)℄ 6 E(n;A; IJ + JI):Combining this with Lemma 1A, the proof is 
omplete. �



186 R. HAZRAT, N. VAVILOV, Z. ZHANGTheorem 2B. Let n > 3, and (A;�) be an arbitrary form ring for whi
habsolute standard 
ommutator formulae are satis�ed. Then for any two
omaximal form ideals (I;�) and (J;�) of the form ring (A;�), I+J = A,one has the following equality[EU(2n; I;�);EU(2n; J;�)℄ = EU(2n; IJ + JI; J�+ I�+�min(IJ + JI)):Theorem 2C. Let � be a redu
ed irredu
ible root system, rk(�) > 2.Further, let A be a 
ommutative ring, and I; J E A be two ideals of A.In the 
ases � = B2;G2 assume that A does not have residue �elds F2 of2 elements. Then for any two 
omaximal ideals I; J E A, I + J = A, onehas the following equality[E(�; A; I); E(�; A; J)℄ = E(�; A; IJ):Observe, that unlike Theorem 1C, in Theorem 2C the extra assumptionon R for type B2 turned out to be redundant (due to more a

urate level
al
ulations in terms of admissible pairs).7.1. Despite Theorem 2A, the relative 
ommutator subgroup [E(A; I),E(A; J)℄ 
annot be always elementary of the form (26). We reprodu
efrom [78, 76℄ one su
h example based on the 
al
ulation of relative K1-fun
tors for Dedekind rings of arithmeti
 type by Hyman Bass, John Mil-nor and Jean-Pierre Serre [17℄. We do not make any attempt to re
all theexpli
it formula forSK1(n;A; I) = SL(n;A; I)=E(n;A; I)in the general 
ase. Instead, we 
ite the expli
it answer for the �rst non-trivial 
ase of Gaussian integers A = Z[i℄. Consider the prime ideal p =(1 + i)A. Then for any n > 3 and any ideal I E A one hasSK1(n;A; I) = SK1(n;A; ps); s = ordp(I):On the other hand,
| SK1(n;A; ps)| = 









1; s 6 3;2; s = 4; 5;4; s > 6:Now a straightforward 
al
ulation shows thatE(n;Z[i℄; p6) < [E(n;Z[i℄; p3); E(n;Z[i℄; p3)℄= [SL(n;Z[i℄; p3); SL(n;Z[i℄; p3)℄ < SL(n;Z[i℄; p6);
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lusions are stri
t. In fa
t, both indi
es are equal to 2.This, and many further examples of arithmeti
 and algebra-geometri
nature show that in general the relative 
ommutator subgroup [E(n;A; I),E(n;A; J)℄ is stri
tly larger than the relative elementary subgroupE(n;A; I ◦ J).In parti
ular, it follows that in general[E(n;A; I); E(n;A; J)℄ 6= [E(n;A;K); E(n;A; L)℄for two pairs of ideals (I; J) and (K;L), su
h that I ◦ J = K ◦ L. Infa
t, this already follows from the previous example, for pairs (I; J) and(K;L) = (I ◦ J;A), but it is easy to 
onstru
t many further examples,mu
h fan
ier than that.Summarising the above, we 
an 
on
lude that in general the doublerelative 
ommutator subgroups do not redu
e to relative elementary sub-groups, and reveal some new layers of the internal stru
ture of K1(A; I).Amazingly, all higher multiple 
ommutator subgroups redu
e to dou-ble 
ommutator subgroups. In other words, forming su

essive 
ommu-tators of relative elementary subgroups never results in anything new in-side K1(A;K), apart from the groups[E(A; I); E(A; J)℄=E(A;K) 6 K1(A;K);for some other ideals I and J , su
h that I ◦ J = K. We will dis
uss thisin §11.
§8. Generators of relative 
ommutator subgroupsHere, we des
ribe generators of relative 
ommutator subgroups [E(A; I),E(A; J)℄ as normal subgroups of E(A). These results are elementary alge-brai
 group theory, but they are an essential 
omplement to Theorem 1A,an important tool in the proof of multiple 
ommutator formula, and thestarting point for results on relative 
ommutator width.By Lemma 1A the relative 
ommutator subgroup [E(A; I); E(A; J)℄
ontains the elementary subgroup E(A; I ◦ J). In parti
ular, it 
ontainsthe generators of that group. However, we know that in general [E(A; I),E(A; J)℄ may be stri
tly larger, than E(A; I ◦J) (see §7). Thus, we have toprodu
e the missing generators. As in the 
ase of the relative elementarysubgroups E(A; I) themselves, these generators will sit in the fundamen-tal SL2's and are in fa
t 
ommutators of some elementary generators ofE(�; A; I) and E(�; A; J).



188 R. HAZRAT, N. VAVILOV, Z. ZHANGLemma 2A. Let A be a ring and I; J be two-sided ideals of A. Then[E(n;A; I); E(n;A; J)℄is generated as a group by the elements of the form
[ej;i(�); ei;j (a)ej;i(�)];
[ej;i(�); ei;j(�)℄;
ei;j(��);
ei;j(��); 





















(28)where 1 6 i 6= j 6 n, � ∈ I, � ∈ J , a ∈ A and 
 ∈ E(n;A).Proof. A typi
al generator of [E(n;A; I); E(n;A; J)℄ is of the form [e; f ℄,where e ∈ E(n;A; I) and f ∈ E(n;A; J). Thanks to Lemma 3, we mayassume that e and f are produ
ts of elements of the formei =ep′;q′ (a) eq′;p′(�) and fj =ep;q(b) eq;p(�);where a, b ∈ A, � ∈ I and � ∈ J , respe
tively. Applying (C1+) and then(C2+), it follows that [E(n;A; I); E(n;A; J)℄ is generated by elements ofthe form 
[ei′;j′ (a)ej′;i′(�); ei;j (b)ej;i(�)℄;where 
 ∈ E(n;A). Furthermore,
[ei′;j′ (a)ej′;i′(�); ei;j (b)ej;i(�)℄ =
ei′;j′ (a) [ej′;i′(�); ei′;j′ (−a)ei;j(b)ej;i(�)℄:The normality of E(n;A; J) implies that ei′;j′ (−a)ei;j(b)ej;i(�) ∈ E(n;A; J),whi
h is a produ
t of ep;q(a)eq;p(�), a ∈ A and � ∈ J by Lemma 3. Againby (C1+), one redu
es the proof to the 
ase of showing that[ei′;j′(�); ei;j (a)ej;i(�)℄is a produ
t of the generators listed in (28). We need to 
onsider thefollowing 
ases:
• If i′ = j; j′ = i: Then there is nothing to prove.
• if i′ = j; j′ 6= i:[ej;j′(�); ei;j (a)ej;i(�)℄ = ei;j(a)[ei;j (−a)ej;j′(�); ej;i(�)℄= ei;j(a)[[ei;j(−a); ej;j′(�)℄ej;j′ (�); ej;i(�)℄= ei;j(a)[ei;j′ (−a�)ej;j′(�); ej;i(�)℄:



THE COMMUTATORS OF CLASSICAL GROUPS 189Applying now (C2),[ei;j′(−a�)ej;j′ (�); ej;i(�)℄=(ei;j′ (−a�)[ej;j′ (�); ej;i(�)℄)[ei;j′(−a�); ej;i(�)℄=[ei;j′(−a�); ej;i(�)℄=[ej;i(�); ei;j′ (−a�)℄−1=ej;j′(−�a�)−1=ej;j′(�a�):Thus [ej;j′ (�); ei;j (a)ej;i(�)℄ = ei;j (a)ej;j′(�a�)whi
h satis�es the lemma.
• if i′ 6= j; j′ = i: The argument is similar to the previous 
ase.
• if i′ 6= j; j′ 6= i: We 
onsider four 
ases:{ if i′ = i; j′ = j:[ei;j(�); ei;j (a)ej;i(�)℄ = ei;j (a)[ei;j(�); ej;i(�)℄:{ if i′ = i; j′ 6= j:[ei;j′(�); ei;j (a)ej;i(�)℄ = ei;j(a)[ei;j′ (�); ej;i(�)℄= ei;j(a)ej;j′(−��):{ if i′ 6= i; j′ = j:[ei′;j(�); ei;j (a)ej;i(�)℄ = ei;j(a)[ei′;j(�); ej;i(�)℄= ei;j(a)ei;i′(��):{ if i′ 6= i; j′ 6= j:[ei′;j′ (�); ei;j (a)ej;i(�)℄ = 1:This �nishes the proof. �Theorem 3A. Let A be a quasi-�nite R-algebra with 1, let n > 3, andlet I, J be two-sided ideals of A. Then the mixed 
ommutator subgroup[E(n;A; I); E(n;A; J)℄ is generated as a group by the elements of the form[eji(�); eij (a)eji(�)℄;[eji(�); eij(�)℄;zij(��; a);zij(��; a); (29)



190 R. HAZRAT, N. VAVILOV, Z. ZHANGwhere 1 6 i 6= j 6 n, � ∈ I, � ∈ J , a ∈ A.Proof. By Lemma 2A, the 
urrent generating set (29) generates[E(n;A; I); E(n;A; J)℄ as a normal subgroup. Therefore, it suÆ
es to showthat any 
onjugates of the generators (29) is a produ
t of these generators.Let g be a generator listed in (29), and 
 ∈ E(n;A). Lemma 1A shows thatg ∈ GL(n;A; I ◦ J). Now applying the general 
ommutator formula (seeTheorem 11), one obtains[
; g℄ ∈ [GL(n;A; I ◦ J); E(n;A)℄ = E(n;A; I ◦ J):Therefore by Lemma 3, [
; g℄ is a produ
t of zij(��; a) and zij(��; a) with� ∈ I , � ∈ J , a ∈ A. It follows immediately that 
g
−1 is a produ
t of thegenerators listed in (29). This 
ompletes the proof. �A 
loser look at the generating set in Theorem 3A reveals an interest-ing fa
t that all the generators are taken from [E(n; I); E(n;A; J)℄. Thisimplies the following 
orollary.Corollary 1A. Let A be a module �nite ring and I and J two sided idealsof A. Then[E(n; I); E(n;A; J)℄ = [E(n;A; I); E(n; J)℄ = [E(n;A; I); E(n;A; J)℄:Corollary 16. Let A be an quasi-�nite algebra with identity, n > 3, andlet I, J be two-sided ideals of A. Then the absolute mixed 
ommutatorsubgroup [E(n; I); E(n; J)℄ is a normal subgroup of E(n;A).Proof. Let g be a typi
al element in [E(n; I); E(n; J)℄ and let 
 ∈ E(n;A).As in the proof of Theorem 3A, we have[
; g℄ ∈ E(n;A; I ◦ J) 6 [E(n; I); E(n; J)℄:It follows immediately that 
g
−1 ∈ [E(n; I); E(n; J)℄. Thus[E(n; I); E(n; J)℄ is a normal subgroup of E(n;A). �A similar result for unitary groups is [47, Theorem 9℄, whi
h is morete
hni
al. To somewhat shorten the next statement, we des
ribe 
onditionson the generators in the form Tji(�) ∈ EU(2n; I;�). Re
all that (as in [15,38, 44℄) that this means that � ∈ I , for i 6= ±j, and � ∈ �, for i = −j.Lemma 2B. Let (A;�) be a form ring and (I;�), (J;�) be two formideals of (A;�). Then as a normal subgroup of EU(2n;R;�), n > 3, themixed 
ommutator subgroup [ EU(2n; I;�);EU(2n; J;�)℄ is generated bythe elements of the form
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• [Tji(�); Tij (�)Tji(�)℄,
• [Tji(�); Tij(�)℄,
• Tij(��) and Tij(��),where Tji(�) ∈ EU(2n; I;�), Tji(�) ∈ EU(2n; J;�), Tij(�) ∈ EU(2n;A;�),and Tij(�) ∈ EU(2n; (I;�) ◦ (J;�)).The proof for Chevalley groups is similar, with some additional 
ompli-
ations in the rank 2 
ase. The following result is of [48, Theorem 2℄.Lemma 2C. Let rk(�) > 2 and let I, J be two ideals of a 
ommutativering R. In the 
ases � = B2;G2 assume that R does not have residue�elds F2 of 2 elements and in the 
ase � = B2 assume additionally thatany 
 ∈ R is 
ontained in the ideal 
2R+ 2
R.Then as a normal subgroup of the elementary Chevalley group E(�; R)the mixed 
ommutator subgroup [E(�; R; I); E(�; R; J)℄ is generated by theelements of the form
• [x�(�); x−�(�)x�(�)℄,
• [x�(�); x−�(�)℄,
• x�(��),where � ∈ �, � ∈ I, � ∈ J , � ∈ R.A
tually, the proof of this result in [48℄ repla
es most of expli
it �d-dling with the Chevalley 
ommutator formula and 
ommutator identities,by a referen
e to some obvious properties of paraboli
 subgroups, whi
hmakes it 
onsiderably less 
omputational, than the proofs of Lemma 1Aand Lemma 1B in [50, 46℄.We sket
h the proof of Lemma 2C as well. First of all, observe that theseelements indeed belong to the relative 
ommutator subgroups [E(R; I),E(R; J)℄ by Lemma 1C. Next, re
all that the elementary generators of theelementary groups E(R; I) themselves are 
lassi
ally known, and look asfollows:
• zji(�; �) = eij(�)eji(�)eij(−�), for GLn, (see Lemma 3).
• Zji(�; �) = Tij(�)Tji(�)Tij(−�), for unitary groups, (see [15℄).
• z�(�; �) = x−�(�)x�(�)x−�(−�), for Chevalley groups, (see [97,112, 117, 3℄).Observe, that these generators are pre
isely the se
ond fa
tors of the�rst type of generators in the above Lemma 2C, and we use this shorthandnotation in the sequel. The usual 
ommutator identities imply that as a



192 R. HAZRAT, N. VAVILOV, Z. ZHANGnormal subgroup [E(�; R; I); E(�; R; J)℄is generated by the 
ommutators of the form [z�(�; �); z�(�; �)℄. Sin
e weare working up to elementary 
onjugation, we 
an repla
e these generatorsby [x�(�); x−�(−�)z�(�; �)℄:Sin
e the groups E(�; R; J) are normal in E(�; R), the 
onjugatesx−�(−�)z�(�; �) 
an be again expressed as produ
ts of elementary gene-rators. On
e more applying 
ommutator identities, we see that as a nor-mal subgroup [E(�; R; I); E(�; R; J)℄ is generated by the 
ommutators[x�(�); z�(�; �)℄. At this point, we are left with three options:
• � = �, and we get the �rst type of generators,
• � = −�, and we get the se
ond type of generators, up to 
onjuga-tion,
• � 6= ±�. If � and � are stri
tly orthogonal, then [x�(�); z�(�; �)℄ =e. Thus, we 
an assume that � and � generate an irredu
ible rootsystem of rank 2, and �ddle with the Chevalley 
ommutator for-mula therein. Alternatively, we 
an 
hoose an order su
h that � isfundamental, whereas � is positive. Then [x�(�); z�(�; �)℄ sits in-side the unipotent radi
al U� of the minimal (=rank 1) standardparaboli
 subgroup P� . On the other hand, by Lemma 1C it sitsinside G(�; R; IJ). Clearly, U� ∩ G(�; R; IJ) 6 E(�; IJ). Thus,in this last 
ase [x�(�); z�(�; �)℄ is a produ
t of generators of thethird type.Theorem 3B. Let n > 3, R be a 
ommutative ring, (A;�) be a form ringsu
h that A is a quasi-�nite R-algebra. Further, let (I;�) and (J;�) betwo form ideals of the form ring (A;�).Then the mixed 
ommutator subgroup [ EU(2n; I;�);EU(2n; J;�)℄ isgenerated as a group by the elements of the form
• [Tji(�); Zji(�; �)℄,
• [Tji(�); Tij(�)℄,
• Zij(�; �),where Tji(�) ∈ EU(2n; I;�), while Tij(�); Zji(�; �) ∈ EU(2n; J;�), andZij(�; �) ∈ EU (2n; (I;�) ◦ (J;�)).Theorem 3C. Let rk(�) > 2 and let I, J be two ideals of a 
ommutativering A. In the 
ases � = B2;G2 assume that A does not have residue
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ase � = B2 assume additionally thatany 
 ∈ A is 
ontained in the ideal 
2A+ 2
A.Then the mixed 
ommutator subgroup [E(�; A; I); E(�; A; J)℄ is gener-ated as a group by the elements of the form
• [x�(�); z�(�; �)℄,
• [z�(�); z−�(�)℄,
• z�(��; �),where � ∈ �, � ∈ I, � ∈ J , �;∈ A.Let us sket
h the proof of Theorem 3C. From this proof, it will be 
lear,why a similar sli
k argument does not prove Theorem 3A and Theorem 3Bfor arbitrary asso
iative rings or arbitrary form rings.The set des
ribed in this theorem 
ontains the set des
ribed inLemma 2C, whi
h already generates [E(�; A; I); E(�; A; J)℄ as a normalsubgroup of E(�; A). Therefore, it suÆ
es to show that elementary 
onju-gates of the above generators are themselves produ
ts of su
h generators.Let g be one of these generators and let h ∈ E(�; A). By Lemma 2C, onehas g ∈ G(�; A; IJ). Now the [absolute℄ standard 
ommutator formulaimplies that [h; g℄ ∈ [G(�; A; IJ); E(�; A)℄ = E(�; A; IJ):Being an element E(�; A; IJ), the 
ommutator [h; g℄ is a produ
t of someelementary generators z�(��; �), where � ∈ �, � ∈ I , � ∈ J , � ∈ A. Thus,any 
onjugate hgh−1 = [h; g℄g is a produ
t of some generators of the thirdtype and the generator g itself.In fa
t, mostly this argument relied on elementary 
al
ulations, su
h asthe one needed to prove Lemma 2C and Theorem 3C. But at one instan
ewe had to invoke a spe
ial 
ase of Theorem 1C, the [absolute℄ standard
ommutator formula. This last result is not elementary, and 
ertainly itdoes not hold over arbitrary asso
iative rings. There are expli
it 
ounter-examples to the standard 
ommutator formula in this generality, the �rstof them by Vi
tor Gerasimov [33℄.It seems in
ongruous that [what appears to be℄ a pure group theoreti
result should depend on 
ommutativity 
onditions. This poses the followingproblem.Problem 1. Find elementary proofs of Theorems 3A and 3B that workover arbitrary asso
iative rings/form rings.
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ommutator identities, we su

eeded in proving aslightly weaker version of Theorem 3A, with a somewhat larger set ofgenerators, all of them still sitting inside fundamental GL2's. However, astraightforward 
al
ulation, based on indu
tion on the length of the 
on-jugating element, is so long and appalling, that it strongly dis
ouraged usfrom any attempt to prove the te
hni
ally mu
h fan
ier Theorem 3B forarbitrary form rings along these lines.A 
loser look at the generators in Theorems 3A{3C shows that all ofthem in fa
t belong already to [E(�; I); E(�; A; J)℄. By symmetry, we mayswit
h the role of fa
tors. In parti
ular, this means that Theorems 3A{3Cimply the following 
urious 
orollaries.Corollary 1B. Let n > 3, R be a 
ommutative ring, (A;�) be a formring su
h that A is a quasi-�nite R-algebra. Further, let (I;�) and (J;�)be two form ideals of the form ring (A;�). Then one has[FU(2n; I;�);EU(n; J;�)℄ = [EU(2n; I;�);FU(n; J;�)℄= [EU(2n; I;�);EU(n; J;�)℄:Corollary 1C. Let rk(�) > 2 and let I, J be two ideals of a 
ommutativering A. In the 
ases � = B2;G2 assume that A does not have residue�elds F2 of 2 elements and in the 
ase � = B2 assume additionally thatany 
 ∈ A is 
ontained in the ideal 
2A+ 2
A. Then one has[E(�; I); E(�; A; J)℄ = [E(�; A; I); E(�; J)℄ = [E(�; A; I); E(�; A; J)℄:
§9. Higher 
ommutatorsOn
e we understand double 
ommutators, it is natural to 
onsiderhigher 
ommutators of relative elementary subgroups and 
ongruen
e sub-groups. Let G be a group and H1; : : : ; Hm 6 G be its subgroups. Thereare many ways to form a higher 
ommutator of these groups, dependingon where we put the bra
kets. Thus, for three subgroups F;H;K 6 Gone 
an form two triple 
ommutators [[F;H ℄;K℄ and [F; [H;K℄℄. For foursubgroups F;H;K;L 6 G one 
an form 5 su
h 
ommutators[[[F;H ℄;K℄; L℄; [[F; [H;K℄℄; L℄; [[F;H ℄; [K;L℄℄;[F; [H; [K;L℄℄℄; [F; [[H;K℄; L℄℄: (30)
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t, there are as many as the Catalan number
m = 1(m+ 1)(2mm )ways to arrange the bra
kets involving m + 1 subgroups in a meaningfulway.Usually, we write [H0; H1; : : : ; Hm℄ for the left-normed 
ommutator, de-�ned indu
tively by[H0; : : : ; Hm−1; Hm℄ = [[H0; : : : ; Hm−1℄; Hm℄:To stress that we 
onsider any 
ommutator of these subgroups, with anarbitrary pla
ement of bra
kets, we write [[H0; H2; : : : ; Hm℄℄. Thus, for in-stan
e, [[F;H;K;L℄℄ refers to any of the �ve arrangements in (30).A
tually, a spe
i�
 arrangement of bra
kets usually does not play majorrole in our results { and in fa
t any role whatsoever over 
ommutative rings!{ apart from one important attribute. Namely, what will matter a lot isthe position of the outermost pairs of inner bra
kets. Namely, every higher
ommutator subgroup [[H0; H2; : : : ; Hm℄℄ 
an be uniquely written as[[H0; H2; : : : ; Hm℄℄ = [[[H0; : : : ; Hh℄℄; [[Hh+1; : : : ; Hm℄℄];for some h = 1; : : : ;m−1. This h will be 
alled the 
ut point of our multiple
ommutator. Thus, among the quadruple 
ommutators [[F;H;K;L℄℄, twoarrangements, [[[F;H ℄;K℄; L℄ and [[F; [H;K℄℄; L℄, 
ut at 3; one,[[F;H ℄; [K;L℄℄, 
uts at 2; and the remaining two, [F; [H; [K;L℄℄℄[F; [[H;K℄; L℄℄, 
ut at 1.Now, let Ii, i = 0; 1; : : : ;m, be ideals of the ring A. Our ultimate obje
-tive is to 
ompute the 
ommutator subgroups of 
ongruen
e subgroups[[G(A; I0); G(A; I1); : : : ; G(A; Im)℄℄;but that is a highly strenuous enterprise. So far, we have done it only forthe 
ase G = GLn, provided that m is stri
tly lager than the Bass{Serredimension of A.In §10 we embark on the [somewhat easier℄ 
al
ulation of higher 
om-mutators of relative elementary subgroups[[E(A; I0); E(A; I1); : : : ; E(A; Im)℄℄:Even this turns out to be a rather non-trivial task. In fa
t, we do not seeany other way to do that, but to prove a higher analogue of the standard
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ommutator formula, viz.[[E(A; I0); G(A; I1); : : : ; G(A; Im)℄℄ = [[E(A; I0); E(A; I1); : : : ; E(A; Im)℄℄:This multiple 
ommutator formula will be dis
ussed in §10 and §11. Un-like the general multiple 
ommutator formula in whi
h we are ultimatelyinterested, and whi
h only works for �nite-dimensional rings, this weakerformula holds over arbitrary quasi-�nite/
ommutative rings.Amazingly, the resultingmultiple 
ommutator subgroups will always 
o-in
ide with some double relative 
ommutator subgroups, depending not onthe ideals Ii themselves, but only on two symmetrised produ
ts of theseideals. Sin
e the symmetrised produ
t of ideals is not asso
iative, sometra
es of the initial arrangment will still be visible in these symmetrisedprodu
ts. However, for 
ommutative rings the symmetrised produ
t be-
omes the usual produ
t of ideals, whi
h is asso
iative, so that the resultwill not depend on the arrangement itself either, but only on its 
ut point.We dis
uss these results in §11.
§10. Multiple 
ommutator formulaThe following theorem is the main result of the paper [50℄. Initially, itwas 
on
eived as part of the answer to a problem proposed in [129, 131℄.As a matter of fa
t, it turned out to be of signi�
ant independent interest.The proof of the following result in [50℄ is based on a further enhan
ementof relative lo
alisation whi
h we outline in §13.Theorem 17. Let A be a quasi-�nite R-algebra with identity and Ii, i =0; :::;m, be two-sided ideals of A. Then

[E(n;A; I0);GL(n;A; I1);GL(n;A; I2); : : : ;GL(n;A; Im)]= [E(n;A; I0); E(n;A; I1); E(n;A; I2); : : : ; E(n;A; Im)]: (31)Proof. We prove the statement by indu
tion. For m = 1 this is the gen-eralised 
ommutator formula Theorem 1A[E(n;A; I0);GL(n;A; I1)℄ = [E(n;A; I0); E(n;A; I1)℄:For m = 2, this will be proved in Theorem 6A whi
h will be the �rst stepof indu
tion. Suppose the statement is valid for m − 1 (i.e., there are mideals in the 
ommutator formula). To prove (31), using Theorem 6A, we
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[

[[E(n;A; I0);GL(n;A; I1)℄;GL(n;A; I2)];GL(n;A; I3);: : : ;GL(n;A; Im)]=[

[[E(n;A; I0); E(n;A; I1)℄;E(n;A; I2)];GL(n;A; I3);: : : ;GL(n;A; Im)]:By Lemma 1A, [E(n;A; I0); E(n;A; I1)℄ 6 GL(n;A; I0I1 + I1I0). Thus
[

[[E(n;A; I0); E(n;A; I1)℄; E(n;A; I2)];GL(n;A; I3); : : : ;GL(n;A; Im)]
6

[

[GL(n;A; I0I1+I1I0); E(n;A; I2)];GL(n;A; I3); : : : ;GL(n;A; Im)]:Sin
e there arem ideals involved in the 
ommutator subgroups in the righthand side, by indu
tion we get
[

[GL(n;A; I0I1 + I1I0); E(n;A; I2)];GL(n;A; I3); : : : ;GL(n;A; Im)]= [

[E(n;A; I0I1 + I1I0); E(n;A; I2)]; E(n;A; I3); : : : ; E(n;A; Im)]:Finally again by Lemma 1A,E(n;A; I0I1 + I1I0) 6 [E(n;A; I0); E(n;A; I1)℄:Repla
ing this in the above equation we obtain that the left hand sideof (31) is 
ontained in the right hand side. The opposite in
lusion is obvi-ous. This 
ompletes the proof. �Theorem 4A. Let n > 3, let A be a quasi-�nite ring with 1 and letIi E A, i = 0; : : : ;m, be ideals of A. Then one has[[E(n;A; I0);GL(n;A; I2); : : : ;GL(n;A; Im)℄℄= [[E(n;A; I0); E(n;A; I2); : : : ; E(n;A; Im)℄℄:In this theorem the arrangement of bra
kets on the left hand side maybe arbitrary. But it is essential that the pla
ement of bra
kets on the righthand side 
oin
ides with that on the left hand side. Without this assump-tion the equality may fail dramati
ally, even if all fa
tors are elementary,as we shall see in §11.1. Of 
ourse, the same observation applies to thetheorems below.For unitary groups, similar result is established in [47℄, by essentiallythe same method. However, as one 
ould expe
t, the ne
essary 
al
ulationsare tangibly more 
ompli
ated and require a 
ompletely di�erent level ofte
hni
al strain.



198 R. HAZRAT, N. VAVILOV, Z. ZHANGTheorem 4B. Let n > 3 and let (A;�) be a form ring su
h that A isa quasi-�nite R-algebra over a 
ommutative ring R. Further, let (Ii;�i),i = 0; : : : ;m, be form ideals of (A;�). Then[[EU(2n; I0;�0);GU(2n; I1;�1); : : : ;GU(2n; Im;�m)℄℄= [[EU(2n; I0;�0);EU(2n; I1;�1); : : : ;EU(2n; Im;�m)℄℄:Finally, let us pass to Chevalley groups. We believe that at this point wepossess two independent proofs of the following result. One of them, by theauthors, is 
onventional, and involves a further elaboration of the relative
ommutator 
al
ulus in the style of [46℄. Another one, by A. Stepanov, issomewhat shorter, and employs his method of universal lo
alisation [98℄.But the de�nitive expositions are still missing.Theorem 4C. Let rk(�) > 2 and let Ii E A, i = 0; : : : ;m, be ideals of a
ommutative ring A. In the 
ases � = B2;G2 assume that A does not haveresidue �elds F2 of 2 elements and in the 
ase � = B2 assume additionallythat any 
 ∈ A is 
ontained in the ideal 
2A+ 2
A.Then one has[[E(�; A; I0); G(�; A; I); : : : ; G(�; A; Im)℄℄= [[E(�; A; I0); E(�; A; I1); : : : ; E(�; A; Im)℄℄:These theorems are broad generalisations of the double 
ommutatorformulas. Let us explain, why they do not redu
e to the double formula.Consider three ideals I; J;K of A and form the 
ommutator [[E(A; I),G(A; J)℄, G(A;K)℄. The double 
ommutator formula implies that[[E(A; I); G(A; J)℄; G(A;K)℄ = [[E(A; I); E(A; J)℄; G(A;K)℄:But as we know, the relative 
ommutator subgroup [E(A; I); E(A; J)℄ maybe stri
tly larger, than E(A; I ◦ J) (see §7.1), so it is not at all 
lear, whythe equality[[E(A; I); E(A; J)℄; G(A;K)℄ = [[E(A; I); E(A; J)℄; E(A;K)℄should hold.This is indeed the key new leap in the proof of Theorem 17, and the
ommutator 
al
ulus developed in [49, 45, 46℄ is not powerful enough here.This step requires a new layer of the relative 
ommutator 
al
ulus, whi
hwe dis
uss in §13.
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§11. Multiple  double11.1. In 
onne
tion with Theorems 6 and 7 it is natural to ask, whetherthe equality[[E(A; I); E(A; J)℄; E(A;K)℄ = [E(A; I); [E(A; J); E(A;K)℄℄ (32)holds for any three ideals I , J and K of A. If this were the 
ase, one 
oulddrop the requirement that the arrangement of bra
kets on the left handside and the right hand side of these theorems should 
oin
ide.However, in general this equality fails, as 
an be shown by easy exam-ples. Let us retreat to the 
ase of GLn. In fa
t, setting here K = A we seethatE(n;A; I ◦ J) = [E(n;A; I ◦ J); E(n;A)℄

6 [[E(n;A; I); E(n;A; J)℄; E(n;A)℄ 6 [GL(n;A; I ◦ J); E(n;A)℄= [E(n;A; I ◦ J); E(n;A)℄ = E(n;A; I ◦ J):This shows that in this 
ase one has[[E(A; I); E(A; J)℄; E(A;K)℄ = E(n;A; I ◦ J):On the other hand, for K = A, we have[E(A; I); [E(A; J); E(A;K)℄℄ = [E(A; I); [E(A; J)℄:Thus, in this 
ase if the asso
iativity of 
ommutators (32) holds, we obtain[E(n;A; I); E(n;A; J)℄ = E(n;A; I ◦ J):However, as we know from the example provided in §7.1, this equality doesnot hold, in general.11.2. To motivate the next theorem, let us 
al
ulate these triple 
om-mutators. Combining Lemma 1A and Theorem 1A, we see that[E(n;A; I ◦ J); E(n;A;K)℄ 6 [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]
6 [GL(n;A; I ◦ J); E(n;A;K)℄ = [E(n;A; I ◦ J); E(n;A;K)℄:In other words,

[[E(n;A; I); E(n;A; J)℄; E(n;A;K)] = [E(n;A; I ◦ J); E(n;A;K)℄:Similarly, one 
an verify that
[E(n;A; I); [E(n;A; J); E(n;A;K)℄] = [E(n;A; I); E(n;A; J ◦K)℄:
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al
ulation Theorem 4A instead of Theorem 1A,we get the following amazing 
orollary. It asserts that multiple 
ommuta-tors of relative elementary subgroups 
an always be expressed as double
ommutators of su
h subgroups, 
orresponding to some symmetrised prod-u
t ideals. The following is observed in [42℄.Theorem 5A. Let A be a quasi-�nite ring with 1 and let Ii E A, i =0; : : : ;m, be ideals of A. Consider an arbitrary 
on�guration of bra
kets[[: : : ℄℄ and assume that the outermost pairs of bra
kets between positions hand h+ 1. Then one has[[E(n;A; I0); E(n;A; I1); : : : ; E(n;A; Im)℄℄= [E(n;A; I0 ◦ : : : ◦ Ih); E(n;A; Ih+1 ◦ · · · ◦ Im)℄;where the bra
keting of symmetrised produ
ts on the right hand side 
oin-
ides with the bra
keting of the 
ommutators on the left hand side.Proof. Alternated appli
ation of Lemma 1A and Theorem 1A shows that
[

JE(n;A; I0); E(n;A; I1); : : : ; E(n;A; Ik)K;
JE(n;A; Ik+1); : : : ; E(n;A; Im)K]
6

[GL(n;A; I0 ◦ · · · ◦ Ik); JE(n;A; Ik+1); : : : ; E(n;A; Im)K]= [E(n;A; I0 ◦ · · · ◦ Ik); JE(n;A; Ik+1); : : : ; E(n;A; Im)K]
6 [E(n;A; I0 ◦ · · · ◦ Ik);GL(n;A; Ik+1 ◦ · · · ◦ Im)℄= [E(n;A; I0 ◦ · · · ◦ Ik); E(n;A; Ik+1 ◦ · · · ◦ Im)℄
6

[

JE(n;A; I0); E(n;A; I1); : : : ; E(n;A; Ik)K;
JE(n;A; Ik+1); : : : ; E(n;A; Im)K];as 
laimed. �For the unitary 
ase it is [47, Theorem 7℄.Theorem 5B. Let (A;�) be a quasi-�nite ring with 1 and let (Ii;�i),i = 0; : : : ;m, be form ideals of the form ring (A;�). Consider an arbitrary
on�guration of bra
kets [[: : : ℄℄ and assume that the outermost pairs ofbra
kets between positions h and h+ 1. Then one has[[EU(2n; I0;�0);EU(2n; I1;�1); : : : ;EU(2n; Im;�m)℄℄= [EU(2n; (I0;�0)◦ · · ·◦ (Ih;�h));EU(2n; (Ih+1;�h+1)◦ · · ·◦ (Im;�m))℄:
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ourse, similar result also holds in the 
ontext of Chevalley groups,on
e we have Theorem 6C.Theorem 6C. Let A be a 
ommutative ring with 1 and let Ii E A, i =0; : : : ;m, be ideals of A. Consider an arbitrary 
on�guration of bra
kets[[: : : ℄℄ and assume that the outermost pairs of bra
kets between positions hand h+ 1. Then one has[[E(�; A; I0); E(�; A; I1); : : : ; E(�; A; Im)℄℄= [E(�; A; I0 : : : Ih); E(�; A; Ih+1 : : : Im)℄:
§12. Lo
alisation12.1. In this paper we only use 
entral lo
alisation. Namely, for an R-algebra A, we 
onsider the lo
alisation with respe
t to a multipli
ative
losed subset of R.First, we �x some notation. Let R be a 
ommutative ring with 1, S be amultipli
ative 
losed subset in R and A be an R-algebra. Then S−1R andS−1A are the 
orresponding lo
alisation. We mostly use lo
alisation withrespe
t to the two following types of multipli
ative systems.

• Prin
ipal lo
alisation: S 
oin
ides with 〈s〉 = {1; s; s2; : : : }, for somenon-nilpotent s ∈ R, in this 
ase we usually write 〈s〉−1R = Rs and
〈s〉−1A = As.

• Lo
alisation at a maximal ideal: S = R \ m, for some maximal ideal
m ∈ Max(R) in R, in this 
ase we usually write (R \ m)−1R = Rm and(A \ m)−1A = Am.We denote by FS : A −→ S−1A the 
anoni
al ring homomorphism
alled the lo
alisation homomorphism. For the two spe
ial 
ases above, wewrite Fs : A −→ As and Fm : A −→ Am, respe
tively.When we write an element as a fra
tion, like a=s or as we always thinkof it as an element of some lo
alisation S−1A, where s ∈ S. If s werea
tually invertible in R, we would have written as−1 instead.Ideologi
ally, all proofs using lo
alisations are based on the interplay ofthe three following observations:

• Fun
tors of points A G(A) are 
ompatible with lo
alisation,g ∈ G(A) ⇐⇒ Fm(g) ∈ G(Am); for all m ∈ Max(A):
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• Elementary subfun
tors A E(A) are 
ompatible with fa
torisation,for any I E A the redu
tion homomorphism �I : E(A) −→ E(A=I) issurje
tive.
• On a [semi-℄lo
al ring A the values of semi-simple groups and theirelementary subfun
tors 
oin
ide, G(A) = E(A).The following property of the fun
tors G and E will be 
ru
ial for whatfollows: they are 
ontinuous fun
tors, i.e., they 
ommute with dire
t limits .In other words, if A = lim

−→
Ai, where {Ai}i∈I is an indu
tive system of rings,then G(lim

−→
Ai) = lim

−→
G(Ai); E(lim

−→
Ai) = lim

−→
E(Ai):We use this property in the two following situations.

• Noetherian redu
tion: let Ai be the indu
tive system of all �nitelygenerated subrings of A with respe
t to in
lusion. ThenG(A) = lim
−→

G(Ai); E(A) = lim
−→

E(Ai):This allows to redu
e most of the proofs to the 
ase of Noetherian rings.
• Redu
tion to prin
ipal lo
alisations : let S be a multipli
ative 
losedset in R and let As, s ∈ S, be the 
orresponding indu
tive system withrespe
t to the prin
ipal lo
alisation homomorphisms: Ft : As −→ Ast.Then G(S−1A) = lim

−→
G(As); E(S−1A) = lim

−→
E(As):This redu
es lo
alisation in any multipli
ative system to the prin
ipal lo-
alisation.12.2. Inje
tivity of lo
alisation homomorphism. Most lo
alisationproofs rely on the inje
tivity of lo
alisation homomorphism FS . As ob-served in §12.1, we 
an only 
onsider prin
ipal lo
alisation homomorphismsFs. Of 
ourse, Fs is inje
tive when s is regular. Thus, lo
alisation proofsare parti
ularly easy for integral domains. A large part of what follows arevarious devi
es to �ght with the presen
e of zero-divisors.When s is a zero-divisor, Fs is not inje
tive on the group G(A) itself.But its restri
tions to appropriate 
ongruen
e subgroups often are. Hereis an important typi
al 
ase, i.e., Noetherian ring.Lemma 18. Let A be a module �nite R-algebra, where R is a 
ommutativeNoetherian ring. Then for any s ∈ R, there exists a positive integer l su
hthat the homomorphism Fs : GL(n;A; slA) −→ GL(n;As) is inje
tive.



THE COMMUTATORS OF CLASSICAL GROUPS 203Proof. The homomorphism Fs : GL(n;A; slA) −→ GL(n;As) is inje
tivewhenever Fs : skA −→ As is inje
tive. Let ai = AnnR(si) be the annihila-tor of si in A. Sin
e R is Noetherian, and A is �nite over R, A is Noetherianand so there exists k su
h that ak = ak+1 = · · · . If ska vanishes in As,then siska = 0 for some i. But sin
e ak+i = ak, already ska = 0 and thusskA inje
ts in As. �Another important tri
k to override the presen
e of zero-divisors 
on-sists in throwing in polynomial variables. Namely, instead of the ring Ritself we 
onsider the polynomial ring R[t℄ in the variable t. In that ring t isnot a zero-divisor, so that the lo
alisation homomorphism Ft is inje
tive.We 
an use that, and then spe
ialise t to any s ∈ R.A
tually, throwing in polynomial variables has more than one use. Theelementary subfun
tors R E(R) are 
ompatible with lo
alisation, i.e.,g ∈ E(R) =⇒ Fm(g) ∈ E(Rm); for all m ∈ Max(R);but the 
onverse impli
ation does not hold, for otherwise E(R) would
oin
ide with the [semi-simple part of℄ G(R) for all 
ommutative rings.The following remarkable observation was due to Daniel Quillen at thelevel of K0, and was �rst applied by Andrei Suslin at the level of K1, in the
ontext of solving Serre's 
onje
ture, and its higher analogues [105℄. See [63℄for a des
ription of Quillen{Suslin's idea in its histori
al development. Werefer to the following result as Quillen{Suslin's lemma.Theorem 19. Let g ∈ G(R[t℄; tR[t℄). Then g ∈ E(R[t℄) if and only ifFm(g) ∈ E(Rm[t℄), for all m ∈ Max(R):12.3. Let (A;�) be a form algebra over a 
ommutative ring R with 1,and let S be a multipli
ative subset of R0 (see §5.3). For any R0-moduleMone 
an 
onsider its lo
alisation S−1M and the 
orresponding lo
alisationhomomorphism FS : M −→ S−1M . By de�nition of the ring R0 both Aand � are R0-modules, and thus 
an be lo
alised in S.12.4. Lo
alisation of form rings. In the setting of form rings, we needto adjust the ground �eld of the lo
alisation. For a form ring (A;�), whereA is an R-algebras, the form � is not ne
essarily an R-module (see §5.3).This for
es us to repla
e R by its subring R0, generated by all �� with � ∈R. Clearly, all elements in R0 are invariant with respe
t to the involution,i. e. r = r, for r ∈ R0. Furthermore, � is an R0-module.



204 R. HAZRAT, N. VAVILOV, Z. ZHANGAs in the setting of general linear group (§12.1), we mostly use lo
al-isation in the unitary setting with respe
t to the following two types ofmultipli
ative 
losed subsets of R0.
• Prin
ipal lo
alisation: for any s ∈ R0 with s = s, the multipli
ative
losed subset generated by s is de�ned as 〈s〉 = {1; s; s2; : : : }. The lo
alisa-tion of the form algebra (A;�) with respe
t to multipli
ative system 〈s〉 isusually denoted by (As;�s), where as usual As = 〈s〉−1A and �s = 〈s〉−1�are the usual prin
ipal lo
alisations of the ring A and the form parameter�. Noti
e that, for ea
h � ∈ As, there exists an integer n and an elementa ∈ A su
h that � = asn , and for ea
h � ∈ �s, there exists an integer mand an element � ∈ � su
h that � = �sm .
• Maximal lo
alisation: 
onsider a maximal ideal m ∈ Max(R0) of R0and the multipli
ative 
losed set Sm = R0\m. We denote the lo
alisation ofthe form algebra (A;�) with respe
t to Sm by (Am;�m), whereAm = S−1

m Aand �m = S−1
m � are the usual maximal lo
alisations of the ring A and theform parameter, respe
tively.In these 
ases the 
orresponding lo
alisation homomorphisms will bedenoted by Fs and by Fm, respe
tively.The following fa
t is veri�ed by a straightforward 
omputation.Lemma 20. For any s ∈ R0 and for any m ∈ Max(R0) the pairs (As;�s)and (Am;�m) are form rings.

§13. Triple Commutators/Base of indu
tionWe prove Theorem 17 by indu
tion on m. The 
ase of m = 2 is pre
iselythe relative 
ommutator formula, Theorem 1A. However, the base of in-du
tion for Theorem 17 is m = 2, and it is the most demanding part of theindu
tion step. In fa
t, the proof of the following spe
ial 
ase 
onstitutesbulk of the paper [50℄.Theorem 6A. Let n > 3, and let A be a quasi-�nite ring. Further, let I,J and K be three two-sided ideals of A. Then
[[E(n;A; I);GL(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:



THE COMMUTATORS OF CLASSICAL GROUPS 205As we have just observed, the standard 
ommutator formula, Theo-rem 1A, implies that
[[E(n;A; I);GL(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄;GL(n;A;K)]:Thus, to prove Theorem 6A it remains to establish the following equality
[[E(n;A; I); E(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: (33)However, this last equality does not follow from the standard 
ommutatorformula. To establish this, we shall use the general \yoga of 
ommutators"whi
h is developed in [49℄ based on the work of Bak on lo
alisation andpat
hing in general linear groups (see [10, 40℄ and [44, §13℄). In order tomake use of this method, one needs to over
ome two problems: �rstly todevise an appropriate 
onjugation 
al
ulus to approa
h the identity (33)and se
ondly to perform the a
tual 
al
ulations. Both of these problemsare equally 
hallenging as the nature of the 
onjugation 
al
ulus dependson the problem in hand. In fa
t the term yoga of 
ommutators is 
hosento stress the overwhelming feeling of te
hni
al strain and exertion.In this se
tion we prove Theorem 6A, following [50℄. We need the fol-lowing elementary 
onjugation 
al
ulus, whi
h are Lemmas 7, 8 and 11from [49℄, respe
tively. Note that in Equations 34, 35 and 36 the 
al
ula-tions take pla
e in the group E(n;At).Re
all, that for an additive subgroup A of R we denote by EL(n;A)the subset (not a subgroup!) of GL(n;R) 
onsisting of produ
ts of 6 Lelementary generators tij(�), 1 6 i 6= j 6 n, � ∈ A.Lemma 21 (
f. [49℄). Let A be a module �nite R-algebra, I; J two-sidedideals of A, a; b; 
 ∈ A and t ∈ R. If m; l are given, there is an integer psu
h that E1(n; 
tm )E(n; tpA; tp〈a〉) 6 E(n; tlA; tl〈a〉); (34)there is an integer p su
h thatE1(n; 
tm )[E(n; tpA; tp〈a〉); E(n; tpA; tp〈b〉)℄
6 [E(n; tlA; tl〈a〉); E(n; tlA; tl〈b〉)℄; (35)and there is an integer p su
h that

[E(n; tpA; tpI); E1(n; Jtm )] 6 [E(n; tlA; tlI); E(n; tlA; tlJ)℄: (36)



206 R. HAZRAT, N. VAVILOV, Z. ZHANGBy Lemma 21, one easily obtains the following result. The proof is leftto the reader.Lemma 22. Let A be a module �nite R-algebra, I; J two-sided ideals ofA and t ∈ R. If m; l; L are given, there is an integer p su
h that
[E(n; tpA; tpI);EL(n; Atm )E1(n; Jtm )]

6 [E(n; tlA; tlI); E(n; tlA; tlJ)℄:(37)Denote by EL(n; Atm ; Ktm ) the produ
t of 6 L elements of the formE1(n; Atm )E1(n; Ktm ):In the following two Lemmas, as in Lemma 21, all the 
al
ulations takepla
e in the fra
tion ring At. All the subgroups of GL(n;At) used in theLemmas, su
h as the ones denoted by E(n;A; I) or GL(n;A; J), are infa
t the homomorphi
 images of these subgroups in GL(n;A) under thenatural homomorphism A → At. Sin
e lemmas su
h as Lemma 1A and thegeneralised 
ommutator formula (Theorem 1A) hold for these subgroupsin GL(n;A), they also hold for their 
orresponding homomorphi
 imagesin GL(n;At).Lemma 23. Let A be an R-algebra, I; J two-sided ideals of A, and t ∈ R.For any given e ∈ GL(n;At; Jt) and an integer l, there is an integer p su
hthat for any g ∈ GL(n;A; tpI)[e; g℄ ∈ GL (n;A; tl(IJ + JI)):Proof. Note that all the entries of g−1 and g−1−1 are in tpI (to emphasizeour 
onvention, they are in the image of tpI under the homomorphism� : A → At) and all the entries of e − 1 and e−1 − 1 are in Jt. Choosek ∈ N su
h that one 
an write all the entries of e − 1 and e−1 − 1 in theform j=tk, j ∈ J . Letg = 1 + " and g−1 = 1 + "′e = 1 + Æ and e−1 = 1 + Æ′:A straightforward 
omputation shows that"+ "′ + ""′ = "+ "′ + "′" = 0Æ + Æ′ + ÆÆ′ = Æ + Æ′ + Æ′Æ = 0:



THE COMMUTATORS OF CLASSICAL GROUPS 207By the equalities above, one has[e; g℄ = [1 + Æ; 1 + "℄ = 1 + Æ′"′ + "Æ′ + "Æ′"′ + ÆÆ′"′ + Æ"Æ′ + Æ"Æ′"′:So the entries of [e; g℄ − 1 belong to tp−2k(IJ + JI). We �nish the proofby 
hoosing p > l+ 2k. �Lemma 24. Let A be a module �nite R-algebra, I; J;K two-sided idealsof A and t ∈ R. For any given e2 ∈ E(n;At;Kt) and an integer l, there isa suÆ
iently large integer p, su
h that[e1; e2℄ ∈ [[E(n;A; tlI); E(n;A; tlJ)℄; E(n;A; tlK)]; (38)where e1 ∈ [E(n; tpI); E(n;A; J)℄.Proof. For any given e2 ∈ E(n;At;Kt), one may �nd some positive inte-gers m and L su
h that e2 ∈ EL(n; Atm ; Ktm ):Applying the identity (C1+) and repeated appli
ation of (34) in Lemma 21,we redu
e the problem to show that
[[E(n; tpI); E(n;A; J)℄; 
ei′;j′( 
tm )]

6
[[E(n;A; tlI); E(n;A; tlJ)℄; E(n;A; tlK)];where 
 ∈ E1(n; Atm ) and 
 ∈ K. We further de
omposeei′;j′( 
tm ) = [ei′;k(tp′); ek;j′( 
tm+p′ )]for some integer p′. Then

[e1; 
ei′;j′( 
tm )] = [e1; [
ei′;k(tp′); 
ek;j′( 
tm+p′ )℄]:We use a variant of the Hall{Witt identity (see (C3))[x; [y−1; z℄℄ = y−1x[[x−1; y℄; z℄ y−1z[[z−1; x℄; y℄;to obtain
[e1; [
ei′;k(tp′); 
ek;j′( 
tm+p′ )]]= y−1x[[e−11 ; 
ei′;k(−tp′)]; 
ek;j′( 
tm+p′ )]

× y−1z[[
ek;j′( −
tm+p′ ); e1]; 
ei′;k(−tp′)]; (39)



208 R. HAZRAT, N. VAVILOV, Z. ZHANGwhere x = e1, y = 
ei′;k(−tp′), z = 
ek;j′ ( 
tm+p′ ) and as before 
 ∈E1(n; Atm ) 6 E1(n; Atm+p′ ). We will look at ea
h of the two fa
tors of (39)separately.By (34) in Lemma 21, for any given p′′, one may �nd a suÆ
iently largep′ su
h that y = 
ei′;k(−tp′) ∈ E(n; tp′′A; tp′′A) 6 E(n;A): (40)Then
[e−11 ; 
ei′;k(−tp′)] ∈ [[E(n; tpI); E(n;A; J)℄; E(n;A)℄

6 [ GL(n;A; tp(IJ + JI)); E(n;A)℄
6 E(n;A; tp(IJ + JI)):Set p1 = p. Thanks to Lemma 1A,E(n;A; tp1(IJ + JI)) 6 [E(n; t⌊ p12 ⌋A); E(n; t⌊ p12 ⌋(IJ + JI))]

6 E(n; t⌊ p12 ⌋A; t⌊ p12 ⌋(IJ + JI)): (41)Hen
e we obtain thaty−1x[[e−11 ; 
ei′;k(−tp′)]; 
ek;j′( 
tm+p′ )]
∈ y−1x[E(n; t⌊ p12 ⌋A; t⌊ p12 ⌋(IJ + JI)); 
ek;j′( 
tm+p′ )];where x ∈ [E(n; tp1I); E(n;A; J)℄, y ∈ E(n; tp′′A; tp′′A). By Lemma 22,for any given integer l′ we may �nd a suÆ
iently large p1 su
h thaty−1x[E(n; t⌊ p12 ⌋A; t⌊ p12 ⌋(IJ + JI)); 
ek;j′( 
tm+p′ )]

∈ y−1x[E(n; t2l′A; t2l′(IJ + JI)); E(n; t2l′A; t2l′K)]
6 y−1x[[E(n; tl′A; tl′I); E(n; tl′A; tl′J)℄; E(n; t2l′A; t2l′K)]
6 y−1x[[E(n; tl′A; tl′I); E(n; tl′A; tl′J)℄; E(n; tl′A; tl′K)]= [[y−1xE(n; tl′A; tl′I); y−1xE(n; tl′A; tl′J)℄; y−1xE(n; tl′A; tl′K)];where by de�nition y−1x ∈ E(n; At0 ; At0 ). By (34) in Lemma 21, for anygiven integer l, we may �nd a suÆ
iently large l′ su
h thaty−1x[[E(n; tl′A; tl′I); E(n; tl′A; tl′J)℄; E(n; tl′A; tl′K)]

6
[[E(n; tlA; tlI); E(n; tlA; tlJ)℄; E(n; tlA; tlK)]:



THE COMMUTATORS OF CLASSICAL GROUPS 209This shows that for any given l, one may �nd a suÆ
iently large p1 su
hthat the �rst fa
tor of (39)y−1x[[e−11 ; 
ei′;k(−tp′)]; 
ek;j′( 
tm+p′ )]
∈

[[E(n; tlA; tlI); E(n; tlA; tlJ)℄; E(n; tlA; tlK)]:Next we 
onsider the se
ond fa
tor of (39),y−1z[[
ek;j′( −
tm+p′ ); e1]; 
ei′;k(−tp′)]:Set p2 = p. Note thate1 ∈ [E(n; tp2I); E(n;A; J)℄ 6 GL(n;A; tp2(IJ + JI))and 
ek;j′( 
tm+p′ ) ∈
E1(n; Atm+p′ )E1(n; Ktm+p′ );where p′ is given by (40) from the �rst part of the proof. We may applyLemma 23 to �nd a suÆ
iently large p2 su
h that

[
ek;j′( −
tm+p′ ); e1] ∈ GL (n;A; tp′′(K(IJ + JI) + (IJ + JI)K)) (42)for any given p′′. Using the 
ommutator formula together with (40), onegetsy−1z[[
ek;j′( −
tm+p′ ); e1]; 
ei′;k(−tp′)]
∈ y−1zE(n;A; tp′′(K(IJ + JI) + (IJ + JI)K)):Applying Lemma 1A twi
e, one getsE(n;A; tp′′(K(IJ + JI) + (IJ + JI)K))

6

[E(n; t⌊ 2p′′3 ⌋((IJ + JI) + (IJ + JI))); E(n; t⌊ p′′3 ⌋K)

]

6

[

[E(n; t⌊ p′′3 ⌋I); E(n; t⌊ p′′3 ⌋J)]; E(n; t⌊ p′′3 ⌋K)]:
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e, we havey−1z[[
ek;j′( −
tm+p′ ); e1]; 
ei′;k(−tp′)]
6

y−1z[[E(n; t⌊ p′′3 ⌋I); E(n; t⌊ p′′3 ⌋J)]; E(n; t⌊ p′′3 ⌋K)]= [

[y−1zE(n; t⌊ p′′3 ⌋I); y−1zE(n; t⌊ p′′3 ⌋J)]; y−1zE(n; t⌊ p′′3 ⌋K)]:Now applying (34) in Lemma 21 to every 
omponent of the 
ommutatorabove, we may �nd a suÆ
iently large p′′ su
h that for any given l,
[

[y−1zE(n; t⌊ p′′3 ⌋I); y−1zE(n; t⌊ p′′3 ⌋J)]; y−1zE(n; t⌊ p′′3 ⌋K)]
6

[[E(n; tlA; tlI); E(n; tlA; tlJ)℄; E(n; tlA; tlK)]:Choose p2 in (42) a

ording to this p′′ and then 
onsider p to be the largerof p1 and p2. This �nishes the Lemma. �The proof of this result, as also the proofs of similar results for othergroups, are mostly prestidigitation and tightrope walking, and similar inspirit to the relative 
ommutator 
al
ulus in [49℄. However, this pie
e of
ommutator 
al
ulus operates at a di�erent level of te
hni
al sophisti
a-tion. For instan
e, now we have to plug in not just the elementary gener-ators, or their 
onjugates, as in [49, 45, 46℄, but also the other two typesof generators 
onstru
ted in Theorem 3.Proof of Theorem 7A. The fun
tors En and GLn 
ommute with dire
tlimits. By Proposition 1 and §12.1, one redu
es the proof to the 
ase whereA is �nite over R and R is Noetherian.First by the generalized 
ommutator formula (Theorem 1A), we have[E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄: (43)Thus it suÆ
es to prove the following equation
[[E(n;A; I); E(n;A; J)℄;GL(n;A;K)]= [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:



THE COMMUTATORS OF CLASSICAL GROUPS 211By Lemma 2A, [E(n;A; I); E(n;A; J)℄ is generated by the 
onjugates inE(n;A) of the following four types of elementse = [ej;i(�); ei;j (a)ej;i(�)];e = [ej;i(�); ei;j(�)℄;e = ei;j(��);e = ei;j(��); (44)where i 6= j, � ∈ I , � ∈ J and a ∈ A. We 
laim that for any g ∈GL(n;A;K), [e; g℄ ∈ [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: (45)Let g ∈ GL(n;A;K). For any maximal ideal m of R, the ring Am 
on-tains Km as an ideal (K being an ideal of A). Consider the natural ho-momorphism �m : A → Am whi
h indu
es a homomorphism (
all it �magain) on the level of general linear groups, �m : GL(n;A) → GL(n;Am).Therefore, �m(g) ∈ GL(n;Am;Km). Sin
e Am is module �nite over thelo
al ring Rm, Am is semilo
al [19, III(2.5), (2.11)℄, therefore its stablerank is 1. It follows that GL(n;Am;Km) = E(n;Am;Km)GL(1; Am;Km)(see [37, Th. 4.2.5℄). So �m(g) 
an be de
omposed as �m(g) = "h, where" ∈ E(n;Am;Km) and h is a diagonal matrix all of whose diagonal 
oef-�
ients are 1, ex
ept possibly the k-th diagonal 
oeÆ
ient, and k 
an be
hosen arbitrarily. By (§12.1), there is a tm ∈ R\m su
h that�tm(g) = "h; (46)where " ∈ E(n;Atm ;Ktm), and h is a diagonal matrix with only one non-trivial diagonal entry whi
h lies in Atm .For any maximal ideal m � R, 
hoose tm ∈ R\m as above and an arbi-trary positive integer pm. (We will later 
hoose pm a

ording to Lemma 24.)Sin
e the 
olle
tion of all {tpm

m | m ∈ max(R)} is not 
ontained in anymaximal ideal, we may �nd a �nite number of tpsms ∈ R\ms and xs ∈ R,s = 1; : : : ; k, su
h that k
∑s=1 tpsmsxs = 1:



212 R. HAZRAT, N. VAVILOV, Z. ZHANGIn order to prove (45), �rst we 
onsider the generators of the �rst kindin (44), namely e = [ej;i(�); ei;j (a)ej;i(�)]. Considere = [ej;i(�); ei;j (a)ej;i(�)] = [ej;i(( k
∑s=1 tpsmsxs)�); ei;j(a)ej;i(�)]= [

k
∏s=1 ej;i(tpsmsxs�); ei;j (a)ej;i(�)]:By (C2+) identity, e = [

k
∏s=1 ej;i(tpsmsxs�); ei;j (a)ej;i(�)] 
an be written as aprodu
t of the following form:e=(ek[ej;i(tpkmkxk�); ei;j (a)ej;i(�)])(ek−1[ej;i(tpk−1mk−1xk−1�); ei;j (a)ej;i(�)])

× · · · ×
(e1[ej;i(tp1m1x1�); ei;j (a)ej;i(�)]); (47)where e1; e2; : : : ; ek ∈ E(n;A). Note that from (C2+) it is 
lear that all es,s = 1; : : : ; k, are produ
ts of elementary matri
es of the form ej;i(A). Thuses = ej;i(as), where as ∈ A and s = 1; : : : ; k, whi
h 
learly 
ommutes withej;i(x) for any x ∈ A. So the 
ommutator (47) is equal toe=([ej;i(tpkmkxk�); ek ei;j (a)ej;i(�)])([ej;i(tpk−1mk−1xk−1�); ek−1ei;j (a)ej;i(�)])

× · · · ×
([ej;i(tp1m1x1�); e1 ei;j(a)ej;i(�)]): (48)Using (C2+) and in view of (48) we obtain that [e; g℄ is a produ
t of the
onjugates in E(n;A) ofws = [

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; g];where as ∈ A and s = 1; : : : ; k.For ea
h s = 1; : : : ; k, 
onsider �tms (ws) whi
h we still write as ws butkeep in mind that this image is in GL(n;Atms ).Note that all [ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)], s = 1; : : : ; k, di�er fromthe identity matrix only in the ith, jth rows and the ith, jth 
olumns. Sin
en > 2, we 
an 
hoose h in the de
omposition (46) so that it 
ommutes with
[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]:This allows us to redu
e �tms (ws) to

[

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; "];



THE COMMUTATORS OF CLASSICAL GROUPS 213where " ∈ E(n;Atms ;Ktms ). By Lemma 24, for any given ls, there is asuÆ
iently large ps, s = 1; : : : k, su
h that
[

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; "]
∈

[[E(n;A; tlsI); E(n;A; tlsJ)℄; E(n;A; tlsK)]:Let us 
hoose ls to be large enough so that by Lemma 18 the restri
tionof �tms : GL(n;A; tlsmsA) → GL(n;Atms )be inje
tive. Then it is easy to see that for any s, we have
[

[ej;i(tpsmsxs�); ej;i(as)ei;j (a)ej;i(�)]; g]
∈

[[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:Sin
e relative elementary subgroups En are normal in GL(n;A) (Theo-rem 11), it follows that [e; g℄ ∈ [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:When the generator is of the se
ond kind, e = [ei;j(�); ej;i(�)℄, a similarargument goes through, whi
h is left to the reader.Now 
onsider the generators of the 3rd and 4th kind, namely, the 
on-jugates of the following two types of elements,e = ei;j(��); or e = ei;j(��):By the normality of E(n;A; IJ+JI), the 
onjugates of e are inE(n;A; IJ+JI). Then [e; g℄ ∈ [E(n;A; IJ + JI);GL(n;A;K)℄:By the generalized 
ommutator formula (Theorem 1A), one obtains[E(n;A; IJ + JI);GL(n;A;K)℄ = [E(n;A; IJ + JI); E(n;A;K)℄:Now applying Lemma 1A, we �nally get[E(n;A; IJ + JI); E(n;A;K)℄ 6 [[E(n;A; I); E(n;A; J)℄; E(n;A;K)]:Therefore [e; g℄ ∈
[[E(n;A; I); E(n;A; J)℄; E(n;A;K)]: This proves our
laim. Thus we established (45) for all type of generators e of (44).To �nish the proof, lete ∈ [E(n;A; I);GL(n;A; J)℄ = [E(n;A; I); E(n;A; J)℄;and g ∈ GL(n;A;K). Then by Theorem 3A,e = e1 × e2 × · · · × ek



214 R. HAZRAT, N. VAVILOV, Z. ZHANGwith ei takes any of the forms in (29). Thanks to (C2+) identity and thenormality of relative elementary subgroups En, it suÆ
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