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ON THE GROTHENDIECK-SERRE CONJECTURE
CONCERNING PRINCIPAL G-BUNDLES OVER
SEMI-LOCAL DEDEKIND DOMAINS

ABSTRACT. Let R be a semi-local Dedekind domain and let K be
the field of fractions of R. Let G be a reductive semisimple simply
connected R-group scheme such that every semisimple normal R-
subgroup scheme of G contains a split R-torus G,, r. We prove
that the kernel of the map

H}(R,G) — Hy (K, G)

induced by the inclusion of R into K, is trivial. This result partially
extends the Nisnevich theorem [10, Thm.4.2].

§1. INTRODUCTION

A well-known conjecture due to J.-P. Serre and A. Grothendieck [15,
Remarque, p.31], [7, Remarque 3, p. 26-27], and [8, Remarque 1.11.a]
asserts that given a regular local ring R and its field of fractions K and
given a reductive group scheme G over R the map

Hélt;(Ry G) - Hgt(K, G),

induced by the inclusion of R into K, has trivial kernel.

The Grothendieck—Serre conjecture holds for semi-local regular rings
containing a field. That is proved in [6] and in [11]. The first of these
two papers is heavily based on results of [13] and [12]. For the detailed
history of the topic see, for instance, [6]. Assuming that R is not equichar-
acteristic, the conjecture has been established only in the case where G
is an R-torus [2] and in the case where G is a reductive group scheme
over a discrete valuation ring R [10, Theorem 4.2]. In the present paper,
we extend the latter result to the case of an isotropic semisimple simply
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connected reductive group scheme over a semi-local Dedekind domain R;
see Theorem 3.4.

§2. PRELIMINARIES

2.1. Parabolic subgroups and elementary subgroups. Let A be a
commutative ring. Let G be an isotropic reductive group scheme over A,
and let P be a parabolic subgroup of G in the sense of [4]. Since the
base Spec A is affine, the group P has a Levi subgroup Lp [4, Exp. XXVI
Cor. 2.3]. There is a unique parabolic subgroup P~ in G which is opposite
to P with respect to Lp, that is P~ NP = Lp, cf. [4, Exp. XXVI Th. 4.3.2].
We denote by Up and Up- the unipotent radicals of P and P~ respectively.

Definition 2.1. The elementary subgroup Ep(A) corresponding to P
is the subgroup of G(A) generated as an abstract group by Up(A) and
Up-(4).

Note that if L's is another Levi subgroup of P, then L, and Lp are
conjugate by an element u € Up(A) [4, Exp. XXVI Cor. 1.8], hence Ep(A)
does not depend on the choice of a Levi subgroup or of an opposite sub-
group P~ respectively. We suppress the particular choice of Lp or P~ in
this context.

Definition 2.2. A parabolic subgroup P in G is called strictly proper, if
it intersects properly every normal semisimple subgroup of G.

We will use the following result that is a combination of [14] and [4,
Exp. XXVI, §5].

Lemma 2.3. Let G be a reductive group scheme over a commutative ring
A, and let R be a commutative A-algebra. Assume that A is a semilocal
ring. Then the subgroup Ep(R) of G(R) is the same for any minimal par-
abolic A-subgroup P of G. If, moreover, G contains a strictly proper par-
abolic A-subgroup, the subgroup Ep(R) is the same for any strictly proper
parabolic A-subgroup P.

Proof. See [16, Theorem 2.1]. O

2.2. Torus actions on reductive groups. Let R be a commutative
ring with 1, and let S = (G g)¥ = Spec (R[zE!, ..., 2E') be a split
N-dimensional torus over R. Recall that the character group X*(S) =
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Hompg(S,Gm g) of S is canonically isomorphic to 7N 1f S acts R-linearly
on an R-module V, this module has a natural Z" -grading

V= & W,
)

AEX*(S

where
W={veV]|s-v=As)v for any s € S(R)}.

Conversely, any Z -graded R-module V can be provided with an S-action
by the same rule.

Let G be a reductive group scheme over R in the sense of [4]. Assume
that S acts on G by R-group automorphisms. The associated Lie algebra
functor Lie(G) then acquires a Z" -grading compatible with the Lie algebra
structure,

Lie(G) = @) Lie(G)a.
AEX*(S)
We will use the following version of [4, Exp. XXVI Prop. 6.1].

Lemma 2.4. Let L = Centg(S) be the subscheme of G fized by S. Let
U C X*(S) be an R-subsheaf of sets closed under addition of characters.

(i) If 0 € U, then there exists a unique smooth connected closed subgroup
Uy of G containing L and satisfying

Lie(Uy) = € Lie(G)a. (1)
Aew
Moreover, if U = {0}, then Uy = L; if ¥ = =0, then Uy is reductive; if
VU(—"0) = X*(5), then Uy and U_y are two opposite parabolic subgroups
of G with the common Levi subgroup Ugn(_w)-
(ii) If 0 ¢ U, then there exists a unique smooth connected unipotent
closed subgroup Uy of G normalized by L and satisfying (1).

Proof. The statement immediately follows by faithfully flat descent from
the standard facts about the subgroups of split reductive groups proved
in [4, Exp. XXIIJ; see the proof of [4, Exp. XXVI Prop. 6.1]. O

Definition 2.5. The sheaf of sets
B = 8(S,G) = {A € X*(5)\ {0} | Lie(G)» # 0}

is called the system of relative roots of G with respect to S.
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Choosing a total ordering on the Q-space Q ®zX*(S) = Q", one defines
the subsets of positive and negative relative roots ®* and ®~, so that @ is
a disjoint union of ®*, &~ and {0}. By Lemma 2.4 the closed subgroups

Us+ufoy = P, Us-ujoy = P~

are two opposite parabolic subgroups of G with the common Levi subgroup
Centg(S). Thus, if a reductive group G over R admits a non-trivial action
of a split torus, then it has a proper parabolic subgroup. The converse is
true Zariski-locally, see Lemma 2.6 below.

2.3. Relative roots and subschemes. In order to prove our main re-
sult, we need to use the notions of relative roots and relative root sub-
schemes. These notions were initially introduced and studied in [14], and
further developed in [17].

Let R be a commutative ring. Let G be a reductive group scheme over
R. Let P be a parabolic subgroup scheme of G over R, and let L be a Levi
subgroup of P. By [4, Exp. XXII, Prop. 2.8] the root system & of Gm,
s € Spec R, is constant locally in the Zariski topology on Spec R. The
type of the root system of L@ is determined by a Dynkin subdiagram of
the Dynkin diagram of ®, which is also constant Zariski-locally on Spec R
by [4, Exp. XXVI, Lemme 1.14 and Prop. 1.15]. In particular, if Spec R is
connected, all these data are constant on Spec R.

Lemma 2.6. [17, Lemma 3.6] Let G be a reductive group over a connected
commutative ring R, P be a parabolic subgroup of G, L be a Levi subgroup
of P, and L be the image of L under the natural homomorphism G —
G C Aut(G). Let D be the Dynkin diagram of the root system ® of Gm
for any s € Spec A. We identify D with a set of simple roots of ® such
that P@ 18 a standard positive parabolic subgroup with respect to D. Let
J C D be the set of simple roots such that D\ J C D is the subdiagram
corresponding to L@. Then there are a unique maximal split subtorus
S C Cent(L) and a subgroup T < Aut(D) such that J is invariant under
[, and for any s € Spec R and any split mazimal torus T C Em the
kernel of the natural surjection

X (T)=7d ~ X*(S@

is generated by all roots « € D\ J, and by all differences a —o(a), a € J,
oel.

) = Z.8(S,G) (2)
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In [14], we introduced a system of relative roots ®p with respect to a
parabolic subgroup P of a reductive group G over a commutative ring R.
This system ®p was defined independently over each member Spec A =
Spec A; of a suitable finite disjoint Zariski covering

m
Spec R = H Spec A4;,
i=1
such that over each A = A;, 1 < i < m, the root system ® and the Dynkin
diagram D of G is constant. Namely, we considered the formal projection

wyr: L® —Z®/(D\J; a—o(a), a€J, og€l),

and set &p = @y = wy;p(P) \ {0}. The last claim of Lemma 2.6 allows
to identify ®;r and ®(S,G) whenever Spec R is connected.

Definition 2.7. In the setting of Lemma 2.6 we call ®(S,G) a system of
relative roots with respect to the parabolic subgroup P over R and denote
it by (I)P.

If A is a field or a local ring, and P is a minimal parabolic subgroup of
G, then ®p is nothing but the relative root system of G with respect to a
maximal split subtorus in the sense of [1] or, respectively, [4, Exp. XXVI
87].

We have also defined in [14] irreducible components of systems of rela-
tive roots, the subsets of positive and negative relative roots, simple rela-
tive roots, and the height of a root. These definitions are immediate analogs
of the ones for usual abstract root systems, so we do not reproduce them
here.

Let R be a commutative ring with 1. For any finitely generated pro-
jective R-module V, we denote by W (V') the natural affine scheme over
R associated with V| see [4, Exp. I, §4.6]. Any morphism of R-schemes
W (V1) — W(Vs) is determined by an element f € Sym*(V}Y)®g Va2, where
Sym* denotes the symmetric algebra, and V;¥ denotes the dual module of
Vi. If f € Sym?(V}Y) @R Vi, we say that the corresponding morphism is
homogeneous of degree d. By abuse of notation, we also write f: V; — V4
and call it a degree d homogeneous polynomial map from Vi to V5. In this
context, one has

FQw) =X f(v)
for any v € V1 and A € R.
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Lemma 2.8. [17, Lemma 3.9]. In the setting of Lemma 2.6, for any o €
Op = ®(S, () there exists a closed S-equivariant embedding of R-schemes
X, : W(Lie(@)a) — G,

satisfying the following condition.

(x) Let R'/R be any ring extension such that Gg/ is split with respect
to a mazimal split R’ -torus T C L. Let es, § € ®, be a Chevalley
basis of Lie(G /), adapted toT and P, and z5: G, — Gg/, § € @,
be the associated system of 1-parameter root subgroups (e.g. x5 =
exp; of [4, Exp. XXII, Th. 1.1]). Let

m:® = @(T,GR/) — @P @] {0}
be the natural projection. Then for any u = > ases € Lie(Gr/)q

sern—a)
one has
Xa(w) = (I @stas)) - TI( TT wowh(w)). 3)
ser—t(a) 22 gen~1(ia)

where every pi : Lie(Gr')o — R’ is a homogeneous polynomial
map of degree i, and the products over § and 0 are taken in any
fixed order.

Definition 2.9. Closed embeddings X,,, o € ®p, satisfying the statement
of Lemma 2.8, are called relative root subschemes of G with respect to the
parabolic subgroup P.

Relative root subschemes of G with respect to P, actually, depend on
the choice of a Levi subgroup L in P, but their essential properties stay
the same, so we usually omit L from the notation.

We will use the following properties of relative root subschemes.

Lemma 2.10. [14, Theorem 2, Lemma 6, Lemma 9] Let X,, a € ®p, be
as in Lemma 2.8. Set V, = Lie(G)q for short. Then
(i) There ezist degree i homogeneous polynomial maps q', : Vo & Vo —
Via, © > 1, such that for any R-algebra R’ and for any v,w € V, g R’
one has
Xo(0) Xo(w) = Xo(v +w) [ [ Xia (¢ (v, w)) . (4)
i>1
(ii) For any g € L(R), there exist degree i homogeneous polynomial
maps cp‘f]’a: Vo = Via, @ = 1, such that for any R-algebra R’ and for any
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v €V, ®pr R one has
gXa(U)gil = HXm (‘P;,a(v)) .
i>1
(iii) (Generalized Chevalley commutator formula) For any o, € ®p
such that ma # —kf for all m,k > 1, there exist polynomial maps

Nozﬁij: Voz X VB i WaJera Za] > 07

homogeneous of degree i in the first variable and of degree j in the second
variable, such that for any R-algebra R’ and for any for anyu € V, Qr R/,
v € Vg ®p R one has

[Xa(u), Xs)] = [] Xiatsjs(Nagij(u,v)) (5)
§,j>0
(iv) For any subset ¥ C X*(S)\ {0} that is closed under addition, the
morphism

X\pi W(@VQ) HU\D, (Ua)a'_)HXDA(UOt%
ac¥ o’
where the product is taken in any fized order, is an isomorphism of schemes.

Lemma 2.11. In the notation of Lemma 2.6, let ®* be the set of positive
and negative roots such that D C ®F. Set &5 = n(®*) \ {0}, Pt = P,
and let P~ be the opposite parabolic subgroup to P such that PNP~ = L.
Then for any R-algebra R’, one has

Up+(R) = (Xo(R @r Va), a € BF).
Consequently,

EP(R/) = <Xa(R/ QR Va), a € ‘I>P> .
Proof. By the choice of D the parabolic subgroup PW is the standard
positive parabolic subgroup of Gm corresponding to a closed set of roots
¥ D &*. By the choice of J C D, one has

T =30tU (Z(D\J) ﬁ(IV).

Then, clearly, 7(¥) = ®}U{0}. Similarly, P~ corresponds to the set (—¥)
and w(—¥) = &5 U {0}. Then the unipotent radicals Up+ correspond to
the closed unipotent subsets

m(®*\Z(D\ J)) = % C &p.
Then Lemma 2.10 (iv) finishes the proof. O
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§3. MAIN THEOREM

All commutative rings are assumed to be unital. For any commutative
ring R and n > 3, we denote by E,,(R) the usual elementary subgroup of
GL,(R).

Lemma 3.1. Let R be a commutative ring, let G be a reductive group
scheme over R, and let i : G — GL, r be a closed embedding of G as a
closed R-subgroup, where n > 3. Assume that G contains a non-central
1-dimensional subtorus H = Gy, g, and let P = Pt and P~ be the cor-
responding two opposite parabolic subgroups constructed as in Lemma 2.4.
Then one has Ep(R) < En(R).

Proof. Let Q@ = Q" and Q~ be the two parabolic R-subgroups of GL,, g
corresponding to H < G < GLy g, and let M = Centgr, ,(H) be their
common Levi subgroup. We show that Up(R) < Ug(R). Clearly, this im-
plies the claim of the lemma. By [3, Proposition 2.8.3(3)] this is true if R is
a field. In general, take g € Up(R). It is enough to show that g € Ug(R,y)
for any maximal localization R,, of R. Let

p: Ry, — Ry /mRy, =1
be the residue homomorphism. By the above p*(g) € Ug(l). Recall that

Qg =Ug+ MUg- = Ug+ x M x Ug- is an open subscheme of GL,, r [4,
Exp. XXVI, Remarque 4.3.6]. Hence
ge UQ+ (Rm)M(Rm)UQ* (Rm) (6)

Let L = PN P~ = Centg(H) be the Levi subgroup of P and P~. Let
H C G* be the image of H under the natural homomorphism G — G*.
Clearly, H = Gm,g,, is a split subtorus of the center of the image LofL
in G%. Let S < Cent(Lg,,) be the split torus constructed in Lemma 2.6
(applied to the connected ring R,,,). Then Hgr, < S. The embeddings X,
a € ®(S,GR, ), are S-equivariant, hence they are Hg, -equivariant. Since
H < L preserves the subschemes Up+, and Cent(G) < L, this implies that
the embeddings X, are Hg, -equivariant.

By definition of P = P+ and P, there is an isomorphism X*(H) & Z
such that

Lie(Up) = (P Lie(G), and Lie(Up-) = €P Lie(G)y.
n>0 n<0

Since the embeddings X,, o € ®p, are Hp, -equivariant, for any R,,-
algebra R, any s € H(R'), and any u € R' ®g,, V, = R' ®g,, Lie(G), we
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have
sXo(u)s™! = Xo(s(u)).

By Lemma 2.11 for any a € ®}, we have u € Lie (Up)(R'), hence s(u) =
s™u for some n = n(u) > 0. Similarly, o € ®5 we have u € Lie (Up-)(R'),
hence s(u) = s~ ™u for some n = n(u) > 0.

Applying this result to the ring of Laurent polynomials R’ = R,,[Z¥]
and s = Z € H(R'), we conclude that

SUP(Rm)Sil - UP(Rm[Z]a ZRm[Z])§
sUp-(Rm)s™' CUp-(Rm[Z7], Z7 R [Z71]); (7)
S|L(Rm) = ld

In particular, one has
sgs~t € Up(Rm[Z), ZRn|Z)) < G(Rm[Z], ZRm[Z])
<G

L(RulZ) ZRmiz)).

On the other hand, the analogs of (7) hold for GL,,, Ug+, and M in
place of G, Up=, and L. Therefore by (6) we have

sgs~' € Ug+(Rm[Z), ZRm[Z)) - M(Ry) - Ug- (Rn[Z7 '], Z7 'R [Z71)).
Since one has
UQ+ (Rm[Z], ZRm[Z]) -M(Ryp) - UQ‘ (Rm[Z_l]v Z_lRm[Z_l])
N GLn(Rm[Z]v ZRm[Z]) = UQ+ (Rm[z]v ZRm[Z])7

we conclude that sgs™' € Ug+ (Ri[Z]), ZRn[Z]) and thus g € Ug+ (Rp,),
as required. O

Lemma 3.2. Let G be an isotropic reductive group scheme over a con-
nected Noetherian commutative ring B, provided with a closed B-embedding
G — GLy B, n > 3, which is a B-group scheme homomorphism. Assume
that G contains a non-central 1-dimensional split subtorus Gy, g, and let
P = Pt and P~ be the corresponding pair of opposite parabolic subgroups
that exist by Lemma 2.4. Assume moreover that B is a subring of a com-
mutative ring A, and let h € B be a non-nilpotent element. Denote by
Fp : G(A) — G(Ap) the localization homomorphism.

If Ah+ B = A, i.e. the natural map B — AJ/Ah is surjective, then
for any * € Ep(Ap) there exist y € G(A) and z € Ep(Bp,) such that
x = Fy(y)z.
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Proof. Since the ring B is connected, by Lemmas 2.6 and 2.8 the group
G over B with a parabolic subgroup P is provided with a split B-torus
S < G, the corresponding system of relative roots ®(S,G) = ®p and
relative root subschemes X, (V,), where o € ®p and each V, is a finitely
generated projective B-module. By Lemma 2.11 one has

Ep(R) = (Xo(R®B Va), a € ®p)
for any B-algebra R.
One has z = [] Xg,(ci), ¢; € A ®p Vp,, Bi € @p. We need to show
i=1

1=

that x € Fy(G(A))Ep(By,). Clearly, it is enough to show that
Ep(Br)Xp(c) € Fu(G(A))Ep(Bp) (9)

for any § € ®p and ¢ € A, ®p V3. We can assume that 3 is a positive
relative root without loss of generality. We prove the inclusion (9) by de-
scending induction on the height of 5. Let eq,..., e be a set of generators
of the B-module V3.

Take any z € Ep(Bp). By Lemma 3.1 we have Ep(R) < E,(R) for
any B-algebra R. Take R = A[Z], the ring of polynomials over A. For any
N >1and 1 <i <k onehas

2Xg(WN Zey)z™" € 2En(An]Z), ZAn[Z)) 2~ N G(AL[2)).
Since z € Ep(Bp) < E,(Ap), by [18, Lemma 3.3] there exists N; > 1 and
9i(Z) € En(A[Z), ZA[Z]) such that Fy(g:(Z)) = 2Xs(hYi Ze;)z~1. By [9,
Lemma, 3.5.4] there is K; > 1 such that g;(hXZ) € G(A[Z]). Summing
up, we conclude that there is N > 1 such that
zXp(hN Zey)z" € Fi,(G(A[2))) (10)

forany 1 <i < k.

On the other hand, note that Ah + B = A implies Ah™ + B = A for
any n > 1. Let M > 0 be such that h™c € A ®p V3. Then one can find
a € A®p Vs and b € V3 such that

c=ah™ +h Mp.
k
Write a = > a;e;, where a; € A. By the multiplication formula for relative

i=1
root elements (4) we have

Xp(c) = Xg(ab™)Xp(h ™) [ ] X5 (uy),

Jj=2
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where u; = qé(hNa, h=Mb) € Ay, ®p Vs, and, similarly,
k
Xp(ah™) =[] Xs(a:nNe:) [] Xjs(v)),
i=1 =2

where v; € A ®p Vjg. By the choice of N in (10), one has

k
z(IIXﬁ@Jﬁ%J)zleﬁh«XAD. (11)
i=1

It remains to note that, since the height of the relative roots j38, j > 2, is
larger than that of 3, the inductive hypothesis version of the inclusion (9)
can be applied to all elements X,z (v;) and Xz (u;), j > 2. Since, more-
over, z and Xg(h~Mb) belong to Ep(B}), we see that

2| [T Xisw;) | Xs(™b) [ [] Xjs (w;) | 27" € Fu(G(A)Ep(By).

j=2 j=2
Combining this result with (11), we conclude that
2Xp(c)2™" € Fy (G(A)) Ep(By),
which proves (9). O

Lemma 3.3. Let R be a Henselian discrete valuation ring. Let K be the
field of fractions of R. Let G be a semisimple simply connected R-group
scheme such that every semisimple normal R-subgroup scheme of G con-
tains a split R-torus Gy, r. Then G contains a strictly proper parabolic
R-subgroup P, and

G(K) =G(R)Ep(K).

Proof. Since G is a semisimple simply connected R-group scheme, by [4,
Exp. XXIV 5.3, Prop. 5.10] there exist finite étale ring extensions R}/R,
1 < ¢ < n, and absolutely almost simple simply connected Rj-group
schemes G such that

G = Gl XSpecR G2 XSpecR - -- XSpecR Gna

where (i; = Rp;/g(G}) are minimal semisimple normal subgroups of G.
Clearly,
GK)=[[G(K®rRi) and G(R)=][]Gi(R:). (12)

i=1 i=1
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Since each G; contains G, g, one readily sees that each G} is isotropic,
i.e. contains Gm g (see e.g. the proof of [13, Theorem 11.1]). By Lemma 2.4
G has a proper parabohc Rj-subgroup P;. Then P; =Ry /r(P/) is a proper
parabohc R-subgroup of Gl, and

P = Pl XSpecR P2 XSpecR - -+ XSpecR Pn

is a strictly proper parabolic R-subgroup of G. We have

E) =[] Er(K) =[] Ep/(K @5 R)). (13)
=1 =1
Fix an i, 1 < i < n, and abbreviate A = R;, H = G}, P’ = P]. Since
the map R — A is finite étale, the ring A is a product of a finite number
of Henselian discrete valuation rings A;, 1 < j < m, and K ®p A is the
product of their respective fraction fields L;, 1 < j < m. By [5, Lemme
4.5] one has

H(K ®g A) = [[ H(L; H i)Epi(L;) = HA)Ep (K ®g A).
j=1 j=1

Combining this result with (12) and (13), we deduce that
G(K) = [[ GURY Bpy (K 91 B) = [[ Gi(R)Er, (K) = G(R)Ep(K),
=1 =1

as required. (I

Theorem 3.4. Let R be a semi-local Dedekind domain. Let K be the field
of fractions of R. Let G be a reductive semisimple simply connected R-
group scheme such that every semisimple normal R-subgroup scheme of G
contains a split R-torus G, gr. Then the map

Hét(Ra G) - Hét(Kv G)
of pointed sets induced by the inclusion of R into K has trivial kernel.

Proof. We prove the theorem by induction on the number of maximal
ideals in R. If R is local then the theorem holds by [10]. Let n > 1 be an
integer and suppose the theorem holds for all Dedekind domains containing
strictly less than n maximal ideals. Prove that the theorem holds for a
Dedekind domain R with exactly n maximal ideals. Let m C R be a
maximal ideal and let f € m be its generator. Let R’ be the Henselization
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of R at the maximal ideal m and let Ry be the localization of R at f. Let
L’ be the fraction field of R'.

Let £ be a principal G-bundle over R which is trivial over the field K.
By the inductive hypothesis £ is trivial over R; and over R’. Thus we may
assume that £ is obtained by patching over Spec L’ of two trivial principal
G-bundles G := G Xgpec g Spec Ry and G’ := G Xgpec g Spec R’ using an
element x € G(L/).

By Lemma 3.3 GG contains a strictly proper parabolic R-subgroup P,
and one has

G(L') = G(R)).Ep(L')

So, x = 2" .2 for some =" € G(R’) and 2’ € Ep(L’). Replacing the patch-
ing element x = 2”2’ with 2’ € Ep(L’) we do not change the isomorphism
class of the principal G-bundle £ over R. Moreover, by Lemma 3.2 one can
present z’ in the form #’ = y.z withy € G(R') and z € Ep(Ry). The latter
yields the triviality of the principal G-bundle £ over R, since Spec Ry and
Spec R’ form a covering of Spec R for the Nisnevich topology. O
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