
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 443, 2016 Ç.I. A. Panin, A. K. StavrovaON THE GROTHENDIECK{SERRE CONJECTURECONCERNING PRINCIPAL G-BUNDLES OVERSEMI-LOCAL DEDEKIND DOMAINSAbstrat. Let R be a semi-loal Dedekind domain and let K bethe �eld of frations of R. Let G be a redutive semisimple simplyonneted R-group sheme suh that every semisimple normal R-subgroup sheme of G ontains a split R-torus Gm;R. We provethat the kernel of the mapH1�et(R;G) → H1�et(K;G)indued by the inlusion of R into K, is trivial. This result partiallyextends the Nisnevih theorem [10, Thm.4.2℄.
§1. IntrodutionA well-known onjeture due to J.-P. Serre and A. Grothendiek [15,Remarque, p.31℄, [7, Remarque 3, p. 26{27℄, and [8, Remarque 1.11.a℄asserts that given a regular loal ring R and its �eld of frations K andgiven a redutive group sheme G over R the mapH1�et(R;G) → H1�et(K;G);indued by the inlusion of R into K, has trivial kernel.The Grothendiek{Serre onjeture holds for semi-loal regular ringsontaining a �eld. That is proved in [6℄ and in [11℄. The �rst of thesetwo papers is heavily based on results of [13℄ and [12℄. For the detailedhistory of the topi see, for instane, [6℄. Assuming that R is not equihar-ateristi, the onjeture has been established only in the ase where Gis an R-torus [2℄ and in the ase where G is a redutive group shemeover a disrete valuation ring R [10, Theorem 4.2℄. In the present paper,we extend the latter result to the ase of an isotropi semisimple simplyKey words and phrases: redutive group, prinipal bundle.Theorem 3.4 is proved due to the support of the Russian Siene Foundation (grantno. 14-11-00456).The seond author is a postdotoral fellow of the program 6.50.22.2014 \Struturetheory, representation theory and geometry of algebrai groups" at St.Petersburg StateUniversity. 133



134 I. A. PANIN, A. K. STAVROVAonneted redutive group sheme over a semi-loal Dedekind domain R;see Theorem 3.4.
§2. Preliminaries2.1. Paraboli subgroups and elementary subgroups. Let A be aommutative ring. Let G be an isotropi redutive group sheme over A,and let P be a paraboli subgroup of G in the sense of [4℄. Sine thebase SpeA is aÆne, the group P has a Levi subgroup LP [4, Exp. XXVICor. 2.3℄. There is a unique paraboli subgroup P− in G whih is oppositeto P with respet to LP , that is P−∩P = LP , f. [4, Exp. XXVI Th. 4.3.2℄.We denote by UP and UP− the unipotent radials of P and P− respetively.De�nition 2.1. The elementary subgroup EP (A) orresponding to Pis the subgroup of G(A) generated as an abstrat group by UP (A) andUP−(A).Note that if L′P is another Levi subgroup of P , then L′P and LP areonjugate by an element u ∈ UP (A) [4, Exp. XXVI Cor. 1.8℄, hene EP (A)does not depend on the hoie of a Levi subgroup or of an opposite sub-group P−, respetively. We suppress the partiular hoie of LP or P− inthis ontext.De�nition 2.2. A paraboli subgroup P in G is alled stritly proper, ifit intersets properly every normal semisimple subgroup of G.We will use the following result that is a ombination of [14℄ and [4,Exp. XXVI, §5℄.Lemma 2.3. Let G be a redutive group sheme over a ommutative ringA, and let R be a ommutative A-algebra. Assume that A is a semiloalring. Then the subgroup EP (R) of G(R) is the same for any minimal par-aboli A-subgroup P of G. If, moreover, G ontains a stritly proper par-aboli A-subgroup, the subgroup EP (R) is the same for any stritly properparaboli A-subgroup P .Proof. See [16, Theorem 2.1℄. �2.2. Torus ations on redutive groups. Let R be a ommutativering with 1, and let S = (Gm;R)N = Spe (R[x±11 ; : : : ; x±1N ℄) be a splitN -dimensional torus over R. Reall that the harater group X∗(S) =



GROTHENDIECK{SERRE CONJECTURE 135HomR(S;Gm;R) of S is anonially isomorphi to Z
N . If S ats R-linearlyon an R-module V , this module has a natural Z

N -gradingV = ⊕�∈X∗(S)V�;where V� = {v ∈ V | s · v = �(s)v for any s ∈ S(R)}:Conversely, any ZN -graded R-module V an be provided with an S-ationby the same rule.Let G be a redutive group sheme over R in the sense of [4℄. Assumethat S ats on G by R-group automorphisms. The assoiated Lie algebrafuntor Lie(G) then aquires a ZN -grading ompatible with the Lie algebrastruture, Lie(G) = ⊕�∈X∗(S)Lie(G)�:We will use the following version of [4, Exp. XXVI Prop. 6.1℄.Lemma 2.4. Let L = CentG(S) be the subsheme of G �xed by S. Let	 ⊆ X∗(S) be an R-subsheaf of sets losed under addition of haraters.(i) If 0 ∈ 	, then there exists a unique smooth onneted losed subgroupU	 of G ontaining L and satisfyingLie(U	) = ⊕�∈	Lie(G)�: (1)Moreover, if 	 = {0}, then U	 = L; if 	 = −	, then U	 is redutive; if	∪(−	) = X∗(S), then U	 and U−	 are two opposite paraboli subgroupsof G with the ommon Levi subgroup U	∩(−	).(ii) If 0 6∈ 	, then there exists a unique smooth onneted unipotentlosed subgroup U	 of G normalized by L and satisfying (1).Proof. The statement immediately follows by faithfully at desent fromthe standard fats about the subgroups of split redutive groups provedin [4, Exp. XXII℄; see the proof of [4, Exp. XXVI Prop. 6.1℄. �De�nition 2.5. The sheaf of sets� = �(S;G) = {� ∈ X∗(S) \ {0} | Lie(G)� 6= 0}is alled the system of relative roots of G with respet to S.



136 I. A. PANIN, A. K. STAVROVAChoosing a total ordering on the Q-spae Q⊗ZX∗(S) ∼= Q
n, one de�nesthe subsets of positive and negative relative roots �+ and �−, so that � isa disjoint union of �+, �−, and {0}. By Lemma 2.4 the losed subgroupsU�+∪{0} = P; U�−∪{0} = P−are two opposite paraboli subgroups of G with the ommon Levi subgroupCentG(S). Thus, if a redutive group G over R admits a non-trivial ationof a split torus, then it has a proper paraboli subgroup. The onverse istrue Zariski-loally, see Lemma 2.6 below.2.3. Relative roots and subshemes. In order to prove our main re-sult, we need to use the notions of relative roots and relative root sub-shemes. These notions were initially introdued and studied in [14℄, andfurther developed in [17℄.Let R be a ommutative ring. Let G be a redutive group sheme overR. Let P be a paraboli subgroup sheme of G over R, and let L be a Levisubgroup of P . By [4, Exp. XXII, Prop. 2.8℄ the root system � of Gk(s),s ∈ SpeR, is onstant loally in the Zariski topology on SpeR. Thetype of the root system of Lk(s) is determined by a Dynkin subdiagram ofthe Dynkin diagram of �, whih is also onstant Zariski-loally on SpeRby [4, Exp. XXVI, Lemme 1.14 and Prop. 1.15℄. In partiular, if SpeR isonneted, all these data are onstant on SpeR.Lemma 2.6. [17, Lemma 3.6℄ Let G be a redutive group over a onnetedommutative ring R, P be a paraboli subgroup of G, L be a Levi subgroupof P , and �L be the image of L under the natural homomorphism G →Gad ⊆ Aut(G). Let D be the Dynkin diagram of the root system � of Gk(s)for any s ∈ SpeA. We identify D with a set of simple roots of � suhthat Pk(s) is a standard positive paraboli subgroup with respet to D. LetJ ⊆ D be the set of simple roots suh that D \ J ⊆ D is the subdiagramorresponding to Lk(s). Then there are a unique maximal split subtorusS ⊆ Cent(�L) and a subgroup � 6 Aut(D) suh that J is invariant under�, and for any s ∈ SpeR and any split maximal torus T ⊆ �Lk(s) thekernel of the natural surjetionX∗(T ) ∼= Z� �

−−→ X∗(Sk(s)) ∼= Z�(S;G) (2)is generated by all roots � ∈ D \ J , and by all di�erenes �− �(�), � ∈ J ,� ∈ �.



GROTHENDIECK{SERRE CONJECTURE 137In [14℄, we introdued a system of relative roots �P with respet to aparaboli subgroup P of a redutive group G over a ommutative ring R.This system �P was de�ned independently over eah member SpeA =SpeAi of a suitable �nite disjoint Zariski overingSpeR = m
∐i=1 SpeAi;suh that over eah A = Ai, 1 6 i 6 m, the root system � and the Dynkindiagram D of G is onstant. Namely, we onsidered the formal projetion�J;� : Z� −→ Z�= 〈D \ J ; �− �(�); � ∈ J; � ∈ �〉 ;and set �P = �J;� = �J;�(�) \ {0}. The last laim of Lemma 2.6 allowsto identify �J;� and �(S;G) whenever SpeR is onneted.De�nition 2.7. In the setting of Lemma 2.6 we all �(S;G) a system ofrelative roots with respet to the paraboli subgroup P over R and denoteit by �P .If A is a �eld or a loal ring, and P is a minimal paraboli subgroup ofG, then �P is nothing but the relative root system of G with respet to amaximal split subtorus in the sense of [1℄ or, respetively, [4, Exp. XXVI

§7℄.We have also de�ned in [14℄ irreduible omponents of systems of rela-tive roots, the subsets of positive and negative relative roots, simple rela-tive roots, and the height of a root. These de�nitions are immediate analogsof the ones for usual abstrat root systems, so we do not reprodue themhere.Let R be a ommutative ring with 1. For any �nitely generated pro-jetive R-module V , we denote by W (V ) the natural aÆne sheme overR assoiated with V , see [4, Exp. I, §4.6℄. Any morphism of R-shemesW (V1) → W (V2) is determined by an element f ∈ Sym∗(V ∨1 )⊗RV2, whereSym∗ denotes the symmetri algebra, and V ∨1 denotes the dual module ofV1. If f ∈ Symd(V ∨1 ) ⊗R V2, we say that the orresponding morphism ishomogeneous of degree d. By abuse of notation, we also write f : V1 → V2and all it a degree d homogeneous polynomial map from V1 to V2. In thisontext, one has f(�v) = �df(v)for any v ∈ V1 and � ∈ R.



138 I. A. PANIN, A. K. STAVROVALemma 2.8. [17, Lemma 3.9℄. In the setting of Lemma 2.6, for any � ∈�P = �(S;G) there exists a losed S-equivariant embedding of R-shemesX� : W (Lie(G)�)→ G;satisfying the following ondition.(∗) Let R′=R be any ring extension suh that GR′ is split with respetto a maximal split R′-torus T ⊆ LR′ . Let eÆ, Æ ∈ �, be a Chevalleybasis of Lie(GR′ ), adapted to T and P , and xÆ : Ga → GR′ , Æ ∈ �,be the assoiated system of 1-parameter root subgroups (e.g. xÆ =expÆ of [4, Exp. XXII, Th. 1.1℄). Let� : � = �(T;GR′) → �P ∪ {0}be the natural projetion. Then for any u = ∑Æ∈�−1(�)aÆeÆ ∈ Lie(GR′)�one hasX�(u) = ( ∏Æ∈�−1(�)xÆ(aÆ)) ·∏i>2( ∏�∈�−1(i�)x�(pi�(u))); (3)where every pi� : Lie(GR′)� → R′ is a homogeneous polynomialmap of degree i, and the produts over Æ and � are taken in any�xed order.De�nition 2.9. Closed embeddings X�, � ∈ �P , satisfying the statementof Lemma 2.8, are alled relative root subshemes of G with respet to theparaboli subgroup P .Relative root subshemes of G with respet to P , atually, depend onthe hoie of a Levi subgroup L in P , but their essential properties staythe same, so we usually omit L from the notation.We will use the following properties of relative root subshemes.Lemma 2.10. [14, Theorem 2, Lemma 6, Lemma 9℄ Let X�, � ∈ �P , beas in Lemma 2.8. Set V� = Lie(G)� for short. Then(i) There exist degree i homogeneous polynomial maps qi� : V� ⊕ V� →Vi�, i > 1, suh that for any R-algebra R′ and for any v; w ∈ V� ⊗R R′one has X�(v)X�(w) = X�(v + w)∏i>1Xi� (qi�(v; w)) : (4)(ii) For any g ∈ L(R), there exist degree i homogeneous polynomialmaps 'ig;� : V� → Vi�, i > 1, suh that for any R-algebra R′ and for any



GROTHENDIECK{SERRE CONJECTURE 139v ∈ V� ⊗R R′ one hasgX�(v)g−1 =∏i>1Xi� ('ig;�(v)) :(iii) (Generalized Chevalley ommutator formula) For any �; � ∈ �Psuh that m� 6= −k� for all m; k > 1, there exist polynomial mapsN��ij : V� × V� → Vi�+j� ; i; j > 0;homogeneous of degree i in the �rst variable and of degree j in the seondvariable, suh that for any R-algebra R′ and for any for any u ∈ V�⊗RR′,v ∈ V� ⊗R R′ one has[X�(u); X�(v)℄ = ∏i;j>0Xi�+j�(N��ij(u; v)) (5)(iv) For any subset 	 ⊆ X∗(S) \ {0} that is losed under addition, themorphism X	 : W(⊕�∈	V�)→ U	; (v�)� 7→
∏� X�(v�);where the produt is taken in any �xed order, is an isomorphism of shemes.Lemma 2.11. In the notation of Lemma 2.6, let �± be the set of positiveand negative roots suh that D ⊆ �+. Set �±P = �(�±) \ {0}, P+ = P ,and let P− be the opposite paraboli subgroup to P suh that P ∩P− = L.Then for any R-algebra R′, one hasUP±(R′) = 〈X�(R′ ⊗R V�); � ∈ �±P 〉 :Consequently, EP (R′) = 〈X�(R′ ⊗R V�); � ∈ �P 〉 :Proof. By the hoie of D the paraboli subgroup Pk(s) is the standardpositive paraboli subgroup of Gk(s) orresponding to a losed set of roots	 ⊇ �+. By the hoie of J ⊆ D, one has	 = �+ ∪

(

Z(D \ J) ∩ �−
):Then, learly, �(	) = �+P ∪{0}. Similarly, P− orresponds to the set (−	)and �(−	) = �−P ∪ {0}. Then the unipotent radials UP± orrespond tothe losed unipotent subsets�(�± \ Z(D \ J)) = �±P ⊆ �P :Then Lemma 2.10 (iv) �nishes the proof. �



140 I. A. PANIN, A. K. STAVROVA
§3. Main TheoremAll ommutative rings are assumed to be unital. For any ommutativering R and n > 3, we denote by En(R) the usual elementary subgroup ofGLn(R).Lemma 3.1. Let R be a ommutative ring, let G be a redutive groupsheme over R, and let i : G → GLn;R be a losed embedding of G as alosed R-subgroup, where n > 3. Assume that G ontains a non-entral1-dimensional subtorus H ∼= Gm;R, and let P = P+ and P− be the or-responding two opposite paraboli subgroups onstruted as in Lemma 2.4.Then one has EP (R) 6 En(R).Proof. Let Q = Q+ and Q− be the two paraboli R-subgroups of GLn;Rorresponding to H 6 G 6 GLn;R, and let M = CentGLn;R(H) be theirommon Levi subgroup. We show that UP (R) 6 UQ(R). Clearly, this im-plies the laim of the lemma. By [3, Proposition 2.8.3(3)℄ this is true if R isa �eld. In general, take g ∈ UP (R). It is enough to show that g ∈ UQ(Rm)for any maximal loalization Rm of R. Let� : Rm → Rm=mRm = lbe the residue homomorphism. By the above �∗(g) ∈ UQ(l). Reall that
Q = UQ+MUQ−

∼= UQ+ ×M × UQ− is an open subsheme of GLn;R [4,Exp. XXVI, Remarque 4.3.6℄. Heneg ∈ UQ+(Rm)M(Rm)UQ−(Rm): (6)Let L = P ∩ P− = CentG(H) be the Levi subgroup of P and P−. Let�H ⊆ Gad be the image of H under the natural homomorphism G → Gad.Clearly, �H ∼= Gm;Rm is a split subtorus of the enter of the image �L of Lin Gad. Let S 6 Cent(�LRm) be the split torus onstruted in Lemma 2.6(applied to the onneted ring Rm). Then �HRm 6 S. The embeddings X�,� ∈ �(S;GRm), are S-equivariant, hene they are �HRm-equivariant. SineH 6 L preserves the subshemes UP± , and Cent(G) 6 L, this implies thatthe embeddings X� are HRm -equivariant.By de�nition of P = P+ and P−, there is an isomorphism X∗(H) ∼= Zsuh thatLie(UP ) =⊕n>0Lie(G)n and Lie(UP−) =⊕n<0Lie(G)n:Sine the embeddings X�, � ∈ �P , are HRm -equivariant, for any Rm-algebra R′, any s ∈ H(R′), and any u ∈ R′ ⊗Rm V� = R′ ⊗Rm Lie(G)� we



GROTHENDIECK{SERRE CONJECTURE 141have sX�(u)s−1 = X�(s(u)):By Lemma 2.11 for any � ∈ �+P we have u ∈ Lie (UP )(R′), hene s(u) =snu for some n = n(u) > 0. Similarly, � ∈ �−P we have u ∈ Lie (UP−)(R′),hene s(u) = s−nu for some n = n(u) > 0.Applying this result to the ring of Laurent polynomials R′ = Rm[Z±℄and s = Z ∈ H(R′), we onlude thatsUP (Rm)s−1 ⊆ UP (Rm[Z℄; ZRm[Z℄);sUP−(Rm)s−1 ⊆ UP−(Rm[Z−1℄; Z−1Rm[Z−1℄);s|L(Rm) = id: (7)In partiular, one hassgs−1 ∈ UP (Rm[Z℄; ZRm[Z℄) 6 G(Rm[Z℄; ZRm[Z℄)
6 GLn(Rm[Z℄; ZRm[Z℄): (8)On the other hand, the analogs of (7) hold for GLn, UQ± , and M inplae of G, UP± , and L. Therefore by (6) we havesgs−1 ∈ UQ+(Rm[Z℄; ZRm[Z℄) ·M(Rm) · UQ−(Rm[Z−1℄; Z−1Rm[Z−1℄):Sine one hasUQ+(Rm[Z℄; ZRm[Z℄) ·M(Rm) · UQ−(Rm[Z−1℄; Z−1Rm[Z−1℄)

∩GLn(Rm[Z℄; ZRm[Z℄) = UQ+(Rm[Z℄; ZRm[Z℄);we onlude that sgs−1 ∈ UQ+(Rm[Z℄); ZRm[Z℄) and thus g ∈ UQ+(Rm),as required. �Lemma 3.2. Let G be an isotropi redutive group sheme over a on-neted Noetherian ommutative ring B, provided with a losed B-embeddingG → GLn;B, n > 3, whih is a B-group sheme homomorphism. Assumethat G ontains a non-entral 1-dimensional split subtorus Gm;B, and letP = P+ and P− be the orresponding pair of opposite paraboli subgroupsthat exist by Lemma 2.4. Assume moreover that B is a subring of a om-mutative ring A, and let h ∈ B be a non-nilpotent element. Denote byFh : G(A) → G(Ah) the loalization homomorphism.If Ah + B = A, i.e. the natural map B → A=Ah is surjetive, thenfor any x ∈ EP (Ah) there exist y ∈ G(A) and z ∈ EP (Bh) suh thatx = Fh(y)z.



142 I. A. PANIN, A. K. STAVROVAProof. Sine the ring B is onneted, by Lemmas 2.6 and 2.8 the groupG over B with a paraboli subgroup P is provided with a split B-torusS 6 Gad, the orresponding system of relative roots �(S;G) = �P andrelative root subshemes X�(V�), where � ∈ �P and eah V� is a �nitelygenerated projetive B-module. By Lemma 2.11 one hasEP (R) = 〈X�(R ⊗B V�); � ∈ �P 〉for any B-algebra R.One has x = m
∏i=1X�i(i), i ∈ Ah ⊗B V�i , �i ∈ �P . We need to showthat x ∈ Fh(G(A))EP (Bh). Clearly, it is enough to show thatEP (Bh)X�() ⊆ Fh(G(A))EP (Bh) (9)for any � ∈ �P and  ∈ Ah ⊗B V� . We an assume that � is a positiverelative root without loss of generality. We prove the inlusion (9) by de-sending indution on the height of �. Let e1; : : : ; ek be a set of generatorsof the B-module V� .Take any z ∈ EP (Bh). By Lemma 3.1 we have EP (R) 6 En(R) forany B-algebra R. Take R = A[Z℄, the ring of polynomials over A. For anyN > 1 and 1 6 i 6 k one haszX�(hNZei)z−1 ∈ zEn(Ah[Z℄; ZAh[Z℄)z−1 ∩G(Ah[Z℄):Sine z ∈ EP (Bh) 6 En(Ah), by [18, Lemma 3.3℄ there exists Ni > 1 andgi(Z) ∈ En(A[Z℄; ZA[Z℄) suh that Fh(gi(Z)) = zX�(hNiZei)z−1. By [9,Lemma 3.5.4℄ there is Ki > 1 suh that gi(hKiZ) ∈ G(A[Z℄). Summingup, we onlude that there is N > 1 suh thatzX�(hNZei)z−1 ∈ Fh(G(A[Z℄)) (10)for any 1 6 i 6 k.On the other hand, note that Ah + B = A implies Ahn + B = A forany n > 1. Let M > 0 be suh that hM  ∈ A ⊗B V� . Then one an �nda ∈ A⊗B V� and b ∈ V� suh that = ahN + h−Mb:Write a = k

∑i=1 aiei, where ai ∈ A. By the multipliation formula for relativeroot elements (4) we haveX�() = X�(ahN )X�(h−M b)∏j>2Xj� (uj) ;



GROTHENDIECK{SERRE CONJECTURE 143where uj = qj�(hNa; h−Mb) ∈ Ah ⊗B Vj� , and, similarly,X�(ahN ) = k
∏i=1X�(aihNei)∏j>2Xj�(vj);where vj ∈ A⊗B Vj� . By the hoie of N in (10), one hasz( k

∏i=1X�(aihNei)) z−1 ∈ Fh(G(A)): (11)It remains to note that, sine the height of the relative roots j�, j > 2, islarger than that of �, the indutive hypothesis version of the inlusion (9)an be applied to all elements Xj� (vj) and Xj� (uj), j > 2. Sine, more-over, z and X�(h−M b) belong to EP (Bh), we see thatz∏j>2Xj�(vj)X�(h−Mb)∏j>2Xj� (uj) z−1 ∈ Fh(G(A))EP (Bh):Combining this result with (11), we onlude thatzX�()z−1 ∈ Fh (G(A))EP (Bh);whih proves (9). �Lemma 3.3. Let R be a Henselian disrete valuation ring. Let K be the�eld of frations of R. Let G be a semisimple simply onneted R-groupsheme suh that every semisimple normal R-subgroup sheme of G on-tains a split R-torus Gm;R. Then G ontains a stritly proper paraboliR-subgroup P , and G(K) = G(R)EP (K):Proof. Sine G is a semisimple simply onneted R-group sheme, by [4,Exp. XXIV 5.3, Prop. 5.10℄ there exist �nite �etale ring extensions R′i=R,1 6 i 6 n, and absolutely almost simple simply onneted R′i-groupshemes G′i suh thatG ∼= G1 ×SpeR G2 ×SpeR : : :×SpeR Gn;where Gi = RR′i=R(G′i) are minimal semisimple normal subgroups of G.Clearly, G(K) ∼= n
∏i=1G′i(K ⊗R Ri) and G(R) ∼= n

∏i=1G′i(Ri): (12)



144 I. A. PANIN, A. K. STAVROVASine eah Gi ontains Gm;R, one readily sees that eah G′i is isotropi,i.e. ontains Gm;R′i (see e.g. the proof of [13, Theorem 11.1℄). By Lemma 2.4G′i has a proper paraboliR′i-subgroup P ′i . Then Pi=RR′i=R(P ′i ) is a properparaboli R-subgroup of Gi, andP = P1 ×SpeR P2 ×SpeR : : :×SpeR Pnis a stritly proper paraboli R-subgroup of G. We haveEP (K) = n
∏i=1EPi(K) ∼= n

∏i=1EP ′i (K ⊗R R′i): (13)Fix an i, 1 6 i 6 n, and abbreviate A = R′i, H = G′i, P ′ = P ′j . Sinethe map R → A is �nite �etale, the ring A is a produt of a �nite numberof Henselian disrete valuation rings Aj , 1 6 j 6 m, and K ⊗R A is theprodut of their respetive fration �elds Lj , 1 6 j 6 m. By [5, Lemme4.5℄ one hasH(K ⊗R A) = m
∏j=1H(Lj) = m

∏j=1H(Aj)EP ′(Lj) = H(A)EP ′(K ⊗R A):Combining this result with (12) and (13), we dedue thatG(K) ∼= n
∏i=1G′i(R′i)EP ′i (K ⊗R R′i) ∼= n

∏i=1Gi(R)EPi (K) = G(R)EP (K);as required. �Theorem 3.4. Let R be a semi-loal Dedekind domain. Let K be the �eldof frations of R. Let G be a redutive semisimple simply onneted R-group sheme suh that every semisimple normal R-subgroup sheme of Gontains a split R-torus Gm;R. Then the mapH1�et(R;G) → H1�et(K;G)of pointed sets indued by the inlusion of R into K has trivial kernel.Proof. We prove the theorem by indution on the number of maximalideals in R. If R is loal then the theorem holds by [10℄. Let n > 1 be aninteger and suppose the theorem holds for all Dedekind domains ontainingstritly less than n maximal ideals. Prove that the theorem holds for aDedekind domain R with exatly n maximal ideals. Let m ⊂ R be amaximal ideal and let f ∈ m be its generator. Let R′ be the Henselization
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