
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 441, 2015 Ç.M. Hinz, A. TeplyaevCLOSABILITY, REGULARITY, AND APPROXIMATIONBY GRAPHS FOR SEPARABLE BILINEAR FORMSAbstrat. We onsider a ountably generated and uniformly losedalgebra of bounded funtions. We assume that there is a lower semi-ontinuous, with respet to the supremum norm, quadrati form andthat normal ontrations operate in a ertain sense. Then we provethat a subspae of the e�etive domain of the quadrati form is nat-urally isomorphi to a ore of a regular Dirihlet form on a loallyompat separable metri spae. We also show that any Dirihletform on a ountably generated measure spae an be approximatedby essentially disrete Dirihlet forms, i.e. energy forms on �niteweighted graphs, in the sense of Moso onvergene, i.e. strong re-solvent onvergene.
§1. Introdution and resultsThe �rst purpose of the present note is to disuss quadrati forms onountably generated algebras of funtions and a way to turn them into(symmetri) Dirihlet forms, [6, 9, 11, 23℄. This omplements our formerstudies [14℄ and [15℄. The seond purpose is to show that Dirihlet forms onountably generated measures spaes an be approximated, in the Mososense, by essentially disrete energy forms (essentially equivalent to theenergy on �nite graphs). This approximation is the same as the approx-imation in the strong resolvent sense, [28℄, and also an be desribed aspiee-wise onstant (in partiular, typially disontinuous) Galerkin ap-proximations.Our paper is expository, although Theorems 1.1 and 1.2 previouslyhave not appeared in the literature. The long term motivation for suhonnetions omes from the fat that approximations by random walksallows to onstrut di�usion proesses on some universal topologial ob-jets, [4,21,22,30℄, whih in turn allows to onstrut notions of di�erentialgeometry not previously available, [15{18℄. One one hand, these notionsKey words and phrases: Moso onvergene, strong resolvent onvergene, lowersemiontinuous quadrati forms, Dirihlet forms, ountably generated and uniformlylosed algebras of bounded funtions, Laplaians on graphs, random walks.299



300 M. HINZ, A. TEPLYAEVmay be appliable to ompliated spaes de�ned algebraially, suh asin [26, 27℄. On the other hand, there are potential physis appliations forsuh notions, see [2,10,29℄. We would like to note that random walks anddisrete time martingales appear in a number of works of M.I. Gordin, suhas [12, 13, and referenes therein℄, and our paper may be a step towardsontinuous versions of these results.A Dirihlet form (E ;F) is a symmetri, bilinear and positive de�nite realvalued form E on a subspae F that is dense in a real L2-spae L2(X;X ; �)over a �-�nite measure spae (X;X ; �) suh that
• the spae F , together with the norm f 7→ (E(f)+‖f‖2L2(X;X ;�))1=2,is a Hilbert spae (the 'Dirihlet spae') and
• for any f ∈ F we have (f ∧ 1) ∨ 0 ∈ F and E(f) 6 E((f ∧ 1) ∨ 0).Here we use the notation E(f) := E(f; f) whih we will also employ forother symmetri bilinear expressions. There is a one-to-one orrespon-dene of Dirihlet forms and non-positive de�nite self-adjoint operatorson L2(X;X ; �) satisfying a ertain Markov property, see e.g. [6, Proposi-tion I.3.2.1℄. The self-adjoint operator (L; domL) uniquely assoiated with(E ;F) (and referred to as its generator) satis�es

E(f; g) = −〈Lf; g〉L2(X;X ;�) ; f ∈ domL; g ∈ F ;and is uniquely determined by this formula. More bakground on Dirihletforms an for instane be found in [6, 11, 23℄.A partiularly rih theory is available if X is a loally ompat separablemetri spae, X the Borel-�-algebra over X and � a nonnegative Radonmeasure on X with full support. If in this ase we an �nd a ore C ⊂C(X)∩ F dense in the Hilbert spae F and dense in C(X) with respetto the supremum norm ‖ · ‖sup, then the Dirihlet form (E ;F) is alledregular. Here C(X) denotes the spae of ontinuous ompatly supportedfuntions on X , see [11℄. A regular Dirihlet form is ompatible with thetopology on X , what provides strong onnetions between the alulus ofvariations and funtional analysis on one hand and potential theory andstohasti proesses on the other.We are interested in starting from an algebra of funtions (or evensimpler, from a sequene of funtions) on whih a quadrati funtional isde�ned and then to 'reate' a related Dirihlet form. This way, the qua-drati funtional (the 'energy ') has priority over the hoie of a referenemeasure or a topology on X . In a sense, this follows the spirit of earlyliterature on Dirihlet forms, suh as [1℄ and [3℄. Related (but di�erent)



SEPARABLE BILINEAR FORMS 301disussions of representation theory for Dirihlet forms an be found in [8℄and [11, Appendix A.4℄.In [15℄ we skethed how a given Dirihlet form on a measure spae anbe transferred into a Dirihlet form on a loally ompat Hausdor� spae.The latter is given by the Gelfand spetrum of an algebra obtained frombounded measurable funtions of �nite energy. (We would like to pointout that unfortunately [15℄ ontained two inauraies: The transfer of anin�nite measure to the Gelfand spetrum needs to be orreted using aunitization proedure, [19℄, and for the transferred form to be regular thegiven measure spae must have a ountably generated �-algebra.) In [14℄we onsidered real valued bilinear forms on algebras of bounded funtionsand used energy measures to obtain a Dirihlet form. We did not assumethe algebra to be ountably generated. Key ingredients were measure-freenotions of losability and lower semiontinuity, suh as the following.De�nition 1.1. Let X be a nonempty set and A a spae of bounded realvalued funtions on X whih is omplete with respet to the supremumnorm. A quadrati funtional E : A → [0 +∞℄ is alled sup-norm-lowersemiontinuous on A if for any sequene (fn)n ⊂ A with uniform limitf ∈ A we have E(f) 6 lim infn E(fn):In the present note we onentrate on notions of separability. We startfrom a ountably generated and uniformly losed algebra A of boundedreal valued funtions and a quadrati form E on A, a priori extended realvalued.De�nition 1.2. Let X be a nonempty set and A a ountably generateduniformly losed algebra of bounded real valued funtions on X that sep-arates the points of X. A quadrati form E : A → [0;+∞℄ is alled asup-norm-separable quadrati form if there is a sequene {fn}∞n=1 ⊂ Agenerating A suh that E(fn) < +∞ for all n.Throughout the following let A be as in the de�nition. Sine A is ount-ably generated and uniformly losed, it is separable.Remark 1.1. If X itself is a loally ompat separable metri spae and Ais an algebra of ontinuous funtions that (in addition to point separation)vanishes nowhere on X , then by Stone-Weierstrass A = C0(X) is thealgebra of ontinuous funtions vanishing at in�nity. If (E ;F) is a regularDirihlet form onX and we onsider E as an extended real valued quadrati



302 M. HINZ, A. TEPLYAEVform C0(X), then it is sup-norm-separable. Note that E is sup-norm-lowersemiontinuous on C(X) ∩ F , see [14, Theorem 2.1 and Theorem 10.1℄.Restrited to its e�etive domain a quadrati form yields a symmetribilinear form that an be transferred to the Gelfand spetrum � of thenatural omplexi�ation of A. It is a loally ompat Hausdor� spae, andby the separability of A it is seond ountable and metrizable. Proeedingas in [14, Setion 9℄ we an then extend the transferred form to a regularDirihlet form on an L2-spae over the Gelfand spetrum �.To formulate this result we �x two more notions. A quadrati form Eon an algebra A of bounded real valued funtions is alled �-�nite if Aontains a stritly positive funtion � suh that E(�) < +∞. To a funtionF : R
k → R suh that

|F (x)− F (y)| 6

k
∑i=1 |xi − yi|; x; y ∈ R

k;and F (0) = 0 we refer as a normal ontration (in several variables). If thequadrati form E satis�es
E(F (f1; : : : ; fk))1=2 6

k
∑i=1 E(fi)1=2 (1)for all f1; : : : ; fk ∈ A and all normal ontrations F , then we say thatnormal ontrations operate on E , f. [6, Setion I.3.3℄.Theorem 1.1. Let X be a nonempty set and let A be a ountably gen-erated and uniformly losed algebra A of bounded real valued-funtions onX that separates the points of X. Let E be a sup-norm-separable, �-�niteand sup-norm-lower semiontinuous quadrati form on A on whih normalontrations operate. Then the e�etive domain

D = {f ∈ A : E(f) < +∞}of E is isomorphi to an algebra D̂ of ontinuous funtions in the domain ofa regular Dirihlet form Ê on a loally ompat separable metri spae and
D̂ ontains a ore for Ê . The isomorphism f 7→ f̂ from D onto D̂ preservesthe algebrai struture, the supremum norm, and is also 'isometri' in thesense that Ê(f̂) = E(f), f ∈ D.Both Theorem 1.1 and the results in [14℄ should be seen as ontinua-tions of and omplements to an earlier study of Mokobodzki, [24℄, wheresup-norm-lower semiontinuity was employed to onlude the losability



SEPARABLE BILINEAR FORMS 303of quadrati forms on spaes of ontinuous funtions over loally ompatspaes.A seond aim of the present note is to provide approximations of Dirih-let forms in terms of disrete energy forms on �nite graphs, and thisapproximation is in terms of a suitable 'spetral onvergene'. We re-all the de�nition of onvergene in strong resolvent sense, [28, ChapterVIII.7℄. Usually it is formulated for omplex Hilbert spaes, we onsider itwith respet to the natural omplexi�ation of L2(X;X ; �). A sequene(L(n))∞n=1 of self-adjoint operators L(n) on L2(X;X ; �) with resolventsG(n)� = (� − L(n))−1 onverges in the strong resolvent sense to a self-adjoint operator L on L2(X;X ; �) with resolvent G� = (� − L)−1 if forall � ∈ C with Im� 6= 0 the resolvent operators G(n)� onverge to G� inthe strong operator topology. This ondition is equivalent to requiring theonvergene for some � ∈ C with Im� 6= 0, [28, Theorem VIII.19℄. In thease of non-positive de�nite self-adjoint operators L(n) and L that generatestrongly ontinuous ontration semigroups it is also equivalent to requir-ing the onvergene of the resolvents G(n)� to G� in the strong operatortopology for some (and hene all) � > 0, see [20, Theorem 1.3 in Chapter8, Paragraph 1, Setion 1, p. 427℄. This in turn is equivalent to the Mosoonvergene of the assoiated quadrati forms, [25, De�nition 2.1.1 andTheorem 2.4.1℄. Reall that a sequene (E(n))∞n=1 of (possibly extendedreal valued) quadrati forms E(n) on L2(X;X ; �) onverges to a quadratiform E on L2(X;X ; �) in the sense of Moso if(i) for any sequene (fn)∞n=1 ⊂ L2(X;X ; �) onverging to some fweakly in L2(X;X ; �) we haveE(f) 6 lim infn E(n)(fn)and(ii) for any f ∈ L2(X;X ; �) there exists a sequene (fn)∞n=1 onvergingto f strongly in L2(X;X ; �) and suh thatlim supn E(n)(fn) 6 E(f):Again a main ingredient is a suitable notion of separability.De�nition 1.3. To a Dirihlet form (E ;F) on a spae L2(X;X ; �) overa �-�nite measure spae (X;X ; �) with a ountably generated �-algebra Xwe refer as a separable Dirihlet form.



304 M. HINZ, A. TEPLYAEVRemark 1.2. Any regular Dirihlet form in the sense of [11℄ is separable.To a Dirihlet form whih (in the sense of its Dirihlet spae) is essen-tially isometrially isomorphi to a disrete Dirihlet ('energy') form on a�nite graph we simply refer as an esentially disrete Dirihlet form. Teh-nially speaking our approximating forms are in�nite dimensional, but thegenerators have �nite dimensional range (but typially in�nite dimensionalkernel). Using this manner of speaking, our seond result reads as follows.Theorem 1.2. Any separable Dirihlet form (E ;F) an be approximatedin the Moso sense by a sequene of essentially disrete Dirihlet forms (es-sentially isomorphi to that on �nite weighted graphs) and the orrespond-ing generators approximate the generator of (E ;F) in the strong resolventsense.Our paper is organized as follows. We will �rst review some basis onalgebras of funtions and the Gelfand transform in Setion 2, then onsiderquadrati forms in Setion 3 and �nally, employ results from [14℄ to on-lude the existene of the regular Dirihlet form on the Gelfand spetrumin Corollary 4.1 of Setion 4, what proves Theorem 1.1. To prove Theo-rem 1.2 we disuss the isomorphy of Dirihlet forms on �nitely generatedmeasure spaes to graph energies in Setion 5, semigroup approximationis Setion 6 and further approximations in terms of Galerkin shemes,�-�niteness and level sets of base elements in Setion 7.Aknowledgments. The seond author thanks Robert Strihartz forraising the question about approximating arbitrary Laplaians by graphLaplaians.
§2. Algebras of funtionsWe review some folklore fats about algebras of funtions and assoi-ated loally ompat spaes. Let X be a nonempty set. Given a uniformlylosed and ountably generated algebra A of bounded real-valued fun-tions on X , let AC denote its natural omplexi�ation and � the Gelfandspetrum of AC, i.e. the spae of nonzero omplex valued multipliativelinear funtionals on AC, [5, 19℄. The spae � is a loally ompat Haus-dor� spae and A being separable, the spae � is seond ountable andmetrizable. We assume that A separates the points of X . Then the image�(X) of X under � : X → � given by �(x)(f) := f(x), is densely embeddedin �.



SEPARABLE BILINEAR FORMS 305Remark 2.1. If X itself is a loally ompat Hausdor� spae and A =C0(X) then � is a homeomorphism fromX onto �. IfX is a loally ompatseparable metri spae, then C0(X) is separable, hene � is metrizable.We ollet these well known arguments in the following Lemma.Lemma 2.1. Let A be a uniformly losed and ountably generated algebraof bounded real valued funtions on X. Assume that A separates the pointsof X. Then the Gelfand spetrum � of the natural omplexi�ation of Ais a loally ompat separable metri spae, and X may be regarded as adense subset.Remark 2.2. The topology of � is ompatible with the uniform struturedetermined by the sets of formUF;" = {(x; y) ∈ �×� : |f(x)− f(y)| < "; for all f ∈ F} ;where " > 0 and F ranges over all �nite subfamilies of funtions from
AC. See [7, Chapter II, Setion 1.1℄. If {fn}∞n=1 is a sequene of boundedreal valued funtions that generates A then sine A separates the pointof X also {fn}∞n=1 separates points. Let P denote the olletion of poly-nomials in several variables of the funtions {fn}∞n=1 and having oeÆ-ients with rational real and imaginary parts. The spae P is a ount-able and uniformly dense subalgebra of AC. The funtions %F (x; y) :=sup {|f(x)− f(y)| : f ∈ F}, x; y ∈ �, where F ranges over all �nite sub-families of funtions from P , provide a ountable family of pseudometrison � that generate this uniform struture. Now [7, Chapter IX, Setion2.4, Corollary 1 and Setion 1.4, Proposition 2℄ give another proof of theknown fat that � is metrizable. A straightforward hoie for a possiblemetri is %(x; y) := ∞

∑i=1 2−i |fi(x) − fi(y)|1 + |fi(x)− fi(y)| ; x; y ∈ �:For any f ∈ AC the Gelfand transform f̂ : � → C of f is de�ned byf̂(') := '(f), ' ∈ �. Aording to the Gelfand representation theorem themap f 7→ f̂ de�nes an ∗-isomorphism from AC onto the algebra CC;0(�)of omplex valued ontinuous funtions on � that vanish at in�nity. Formore bakground see for instane [5℄ or [19℄.Remark 2.3. If X is a loally ompat Hausdor� spae, A = C0(X),and we identify the spaes X and � under �, then f 7→ f̂ is the identitymapping.



306 M. HINZ, A. TEPLYAEV
§3. Quadrati formsWe onsider quadrati forms on A and see how to transform them intoquadrati forms on spaes of ontinuous funtions on �.Let A be as in Lemma 2.1, i.e. a uniformly losed and ountably gen-erated algebra of bounded real valued funtions on X whih is point sep-arating. Assume we are given a (extended real valued) quadrati form

E : A → [0;+∞℄and write
D := {f ∈ A : E(f) < +∞}for its e�etive domain. On D we an de�ne a (real-valued) bilinear form(E ;D) by polarization,

E(f; g) := 14 (E(f + g)− E(f − g)) ; f; g ∈ D:If normal ontrations operate on E then the e�etive domain D is stableunder normal ontrations, i.e. if F : Rk → R is a normal ontration andf1; : : : ; fk ∈ D then we have F (f1; : : : ; fk) ∈ D. In partiular,
E(fg)1=2 6 ‖f‖sup E(g)1=2 + ‖g‖sup E(f)1=2for all f; g ∈ A, and D is an algebra under pointwise multipliation. Seethe proof of [6, Corollary I.3.3.2℄.If in addition there is a sequene {fn}∞n=1 generating A (and thereforepoint separating) suh that E(fn) < +∞ for all its members fn, then D isa uniformly dense subalgebra of A and the algebra

D̂ := {f̂ ∈ C(�) : f ∈ D
}is uniformly dense in the subalgebra C0(�) of real valued ontinuous fun-tions on � vanishing at in�nity. By

Ê(f̂ ; ĝ) := E(f; g); f̂ ; ĝ ∈ D̂we an de�ne a bilinear form Ê on D̂ (the transferred form). See [14, Setion10℄ or [15℄ for further information.
§4. Sup-norm-lower semiontinuity and losabilityWe employ the notions of sup-norm-lower semiontinuity and sup-normlosability to dedue the losability and the ontrativity for the trans-ferred form.



SEPARABLE BILINEAR FORMS 307De�nition 4.1. Let X be a nonempty set and D a spae of bounded realvalued funtions on X. A (real-valued) bilinear form (E;D) is alled sup-norm-losable if for any sequene (fn)n ⊂ D whih is E-Cauhy and suhthat limn ‖fn‖sup = 0 we havelimn E(fn) = 0:Now let A, E , Ê , D and D̂ be as in the preeding setion. The followingis an immediate onsequene of [14, Corollary 10.1℄.Lemma 4.1. Suppose E is sup-norm-lower semiontinuous on A. Thenboth (E ;D) and (Ê ; D̂) are sup-norm-losable. Moreover, Ê is sup-norm-lower semiontinuous on D̂.In the presene of sup-norm-lower semiontinuity (resp. sup-norm-lo-sability), ontrativity properties arry over.Lemma 4.2. Suppose E is sup-norm-lower semiontinuous on A andthat normal ontrations operate on E. Then normal ontrations oper-ate on (Ê ; D̂), i.e. (1) holds for all normal ontrations F but with Ê andf̂1; : : : ; f̂k ∈ D̂ in plae of E and f1; : : : ; fk ∈ D.The lemma follows by noting that on ompat subsets of Rk a normalontration F : R
k → R an by approximated in C1-norm by polynomialsPn and we have Pn(f̂1; : : : ; f̂k) = (Pn(f1; : : : ; fk))∧.A seond onsequene of sup-norm-lower semiontinuity (respetively,sup-norm-losability) is that the transferred form extends to a Dirihletform. In the present separable setup we an make sure this extension isa regular Dirihlet form in the sense of Fukushima et al, [11℄. The resultfollows from [14, Setion 9, in partiular Theorem 9.1℄. In a topologialsetup an earlier version of this theorem was given by Mokobodzki, [24℄.Corollary 4.1. Let A be a ountably generated uniformly losed algebra Aof bounded real valued-funtions on X that vanishes nowhere and separatesthe points of X. Let E be a sup-norm-separable, �-�nite and sup-norm-lower semiontinuous quadrati form on A on whih normal ontrationsoperate. Then there exists a �nite Radon measure m̂ on � with full supportsuh that (Ê ; D̂) extends to a regular Dirihlet form (Ê ; F̂) on L2(�; m̂),and

D̂ := {f̂ ∈ C(�) : f ∈ D
}

⊂ D̂is a ore for (Ê ; F̂).



308 M. HINZ, A. TEPLYAEVCorollary 4.1 follows from [14, Theorem 9.1℄ together with the fat that� is separable. Note that if the �nite (energy dominant) Radon measureonstruted in [14, Theorem 9.1℄ does not have full support, we an put m̂to be the sum of this measure and a �nite measure of form ∑∞i=1 2−iÆxi ,where {xi}∞i=1 is a ountable dense subset of � and Æxi are unit pointmasses at the xi. Then the �nite (energy dominant) Radon measure m̂has full support. That D̂ is a ore for (Ê ; F̂) an be seen as in [15, Lemma3.4℄ and the proof of [15, Theorem 5.1℄.Remark 4.1. The Dirihlet form (Ê ; F̂) admits a arr�e du hamp, [6,Chapter I.4℄, see for instane [14℄.
§5. Finitely generated measure spaes and weightedgraphsWe disuss bounded Dirihlet forms on �nitely generated measure spaesand identify the with disrete Dirihlet forms on �nite (weighted) graphs.Let X be a nonempty set and X a �nitely generated algebra of subsetsof X . Being �nite, it is a �-algebra. We may assume there exists a �nitepartition {A1; : : : ; An} of X into pairwise disjoint subsets A1; : : : ; An. Inthis ase we observe that X onsists of all unions⋃kj=1 Aij where 1 6 k 6 nand ij ∈ {1; : : : ; n} for all j = 1; : : : ; k. Let � be a �nite and �nitely additivemeasure on X , then automatially �-additive. The spae L2(X;X ; �) of �-square integrable funtions equals the �nite vetor spae

{ n
∑i=1 �i1Ai : �i ∈ R

} ;endowed with the salar produt de�ned by 〈f; g〉 = ∑ni=1 �i�i�(Ai) forf =∑i �i1Ai and g =∑i �i1Ai .A symmetri Markov operator P on L2(X;X ; �) produes a symmetri(n× n)-matrix C = (ij)ni;j=1 byij := 〈P1Ai ;1Aj〉L2(X;X ;�) :Consider the quadrati form
EP (f) := 〈f − Pf; f〉L2(X;X ;�)on L2(X;X ; �) indued by P . If in addition we assume P1 = 1 then wehave �(Aj) =∑i ij for all j and for a funtion f =∑ni=1 �i1Ai we easily



SEPARABLE BILINEAR FORMS 309see that
EP (f) = 12 n

∑i=1 n
∑j=1(�i − �j)2ij :A slightly di�erent formula is still true if we allow P1 < 1, see [6, LemmaI.2.3.2.1℄.We an identify the partition P with a �nite set V = {p1; : : : pn} and �with a �nite nonnegative funtion � on V given by �(pi) := �(Ai). Thenthe spae L2(X;X ; �) is isometrially isomorphi to the spae l(V ) of realvalued funtions on V , and we an identify a funtion from L2(X;X ; �)with a funtion in l(V ). Let E be the olletion of elements (pi; pj) ofV × V suh that ij > 0. This yields a �nite graph (V;E), endowed withvertex weights �(pi) and edge weights ij . The matrix C = (ij)ni;j=1 is thetransition matrix of a symmetri random walk on V and the energy form

EP may be identi�ed with the graph energy form on l(V ), given by
EP (f) = 12 n

∑i=1 n
∑j=1(f(pi)− f(pj))2ij ; f ∈ l(V );provided P1 = 1. If P1 < 1 we an still identify EP with a (slightlydi�erent) graph energy form.

§6. Semigroup approximation and strong resolventonvergeneIn this setion we disuss the well known fat that any Dirihlet forman be approximated by bounded Dirihlet forms.Let (X;X ; �) be a �-�nite measure spae and (E ;F) a (symmetri)Dirihlet form on L2(X;X ; �). Let (Pt)t>0 denote the uniquely assoiatedstrongly ontinuous semigroup of symmetri ontration operators Pt onL2(X;X ; �). The operators Pt enjoy the Markov property, i.e. 0 6 Ptf 6 1�-a.e. whenever 0 6 f 6 1 �-a.e. We have
E(f) = limt→0 1t 〈f − Ptf; f〉L2(X;X ;�) = supt>0 1t 〈f − Ptf; f〉L2(X;X ;�) (2)for any f ∈ F , note that the funtion t 7→ 1t 〈f − Ptf; f〉L2(X;X ;�) is in-reasing as t dereases to zero (what follows from the spetral theorem).By (2) we may extend the de�nition of E , seen as a quadrati funtionalwith e�etive domain F , to all of L2(X;X ; �).



310 M. HINZ, A. TEPLYAEVOf ourse formula (2) is standard. Here we use it as a �rst step in anapproximation proedure. For n = 1; 2; : : : onsider the quadrati formsde�ned by
E(n)(f) := 2n 〈f − P2−nf; f〉L2(X;X ;�) ; f ∈ L2(X;X ; �): (3)They are bounded Dirihlet forms on L2(X;X ; �) satisfying E(n)(f) 62n ‖f‖2L2(X;X ;�). Note that the operators I−P2−n satisfy the Markov prop-erty and therefore are ontrations on L2(X;X ; �), [6, Corollary I.2.2.4℄.Let L denote the generator of (E ;F) and L(n) = 2n(P2−n − I) the genera-tors of the forms E(n), respetively.Lemma 6.1. The forms E(n) onverge to the form E in the sense of Mosoas n goes to in�nity. Their generators L(n) onverge to the generator L of

E in the strong resolvent sense.The proof is folklore, we sketh it for onveniene.Proof. Condition (i) for Moso onvergene is trivially satis�ed, beausewe may assume f ∈ F and use the onstant sequene fn := f togetherwith (2). For ondition (ii) let (fn)n onverge weakly to f . We may as-sume that lim infn E(n)(fn) < +∞. Let (fnk )k be a subsequene withlimk E(nk)(fnk ) < +∞. As it is uniformly bounded in L2(X;X ; �) we anapply the Banah-Saks theorem and extrat a subsequene (fnkl )l onverg-ing weakly to f and suh that the Ces�aro averages 1N ∑Nl=1 fnkl onvergestrongly to f . Then for any �xed nj we have
E(nj)(f) = limN E(nj)( 1N N

∑l=1 fnkl) 6 limN 1N N
∑l=1 E(nj)(fnkl )

6 lim supk E(nj)(fnk ) 6 lim infk E(nk)(fnk ):As the right hand side does not depend on j and the above holds for anysuh subsequene (fnk)k, we obtain E(f) 6 lim infn E(n)(fn). �

§7. Galerkin and finite graph approximationTo prove Theorem 1.2 we now ombine the semigroup approximationfrom Setion 6 with further approximation steps.Assume that X is a ountably generated �-algebra over X and that� is a �-�nite measure on X . Let (E ;F) be a symmetri Dirihlet form



SEPARABLE BILINEAR FORMS 311on L2(X;X ; �) and let E(n) be the bounded Dirihlet forms as de�ned in(3). Let ('i)∞i=1 be omplete orthonormal system in the separable Hilbertspae L2(X;X ; �) and for any m let �m denote the projetion onto the�nite dimensional subspae span('1; : : : ; 'm). Given f ∈ L2(X;X ; �) wehave f =∑∞i=1 i'i with i = 〈f; 'i〉L2(X;X ;�) and�m(f) = m
∑i=1 i'i:Clearly limm �m(f) = f in L2(X;X ; �). For any n and m onsider thebounded Dirihlet forms on L2(X;X ; �) de�ned by

E(n;m)(f) := 2n 〈�m(f)− P2−n�m(f); �m(f)〉L2(X;X ;�) ; f ∈ L2(X;X ; �):(4)Note that E(n;m)(f) = En(�m(f)) and E(n;m)(f) 6 2n ‖f‖2L2(X;X ;�). Let
L(n;m) = 2n�m(P2−n − I)�mdenote the generator of E(n;m). The following Lemma provides a seondapproximation proedure, now of Galerkin type. Its proof is similar to thatof Lemma 6.1, we omit it.Lemma 7.1. For any �xed n the forms E(n;m) onverge to the form E(n) inthe sense of Moso as m goes to in�nity. Their generators L(n;m) onvergeto the generator L(n) of E(n) in the strong resolvent sense.In other words, any bounded and separable Dirihlet form an be ap-proximated by Dirihlet forms on �nite dimensional L2-spaes.A third approximation is provided by �-�niteness. Let (Xl)∞l=1 be aninreasing sequene of sets Xl ∈ X with �nite measure �(Xl) < +∞ suhthat X = ⋃∞l=1Xl. Given n, m and l onsider the bounded Dirihlet forms

E(n;m;l) := 2n 〈�m(f)1Xl − P2−n(�m(f)1Xl); �m(f)1Xl〉L2(X;X ;�) ;f ∈ L2(X;X ; �): (5)Their generators are L(n;m;l) = 2n�m1Xl(P2−n − I)1Xl�m, respetively.Sine
En;m;l(f) = ∥∥∥(I − P2−n)1=2�m(f)1Xl∥∥∥2L2(X;X ;�)is inreasing in l for any f and E(n;m)(f) = supl En;m;l(f), we an proeedas in Lemma 6.1 to obtain the following.



312 M. HINZ, A. TEPLYAEVLemma 7.2. For any �xed n and m the forms E(n;m;l) onverge to theform E(n;m) in the sense of Moso as l goes to in�nity. Their generators
L(n;m;l) onverge to the generator L(n;m) of E(n;m) in the strong resolventsense.This an be rephrased saying that any separable and bounded Dirihletform on a �nite dimensional L2-spae an be approximated by Dirihletform of similar type with �nite volume measure.We provide a fourth approximation. For any �xed i; k = 1; 2; : : : onsiderthe level sets of the funtion 'i de�ned byA(i)j;k := { j2k < 'i 6

j + 12k } ; j = −22k; : : : ; 22k − 1;A(i)
−22k−1;k := {'i 6 −2k} and A(i)22k;k := {2k < 'i} : (6)They form a �nite partition of X onsisting of 22k+1 + 2 sets. For onve-niene we set A(i)j;k := ∅ for j ∈ Z smaller than −22k − 1 or greater that22k.Remark 7.1. The partition for k′ > k is a re�nement of the partition fork. For �xedm, we now onsider the �rstm oordinate funtions '1; : : : ; 'msimultaneously and given j = (j1; : : : ; jm) and k, we writeA(m)j;k := A(1)j1;k ∩ : : : ∩ A(m)jm;kfor the intersetion of their level sets A(i)ji;k. For any m and k the sets A(m)j;k ,j ∈ Zn, form a partition Pm;k of X and disregarding empty sets, it is a�nite partition onsisting of at most (22k+1 + 2)m sets.Remark 7.2. If k′ and m′ are suh that both k 6 k′ and m 6 m′ then

Pm′;k′ is a re�nement of Pm;k.Now let Xm;k denote the �nite algebra of subsets of X that is generatedby Pm;k. It is the sub-�-algebra Xm;k of X made up by all unions ofsets from Pm;k. We denote the restrition of � to Xm;k again by �. ThespaeL2(X;Xm;k; �) of �nite linear ombinations∑A∈Pm;k �A1A is a �nitedimensional subspae of L2(X;X ; �).Remark 7.3. If k′ and m′ are suh that both k 6 k′ and m 6 m′, thenwe have Xm;k ⊂ Xm′;k′ and L2(X;Xm;k; �) ⊂ L2(X;Xm′;k′ ; �).



SEPARABLE BILINEAR FORMS 313Given l, write �l for the �nite measure given by�l(A) := �(A ∩Xl); A ∈ X :Let P lm;k be the elements A of Pm;k with positive measure �l. Let �m;l;kdenote the projetions into the �nite dimensional spaes L2(X;Xm;k; �)de�ned by �m;l;k(f) := ∑A∈Plm;k �(m;l;k)A (f)1A∩Xl ;where �(m;l;k)A (f) = 1�l(A) ∫A �m(f)d�l;for any f ∈ L2(X;X ; �). Let P l;∞m;k denote the olletion of elements A ∈

P lm;k that for some i are ontained in a set A(i)
−22k−1;k or A(i)22k;k as in (6).Lemma 7.3. For any m and l and any f ∈ L2(X;X ; �) we havelimk �m;l;k(f) = �m(f)1Xl in L2(X;X ; �).Proof. Let m be �xed and " > 0. We show that for large enough k(depending on m, l and ") we have

‖�m(f)1Xl − �m;l;k(f)‖L2(X;X ;�) < ": (7)Note �rst that
∫X(�m(f)− �m;l;k(f))2 d�l = ∫X  ∑A∈Plm;k(�m(f)− �(m;l;k)A (f))1A2 d�l= ∑A∈Plm;k ∫A( 1�l(A) ∫A(�m(f)(x) − �m(f)(y))�l(dy))2 �l(dx):For any A ∈ P l;∞m;k there is some i suh that A ⊂

{

|'i| > 2k}. We have�({|'i| > 2k}) 6 2−2k by �Cebyshev's inequality, and therefore�


⋃A∈Pl;∞m;k A 6 �( m
⋃i=1{|'i| 6 2k}) 6

m22k : (8)



314 M. HINZ, A. TEPLYAEVAs a onsequene, we see that for suÆiently large k,
∑A∈Pl;∞m;k ∫A �m(f)2d� = ∫

⋃A∈P
l;∞m;k A �m(f)2d� < "216 ;and by Jensen's inequality,

∑A∈Pl;∞m;k ∫A( 1�l(A) ∫A(�m(f)(x)− �m(f)(y))�l(dy))2 �l(dx)
6

∑A∈Pl;∞m;k ∫A 1�l(A) ∫A(�m(f)(x) − �m(f)(y))2�l(dy)�l(dx)
6 8 ∑A∈Pl;∞m;k ∫A �m(f)2d�l 6

"22 : (9)For A ∈ P lm;k \ P l;∞m;k and x ∈ A we observe
( 1�l(A) ∫A(�m(f)(x) − �m(f)(y))�l(dy))2= ( m

∑i=1 i 1�l(A) ∫A('i(x) − 'i(y))�l(dy))2
6

m
∑j=1 2j m

∑i=1 1�l(A) ∫A('i(x)− 'i(y))2�l(dy) 6
m22k ‖f‖2L2(X;X ;�) :Here we have used Cauhy-Shwarz, Parseval's identity, Jensen's inequalityand the fat that for x; y ∈ A, |'i(x)− 'i(y)| 6 2−k, i = 1; : : : ;m. If k issuÆiently large,

∑A∈Plm;k\Pl;∞m;k ∫A( 1�l(A) ∫A(�m(f)(x)− �m(f)(y))�l(dy))2 �l(dx)
6

m22k ‖f‖2L2(X;X ;�) �(Xl) < "22 : (10)Combining (10) with (9) we arrive at (7). �



SEPARABLE BILINEAR FORMS 315For any k, l, m and n onsider the bounded Dirihlet forms E(n;m;l;k)de�ned by
E(n;m;l;k)(f) := 2n 〈�m;l;k(f)− P2−n�m;l;k(f); �m;l;k(f)〉L2(X;X ;�) ;f ∈ L2(X;X ; �): (11)Their generators are given by L(n;m;l;k) = 2n�∗m;l;k(P2−n − I)�m;l;k. FromLemma 7.3 we obtain limk E(n;m;l;k)(f) = E(n;m;l)(f)for any �xed l, m and n and all f ∈ L2(X;X ; �). Therefore we may againfollow the arguments in the proof of Lemma 6.1 to obtain a �nal approxi-mation step.Lemma 7.4. For any �xed n, m and l the forms E(n;m;l;k) onverge tothe form E(n;m;l) in the sense of Moso as k goes to in�nity. Their gener-ators L(n;m;l;k) onverge to the generator L(n;m) of E(n;m;l) in the strongresolvent sense.In other words, any separable and bounded Dirihlet form with boundedreferene measure (on a �nite dimensional L2-spae) is the limit of essen-tially disrete energy forms (isomorphi, exept for subset of funtions ofzero energy, to the �nite dimensional energy form on a �nite graph as inSetion 5).Combining Lemmas 6.1, 7.1, 7.2 and 7.4 we now obtain the followingCorollary, whih implies Theorem 1.2.Corollary 7.1. Let (X;X ; �) be a �-�nite measure spae with a ountablygenerated �-algebra X and let (E ;F) be a Dirihlet form on L2(X;X ; �)with generator L. Let E(n;m;l;k) be the bounded Dirihlet forms as de�nedin (11) with generators L(n;m;l;k). Then we havelimn limm liml limk E(n;m;l;k) = Ein the sense of Moso onvergene andlimn limm liml limk L(n;m;l;k) = Lin the strong resolvent sense.
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