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t. We 
onsider a 
ountably generated and uniformly 
losedalgebra of bounded fun
tions. We assume that there is a lower semi-
ontinuous, with respe
t to the supremum norm, quadrati
 form andthat normal 
ontra
tions operate in a 
ertain sense. Then we provethat a subspa
e of the e�e
tive domain of the quadrati
 form is nat-urally isomorphi
 to a 
ore of a regular Diri
hlet form on a lo
ally
ompa
t separable metri
 spa
e. We also show that any Diri
hletform on a 
ountably generated measure spa
e 
an be approximatedby essentially dis
rete Diri
hlet forms, i.e. energy forms on �niteweighted graphs, in the sense of Mos
o 
onvergen
e, i.e. strong re-solvent 
onvergen
e.
§1. Introdu
tion and resultsThe �rst purpose of the present note is to dis
uss quadrati
 forms on
ountably generated algebras of fun
tions and a way to turn them into(symmetri
) Diri
hlet forms, [6, 9, 11, 23℄. This 
omplements our formerstudies [14℄ and [15℄. The se
ond purpose is to show that Diri
hlet forms on
ountably generated measures spa
es 
an be approximated, in the Mos
osense, by essentially dis
rete energy forms (essentially equivalent to theenergy on �nite graphs). This approximation is the same as the approx-imation in the strong resolvent sense, [28℄, and also 
an be des
ribed aspie
e-wise 
onstant (in parti
ular, typi
ally dis
ontinuous) Galerkin ap-proximations.Our paper is expository, although Theorems 1.1 and 1.2 previouslyhave not appeared in the literature. The long term motivation for su
h
onne
tions 
omes from the fa
t that approximations by random walksallows to 
onstru
t di�usion pro
esses on some universal topologi
al ob-je
ts, [4,21,22,30℄, whi
h in turn allows to 
onstru
t notions of di�erentialgeometry not previously available, [15{18℄. One one hand, these notionsKey words and phrases: Mos
o 
onvergen
e, strong resolvent 
onvergen
e, lowersemi
ontinuous quadrati
 forms, Diri
hlet forms, 
ountably generated and uniformly
losed algebras of bounded fun
tions, Lapla
ians on graphs, random walks.299



300 M. HINZ, A. TEPLYAEVmay be appli
able to 
ompli
ated spa
es de�ned algebrai
ally, su
h asin [26, 27℄. On the other hand, there are potential physi
s appli
ations forsu
h notions, see [2,10,29℄. We would like to note that random walks anddis
rete time martingales appear in a number of works of M.I. Gordin, su
has [12, 13, and referen
es therein℄, and our paper may be a step towards
ontinuous versions of these results.A Diri
hlet form (E ;F) is a symmetri
, bilinear and positive de�nite realvalued form E on a subspa
e F that is dense in a real L2-spa
e L2(X;X ; �)over a �-�nite measure spa
e (X;X ; �) su
h that
• the spa
e F , together with the norm f 7→ (E(f)+‖f‖2L2(X;X ;�))1=2,is a Hilbert spa
e (the 'Diri
hlet spa
e') and
• for any f ∈ F we have (f ∧ 1) ∨ 0 ∈ F and E(f) 6 E((f ∧ 1) ∨ 0).Here we use the notation E(f) := E(f; f) whi
h we will also employ forother symmetri
 bilinear expressions. There is a one-to-one 
orrespon-den
e of Diri
hlet forms and non-positive de�nite self-adjoint operatorson L2(X;X ; �) satisfying a 
ertain Markov property, see e.g. [6, Proposi-tion I.3.2.1℄. The self-adjoint operator (L; domL) uniquely asso
iated with(E ;F) (and referred to as its generator) satis�es

E(f; g) = −〈Lf; g〉L2(X;X ;�) ; f ∈ domL; g ∈ F ;and is uniquely determined by this formula. More ba
kground on Diri
hletforms 
an for instan
e be found in [6, 11, 23℄.A parti
ularly ri
h theory is available if X is a lo
ally 
ompa
t separablemetri
 spa
e, X the Borel-�-algebra over X and � a nonnegative Radonmeasure on X with full support. If in this 
ase we 
an �nd a 
ore C ⊂C
(X)∩ F dense in the Hilbert spa
e F and dense in C
(X) with respe
tto the supremum norm ‖ · ‖sup, then the Diri
hlet form (E ;F) is 
alledregular. Here C
(X) denotes the spa
e of 
ontinuous 
ompa
tly supportedfun
tions on X , see [11℄. A regular Diri
hlet form is 
ompatible with thetopology on X , what provides strong 
onne
tions between the 
al
ulus ofvariations and fun
tional analysis on one hand and potential theory andsto
hasti
 pro
esses on the other.We are interested in starting from an algebra of fun
tions (or evensimpler, from a sequen
e of fun
tions) on whi
h a quadrati
 fun
tional isde�ned and then to '
reate' a related Diri
hlet form. This way, the qua-drati
 fun
tional (the 'energy ') has priority over the 
hoi
e of a referen
emeasure or a topology on X . In a sense, this follows the spirit of earlyliterature on Diri
hlet forms, su
h as [1℄ and [3℄. Related (but di�erent)



SEPARABLE BILINEAR FORMS 301dis
ussions of representation theory for Diri
hlet forms 
an be found in [8℄and [11, Appendix A.4℄.In [15℄ we sket
hed how a given Diri
hlet form on a measure spa
e 
anbe transferred into a Diri
hlet form on a lo
ally 
ompa
t Hausdor� spa
e.The latter is given by the Gelfand spe
trum of an algebra obtained frombounded measurable fun
tions of �nite energy. (We would like to pointout that unfortunately [15℄ 
ontained two ina

ura
ies: The transfer of anin�nite measure to the Gelfand spe
trum needs to be 
orre
ted using aunitization pro
edure, [19℄, and for the transferred form to be regular thegiven measure spa
e must have a 
ountably generated �-algebra.) In [14℄we 
onsidered real valued bilinear forms on algebras of bounded fun
tionsand used energy measures to obtain a Diri
hlet form. We did not assumethe algebra to be 
ountably generated. Key ingredients were measure-freenotions of 
losability and lower semi
ontinuity, su
h as the following.De�nition 1.1. Let X be a nonempty set and A a spa
e of bounded realvalued fun
tions on X whi
h is 
omplete with respe
t to the supremumnorm. A quadrati
 fun
tional E : A → [0 +∞℄ is 
alled sup-norm-lowersemi
ontinuous on A if for any sequen
e (fn)n ⊂ A with uniform limitf ∈ A we have E(f) 6 lim infn E(fn):In the present note we 
on
entrate on notions of separability. We startfrom a 
ountably generated and uniformly 
losed algebra A of boundedreal valued fun
tions and a quadrati
 form E on A, a priori extended realvalued.De�nition 1.2. Let X be a nonempty set and A a 
ountably generateduniformly 
losed algebra of bounded real valued fun
tions on X that sep-arates the points of X. A quadrati
 form E : A → [0;+∞℄ is 
alled asup-norm-separable quadrati
 form if there is a sequen
e {fn}∞n=1 ⊂ Agenerating A su
h that E(fn) < +∞ for all n.Throughout the following let A be as in the de�nition. Sin
e A is 
ount-ably generated and uniformly 
losed, it is separable.Remark 1.1. If X itself is a lo
ally 
ompa
t separable metri
 spa
e and Ais an algebra of 
ontinuous fun
tions that (in addition to point separation)vanishes nowhere on X , then by Stone-Weierstrass A = C0(X) is thealgebra of 
ontinuous fun
tions vanishing at in�nity. If (E ;F) is a regularDiri
hlet form onX and we 
onsider E as an extended real valued quadrati




302 M. HINZ, A. TEPLYAEVform C0(X), then it is sup-norm-separable. Note that E is sup-norm-lowersemi
ontinuous on C
(X) ∩ F , see [14, Theorem 2.1 and Theorem 10.1℄.Restri
ted to its e�e
tive domain a quadrati
 form yields a symmetri
bilinear form that 
an be transferred to the Gelfand spe
trum � of thenatural 
omplexi�
ation of A. It is a lo
ally 
ompa
t Hausdor� spa
e, andby the separability of A it is se
ond 
ountable and metrizable. Pro
eedingas in [14, Se
tion 9℄ we 
an then extend the transferred form to a regularDiri
hlet form on an L2-spa
e over the Gelfand spe
trum �.To formulate this result we �x two more notions. A quadrati
 form Eon an algebra A of bounded real valued fun
tions is 
alled �-�nite if A
ontains a stri
tly positive fun
tion � su
h that E(�) < +∞. To a fun
tionF : R
k → R su
h that

|F (x)− F (y)| 6

k
∑i=1 |xi − yi|; x; y ∈ R

k;and F (0) = 0 we refer as a normal 
ontra
tion (in several variables). If thequadrati
 form E satis�es
E(F (f1; : : : ; fk))1=2 6

k
∑i=1 E(fi)1=2 (1)for all f1; : : : ; fk ∈ A and all normal 
ontra
tions F , then we say thatnormal 
ontra
tions operate on E , 
f. [6, Se
tion I.3.3℄.Theorem 1.1. Let X be a nonempty set and let A be a 
ountably gen-erated and uniformly 
losed algebra A of bounded real valued-fun
tions onX that separates the points of X. Let E be a sup-norm-separable, �-�niteand sup-norm-lower semi
ontinuous quadrati
 form on A on whi
h normal
ontra
tions operate. Then the e�e
tive domain

D = {f ∈ A : E(f) < +∞}of E is isomorphi
 to an algebra D̂ of 
ontinuous fun
tions in the domain ofa regular Diri
hlet form Ê on a lo
ally 
ompa
t separable metri
 spa
e and
D̂ 
ontains a 
ore for Ê . The isomorphism f 7→ f̂ from D onto D̂ preservesthe algebrai
 stru
ture, the supremum norm, and is also 'isometri
' in thesense that Ê(f̂) = E(f), f ∈ D.Both Theorem 1.1 and the results in [14℄ should be seen as 
ontinua-tions of and 
omplements to an earlier study of Mokobodzki, [24℄, wheresup-norm-lower semi
ontinuity was employed to 
on
lude the 
losability
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 forms on spa
es of 
ontinuous fun
tions over lo
ally 
ompa
tspa
es.A se
ond aim of the present note is to provide approximations of Diri
h-let forms in terms of dis
rete energy forms on �nite graphs, and thisapproximation is in terms of a suitable 'spe
tral 
onvergen
e'. We re-
all the de�nition of 
onvergen
e in strong resolvent sense, [28, ChapterVIII.7℄. Usually it is formulated for 
omplex Hilbert spa
es, we 
onsider itwith respe
t to the natural 
omplexi�
ation of L2(X;X ; �). A sequen
e(L(n))∞n=1 of self-adjoint operators L(n) on L2(X;X ; �) with resolventsG(n)� = (� − L(n))−1 
onverges in the strong resolvent sense to a self-adjoint operator L on L2(X;X ; �) with resolvent G� = (� − L)−1 if forall � ∈ C with Im� 6= 0 the resolvent operators G(n)� 
onverge to G� inthe strong operator topology. This 
ondition is equivalent to requiring the
onvergen
e for some � ∈ C with Im� 6= 0, [28, Theorem VIII.19℄. In the
ase of non-positive de�nite self-adjoint operators L(n) and L that generatestrongly 
ontinuous 
ontra
tion semigroups it is also equivalent to requir-ing the 
onvergen
e of the resolvents G(n)� to G� in the strong operatortopology for some (and hen
e all) � > 0, see [20, Theorem 1.3 in Chapter8, Paragraph 1, Se
tion 1, p. 427℄. This in turn is equivalent to the Mos
o
onvergen
e of the asso
iated quadrati
 forms, [25, De�nition 2.1.1 andTheorem 2.4.1℄. Re
all that a sequen
e (E(n))∞n=1 of (possibly extendedreal valued) quadrati
 forms E(n) on L2(X;X ; �) 
onverges to a quadrati
form E on L2(X;X ; �) in the sense of Mos
o if(i) for any sequen
e (fn)∞n=1 ⊂ L2(X;X ; �) 
onverging to some fweakly in L2(X;X ; �) we haveE(f) 6 lim infn E(n)(fn)and(ii) for any f ∈ L2(X;X ; �) there exists a sequen
e (fn)∞n=1 
onvergingto f strongly in L2(X;X ; �) and su
h thatlim supn E(n)(fn) 6 E(f):Again a main ingredient is a suitable notion of separability.De�nition 1.3. To a Diri
hlet form (E ;F) on a spa
e L2(X;X ; �) overa �-�nite measure spa
e (X;X ; �) with a 
ountably generated �-algebra Xwe refer as a separable Diri
hlet form.



304 M. HINZ, A. TEPLYAEVRemark 1.2. Any regular Diri
hlet form in the sense of [11℄ is separable.To a Diri
hlet form whi
h (in the sense of its Diri
hlet spa
e) is essen-tially isometri
ally isomorphi
 to a dis
rete Diri
hlet ('energy') form on a�nite graph we simply refer as an esentially dis
rete Diri
hlet form. Te
h-ni
ally speaking our approximating forms are in�nite dimensional, but thegenerators have �nite dimensional range (but typi
ally in�nite dimensionalkernel). Using this manner of speaking, our se
ond result reads as follows.Theorem 1.2. Any separable Diri
hlet form (E ;F) 
an be approximatedin the Mos
o sense by a sequen
e of essentially dis
rete Diri
hlet forms (es-sentially isomorphi
 to that on �nite weighted graphs) and the 
orrespond-ing generators approximate the generator of (E ;F) in the strong resolventsense.Our paper is organized as follows. We will �rst review some basi
s onalgebras of fun
tions and the Gelfand transform in Se
tion 2, then 
onsiderquadrati
 forms in Se
tion 3 and �nally, employ results from [14℄ to 
on-
lude the existen
e of the regular Diri
hlet form on the Gelfand spe
trumin Corollary 4.1 of Se
tion 4, what proves Theorem 1.1. To prove Theo-rem 1.2 we dis
uss the isomorphy of Diri
hlet forms on �nitely generatedmeasure spa
es to graph energies in Se
tion 5, semigroup approximationis Se
tion 6 and further approximations in terms of Galerkin s
hemes,�-�niteness and level sets of base elements in Se
tion 7.A
knowledgments. The se
ond author thanks Robert Stri
hartz forraising the question about approximating arbitrary Lapla
ians by graphLapla
ians.
§2. Algebras of fun
tionsWe review some folklore fa
ts about algebras of fun
tions and asso
i-ated lo
ally 
ompa
t spa
es. Let X be a nonempty set. Given a uniformly
losed and 
ountably generated algebra A of bounded real-valued fun
-tions on X , let AC denote its natural 
omplexi�
ation and � the Gelfandspe
trum of AC, i.e. the spa
e of nonzero 
omplex valued multipli
ativelinear fun
tionals on AC, [5, 19℄. The spa
e � is a lo
ally 
ompa
t Haus-dor� spa
e and A being separable, the spa
e � is se
ond 
ountable andmetrizable. We assume that A separates the points of X . Then the image�(X) of X under � : X → � given by �(x)(f) := f(x), is densely embeddedin �.



SEPARABLE BILINEAR FORMS 305Remark 2.1. If X itself is a lo
ally 
ompa
t Hausdor� spa
e and A =C0(X) then � is a homeomorphism fromX onto �. IfX is a lo
ally 
ompa
tseparable metri
 spa
e, then C0(X) is separable, hen
e � is metrizable.We 
olle
t these well known arguments in the following Lemma.Lemma 2.1. Let A be a uniformly 
losed and 
ountably generated algebraof bounded real valued fun
tions on X. Assume that A separates the pointsof X. Then the Gelfand spe
trum � of the natural 
omplexi�
ation of Ais a lo
ally 
ompa
t separable metri
 spa
e, and X may be regarded as adense subset.Remark 2.2. The topology of � is 
ompatible with the uniform stru
turedetermined by the sets of formUF;" = {(x; y) ∈ �×� : |f(x)− f(y)| < "; for all f ∈ F} ;where " > 0 and F ranges over all �nite subfamilies of fun
tions from
AC. See [7, Chapter II, Se
tion 1.1℄. If {fn}∞n=1 is a sequen
e of boundedreal valued fun
tions that generates A then sin
e A separates the pointof X also {fn}∞n=1 separates points. Let P denote the 
olle
tion of poly-nomials in several variables of the fun
tions {fn}∞n=1 and having 
oeÆ-
ients with rational real and imaginary parts. The spa
e P is a 
ount-able and uniformly dense subalgebra of AC. The fun
tions %F (x; y) :=sup {|f(x)− f(y)| : f ∈ F}, x; y ∈ �, where F ranges over all �nite sub-families of fun
tions from P , provide a 
ountable family of pseudometri
son � that generate this uniform stru
ture. Now [7, Chapter IX, Se
tion2.4, Corollary 1 and Se
tion 1.4, Proposition 2℄ give another proof of theknown fa
t that � is metrizable. A straightforward 
hoi
e for a possiblemetri
 is %(x; y) := ∞

∑i=1 2−i |fi(x) − fi(y)|1 + |fi(x)− fi(y)| ; x; y ∈ �:For any f ∈ AC the Gelfand transform f̂ : � → C of f is de�ned byf̂(') := '(f), ' ∈ �. A

ording to the Gelfand representation theorem themap f 7→ f̂ de�nes an ∗-isomorphism from AC onto the algebra CC;0(�)of 
omplex valued 
ontinuous fun
tions on � that vanish at in�nity. Formore ba
kground see for instan
e [5℄ or [19℄.Remark 2.3. If X is a lo
ally 
ompa
t Hausdor� spa
e, A = C0(X),and we identify the spa
es X and � under �, then f 7→ f̂ is the identitymapping.
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§3. Quadrati
 formsWe 
onsider quadrati
 forms on A and see how to transform them intoquadrati
 forms on spa
es of 
ontinuous fun
tions on �.Let A be as in Lemma 2.1, i.e. a uniformly 
losed and 
ountably gen-erated algebra of bounded real valued fun
tions on X whi
h is point sep-arating. Assume we are given a (extended real valued) quadrati
 form

E : A → [0;+∞℄and write
D := {f ∈ A : E(f) < +∞}for its e�e
tive domain. On D we 
an de�ne a (real-valued) bilinear form(E ;D) by polarization,

E(f; g) := 14 (E(f + g)− E(f − g)) ; f; g ∈ D:If normal 
ontra
tions operate on E then the e�e
tive domain D is stableunder normal 
ontra
tions, i.e. if F : Rk → R is a normal 
ontra
tion andf1; : : : ; fk ∈ D then we have F (f1; : : : ; fk) ∈ D. In parti
ular,
E(fg)1=2 6 ‖f‖sup E(g)1=2 + ‖g‖sup E(f)1=2for all f; g ∈ A, and D is an algebra under pointwise multipli
ation. Seethe proof of [6, Corollary I.3.3.2℄.If in addition there is a sequen
e {fn}∞n=1 generating A (and thereforepoint separating) su
h that E(fn) < +∞ for all its members fn, then D isa uniformly dense subalgebra of A and the algebra

D̂ := {f̂ ∈ C(�) : f ∈ D
}is uniformly dense in the subalgebra C0(�) of real valued 
ontinuous fun
-tions on � vanishing at in�nity. By

Ê(f̂ ; ĝ) := E(f; g); f̂ ; ĝ ∈ D̂we 
an de�ne a bilinear form Ê on D̂ (the transferred form). See [14, Se
tion10℄ or [15℄ for further information.
§4. Sup-norm-lower semi
ontinuity and 
losabilityWe employ the notions of sup-norm-lower semi
ontinuity and sup-norm
losability to dedu
e the 
losability and the 
ontra
tivity for the trans-ferred form.



SEPARABLE BILINEAR FORMS 307De�nition 4.1. Let X be a nonempty set and D a spa
e of bounded realvalued fun
tions on X. A (real-valued) bilinear form (E;D) is 
alled sup-norm-
losable if for any sequen
e (fn)n ⊂ D whi
h is E-Cau
hy and su
hthat limn ‖fn‖sup = 0 we havelimn E(fn) = 0:Now let A, E , Ê , D and D̂ be as in the pre
eding se
tion. The followingis an immediate 
onsequen
e of [14, Corollary 10.1℄.Lemma 4.1. Suppose E is sup-norm-lower semi
ontinuous on A. Thenboth (E ;D) and (Ê ; D̂) are sup-norm-
losable. Moreover, Ê is sup-norm-lower semi
ontinuous on D̂.In the presen
e of sup-norm-lower semi
ontinuity (resp. sup-norm-
lo-sability), 
ontra
tivity properties 
arry over.Lemma 4.2. Suppose E is sup-norm-lower semi
ontinuous on A andthat normal 
ontra
tions operate on E. Then normal 
ontra
tions oper-ate on (Ê ; D̂), i.e. (1) holds for all normal 
ontra
tions F but with Ê andf̂1; : : : ; f̂k ∈ D̂ in pla
e of E and f1; : : : ; fk ∈ D.The lemma follows by noting that on 
ompa
t subsets of Rk a normal
ontra
tion F : R
k → R 
an by approximated in C1-norm by polynomialsPn and we have Pn(f̂1; : : : ; f̂k) = (Pn(f1; : : : ; fk))∧.A se
ond 
onsequen
e of sup-norm-lower semi
ontinuity (respe
tively,sup-norm-
losability) is that the transferred form extends to a Diri
hletform. In the present separable setup we 
an make sure this extension isa regular Diri
hlet form in the sense of Fukushima et al, [11℄. The resultfollows from [14, Se
tion 9, in parti
ular Theorem 9.1℄. In a topologi
alsetup an earlier version of this theorem was given by Mokobodzki, [24℄.Corollary 4.1. Let A be a 
ountably generated uniformly 
losed algebra Aof bounded real valued-fun
tions on X that vanishes nowhere and separatesthe points of X. Let E be a sup-norm-separable, �-�nite and sup-norm-lower semi
ontinuous quadrati
 form on A on whi
h normal 
ontra
tionsoperate. Then there exists a �nite Radon measure m̂ on � with full supportsu
h that (Ê ; D̂) extends to a regular Diri
hlet form (Ê ; F̂) on L2(�; m̂),and

D̂
 := {f̂ ∈ C
(�) : f ∈ D
}

⊂ D̂is a 
ore for (Ê ; F̂).



308 M. HINZ, A. TEPLYAEVCorollary 4.1 follows from [14, Theorem 9.1℄ together with the fa
t that� is separable. Note that if the �nite (energy dominant) Radon measure
onstru
ted in [14, Theorem 9.1℄ does not have full support, we 
an put m̂to be the sum of this measure and a �nite measure of form ∑∞i=1 2−iÆxi ,where {xi}∞i=1 is a 
ountable dense subset of � and Æxi are unit pointmasses at the xi. Then the �nite (energy dominant) Radon measure m̂has full support. That D̂
 is a 
ore for (Ê ; F̂) 
an be seen as in [15, Lemma3.4℄ and the proof of [15, Theorem 5.1℄.Remark 4.1. The Diri
hlet form (Ê ; F̂) admits a 
arr�e du 
hamp, [6,Chapter I.4℄, see for instan
e [14℄.
§5. Finitely generated measure spa
es and weightedgraphsWe dis
uss bounded Diri
hlet forms on �nitely generated measure spa
esand identify the with dis
rete Diri
hlet forms on �nite (weighted) graphs.Let X be a nonempty set and X a �nitely generated algebra of subsetsof X . Being �nite, it is a �-algebra. We may assume there exists a �nitepartition {A1; : : : ; An} of X into pairwise disjoint subsets A1; : : : ; An. Inthis 
ase we observe that X 
onsists of all unions⋃kj=1 Aij where 1 6 k 6 nand ij ∈ {1; : : : ; n} for all j = 1; : : : ; k. Let � be a �nite and �nitely additivemeasure on X , then automati
ally �-additive. The spa
e L2(X;X ; �) of �-square integrable fun
tions equals the �nite ve
tor spa
e

{ n
∑i=1 �i1Ai : �i ∈ R

} ;endowed with the s
alar produ
t de�ned by 〈f; g〉 = ∑ni=1 �i�i�(Ai) forf =∑i �i1Ai and g =∑i �i1Ai .A symmetri
 Markov operator P on L2(X;X ; �) produ
es a symmetri
(n× n)-matrix C = (
ij)ni;j=1 by
ij := 〈P1Ai ;1Aj〉L2(X;X ;�) :Consider the quadrati
 form
EP (f) := 〈f − Pf; f〉L2(X;X ;�)on L2(X;X ; �) indu
ed by P . If in addition we assume P1 = 1 then wehave �(Aj) =∑i 
ij for all j and for a fun
tion f =∑ni=1 �i1Ai we easily
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EP (f) = 12 n

∑i=1 n
∑j=1(�i − �j)2
ij :A slightly di�erent formula is still true if we allow P1 < 1, see [6, LemmaI.2.3.2.1℄.We 
an identify the partition P with a �nite set V = {p1; : : : pn} and �with a �nite nonnegative fun
tion � on V given by �(pi) := �(Ai). Thenthe spa
e L2(X;X ; �) is isometri
ally isomorphi
 to the spa
e l(V ) of realvalued fun
tions on V , and we 
an identify a fun
tion from L2(X;X ; �)with a fun
tion in l(V ). Let E be the 
olle
tion of elements (pi; pj) ofV × V su
h that 
ij > 0. This yields a �nite graph (V;E), endowed withvertex weights �(pi) and edge weights 
ij . The matrix C = (
ij)ni;j=1 is thetransition matrix of a symmetri
 random walk on V and the energy form

EP may be identi�ed with the graph energy form on l(V ), given by
EP (f) = 12 n

∑i=1 n
∑j=1(f(pi)− f(pj))2
ij ; f ∈ l(V );provided P1 = 1. If P1 < 1 we 
an still identify EP with a (slightlydi�erent) graph energy form.

§6. Semigroup approximation and strong resolvent
onvergen
eIn this se
tion we dis
uss the well known fa
t that any Diri
hlet form
an be approximated by bounded Diri
hlet forms.Let (X;X ; �) be a �-�nite measure spa
e and (E ;F) a (symmetri
)Diri
hlet form on L2(X;X ; �). Let (Pt)t>0 denote the uniquely asso
iatedstrongly 
ontinuous semigroup of symmetri
 
ontra
tion operators Pt onL2(X;X ; �). The operators Pt enjoy the Markov property, i.e. 0 6 Ptf 6 1�-a.e. whenever 0 6 f 6 1 �-a.e. We have
E(f) = limt→0 1t 〈f − Ptf; f〉L2(X;X ;�) = supt>0 1t 〈f − Ptf; f〉L2(X;X ;�) (2)for any f ∈ F , note that the fun
tion t 7→ 1t 〈f − Ptf; f〉L2(X;X ;�) is in-
reasing as t de
reases to zero (what follows from the spe
tral theorem).By (2) we may extend the de�nition of E , seen as a quadrati
 fun
tionalwith e�e
tive domain F , to all of L2(X;X ; �).
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ourse formula (2) is standard. Here we use it as a �rst step in anapproximation pro
edure. For n = 1; 2; : : : 
onsider the quadrati
 formsde�ned by
E(n)(f) := 2n 〈f − P2−nf; f〉L2(X;X ;�) ; f ∈ L2(X;X ; �): (3)They are bounded Diri
hlet forms on L2(X;X ; �) satisfying E(n)(f) 62n ‖f‖2L2(X;X ;�). Note that the operators I−P2−n satisfy the Markov prop-erty and therefore are 
ontra
tions on L2(X;X ; �), [6, Corollary I.2.2.4℄.Let L denote the generator of (E ;F) and L(n) = 2n(P2−n − I) the genera-tors of the forms E(n), respe
tively.Lemma 6.1. The forms E(n) 
onverge to the form E in the sense of Mos
oas n goes to in�nity. Their generators L(n) 
onverge to the generator L of

E in the strong resolvent sense.The proof is folklore, we sket
h it for 
onvenien
e.Proof. Condition (i) for Mos
o 
onvergen
e is trivially satis�ed, be
ausewe may assume f ∈ F and use the 
onstant sequen
e fn := f togetherwith (2). For 
ondition (ii) let (fn)n 
onverge weakly to f . We may as-sume that lim infn E(n)(fn) < +∞. Let (fnk )k be a subsequen
e withlimk E(nk)(fnk ) < +∞. As it is uniformly bounded in L2(X;X ; �) we 
anapply the Bana
h-Saks theorem and extra
t a subsequen
e (fnkl )l 
onverg-ing weakly to f and su
h that the Ces�aro averages 1N ∑Nl=1 fnkl 
onvergestrongly to f . Then for any �xed nj we have
E(nj)(f) = limN E(nj)( 1N N

∑l=1 fnkl) 6 limN 1N N
∑l=1 E(nj)(fnkl )

6 lim supk E(nj)(fnk ) 6 lim infk E(nk)(fnk ):As the right hand side does not depend on j and the above holds for anysu
h subsequen
e (fnk)k, we obtain E(f) 6 lim infn E(n)(fn). �

§7. Galerkin and finite graph approximationTo prove Theorem 1.2 we now 
ombine the semigroup approximationfrom Se
tion 6 with further approximation steps.Assume that X is a 
ountably generated �-algebra over X and that� is a �-�nite measure on X . Let (E ;F) be a symmetri
 Diri
hlet form



SEPARABLE BILINEAR FORMS 311on L2(X;X ; �) and let E(n) be the bounded Diri
hlet forms as de�ned in(3). Let ('i)∞i=1 be 
omplete orthonormal system in the separable Hilbertspa
e L2(X;X ; �) and for any m let �m denote the proje
tion onto the�nite dimensional subspa
e span('1; : : : ; 'm). Given f ∈ L2(X;X ; �) wehave f =∑∞i=1 
i'i with 
i = 〈f; 'i〉L2(X;X ;�) and�m(f) = m
∑i=1 
i'i:Clearly limm �m(f) = f in L2(X;X ; �). For any n and m 
onsider thebounded Diri
hlet forms on L2(X;X ; �) de�ned by

E(n;m)(f) := 2n 〈�m(f)− P2−n�m(f); �m(f)〉L2(X;X ;�) ; f ∈ L2(X;X ; �):(4)Note that E(n;m)(f) = En(�m(f)) and E(n;m)(f) 6 2n ‖f‖2L2(X;X ;�). Let
L(n;m) = 2n�m(P2−n − I)�mdenote the generator of E(n;m). The following Lemma provides a se
ondapproximation pro
edure, now of Galerkin type. Its proof is similar to thatof Lemma 6.1, we omit it.Lemma 7.1. For any �xed n the forms E(n;m) 
onverge to the form E(n) inthe sense of Mos
o as m goes to in�nity. Their generators L(n;m) 
onvergeto the generator L(n) of E(n) in the strong resolvent sense.In other words, any bounded and separable Diri
hlet form 
an be ap-proximated by Diri
hlet forms on �nite dimensional L2-spa
es.A third approximation is provided by �-�niteness. Let (Xl)∞l=1 be anin
reasing sequen
e of sets Xl ∈ X with �nite measure �(Xl) < +∞ su
hthat X = ⋃∞l=1Xl. Given n, m and l 
onsider the bounded Diri
hlet forms

E(n;m;l) := 2n 〈�m(f)1Xl − P2−n(�m(f)1Xl); �m(f)1Xl〉L2(X;X ;�) ;f ∈ L2(X;X ; �): (5)Their generators are L(n;m;l) = 2n�m1Xl(P2−n − I)1Xl�m, respe
tively.Sin
e
En;m;l(f) = ∥∥∥(I − P2−n)1=2�m(f)1Xl∥∥∥2L2(X;X ;�)is in
reasing in l for any f and E(n;m)(f) = supl En;m;l(f), we 
an pro
eedas in Lemma 6.1 to obtain the following.



312 M. HINZ, A. TEPLYAEVLemma 7.2. For any �xed n and m the forms E(n;m;l) 
onverge to theform E(n;m) in the sense of Mos
o as l goes to in�nity. Their generators
L(n;m;l) 
onverge to the generator L(n;m) of E(n;m) in the strong resolventsense.This 
an be rephrased saying that any separable and bounded Diri
hletform on a �nite dimensional L2-spa
e 
an be approximated by Diri
hletform of similar type with �nite volume measure.We provide a fourth approximation. For any �xed i; k = 1; 2; : : : 
onsiderthe level sets of the fun
tion 'i de�ned byA(i)j;k := { j2k < 'i 6

j + 12k } ; j = −22k; : : : ; 22k − 1;A(i)
−22k−1;k := {'i 6 −2k} and A(i)22k;k := {2k < 'i} : (6)They form a �nite partition of X 
onsisting of 22k+1 + 2 sets. For 
onve-nien
e we set A(i)j;k := ∅ for j ∈ Z smaller than −22k − 1 or greater that22k.Remark 7.1. The partition for k′ > k is a re�nement of the partition fork. For �xedm, we now 
onsider the �rstm 
oordinate fun
tions '1; : : : ; 'msimultaneously and given j = (j1; : : : ; jm) and k, we writeA(m)j;k := A(1)j1;k ∩ : : : ∩ A(m)jm;kfor the interse
tion of their level sets A(i)ji;k. For any m and k the sets A(m)j;k ,j ∈ Zn, form a partition Pm;k of X and disregarding empty sets, it is a�nite partition 
onsisting of at most (22k+1 + 2)m sets.Remark 7.2. If k′ and m′ are su
h that both k 6 k′ and m 6 m′ then

Pm′;k′ is a re�nement of Pm;k.Now let Xm;k denote the �nite algebra of subsets of X that is generatedby Pm;k. It is the sub-�-algebra Xm;k of X made up by all unions ofsets from Pm;k. We denote the restri
tion of � to Xm;k again by �. Thespa
eL2(X;Xm;k; �) of �nite linear 
ombinations∑A∈Pm;k �A1A is a �nitedimensional subspa
e of L2(X;X ; �).Remark 7.3. If k′ and m′ are su
h that both k 6 k′ and m 6 m′, thenwe have Xm;k ⊂ Xm′;k′ and L2(X;Xm;k; �) ⊂ L2(X;Xm′;k′ ; �).



SEPARABLE BILINEAR FORMS 313Given l, write �l for the �nite measure given by�l(A) := �(A ∩Xl); A ∈ X :Let P lm;k be the elements A of Pm;k with positive measure �l. Let �m;l;kdenote the proje
tions into the �nite dimensional spa
es L2(X;Xm;k; �)de�ned by �m;l;k(f) := ∑A∈Plm;k �(m;l;k)A (f)1A∩Xl ;where �(m;l;k)A (f) = 1�l(A) ∫A �m(f)d�l;for any f ∈ L2(X;X ; �). Let P l;∞m;k denote the 
olle
tion of elements A ∈

P lm;k that for some i are 
ontained in a set A(i)
−22k−1;k or A(i)22k;k as in (6).Lemma 7.3. For any m and l and any f ∈ L2(X;X ; �) we havelimk �m;l;k(f) = �m(f)1Xl in L2(X;X ; �).Proof. Let m be �xed and " > 0. We show that for large enough k(depending on m, l and ") we have

‖�m(f)1Xl − �m;l;k(f)‖L2(X;X ;�) < ": (7)Note �rst that
∫X(�m(f)− �m;l;k(f))2 d�l = ∫X  ∑A∈Plm;k(�m(f)− �(m;l;k)A (f))1A2 d�l= ∑A∈Plm;k ∫A( 1�l(A) ∫A(�m(f)(x) − �m(f)(y))�l(dy))2 �l(dx):For any A ∈ P l;∞m;k there is some i su
h that A ⊂

{

|'i| > 2k}. We have�({|'i| > 2k}) 6 2−2k by �Cebyshev's inequality, and therefore�


⋃A∈Pl;∞m;k A 6 �( m
⋃i=1{|'i| 6 2k}) 6

m22k : (8)
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onsequen
e, we see that for suÆ
iently large k,
∑A∈Pl;∞m;k ∫A �m(f)2d� = ∫

⋃A∈P
l;∞m;k A �m(f)2d� < "216 ;and by Jensen's inequality,

∑A∈Pl;∞m;k ∫A( 1�l(A) ∫A(�m(f)(x)− �m(f)(y))�l(dy))2 �l(dx)
6

∑A∈Pl;∞m;k ∫A 1�l(A) ∫A(�m(f)(x) − �m(f)(y))2�l(dy)�l(dx)
6 8 ∑A∈Pl;∞m;k ∫A �m(f)2d�l 6

"22 : (9)For A ∈ P lm;k \ P l;∞m;k and x ∈ A we observe
( 1�l(A) ∫A(�m(f)(x) − �m(f)(y))�l(dy))2= ( m

∑i=1 
i 1�l(A) ∫A('i(x) − 'i(y))�l(dy))2
6

m
∑j=1 
2j m

∑i=1 1�l(A) ∫A('i(x)− 'i(y))2�l(dy) 6
m22k ‖f‖2L2(X;X ;�) :Here we have used Cau
hy-S
hwarz, Parseval's identity, Jensen's inequalityand the fa
t that for x; y ∈ A, |'i(x)− 'i(y)| 6 2−k, i = 1; : : : ;m. If k issuÆ
iently large,

∑A∈Plm;k\Pl;∞m;k ∫A( 1�l(A) ∫A(�m(f)(x)− �m(f)(y))�l(dy))2 �l(dx)
6

m22k ‖f‖2L2(X;X ;�) �(Xl) < "22 : (10)Combining (10) with (9) we arrive at (7). �
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onsider the bounded Diri
hlet forms E(n;m;l;k)de�ned by
E(n;m;l;k)(f) := 2n 〈�m;l;k(f)− P2−n�m;l;k(f); �m;l;k(f)〉L2(X;X ;�) ;f ∈ L2(X;X ; �): (11)Their generators are given by L(n;m;l;k) = 2n�∗m;l;k(P2−n − I)�m;l;k. FromLemma 7.3 we obtain limk E(n;m;l;k)(f) = E(n;m;l)(f)for any �xed l, m and n and all f ∈ L2(X;X ; �). Therefore we may againfollow the arguments in the proof of Lemma 6.1 to obtain a �nal approxi-mation step.Lemma 7.4. For any �xed n, m and l the forms E(n;m;l;k) 
onverge tothe form E(n;m;l) in the sense of Mos
o as k goes to in�nity. Their gener-ators L(n;m;l;k) 
onverge to the generator L(n;m) of E(n;m;l) in the strongresolvent sense.In other words, any separable and bounded Diri
hlet form with boundedreferen
e measure (on a �nite dimensional L2-spa
e) is the limit of essen-tially dis
rete energy forms (isomorphi
, ex
ept for subset of fun
tions ofzero energy, to the �nite dimensional energy form on a �nite graph as inSe
tion 5).Combining Lemmas 6.1, 7.1, 7.2 and 7.4 we now obtain the followingCorollary, whi
h implies Theorem 1.2.Corollary 7.1. Let (X;X ; �) be a �-�nite measure spa
e with a 
ountablygenerated �-algebra X and let (E ;F) be a Diri
hlet form on L2(X;X ; �)with generator L. Let E(n;m;l;k) be the bounded Diri
hlet forms as de�nedin (11) with generators L(n;m;l;k). Then we havelimn limm liml limk E(n;m;l;k) = Ein the sense of Mos
o 
onvergen
e andlimn limm liml limk L(n;m;l;k) = Lin the strong resolvent sense.
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