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ON THE SPECTRAL DENSITY OF STATIONARY
PROCESSES AND RANDOM FIELDS

ABSTRACT. In this note we show that a stationary sequence ob-
tained by applying a fixed deterministic function to the shifts of a
stationary sequence (satisfying a mild regularity condition) has a
spectral density. In the multiparametric setting, we obtain a similar
result for a function of a shifted i.i.d. field.

§1. INTRODUCTION

Stationary processes are an important tool for modelling time series
appearing in theoretical probability theory and also in real life evolutions.
In many situations, the correlations between variables could be viewed as
a measure of dependence and, in the Gaussian setting, they determine the
distribution. The condensed information about the correlation structure of
a stochastic process is contained in the so called “spectral measure” and,
when it exists, in its density called the “spectral density function”. Then,
the covariances between variables are obtained as the Fourier coefficients
of this function. Because the spectral density function encapsulates all
information about covariances of a stochastic process, its study occupies
a central place in their theory. In this note, our investigation is centered
around the existence of spectral density.

Let (X, )nez be a sequence of complex-valued mean zero random vari-
ables defined on a probability space (2, K, P). We call this sequence weakly
stationary (or second order stationary) if there exist complex numbers
v(n), n € Z, such that for all j,k € Z

cov(X;, Xp) = E(X;X¢) = v(j — k).

Note that v(—n) = y(n).

Key words and phrases: stationary processes, stationary random fields, spectral
density.
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By the Birkhoff-Herglotz Theorem (see e.g. Brockwell and Davis [3]),
there exists a unique measure on the unit circle, or equivalently a non-
decreasing function F, called the spectral distribution function on [0,2r),
such that

2T
~v(n) = /ei”tF(dt), forall n € Z. (1)
0
If F is absolutely continuous with respect to the Lebesgue measure A on
[0,27), then the Radon—Nikodym derivative f of F' with respect to the
Lebesgue measure is called the spectral density; in other words F(dt) =
f(t)dt and
2
~v(n) = /ei"tf(t) dt, forallmneZ.
0

The most common situation where the existence of the spectral density
may be established is the case of a regular process, cf. e.g. [4, Chapter 7).
Recall that a process (X, )nez is called regular, if the tail space

Y= (G
ne”Z
is trivial, where G\ is the closed linear span of {Xj }r<n-
Regularity of the process is equivalent (cf. [3, Chapter 5] or [4, Chap-
ter 7, Theorem 13]) to the existence of Wold representation, i.e.,

Xy = Z ajMk—j
=0

where {a;};>0 is a square summable deterministic sequence of complex
numbers and {1, }nez is an uncorrelated zero mean unit variance sequence
of random variables such that G7 = G:X. In this case (Xy)kez has the
same scalar product (covariance) structure in Ly (2, IC, P) as the sequence
of functions (xg)rez in Lo([0, 27), A), where

w(t) == (2m) 72 ;eI = ek (1),

=0

therefore
27T

y(k) = /xk(t)Mdt = /eikt 2o ()2 dt.
0

0
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It follows that X has the spectral density

2

e~
10 =leo(®)F = 5| Saze [, teo,2m),
j=0

cf. [4, Chapter 7, Corollary 5]. Moreover, by Kolmogorov criterion [4, Chap-
ter 7, Theorem 15], the process (X, )nez is regular iff it has a spectral
density f satisfying condition

27

/lnf(t) dt > —oo0.
0
It is not clear however what can we say about the density existence
when regularity condition is not necessarily satisfied, as, for example, in
the case of functions of a two-sided sequence of i.i.d. random variables.

More generally, we shall also study the existence of spectral density for
random fields. For simplicity, we shall discuss only the Z?-indexed random
fields. Extension to the index set Z¢ with d > 2 is easy.

In the sequel, where necessary, we use the standard coordinate notation,
eg. k= (k’l,k’g) forkeZ? and k-t = kit1 + koto for k € ZQ, t € R2.

We call the collection of complex-valued mean zero random variables
(Xx)keze weakly stationary (or second order stationary) if there exist com-
plex numbers y(n), n € Z?, such that for all j, k € Z?

cov(X;, X)) = B(X;Xx) = 7 — k).
In the context of weakly stationary random fields it is known that there
exists a unique measure F on [0,27)2, such that
cov(Xy, Xo) = / e Kt F(dty, dty), for allk € Z*.
[0,2m)2

If F is absolutely continuous with respect to Lebesgue measure A2 on
[0,27)2, then there exists the Radon—Nikodym derivative f of F' with re-
spect to A2, ie., F(dty, dts) = f(t1,ts)dt; dts. This function f is called
spectral density and we have

cov(Xy, Xo) = / e XU F(t),ty) dty dty, for all k € Z2.

[0,2m)2
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For the sake of clarity we shall treat separately processes and then
random fields.

1.1. Results for stationary processes. We start by pointing out a well
known characterization of the existence of spectral density.

Theorem 1. Let X := (Xg)gez be a mean zero complex-valued second or-
der stationary stochastic process. Then the following statements are equiv-
alent:

1) X has a spectral density.

2) There are complex numbers (a;);jcz with Y. |aj|> < oo such that

=
v(k) := cov(Xg, Xo) = Z 8k ke Z.
JET

3) There exists a stationary process X := ()?k)kez equidistributed with
X such that X admits a representation

X, = Zaj Nj+k, JforalkeZ, (2)
JEL
where (aj)jez satisfies Y |aj|* < oo and (nj)jez is a sequence of mean
JEL
zero unit variance uncorrelated random variables. In this case the spectral
density is
_ 1 ije|?
F#) = 5| D aze
JEL
Remark 2. If the second order stationary stochastic process (X)gez is
real valued, Theorem 1 holds with a sequence (ay,)nez of real numbers and
the density f is a symmetric function.
Furthermore, if the process (Xj)rez is Gaussian, then the variables
(n;)jez in (2) are 1.i.d. standard normal. For this latter statement see also
Varadhan lectures [6, Chapter 6, Section 6.6].

Let (&) ez be a strictly stationary sequence of random variables defined
on (9, K,P) and for g : R — C construct

XO:g("'7€—17€O7£—1-")7 Xk:XOOTk7 (3)

where T is the shift operator on RZ.
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Define
Fe=0(& 1 j <k), Fooo = MpezFp, and F = 0((§)jez).  (4)
We shall assume the following regularity condition
E(Xo|F-x)=0 as, (5)
which implies that E(Xy) = 0.

Theorem 3. Define the strictly stationary sequence (X)) by (3). Assume
that condition (5) is satisfied and E|Xy|? < co. Then the sequence (X )rez
has spectral density.

Let us mention that condition (5) is satisfied when the left tail sigma
field F_oo of (& )rez is trivial. This happens for instance when (&)gez
is a sequence of i.i.d. random variables. Other examples are provided by
conditions imposed on mixing coefficients.

The strong mixing coefficient is defined in the following way:

a(A,B) = sup{|P(AN B) — P(A) P(B)| : A€ A, B € B},

where A and B are two sigma fields.
The p-mixing coefficient, also known as maximal coefficient of correla-
tion, is defined as

p(A, B) =sup{E(XY)/|| X|2[[Y][2: X €L*(A), Y €L%(B), EX=EY =0}.

For the stationary sequence of real valued random variables (§;) ez, F"
denotes the o-field generated by &; with indices j > n, and Fy, as before,
denotes the o-field generated by &; with indices j < k. Then we define the
sequences of mixing coefficients

an = a(Fe, F*) and p, = p(Fo, F") .

A sequence is called strongly mixing if a,, — 0. It is well-known that for
strongly mixing sequences the left tail sigma field is trivial; see Claim 2.17a
in Bradley [2]. Examples of this type include Harris recurrent Markov
chains.

If p,, < 1for somen > 1, then the tail sigma field is also trivial according
to Section 2.5 in Bradley [1].

Therefore the result of Theorem 3 holds for functions of a sequence
(&) ez if it is strongly mixing or satisfies p,, < 1 for some n > 1.
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1.2. Results for stationary random fields. Similar results hold for
random fields. Below the indexes are in Z2, but we can easily formulate
the results for indexes in Z¢ with d integer. Here is a generalization of
Theorem 1 for random fields:

Theorem 4. A second order stationary complex valued random field
(Xx)kezz has spectral density if and only if there are numbers (ax)xeze
satisfying condition Y |ax|?> < oo such that cov(Xx, Xo) = Y. ajGjik-
kez? jeze

Our Remark 2 can be extended to random fields in an obvious way, just
replacing the indexes in Z with indexes in Z2. The extension of Theorem 3
is more delicate, because, in the multi-index setting, there is no unique
interpretation of past and future. Here we restrict our considerations to
the functions of an i.i.d. random field. As the reader will see, this set-
ting provides some additional useful commutativity properties for related
projection operators.

Let (ék)keze be an ii.d. random field defined on a probability space
(Q,K,P) and define a random variable

Xo = g((&x)xez)-

2 . .
where g : RZ?" — C is a measurable function.
. 72
Moreover, define two translation operators on R

Ti((Tu)uezz) = (Tui+1,u2 ) uez
and
T ((zw)uez2) = (Tuy,us+1)uez2-
Finally, let
Xu = g(T1" 15 (&) = 9((€ktu)kez2)- (6)

Theorem 5. Let the stationary sequence (Xx)ycz2 be defined by (6) and
assume E(Xg) = 0 and E|Xo|? < oo. Then the sequence (Xi)xeze has
spectral density.

This theorem has immediate applications, for example, to Volterra-type
random fields which play an important role in the nonlinear system theory.
For any k € Z2, define the Volterra-type expansion as follows:

Xk - Z bu,v gkfu gkfv ’

u,veZz?
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where by v are real numbers satisfying
0 iy — 2
buv =0ifu=v, E bu7v<oo7
u,veZz?

and (&k)xeze is an ii.d. random field of centered and square integrable
random variables. Under the above conditions, the random field (Xy)yez2
exists, is stationary, zero mean and square integrable. By Theorem 5, this
random field has spectral density since it is a function of i.i.d. field.

§2. PROOFS

Proof of Theorem 1. 1) ~ 2). Let f be the spectral density of X. Since
f(z) is square integrable, by Carleson Theorem (cf. [5]), we have an
expansion

1 .
t)= — a;e’t as.andin Ls(]0,27), \),
VIO = 7= a; 2(10,2m), 3
with Fourier coefficients
1 27
aj = —= [ \/f(t)e " dt, j €7,
V2 /
T 0

satisfying > |a;j|* < co. Therefore, by (1)

JEZ
27 1 27 ;
v(k) = /ei’“tf(t) dt = %/eikt‘zajeiﬁ‘ dt
0 0 JEL

27
= [ (e ) (S e ) o=

0 J1EZ J2€Z JEZ
as required in 2).

2) ~ 1). Let
_ 1 ijt)”
fit)= %‘Zaje ‘ .
Jez
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Then
2m 2
ikt _ 1 ikt ijt |
e f(t)dt—% e ‘Zaje ‘ d¢
0 0 JEL
2
1 o .
= o (X and0 ) (S age ) ar
T 0 J1€Z JEZ
=Y a;ar = (k)
JEZ

as required in the definition of spectral density.
3) ~ 2) is obvious.
For 1) ~ 3) see [4, Chapter 7, Theorem 10]. O

Proof of Theorem 3. For every ¢ € Z we define the projection operator
P¢ by letting
PeX = E(X|F) — E(X|Fe—1)

for any integrable random variable X € L;(Q, K, P).

Since we assumed that E(Xo|F_o) = 0 a.s., by stationarity for all
k € Z, E(Xp|F_o) = 0. Furthermore, since all X}, are F-measurable, we
have the representation

X =Y PeXy.
LEZ

Let us compute the covariances. We have

cov(Xg, Xo) = Y cov(Pe, Xi, P, Xo).-
£1,62€Z
Since the projections are orthogonal, we have
cov(Xg, Xo) = ZCOV(Psz,PzXo) = ZCOV(PoXk—z,PoX—z) (7)
LeZ LeZ

where, in the last inequality, we used the fact that (X}) is strictly station-
ary.

Let us denote Y; = Py X,. Note that by stationarity and orthogonality
of the projections it is true that

SEY =D EPX =) E|P X’ =E|Xo|* <o0. (8)
LET LeEL LEL



282 M. A. LIFSHITS, M. PELIGRAD

Consider the function

1 2
— E‘ 2 Y. ilt
m e

LEL

, t €[0,2m).
By the Fubini theorem and (8) we have

2T 1 2T 5

_ iet _ 2

Jrwa= g [|Svdefau—EY pp <.

0 o tez ez
Let us now compute the Fourier coeflicients of f. For every k € Z we have
s [ (o) (S e

Z E (Yot Vor) Liprmta) = 3B (Vi e Vo)
L1,02€Z e

2w

/ ekt £(t) dt

0

By comparing this expression with (7) we see that f is the spectral density
for (Xk ) keZ- U

Proof of Theorem 4. is completely identical to that of Theorem 1 and
therefore is omitted. We only notice that the spectral density for the pro-
cess satisfying
cov(Xy, Xo) = Z a; TGj+k
jez?
has the form

1Jt

, t € [0,2m)°.

J€Z2

Proof of Theorem 5. Define the sigma fields
fk17k2 = U(fj :jl < kla j2 < k2)

Next, for k € Z, denote Fi, o0 = VisezFi ko a0d Foo b = Vi czF b k-
We introduce the projection operators by letting

Pu,coX = B(X|Fy,00) — E(X|Fy—1,00)

and
PoouX = E(X|Foou) — E(X|Foou—1)
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for any integrable random variable X € IL;(Q, X, P). Furthermore, we
define the iterated operator by

PuruzX = (Puy,00 © Pooyus) X.

Since the variables (£ ) are independent, for all —oco < p1, pa, u1, us < 00
it is true that

E (E(X|fp1,p2)|ful7u2) = E(X|‘7:P1AU17P2/\U2) a.s.

By using this property and the definition of the iterated operator, we see
that for all uy,us € Z, almost surely,

Pu17u2X:E(X|'7:u1,u2)_E(X|]:u1,u2—1)_E(Xl}—ul—lﬂm)+E(X|]:u1—1,u2—1)'

We also obtain the same expression for (Poo u, © Puy.c0) X, thus we see
that the operators Py, oo and Ps 4, commute.

Next, we borrow an idea from Volny and Wang [7, Lemma 2.4(ii)] by
claiming that (u1,us) # (p1,p2) yields

cOV(Puyus X5 PprpsY) = E[(Puyus X)(Ppyp:Y)] = 0.

for all mean zero X and Y in Lo (2, K, P). Indeed, assume, without loss of
generality, that p; < u;. For any X the variable P,, X is orthogonal to
the space H = Lo(Q, Fuy—1,00, P). Hence, Py, 4, X is also orthogonal to
H, while Py, ;.Y belongs to H due to assumption p; < u;.

Note that for all u € Z, the corresponding tail sigma fields defined as
Fu,—oo = NusezFuuns F-oou = NuyezFusu and Foo,—c0 = NuezFu,—oo
are trivial. Therefore, we have E(X|F, _«) = 0 a.s., E(X|F_w) = 0
a.s., and E(X|F_o _o) = 0 a.s. It follows that for any mean zero X in
L2 (Q, K, P) we have the following orthogonal representation,

XY= PuoeX =Y Puroe( D P X) = Y. P s (9)

u1E€EZ u1 €Z u2E€Z u1,u2€Z
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Let us compute the covariances of Xy and Xg. By using the above pro-
jection decomposition written for both Xy and Xg, together with the or-
thogonality of the projections and stationarity, we have for all k € Z?2,

cov(Xy, Xo) = COV(ZPj17]’2Xk,ZPU17U2X0)

jez2 uez?

= D cov(Pj i Xi, Pir o Xo)
jez?

= ZCOV(P&oXk—j,PO,OX—j)
jez?

= Zcov(Yk,j,Y,j), (10)
jez?

where we used the notation Y, = Py oXyu. Observe also that, by taking
into account (9) and stationarity, we have

S EVLl = ) E[Puy, uwXol’ = E|Xof* < o (11)
uez? uez?
Consider the function

1 ijt

jez?

2 5
, t € [0,2m)°.

By Fubini theorem and (11) we have

1 ce |2
/ f(t)dtidt, = W E / ‘ Z Y_; eldt dt1 dts
[0,27)2 [0,2m)2 J€Z*
= E) [V <o
Jjez?

Let us now compute the Fourier coefficients of f. For every k € Z? we have

: 1
el Kt f(t) dty dty = @ E / Ay (t)As(t) dty dts,
[0,27)2 [0,27)2
where
A, (t) — Z Y,j ol (k+j).t’ Az(t) — Z Tu eiut

jez? uez?
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By using orthogonality of the exponential functions, we obtain

/ okt £(4) dby dty = Z E (Y_;Y_u) lictjmu}

i 2
[0,27)2 J.uez

=) E(Vu¥a).

u€ez?

By comparing this expression with (10) we see that f is the spectral density
for (Xk)keZ2~ Il
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