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MEAN WIDTH OF REGULAR POLYTOPES AND
EXPECTED MAXIMA OF CORRELATED GAUSSIAN
VARIABLES

ABSTRACT. An old conjecture states that among all simplices in-
scribed in the unit sphere, the regular one has the maximal mean
width. We restate this conjecture probabilistically and prove its as-
ymptotic version. We also show that the mean width of the regular
simplex with 2n vertices is remarkably close to the mean width of
the regular crosspolytope with the same number of vertices. We es-
tablish several formulas conjectured by S. Finch on projection length
W of the regular cube, simplex and crosspolytope onto a line with
random direction. Finally, we prove distributional limit theorems for
W as the dimension of the regular polytope goes to co.

§1. CONJECTURE ON THE MEAN WIDTH

1.1. Introduction. The mean width of a compact convex body K C R™
is the expected length of a projection of this body onto a line with uni-
formly chosen, random direction. That is, the mean width equals E [Wk],
where

Wk = ts:};;(U, t) tlélIf(<U, t),
and U is uniformly distributed on the unit sphere S*~! c R”™.

How should n + 1 points be arranged on the (n — 1)-dimensional unit
sphere so as to maximize the mean width of their convex hull? An old
conjecture states (see [15, Section 9.10.2]) that the arrangement must be
reqular.

Key words and phrases: Gumbel distribution, mean width, intrinsic volumes, regu-
lar simplex, regular crosspolytope, maxima of Gaussian processes, random projections,
extreme value theory.
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The mean width is just a multiple of the first intrinsic volume V7, namely

()

I'(3)

Vi(K) = Vr E [Wk]; (1)
see [20, p. 210]. The first intrinsic volume has the advantage of not de-
pending on the dimension of the surrounding space. Hence the conjecture
can be formulated as follows:

sup Vi(conv(z1, ..., 2pe1)) = Vi(Th), (2)

T1yensTnp1 €SP L

where T}, is a regular simplex with n + 1 vertices inscribed in the sphere
S?~!. and conv denotes the convex hull.

This question is surprisingly hard. Several authors [3,4,14,22] assumed
the existence of a proof, but the problem is still open. Besides very natural
formulation in Convex Geometry this problem is very important in Infor-
mation Theory, as it is closely related to the the long-standing simplex
code conjecture [9].

1.2. Probabilistic statement. The conjecture can be reformulated in
terms of Gaussian processes in the following way. Throughout the paper,
n = (Mm,...,Mn) denotes a standard Gaussian vector in R™. Consider a
compact set K C R™. Using the fact that the norm and the direction of 5
are independent, it is not difficult to derive Sudakov’s formula

Vi(conv(K)) = V2r E Sgg(% z) (3)

(see [21] for details and for a generalization to the infinite-dimensional case,
or Theorem 3.1 in the present paper for a more general result). This prob-
abilistic interpretation of the first intrinsic volume allows to reformulate
the conjecture as follows.

Proposition 1.1. For every integer n > 2 the following two statements
are equivalent:

(i) One has
sup Vilconv(zy,...,xpn)) = Vi(Tho1), (4)

xl,...,zneS"—2

and the equality is attained iff x1,...,x, are vertices of a reqular
simplex.
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(i1) For every centered Gaussian vector (&1,...,&,) satisfying
E§ =---=E¢& =1, (5)

one has

Emax{fl,...,fn}<,/#Emax{m,...,nn}, (6)

and the equality is attained iff E [§;€;] = —1/(n— 1) for all i # j.
Proof. First of all note that

sup Vilconv(zy,...,z,)) = sup Vi(conv(yi,- .., yn))
T1yeenyln €S2 Y1seeYn €SP L
(7)

because there is an (n — 1)-dimensional affine subspace (and hence, an

(n—2)-dimensional sphere of radius at most 1) containing y1, ..., yn. The-
refore, we can restate (i) as follows:
sup Vi (CODV(yl, s ayn)) = ‘/l(Tn—l), (8)
Y1seesYn €SP
and the equality is attained iff yq,...,y, are vertices of a regular simplex
centered at the origin. Let {e1,...,e,} be a standard orthonormal basis

in R™. As a realization of such a simplex we can take the convex hull of
the points

—l—en)’ 1=1,...,n.

n er -
v; 1= ¢ — ——
n—1 n

To see this, note that the (n — 1)-dimensional regular simplex
Sp—1 :=conv(ey,...,e,)

can be inscribed in an (n — 2)-dimensional sphere of radius y/(n — 1)/n
centered at (e; + - - -+ ep)/n. It follows from (3) applied to K = S,,_1 that

V(T ) = Fw o) = VIR [ B s )

To any points 41, ...,y € S?~! we associate a centered Gaussian vector
(&1,...,&) such that E¢} = - = E£2 = 1 via
51 = <777y1>7 st fn = <77’yn>

If we agree to identify two Gaussian vectors if they have the same distri-
bution and two tuples (y1,...,y») and (y1,...,yy) if (yi,y;) = (y;, yj) for
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all 4,j € {1,...,n}, then this correspondence becomes one-to-one because
Cov(&i, &) = (¥4, y5)- It follows from (3) that

V21 E max{{1,...,&} = Vi(conv(yi,...,yn))-
The Gaussian vector corresponding to the points vy, ..., v, satisfies
E [&¢5] = (vi,v5) = =1/(n— 1), i#].

Taken together, the above considerations show the equivalence of (i)
and (ii). O

1.3. Asymptotic version of the conjecture. We now show that (2)
holds asymptotically.

Theorem 1.2. For some absolute constant C > 0 and all n € N,

loglogn
Vi (Ty) < sup Vi(conv(z1, ..., xn41)) <V (Tn)(l—l—()ig & )
T1,ey@n 1 €SP L logn
Proof. The first inequality is trivial because we can take zi,...,Tp41 to

be the vertices of T),. Replacing n by n — 1 and using (7) we can restate
that second inequality as follows: For all n > 2,

log1
sup Vl(conv(xl,...,xn)) < Vl(Tnfl)(l—i—CM)
T1yeeeyTp €SP logn
Fix z1,...,2, € S”'. For k = 1,...,n define Gaussian random variables

&, := (xk,n) and note that & has zero mean and unit variance. It is known
(see, e.g., [8, p. 138]) that

E max{¢,...,&.} < /2 logn. (10)

We provide a proof for the sake of completeness. For ¢t > 0 one has

exp (tE max{&y, ... ,én}) < E exp (t max{&,... ,En})

n
= E max{e® ... e} < ZEetEk =nel’ /2.
k=1
Letting ¢ = +/2 logn yields (10).
On the other hand, it is well-known in the theory of extreme values,
see [17, Theorem 1.5.3, p. 14] and [19], that

loglogn
Emax{nl,...,nn}:\/2logn70<\/§nggn), n — 00. (11)
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Using (3) and (10), we obtain
Vi(conv(zi,...,zn)) = V27 E max{&, ..., &} < 4rlogn.

Combining this with (9) and (11) gives

-1 log 1 -1
%(conv(azl,...,xn))<1/1(Tn_1)- nn (1—0(%))

:vl(Tnfl)-(HO(%))’

as n — oo. This proves the claim. O

§2. REGULAR SIMPLEX AND REGULAR CROSSPOLYTOPE

In this section we compare the mean width of the regular simplex T5,_1
to the mean width of the regular n-dimensional crosspolytope defined by

Cp, = conv(teq,...,ey,).

Note that both T5,_; and C,, (which can be considered as a degenerate
simplex) have 2n vertices and can be inscribed in S?"~2. We will show
that conjecture (2) is true in this special case, that is V1 (Cp) < Vi(T2n—1).
Moreover, we will prove a lower bound which shows that the mean width
of Ty, _1 is remarkably close to the mean width of C,,.

2.1. Mean width and extreme values. It follows from Sudakov’s for-
mula (3), see also (9), that

Vl(Tn—l): V2T ﬁEmax{nlw-wnn}:\/%‘/I(Sn—l)a (12)

Vi(Cr)=V2m E max{£tm,..., £} =V2r E max{|m|,...,|mm|}, (13)
where we recall that S,_1 = conv(eq,...,e,). It is well-known in the theory

of extreme values [17, Theorem 1.5.3 on p. 14] that

. z —e™ 7
nlLH;OP|:maX{771,...,77n} gun—l—m} =e ° 5 (14)

. x —e™®
JLII;OP{IH&X{|’I71|,,|’I7”|} <U2n+mj| =e © ) (15)
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. . . 2
where u,, is any sequence satisfying v2ru,en/? ~ n, for example!

B 1 loglogn + log(2y/7)

un = /2 logn JiTozn . (16)
Note that (15) (together with (14)) expresses the fact that the mini-
mum and the maximum of 7, ..., 1, become asymptotically independent;
see [17, Theorem 1.8.3, p. 28]. Taking the expectation (which is justified
by [19]) and noting that the expectation of the Gumbel distribution on
the right-hand side of (14) and (15) is the Euler constant -y, we obtain the
large n asymptotics

Wi (Tnfl) = m(”n + %)7 n — oo, (17)
Vi(Cy) = \/%(ugn + %) n — oo. (18)

These formulas are known; see [2], [12, p. 5], [11, p. 8].

2.2. Comparing V;(T2,-1) and V;(C,). We are going to show that dis-
tance between Vi (Ts,—1) and Vi(C),) is in fact much smaller than the
bound o(1/4/2 logn) implied by (17) and (18). First we state the corre-
sponding probabilistic result.

Theorem 2.1. Ifny, ..., 1m0, are independent standard Gaussian variables,
then

2n
E max{m,...,n2,} <E max{|n|,...,|n|} <{/ == E max{ny, ..., n2n}.

2n—1

The left-hand side inequality immediately follows from Slepian’s lem-
ma [17, Corollary 4.2.3, p. 84] because the random vector (11, ...,%2,) is
uncorrelated, whereas the off-diagonal correlations of (91,—n1,- -, D, —7n)
are non-positive. The proof of the second estimate will be given in Sec-
tion 4. Theorem 2.1 together with (12) and (13) implies the following

Corollary 2.2. For everyn € N,
2n—-1
2n

We now provide a bound which is asymptotically sharper. Its proof will
be given in Section 5.

Vi(Ton—1) < Vi(Chr) < Vi(Ton—1).

14, ~ b, means an/bn — 1 as n — co.
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Theorem 2.3. Letny,1o, - - ., be independent standard Gaussian variables.
Then, as n — oo, one has

1+0(1)
8n logn
Combining Theorem 2.3 with (12) and (13) yields the following

E max{|m/|,..., |9} = <1+ )Emax{nl,...,ngn}.

Corollary 2.4. Asn — oo,

1+ 0(1)

2 1—1—0(1)).

n) — Top— 1-
Vi(Cn) = (T 1)( 8n logn

), VAlCa) = Va(Sn-1) (14

It is possible to obtain further asymptotic terms in (17) and (18), (see,
e.g., [17, Eq. (2.4.8), p. 39]) but it seems that none of these expansions
can correctly capture the very small difference between the expectations
in Theorems 2.1 and 2.3.

§3. HIGHER MOMENTS AND LIMITING DISTRIBUTION OF THE
RANDOM WIDTH

3.1. Sudakov’s formula for higher moments. Given a convex com-
pact set K C R™ we denote by Wk the length of the projection of K onto
a uniformly chosen direction, that is

Wi = f:£<U’ ) — tlél[f{

{U,1), (19)

where U has uniform distribution on the sphere S?~!. In this section we
study the higher moments of the random variable Wi .

Recall that n = (m1,...,m,) denotes a random vector having standard
normal distribution on R™. The isonormal Gaussian process is defined by

=) = (n,t), teR™
It is characterized by
E[E(t)] =0, E[Z(t)E(s)] = (t,s), t,seR" (20)
For a compact set K C R™ define the range of E over K to be

Range =Z(t) = sup Z(t) — inf Z=(%).
teK () teK () tek (®)

The next theorem generalizes Sudakov’s formula (3) to higher moments.
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Theorem 3.1. If the set K C R"™ is convex and compact, then

E[WE] = 2’5%1«3[(3?25 E(t))k}. (21)
If, moreover, the set K is symmetric with respect to the origin, then
E[WE] = ot L) EK sup E(t))k}. (22)
L (%55)  Peer
Proof. The standard Gaussian vector  in R™ can be written as
n< RU,

where U and R? are such that
(1) U is a random vector with uniform distribution on the unit sphere
in R™;
(2) R? is a random variable having x2-distribution with n degrees of

freedom;
(3) U and R? are independent.

It follows that we have the distributional equality

nf(n, ) £ Sup(RU, ) —

— Inf nf (RU,t)=RWg. (23)

Range Z(t) =sup(n,t i

tel% (® t€K<n’ ) teK
Taking k-th moments of both parts and noting that R and Wx are inde-
pendent, we obtain that

E{(Range E(t))k} = E[RY E[WE].
teK

The moments E[R*] of the y2-distribution are known. Inserting the value

of the moment, we obtain (21) (which holds without the symmetry as-

sumption on K). If the set K is symmetric with respect to the origin, then

Range:ckZ(t) = 2 sup,c g =(t) and we obtain (22). O

Remark 3.2. In particular, taking ¥ = 1 in Theorem 3.1 and noting that
the first intrinsic volume is related to the mean width E [Wgk] by (1), we
recover from (21) Sudakov’s [21] formula

Vi(K) = \/gE{Range E(t)} = \/ﬁE[sup E(t)} (24)

teK teK
Note that the symmetry assumption on K is not needed in the derivation
of (24) because in the last equality we used only that sup,.; =(t) has the
same distribution as — infyc i Z(2).
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3.2. Applications to regular polytopes. Theorem 3.1 can be used to
prove several conjectures on projections of regular polytopes which are due
to Finch [11-13].

Example 3.3. Let @), = [f%,—i—%]" be the n-dimensional cube of unit

volume. It is easy to see that Range ;o Z(t) = ) [ni|. Therefore, by (21),
i=1

Bt =2 b B (3 )] )

In particular, taking ¥ = 1 and noting that Ejnp| = \/g we obtain that
the mean width is

Bl = 2 gy = LG)

VT (51) VAT ()

or, equivalently, V1 (Q,) = n, which is well known. The second moment of
the projection length is given by

2 1 2 2 2
EWS,]1=~E|(Iml++ml) | =En[+m-1) Elnn| =1+ (n-1),

where we have used that E|nf| = 1 and E |gn:| = (E|n1])? = 2. This
formula has been conjectured by Finch [12, p. 9] who established it for
n = 2,3 by purely geometric arguments [13]. Using (25) it is possible to
compute more moments of W, for example

F z 3 5
B [WS"]:#FTA)”@”Z*’BW —6)n+4-— 7r),

E[Wg, 1= (4n’+(12m—24) n+ (44—20 7+ 3 7°) n+ 8 w—24)

(n+2)w2
where we have used that E |771|:\/g, Eni|=1, E|n}|=2,/2, E|n{|=3.

Example 3.4. For the regular crosspolytope C,, = conv(+ey,...,+e,) we
have sup;co Z(t) = max{|n1,..., ||} and therefore Theorem 3.1 yields

EWE 1= QQ%E [(12%xn|ni|)k}, keN.

For k = 2, this formula was conjectured by Finch in [11, p. 3]; see also [12].
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Example 3.5. For the regular (n — 1)-dimensional simplex
Sp—1 = conv(eq,...,e,) CR™,

Theorem 3.1 yields

n
2

r
EWE =273 (£+

\_/

k
25y B (e m - min n) |
Note that in this formula, S,_1 is projected onto a random direction in
R™, even though S,_ is (n — 1)-dimensional.

It is more natural to state the corresponding formula for 7),_; (which
is a regular simplex with n vertices inscribed in S*~2 C R™™!) projected
onto a random direction in R®!. As a realization of T,,_; we take the

points

n er+---+ep .
v; = (ei—i), 1=1,...,n,
n—1 n

in the hyperplane L := {z1 +--- + 2, = 0} C R™ (which can be identified
with R"1). By (20), the isonormal process = on L satisfies

=0t L [ (g — D)
Eimtn £ [ (= =)

so that for its range on T,,_; we have

N n
Range Z(t) = ( max 7; — min 771)
teT,_1 n—1 \1<i<n 1<i<n

Therefore, for the projection length of T,,_; onto a uniformly chosen ran-
dom direction in the hyperplane L we obtain

ﬁ L) (o VM :
ko] o— 2 _
E[Wr =2 NE=E) (n — 1) E{(lrgixnm lglzlgnm) }

For k = 2, this formula was conjectured by Finch [12, p. 4] who verified it
for small values of n.

[ME

3.3. Limit distribution for the random width. What is the asymp-
totic distribution of the projection length of a high-dimensional regular
polytope onto a random line? The next two theorems answer this ques-
tion. The proofs are postponed to Section 6.
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Theorem 3.6. The random width of the cube Q, = [—%, $]" satisfies the
following central limit theorem:

o, /22 £ x (0,722

Theorem 3.7. For the random width of the simplex S,,_1=conv(ey,...,e,)
and the crosspolytope C,, = conv(tey,...,te,) we have

V2nlogn (Wsn_1 - 2%) n_%;o G1+ Gy, (26)
V2n logn (ch - 2;%") 4, 26, (27)

where G1,Gy are independent random variables with the Gumbel double
exponential distribution P[G, < z] =P[Gy < 2] =e°¢ ",z € R.
Remark 3.8. It is easy to check that the density of G1 + G2 equals

2e *Ko(2e /%), z€eR,

where
o0

Ky(z) = /efZCOShtdt, z >0,

0
is the modified Bessel function of the second kind.

§4. PROOF OF THEOREM 2.1

Proof. As already mentioned, the first estimate in Theorem 2.1 is a con-
sequence of the Slepian lemma. Therefore, we concentrate on proving the
inequality

2n
2n—1
The idea of the proof of goes back to the work of Chatterjee (see [7]
or [1, p. 50]). For t € [0, 1] consider a centered Gaussian vector

f(t) = (51 (t)a s 7£2n(t))

with correlations defined by

Emax{|n1|,...,|nn|}< Ernax{m,...,ngn}.

2n
E[f?(t)}:my =1,...,2n,
2nt
E [&i1(t) &i(t)] = Tiran—1 =1...,n,
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and E [£(t) §(t)] = 0 otherwise. We have

2n

€0) L4/ " (...

2n—1

777277,)7 5(1)

1ES

(7717

777177727 77727 e 77777,7 717'”4)

Hence it is sufficient to show that the function

o(t) = B max {€(

is non-increasing on [0,

FB(ZL‘l,...

It is immediate that

max{zi,...,Tan} <

Fﬁ(l‘l,...,

m2n) X

log2n
B

t)7 c 7£2n(t)}

1]. Consider the function

1 2n
, Tap) 1= Elog (Zeﬁ‘“).
i=1

+ max{zy,...,Tan}-

Therefore we only need to show that for any 8 > 0 the function

is non-increasing on [0, 1].
In what follows, x stands for (z1,...

ps(t) == E Fs(¢(1))

,:L’gn). Set Oij (t) =E [&(t) gj(t)]

and let us denote by f(¢,x) the probability density function of £(¢). It is
a well-known property of f that

of _ 19*f of  0*f -y
80'1'2' N 2 8:1:f’ 80’¢j N 83:2'8:1:]-’ J:
Therefore,
95 _ of / - a%
2~ [ B0 dx = 2> 6% ax
R27 R2n
We have
(90'“‘ _ 2n _
ot~ (t+2n—1)% i=1L...,2n,
80'22'_172,' _ 2n(2n — 1) -1
o1 t+2n—12 '~ o™

and Jo;; /0t = 0 otherwise. Thus we obtain
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87
8(,05 -
ot t+2n /FB ; 8x21 1 (x)
& f & f
+2@n= )5 ) + s (x)} dx
_ 3 FB
B t+2n QZ/f ox3, | ()
=lgon
82 Fj 82Fs
+2(2n— 1)833% ¥ R (x)} dx
_ 0 FB
B (t+2n 22 {8%1 1
82 Fj 82Fs
+220 =15 S0+ (x)} .
It is easy to check that
O%F, . O%F, .,
5o () =8 (pix) Pl (). (%) = A p(x), i #]
7 ? J
where
OF, eBwi
pi(x) := 3:1:/-3 (x) = 5—
¢ eﬁmi
Thus,
(t+2n—1)>2 6(,05
7%6 Z E [pi(¢
- Z E [p; (¢ —2@2n—1)> E [pai-1(£(t)) p2i(€(1))] (28)
=1

=1- Z E [p{(€(1)] =220 = 1) 3 B [paica (§0) p2il€(1))]

For i = 1,...,n the random variables &;_1(t) and &;(t) are non-
positively correlated. Therefore it follows from [16] that they are negatively
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associated (see [6] for more details), which implies

E [p2i-1(£(1)) p2i(£(1))] < E [pi(€(1)] E [p;(€(1))]-
Hence for all k& # [ we have

E [p2i-1(§(8) p2:(§(1)] < E [pe(E(0)] E [mi(&(1))].
We thus get

Z( (P31 (€()] + B [B3(60)] +2 20 — DB [pai 1 (€(1) pi(€(1))])

< (BB ) + 3 Bl (€0)] B [pi(e0)]

i=1 JA2i—1

+ ) Bl E[pj@(t»]):(E[im@(t»})zzl.

j#£2i—1

Combining this with (28) yields 0/t < 0, which completes the proof.
O

§5. PROOF OF THEOREM 2.3

Proof. Recall that both A, :=E max;<;<n|m:| and By, :=E max;<;<on s
are asymptotically equivalent to /2 log n. Therefore, in order to prove the
theorem, we need to show that

lim 4n+/2 logn (E max |m| —E max nl) =1 (29)
n—0oo

1<i<2n

Denote the tail function of the standard normal distribution by

o

E(t) _ 6752/2 ds

T

It is well known [1, p. 9] or [8, p. 137] that for £ > 0 one has

1 1 1\ 2, = 1 —$2/e
?(rt_s)e B2 <P < NorTh e, (30)
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The distribution functions of the maxima we are interested in are given by

t

o ‘ _ —s2/2 ds n_ 57 n
Fn(t)._P[g%xant}_( e _\/ﬁ)_(l 23(4))", =0, (31)

Zt
¢ ds 2
L . _ —32/2_8 n_ o 2n
Gn(t).—Pngé(nmgt} —(/e \/ﬂ) =(1-2(¥))*", teR. (32)

— 00

It follows that

A, =E max i = /(1 — F,(t)) dt,
0
_ L _ _ N 2n
Ba=B may = / (1= Go(t)) dt / @(t))>" dt.
0 0

To prove the second equality, note that for M := max;¢;<onn; We have
M = My — M_ with My = max(M,0), M_ = max(—M,0), and

P[My>t]=1-Gut), t>0,
P[M_>t=P[M < —t]=(1-3(-1))*" = (&(t))*™, t>0.

In fact, the second integral in the formula for B, is negligible. Indeed,
noting that ®(0) = 1/2 and using (30) we obtain

/ (1) dt < (B(0))" + / @)™ dt <27 + / (2m) " ey

<272 4 (2me) M <27

In view of the above considerations, in order to prove (29) it suffices to
show that

n—oo

lim 4n+/2 logn/(Gn(t) — F,(t))dt = 1.
0

After a change of variable t := ¢, + -, a € R, where ¢, ~ /2 logn is the
solution to the equation

1
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our task reduces to proving that
. a a
lim 4n(Gn(tn+ —) —Fn(tn+ —))da: 1. (34)
n—oo ty ty
—12
First we prove the pointwise convergence of the function under the
integral sign. If a € R is fixed and n — oo, then by (30) and (33),

= a 1 1 a )2 1 1.2 e 0
r ::@(t + —)N e*i(tvﬁg) ~ o~ the0 (35
" "t Vart, V2 t, 2n (35)

Recalling the formulas for Fj, and G,,, see (31), (32), we can write

F, (t” + tg) = (1 - 2rn)n = enlog(1—2rn)’

n

G, (tn + tg) =(1—r,)%" = 2nlog(1=rn)

n

Using (35) and the Taylor series for the logarithm and the exponent, we
obtain

1 . 1
F, (tn—l—g):exp {—n(Q rnt+2 ri—i—o(—z))} —e 2 (I—Qnri—l-o(—)),
tn n n

G (1t )=exp {2 (et 2 w0 ) =e 2 (1-mro( L),

Subtracting both expansions and using (35) twice, we obtain
‘ 1 —a
4n (Gn (tn—i-g)an (t,ﬁ—i) ) =4ne 2 (n 7"721 —|—0<—)) — e7® TeT20,
tn tn n n—00

If we allow for a moment interchanging the limit and the integral, the limit
in (34) equals

+oo o}
LHS of (34) = / e ® e dg = /e*yy dy =1,
—o0 0

where we used the change of variable y = e™.

To complete the proof we need to justify the use of the Lebesgue dom-
inated convergence theorem. It suffices to show that for some integrable
function g(a),

Oén(Gn(tn—ktg)—Fn(tn%-ti))ég(a), a>—Y2 pen, (30)

n?’
n n 4
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and
—t2 /4

Tim / (Gn (tn + ti) _F, (tn + tﬁ)) da = 0. (37)
2

The non-negativity of G,,— F, is a consequence of the inequality (1 — z)?2
> 1—2z; see (31), (32). Now we prove the upper bound in (36). Using the
inequality

y" 2" <n(y—2x)y"

for 0 < z < y, we obtain that
Gn(t) = Fut) = (1-28(t) + & (1)) — (1 - 28(t))" (38)
<n® (1) (1—B(1)* 2.

In the following, C,C4,... > 0 denote absolute constants. Let first a >
—§tn s0 that t, + = > 3t,. By (30) and (33),

— a Ch _i(g e 40T 1 Cy _
<1>(t —)< e ilnti) < lemitier < 2o (39
nt S E <3 < (39)

On the other hand, if a € [—1t2,0], then again using (30) and (33) we
obtain

= a cy L(p4a)2_ O] —aZ (!
‘I’<tn+—)> —li o3 (tnte) >-1 e 3lh o % 23 >2 e’ga, (40)
tn ot ™ tn n
where in the last estimate we used that —% > %a.
Note that because of —a < +t2 ~ 1logn, the right-hand side of (39)

can be estimated above by Cn~1/4. Using the inequality 1 — 2 < e~ 2%

(which is valid for sufficiently small z > 0) together with (40), we obtain
that for a € [—112,0],
(]_ _ 6(75” + 1))%_2 < ef(nfl)%ée_%“ < efcle_%“.
tn
It follows from this and (38), (39) that for all @ > —$¢2,

G+ £) £ (e 2) (1 )

7
1", —2a,—C'e” 8%
< (C"e % ,
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where in the case a > 0 we used the trivial estimate 1 — ®(¢) < 1. The
function on the right-hand side is integrable in a, thus completing the proof
of (36).

We turn now to (37). Using again (38), the trivial estimate ®(¢) < 1,

and the increasing property of 1 — ®(¢), we obtain that
—t2 /4
a . _ 3 . 2n—2
I,:=n / (anFn)(tn—i-—) dagnzt%(lf@(—ti)) .
tn 4
—t%
Recall now that 2 ~ 2logn and use (40) which implies that for some
e€(0,1),
T 3 2 —e . T 3 2
@(Z tn) > Cn™%, but lim @(Ztn) =0.
Again using inequality 1 — 2 < e 3% (valid for small z > 0), we obtain

I, <Cn?(logn)e Cm "(n=) 0,

thus proving (37). O
§6. PROOFS OF THEOREMS 3.6 AND 3.7

Both proofs rely on the observation that a random vector U distributed
uniformly on S™~! can be represented as

U g ( Ui Mn )
VI Vg
Proof of Theorem 3.6. It follows from the definition of Wg, , see (19),
and from the central symmetry of the cube that

d [ml+---+nal

(41)

Wq, =2 sup (t,U) = —. (42)
t€Qn Vg4
Consider a random vector (X,,Y,) with
Y U Mt -
X, = , Y, = , 43
ovn v/n (43)
where

o= Elny| = 2/, (44)
o® == Var || = E[n] — (Elm|)* = (7 - 2)/, (45)
v? = Var(i}) = E[m] - (E[f])* = 2. (46)
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Note that EX,, = EY,, =0 and Var X,, = VarY,, = 1, while

n Cov(|m|,m7) 1
= Cov(X,,Y,) = = 47
r OV( ns n) oun \/mﬂ ( )
where we used that E|n}| = 24/2/x. By the bivariate central limit theorem,
(X0, Ya) -5 (X,Y), (48)

where (X,Y) is a bivariate Gaussian vector with standard margins and
covariance r. It follows from (43) that

o X,
4 Im|+ -+ [nnl _N”+U\/ﬁXn _un(1+m)

B R RN RN N e

Letting n — oo, expanding into a Taylor series around 0 and noting that
X, =0p(1),Y, =0p(1), we get

1 X, Y, 1
W—+|7771|:u\/,;(1+_(0 ”—U—")JrOp(—)), n — 00.
It follows that
n 1 1
|771|2+—+|77|,H\/ﬁ:g)(n——uvYn+Op<—), n — oo.

Note that by the bivariate central limit theorem (48), the sequence
o X, — % 1vYy, has limiting normal distribution with mean zero and vari-
ance

Wq

1 5 1 -3
Var[aXn——,uvYn}:UZ+—M2U2—U/MJ7“:7T ,
2 4 T

where we used (44), (45), (46), (47). Recalling (42) we obtain

2 " -3
m%fﬁﬁgM%L;ﬂ%fM@gﬂN@W ).
T ,/n1_|_..._|_77n n— 00 ™

which proves the claim. O

Remark 6.1. Self-normalized or studentized sums of the form

R — G+ -+ T .— G+ -+
n «— \/2:2 or n «— — — 5
G4+ VG =T+ (G = G2
where (1, (s, ... are i.i.d. random variables and ¢, = 1(¢ + -+ + Co),

n
have been extensively studied in the literature; see, e.g., [10], with main
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emphasis on the central case E[(;] = 0. The non-central case E[(;] # 0 has
been analyzed by [5] (who studied T},) and by [18] (who studied 1/R2 and
related quantities). After some calculations, our central limit theorem for
Wq,, could be deduced from [18, Theorem 3.1(v)], but since these authors
studied 1/R?2 instead of R, it was easier to provide a direct proof.

Proof of Theorem 3.7. We prove (26). Using representation (41), we
obtain

d Maxiign i — MINIG<n i

Ws, ., = : A
1 Vit g

It is known from extreme-value theory that the range of the standard
normal sample satisfies

(49)

Ly 1= un< max 7; — min 7; — 2un) 4, G+ Gs, (50)
1<ig<n 1<ig<n n— 00

where u,, ~ /2 logn is as in (16). In fact, this follows from the asymptotic

independence [17, Theorem 1.8.3, p. 28] of maxi<i<p 7 and — mini <<, 7

which both have limiting Gumbel distribution as in (14). Define Y,, as

in (43) and observe that Y, has limiting standard normal distribution by

the central limit theorem. We have

. Z Z,
maxi<ign i — MiN1ign i 2up + 32 _ 2u, L+ uZ

77%_{_..._1_77721 n+v2ny, \/ﬁ 1—|—,/2/nYn'

Noting that both Z,, and Y;, are Op(1) and expanding into a Taylor series,
we obtain

maxigign 1 minjg ig<n 1 u (1+ ‘ -I-OP( ))’

= 2 x
2u?, Uy,

R Vi

where we have used that u, ~ /2 logn and hence, the term with V), is
negligible. It follows from (50) that

AXT < MmNy .9
u”\/ﬁ(m X1<2§n2771 mlnl‘gzén i Un) d, Gy + G,
which, in view of (49), implies (26).
The proof of (27) is analogous but instead of (42) it uses the represen-
tation
9 . .
We, 4 mjxl—@énhhj (51)
M+t
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together with the limit relation

Z) = un< max |n;| — uzn) 4, Gy (52)

1<i<n

following from the asymptotic independence of the maximum and the min-
imum. (I

10.
11.
12.
13.
14.

15.

16.

17.
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