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ON OUTLIERS DETECTION FOR LOCATION-SCALE
AND SHAPE-SCALE FAMILIES

ABSTRACT. The problem of multiple upper outliers detection in
samples from location-scale and shape-scale families is considered.
A new test statistic is proposed. The critical values of the new test
statistic are tabulated by simulation. The power of the new test and
other available tests are compared by simulation.

§1. INTRODUCTION

The problem of outlier detection in a sample of observations is an old
problem. Various criteria have been proposed and their performances stud-
ied in statistical literature. Most of them have been concentrated on the
normal distribution (see Dixon [6], Grubbs [8], Boasmes, Cmupros [4],
Boabwes, Yoaugynaesa [3], Tietjen and Moore [21], Barnett and Lewis
[2], Balakrishnan [1]. For non-normal case, the bulk of the literature per-
tains to the exponential and gamma distributions, see, for example, Likes
[14], Kabe [10], Lewis and Fiellerm [13], Chikkagoudar and Kunchur [5],
Zerbet and Nikulin [22], Lalitha and Kumar [12], Kumar [11], Ibragimov
and Khalfina [9], Pagurova [18]. FO. B. Jluanux [15] collaborated also much
on the problem of detection of outliers and on elimination of crude obser-
vations.

Problems of outliers in samples from the Weibull or extreme-value dis-
tributions are recognized to be of considerable practical importance (see
Mann [17]). These distributions are special cases of shape-scale and lo-
cation-scale families of distributions, respectively. They have often been
used as pragmatic models in survival analysis, both in the biological and
in the physical sciences, as well as in many other applications. A survey
of the outlier detection procedures in the case of Weibull or extreme-value
distributions using a location-scale models was given in Fung and Paul [7].
See also Mann, Scheuer and Fertig [16], Rosner [20].

Key words and phrases: location-scale family, non-spurious power, outliers, power
comparison, shape-scale family, slippage alternative, Weibull and extreme-value
distributions.
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The probability distribution of a random variable T belongs to the
shape-scale family of distributions with the c.d.f.

Fr(t) = Fy((t/8)") forallt € R, (1)

where Fy is a completely specified c.d.f., Fo(t) =0 for ¢t <0, and 6 > 0,
v > 0 are unknown scale and shape parameters.
In the case of the Weibull, loglogistic and lognormal distributions

Fo(t)=1—et, o(Int), 2)

1+t
respectively, where ®(z) is the c.d.f. of the standard normal distribution.

The distribution of the random variable X = InT belongs to the family
of location-scale distributions with the c.d.f.

Fx(2) = Fo(e*) = F((w — p)/0), =€ R; (3)

here p =Inf, o = 1/v.

In the case of the baseline function Fy given in (2) the extreme values,
logistic and normal distributions are obtained, respectively.

So any test constructed for location-scale family can be used in the case
of corresponding shape-scale family. It suffices to use logarithms of the
sample members.

§2. THE NULL HYPOTHESIS AND THE SLIPPAGE ALTERNATIVE

Let us consider the null hypothesis

Hy: the sample X1, Xo, ..., X, derives from the location-scale family (3)
with a specified baseline c.d.f. F' and the parameters p, o.

Under Hy the p-quantile of the distribution is z, = u + oF~'(p). It
implies that the random variable X has tendency to take greater values if
the parameters pu increases. Upper quantiles F'~1(p) of the baseline distri-
bution are positive so the upper order statistics of X also have tendency
to take greater values if ¢ increases.

So we consider the following slippage alternative of existence of r upper
outliers:

H,5.a:n—r from X; have the distribution (3) with the parameters p and
o and r from them have distribution (3) with the parameters (p+ 6,04A),
where 6 >0, A > 1, (§,A) # (0,1).
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This alternative includes cases when one or both of the parameters
p or o increase. The most natural alternatives are H, ;5. For example
under the accelerated failure time alternative covariates influence only scale
parameter and not the shape parameter.

Suppose that instead of location-scale families we consider scale-shape
families. So instead of the data X, ..., X,, we consider the dataTy,...,T,,
Xi =In TZ Set

F(z) =Fy(e”), p=Ilnd, o=1/v.
The null hypothesis and the alternative can be formulated in equivalent

form:

Hy : the sample Ty, Ts, ..., T, derives from the scale-shape family (1)
with a specified baseline c.d.f. Fy and the parameters p,o.

Under Hy the p-quantile of the distribution is ¢, = H[Fofl(p)]l/ v It
implies that the random variable T' has tendency to take greater values
if the parameters # increases. Upper quantiles Fo_l(p) of the baseline dis-
tribution are greater than 1 so the upper order statistics of T" also have
tendency to take greater values if v decreases. The slippage alternative is
the following:

H. A : n—rfrom T; have the same distribution as under Hy and r
from them have the distribution from the same scale-shape family with the
parameters (Ok,v/A), where k > 1, A > 1, (k,A) # (1,1).

The most natural are location alternatives Hy j 1.

§3. AVAILABLE TESTS

Let X(l) < X(g) < ... < X(n) be an ordered sample from a specified
location-scale family with location parameter p and scale parameter o.
Let us introduce the most popular tests for detecting r upper outliers in
location-scale or shape-scale families.

Dizon’s tests, Dixon [6]. Three test statistics are mostly used:

X =X 5 X=X X = Xwr)
X _X s 2r — X _X ) 3r — X - X .
()~ X () ~X@) ()~ )

The hypothesis Hy is rejected if the test statistic takes large values.
Grubbs test, Grubbs [8]. The test statistic is
G = 512177’+1,...,n/52;

Dy, =
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here
) n ., ~ 1
i=1 i=1
n—r B ) B 1 n—r
Srzz—r—&-l,...,n = Z(X(z) - anr+17m,n)27 Xnrt1,n = n—r ZX@)
=1 =1

The hypothesis Hy is rejected if the test statistic takes small values.
Grubbs-2 test is based on the statistic

n _

Z X(i) —rX

i ‘ 1 & _
G, = =t 2 ==3(x; - X)2
T sy ) Sx nZ( J )

j=1
The hypothesis Hy is rejected if the test statistic takes large values.
Mann’s test, Mann [17]. The test statistic is

n—1 n—1
L= 5 /5
i=n—r—1 i=1
where
li = (X(ir1) — X))/ (E(Ziv1)) — E(Z)),
and
Zuy = (X — /o

The hypothesis Hy is rejected if the test statistic takes small values. This
test was initially proposed for detecting upper outliers in Weibull samples
taking logarithms of the initial data 71, ..., T,. This approach can also be
used to shape-scale families of distributions because for such families the
distribution of the test statistic under the null hypothesis is parameter-free.

Kumar’s test, Kumar [11]. The test statistic

X n) X n—r
K, = -t = Xinr)
§(X<i> - X))

was proposed for detecting upper outliers in exponential samples with
unknown origin. This approach can be used to shape-scale family of dis-
tributions because for such families the distribution of the test statistic
under the null hypothesis is parameter-free.
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Tietjen—Moore test, Tietjen and Moore [21]. Tietjen and Moore proposed
the statistic F, for detecting upper outliers in normal samples. The test
statistic is

where

1 n—r
X, = Xi.
The hypothesis Hy is rejected if the test statistic takes small values. This
test can be used for location-scale families because for such families the

distribution of the test statistic under the null hypothesis is parameter-free.

§4. THE NEW TEST

We begin by noting that the mean of X; is E X; = u+ao for all ¢ under
Hj and for n —r from X; under H, 5 A, whereas EX; = p+ § + acA for

r from X; under H,5.a; here a = [ zdF(z).

— 00

Set E,n = i,n(X(i-H) — X(i)), where

Min = f(F7'(i/(n+ 1)), f(z)=F'(z),
For example, in the case of the extreme values, logistic and normal distri-
bution

M; :7(17%—;-1) ln(lin—i—l); n—i—l(lin—i—l); S(J((Irl(ﬂj'l))’

respectively, where p(z) is the p.d.f. of the standard normal distribution.

The idea of the coefficient M; ,, choice is derived (see Mann et al. [16])
from the following limit theorem (see Pyke [19]): under general assump-
tions the random variables (n(Z(;11)—Z(;)) and n(Z;11)—Z(j)) are asymp-
totically (as n — oo, i/n — p1 € (0,1), j/n — p2 € (0,1)) indepen-
dent and converge in distribution to the exponential law with the means
1/f(F~(p1)) and 1/ f(F~"(p2)), respectively; Z(; are the order statistics
from the parameter-free distribution F'. The distribution of the random
vector (l~17n/0, e ,l~n,17n/a)T does not depend on unknown parameters.
The components of this vector are almost equally distributed.

We propose the following test statistic
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(n=r) > Xu-rd Xa
k=n—r+1 i=1
n—r—1 )

n Yyl
j=1

Note that for the data without outliers

B(r,n) =

X(z) = O'Z(Z) + i,
and
Ly = Min(X(ir1y) — X(5) = oMin(Ziv1) — Zi))s

so the distribution of the statistic B(r,n) is parameter free under Hy.

Under the alternative H; 5 A the r random variables from X; which have
tendency to take greater values than other ones, give the effect that order
statistics under this alternative have tendency to take greater values than
under the null hypothesis. This effect concerns mostly the upper order
statistics. So in average the first term of the numerator of the test statistic
should increase more then the second term going from the hypothesis to
alternative. The distribution of the denominator should not change much.
So the hypothesis should be rejected if the test statistic takes large values.

If scale-shape families are considered then the data T3, ...,7T, should
be transformed to the data X1,...,X, by the transform X; = InT;.

Under the null hypothesis the distribution of each test statistics is
parameter-free, so investigating by simulation the power of the tests the
values 4 = 0,0 = 1 (or, equivalently, # = v = 1) could be taken when sim-
ulating the data under the null hypothesis, and different values of ¢ (or,
equivalently, k) could be considered for fixed A = 1 for one group of simple
alternatives or different values of A could be considered for fixed § = 0 (or,

equivalently, k = 1) for other group of simple alternatives. Various values
of pairs (4, A) (or (k,A)) could also be considered.

§5. CRITICAL VALUES OF B(r,n)

In this section, for several shape-scale families, we give the critical
values of the statistic B(r,n) computed by simulation (10 000 replications)
values for the B(r,n) statistic.) at the 0.2,0.15,0.1,0.05,0.02 and 0.01
levels of significance, for r = 2 and n = 20, 30, ...,200 in table 1.
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Table 1. Critical values of B(r,n) for r = 2 (Weibull and
extreme values distribution).

o
n 02 | 015 | 0.1 | 0.05 | 0.02 | 0.01
20 | 5.456 | 5.603 | 5.795 | 6.113 | 6.608 | 6.910
30 | 5.093 | 5.204 | 5.360 | 5.591 | 5.889 | 6.093
40 | 4.948 | 5.042 | 5.171 | 5.379 | 5.643 | 5.824
o0 | 4.887 | 4.979 | 5.095 | 5.268 | 5.501 | 5.709
60 | 4.868 | 4.956 | 5.063 | 5.244 | 5.473 | 5.596
70 | 4.859 | 4.930 | 5.029 | 5.191 | 5.381 | 5.507
80 | 4.859 | 4.930 | 5.029 | 5.191 | 5.381 | 5.507
90 | 4.856 | 4.928 | 5.029 | 5.185 | 5.397 | 5.522
100 | 4.867 | 4.938 | 5.035 | 5.189 | 5.388 | 5.540
120 | 4.875 | 4.945 | 5.035 | 5.194 | 5.352 | 5.474
140 | 4.893 | 4.960 | 5.045 | 5.179 | 5.343 | 5.459
150 | 4.893 | 4.990 | 5.042 | 5.181 | 5.343 | 5.484
160 | 4.925 | 4.993 | 5.074 | 5.200 | 5.350 | 5.455
170 | 4.922 | 4.990 | 5.075 | 5.214 | 5.388 | 5.487
180 | 4.932 | 4.999 | 5.091 | 5.222 | 5.372 | 5.464
190 | 4.941 | 5.007 | 5.089 | 5.214 | 5.372 | 5.478

200 | 4.953 | 5.019 | 5.101 | 5.231 | 5.383 | 5.474

§6. POWER COMPARISONS BY SIMULATION

We generated the data under the alternative Hj 1 for various shape-
scale families, various values of k. For Weibull and loglogistic families we
fixed n = 100 and for the lognormal family n = 80.

For any of considered tests and any fixed n and k the frequence of one
of the following three possible events were computed: (1) all the r largest
observations are from the alternative distribution (2) all the r largest ob-
servations are from zero distribution (3) the r largest observations are
from both distributions. The probabilities of these events are defined as
non-spurious power, spurious power and swamping effect, respectively. The
most important is to have good non-spurious power, i.e. identify all the
contaminants. The power of the test is the sum of the three above de-
fined. As a rule the part of the non-spurious power in the sum increases
when the alternative goes away from the null hypothesis. In the case of
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Table 2. Critical values of B(r,n) for r = 2 (lognormal
and normal distribution).

o
n 0.2 | 015 | 0.1 0.05 | 0.02 | 0.01
20 | 5.462 | 5.649 | 5.907 | 6.363 | 6.866 | 7.326
40 | 5.298 | 5.441 | 5.651 | 5.977 | 6.380 | 6.676
60 | 5.389 | 5.536 | 5.726 | 6..041 | 6.408 | 6.690
80 | 5.464 | 5.594 | 5.765 | 6.057 | 6.417 | 6.636
100 | 5.544 | 5.684 | 5.855 | 6.124 | 6.492 | 6.731
120 | 5.617 | 5.751 | 5.936 | 6.220 | 6.558 | 6.807
140 | 5.688 | 5.828 | 6.012 | 6.277 | 6.624 | 6.841
160 | 5.750 | 5.884 | 6.049 | 6.323 | 6.672 | 6.900
180 | 5.802 | 5.938 | 6.106 | 6.386 | 6.696 | 6.899
200 | 5.853 | 5.983 | 6.162 | 6.457 | 6.764 | 6.991

Table 3. Critical values of B(r,n) for r = 2 (loglogistic
and logistic distribution).

n 0.2 0.15 0.1 0.05 0.02 0.01
20 | 9.950 | 10.382 | 10.963 | 12.043 | 13.446 | 14.545
40 | 10.164 | 10.570 | 11.079 | 11.986 | 13.284 | 14.261
60 | 10.630 | 10.996 | 11.537 | 12.394 | 13.582 | 14.314
80 | 11.005 | 11.394 | 11.899 | 12.810 | 14.003 | 14.779
100 | 11.354 | 11.735 | 12.293 | 13.113 | 14.398 | 15.207
120 | 11.616 | 12.005 | 12.585 | 13.598 | 14.789 | 15.616
140 | 11.863 | 12.264 | 12.826 | 13.781 | 14.944 | 15.801
160 | 12.114 | 12.536 | 13.097 | 14.008 | 15.154 | 16.096
180 | 12.323 | 12.770 | 13.345 | 14.327 | 15.347 | 16.126
200 | 12.525 | 12.943 | 13.530 | 14.455 | 15.687 | 16.524

shape-scale families the alternative goes away from the null hypothesis if
the parameter k increases.

We computed all types of power by simulation for various shape-scale
families. All three Dixon’s tests, two Grubbs tests , Tietjen—Moore (TM),
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Table 4. Power of tests against H, 1 (Weibull distribu-
tion) n = 100, a = 0.05, r = 2.

Tests
k Dixon-1 Dixon-2 Dixon-3 Grubbs Grubbs-2 TM Mann Kumar BZN
5 0.291 0.301 0.299 0.292 0.282 0.292 0.147 0.151 0.305
10 0.601 0.609 0.610 0.601 0.588 0.601 0.379 0.379 0.628
15 0.761 0.771 0.771 0.771 0.747 0.761 0.569 0.550 0.792
20 0.831 0.838 0.838 0.841 0.832 0.842 0.673 0.645 0.857
25 0.880 0.884 0.884 0.887 0.881 0.888 0.748 0.721 0.899
30 0.910 0.912 0.912 0.916 0.912 0.916 0.804 0.775 0.926
40 0.943 0.944 0.946 0.946 0.944 0.948 0.868 0.840 0.953
50 0.961 0.964 0.964 0.965 0.962 0.965 0.906 0.879 0.969
60 0.970 0.972 0.972 0.974 0.974 0.976 0.931 0.913 0.978
Table 5. Non-spurious power of tests against H, 1
(Weibull distribution) n = 100, a = 0.05, r = 2.
Tests
k Dixon-1 | Dixon-2 | Dixon-3 | Grubbs [ Grubbs-2 TM Mann | Kumar BZN
5 0.075 0.077 0.077 0.090 0.089 0.090 0.039 0.037 0.096
10 0.284 0.288 0.287 0.308 0.307 0.308 0.190 0.175 0.318
15 0.448 0.452 0.452 0.471 0.467 0.470 0.345 0.317 0.479
20 0.554 0.558 0.558 0.573 0.572 0.574 0.461 0.429 0.582
25 0.630 0.631 0.631 0.644 0.643 0.644 0.550 0.515 0.651
30 0.685 0.686 0.686 0.698 0.697 0.698 0.628 0.586 0.702
40 0.750 0.751 0.751 0.756 0.766 0.767 0.701 0.674 0.760
50 0.796 0.797 0.798 0.801 0.807 0.808 0.760 0.734 0.803
60 0.828 0.829 0.829 0.833 0.838 0.838 0.804 0.784 0.835
Table 6. Spurious power of tests against H, ;1 (Weibull
distribution) n = 100, a = 0.05, r = 2.
Tests
k Dixon-1 Dixon-2 Dixon-3 Grubbs Grubbs-2 TM Mann Kumar BZN
5 0.014 0.014 0.013 0.018 0.018 0.018 0.016 0.017 0.015
10 0.005 0.006 0.005 0.006 0.006 0.006 0.007 0.006 0.006
20 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002
25 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
50 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Mann, Kumar and Bagdonavi¢ius—Zerbet—Nikulin (BZN) tests were con-

sidered.

We see that when k increases then the power and the non-spurious
power increases, the part of spurious power decreases quickly to zero and
the part of swamping effect decreases but not so quickly as in the case
of the spurious power. The same pattern we obtained in the case of the
lognormal and loglogistic families so we give only power and non-spurious
power for these families.
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Table 7. Swamping effect of tests against H, 51 (Weibull
distribution) n = 100, a = 0.05, r = 2.
Tests
k Dixon-1 Dixon-2 Dixon-3 Grubbs Grubbs-2 TM Mann Kumar BZN
5 0.202 0.209 0.209 0.184 0.175 0.184 0.092 0.098 0.193
10 0.312 0.315 0.318 0.287 0.275 0.287 0.183 0.198 0.305
15 0.310 0.316 0.317 0.296 0.276 0.288 0.220 0.229 0.309
20 0.276 0.279 0.279 0.266 0.259 0.266 0.210 0.214 0.273
25 0.249 0.252 0.252 0.242 0.237 0.242 0.197 0.205 0.247
30 0.224 0.226 0.226 0.217 0.214 0.218 0.183 0.189 0.224
40 0.193 0.193 0.194 0.189 0.178 0.181 0.166 0.166 0.193
50 0.165 0.166 0.165 0.163 0.155 0.157 0.145 0.145 0.166
60 0.142 0.143 0.142 0.141 0.136 0.138 0.127 0.129 0.143
Table 8. Power of tests against H, ;1 (lognormal distri-
bution) n = 80, a = 0.05, r = 2.
Tests
k Dixon-1 Dixon-2 Dixon-3 Grubbs Grubbs-2 ™ Mann Kumar BZN
3 0.148 0.145 0.145 0.191 0.186 0.190 0.088 0.083 0.187
3.5 0.256 0.251 0.251 0.358 0.353 0.358 0.143 0.131 0.347
4 0.406 0.403 0.403 0.582 0.577 0.580 0.236 0.219 0.571
4.5 0.038 0.037 0.037 0.059 0.787 0.787 0.019 0.018 0.059
5 0.747 0.740 0.741 0.922 0.918 0.917 0.573 0.507 0.915
6 0.943 0.941 0.939 0.997 0.997 0.996 0.884 0.809 0.997
7 0.994 0.993 0.993 1.000 1.000 1.000 0.990 0.954 1.000
Table 9. Non-spurious power of tests against H, 1 (log-
normal distribution) n = 80, a = 0.05, r = 2.
Tests
k Dixon-1 Dixon-2 Dixon-3 Grubbs Grubbs-2 T™M Mann Kumar BZN
3 0.038 0.037 0.037 0.059 0.057 0.057 0.019 0.018 0.059
3.5 0.115 0.112 0.112 0.173 0.173 0.172 0.060 0.053 0.170
4 0.260 0.258 0.259 0.381 0.384 0.383 0.151 0.135 0.377
4.5 0.466 0.462 0.460 0.623 0.627 0.623 0.315 0.273 0.619
5 0.673 0.668 0.668 0.817 0.818 0.816 0.518 0.454 0.812
6 0.931 0.930 0.928 0.981 0.979 0.979 0.872 0.798 0.981
7 0.994 0.993 0.992 0.999 0.999 0.999 0.989 0.953 0.999

Similar results were obtained for the alternatives Hs i a for various

values of A and also for r = 3 but we did not include them for the lack of

space.
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Table 10. Power of tests against H, 1 (loglogistic distri-
bution) n = 100, a = 0.05, r = 2.

Tests
k Dixon-1 Dixon-2 Dixon-3 [ Grubbs Grubbs-2 TM Mann Kumar BZN
20 0.048 0.047 0.046 0.060 0.063 0.061 0.052 0.054 0.062
50 0.053 0.053 0.051 0.088 0.091 0.087 0.060 0.063 0.094
100 0.066 0.065 0.063 0.129 0.136 0.120 0.076 0.072 0.145
200 0.095 0.094 0.091 0.203 0.234 0.210 0.096 0.092 0.227
300 0.119 0.121 0.118 0.280 0.307 0.281 0.112 0.103 0.309
500 0.161 0.158 0.157 0.378 0.428 0.391 0.156 0.146 0.417
800 0.212 0.208 0.208 0.500 0.538 0.501 0.203 0.185 0.540
1500 0.295 0.290 0.284 0.665 0.706 0.667 0.289 0.262 0.703
2000 0.347 0.344 0.342 0.742 0.774 0.744 0.332 0.298 0.774
2500 0.384 0.378 0.372 0.793 0.817 0.796 0.377 0.351 0.820
5000 0.493 0.487 0.485 0.899 0.915 0.900 0.501 0.457 0.915

Table 11. Non-spurious power of tests against H, 1
(loglogistic distribution) n = 100, a = 0.05, r = 2.

Tests
k Dixon-1 Dixon-2 Dixon-3 [ Grubbs Grubbs-2 TM Mann Kumar BZN
20 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.002 0.003
50 0.009 0.009 0.009 0.016 0.016 0.015 0.009 0.009 0.016
100 0.020 0.020 0.020 0.043 0.045 0.040 0.019 0.018 0.047
200 0.047 0.047 0.045 0.101 0.122 0.108 0.040 0.038 0.110
300 0.075 0.076 0.075 0.169 0.186 0.170 0.059 0.054 0.183
500 0.115 0.114 0.114 0.255 0.297 0.273 0.096 0.087 0.275
800 0.169 0.166 0.167 0.373 0.400 0.374 0.142 0.128 0.396
1500 0.255 0.252 0.247 0.540 0.575 0.541 0.228 0.207 0.568
2000 0.310 0.308 0.307 0.627 0.652 0.628 0.276 0.250 0.647
2500 0.348 0.344 0.372 0.684 0.704 0.686 0.323 0.302 0.702
5000 0.469 0.463 0.461 0.817 0.831 0.818 0.456 0.419 0.839

§7. CONCLUSION

The power analysis shows that for all considered families of distribu-
tions the Dixon-1, Dixon-2, Dixon-3, Mann and Kumar tests have consid-
erably smaller power and non-spurious power than the new (BZN), Grubbs,
Grubbs-2 and Tietjen—Moore tests.

For the Weibull distribution the best three tests in terms of non-spurious
power are:

For alternatives k = 5,10, 15,20, 25, 30: 1. BZN; 2-3. Grubbs and TM.
For alternatives k = 40,50: 1. TM; 2. Grubbs-2; 3. BZM.
For alternatives k = 60: 1. TM; 2. BZM; 3. Grubbs.

So the new test is a very strong competitor to TM and Grubbs tests,
especially against near alternatives. Other tests are weaker.
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For the loglogistic distribution the best three tests in terms of non-
spurious power are:

For alternatives k = 20, 50: BZN. Grubbs and Grubbs-2 tests are almost
equivalent;

For alternatives k£ = 100: 1. BZM; 2. Grubbs-2; 3. Grubbs.

For alternatives k& = 200, 300, 500, 800: 1. Grubbs-2; 2. BZM; 3. TM.

For alternatives k& = 1500, 2000, 2500: 1. Grubbs-2; 2. BZM; 3. TM.

For alternatives & = 5000: 1. BZM; 2. Grubbs-2; 3. TM.

So the new test is a strong competitor to Grubbs-2 test.

For the lognormal distribution the best three tests in terms of non-
spurious power are:

For alternatives k = 3: 1-2. BZN and Grubbs; 2. Grubbs-2; 3. BZM.

For alternatives k = 3.5,4,4.5,5: 1-2. Grubbs and Grubbs-2; 3. TM;

For alternatives k = 6: 1-2. Grubbs and BZN; 3-4. Grubbs-2 and TM.

For alternatives k = 7: Grubbs, Grubbs-2, BZN and TM tests are equiv-
alent.

So the new test is not a bad competitor to Grubbs tests. Other tets are
weaker.

Concluding, we recommend as the most powerfull the BZN, TM and
Grubbs tests for the Weibull distribution, Grubbs-2 and BZN tests for the
loglogistic distribution, Grubbs, Grubbs-2 and BZN tests for lognormal
distribution
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