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t. In this note we show that a stationary sequen
e ob-tained by applying a �xed deterministi
 fun
tion to the shifts of astationary sequen
e (satisfying a mild regularity 
ondition) has aspe
tral density. In the multiparametri
 setting, we obtain a similarresult for a fun
tion of a shifted i.i.d. �eld.
§1. Introdu
tionStationary pro
esses are an important tool for modelling time seriesappearing in theoreti
al probability theory and also in real life evolutions.In many situations, the 
orrelations between variables 
ould be viewed asa measure of dependen
e and, in the Gaussian setting, they determine thedistribution. The 
ondensed information about the 
orrelation stru
ture ofa sto
hasti
 pro
ess is 
ontained in the so 
alled \spe
tral measure" and,when it exists, in its density 
alled the \spe
tral density fun
tion". Then,the 
ovarian
es between variables are obtained as the Fourier 
oeÆ
ientsof this fun
tion. Be
ause the spe
tral density fun
tion en
apsulates allinformation about 
ovarian
es of a sto
hasti
 pro
ess, its study o

upiesa 
entral pla
e in their theory. In this note, our investigation is 
enteredaround the existen
e of spe
tral density.Let (Xn)n∈Z be a sequen
e of 
omplex-valued mean zero random vari-ables de�ned on a probability spa
e (
;K;P). We 
all this sequen
e weaklystationary (or se
ond order stationary) if there exist 
omplex numbers
(n); n ∈ Z, su
h that for all j; k ∈ Z
ov(Xj ; Xk) = E(XjXk) = 
(j − k):Note that 
(−n) = 
(n):Key words and phrases: stationary pro
esses, stationary random �elds, spe
traldensity.Supported by grants RFBR 13-01-00172, SPbSU 6.38.672.2013; Partially supportedby a Taft resear
h 
enter grant and NSF grant DMS-1512936.274



ON THE SPECTRAL DENSITY 275By the Birkho�{Herglotz Theorem (see e.g. Bro
kwell and Davis [3℄),there exists a unique measure on the unit 
ir
le, or equivalently a non-de
reasing fun
tion F; 
alled the spe
tral distribution fun
tion on [0; 2�),su
h that 
(n) = 2�∫0 eintF (dt); for all n ∈ Z : (1)If F is absolutely 
ontinuous with respe
t to the Lebesgue measure � on[0; 2�), then the Radon{Nikodym derivative f of F with respe
t to theLebesgue measure is 
alled the spe
tral density; in other words F (dt) =f(t) dt and 
(n) = 2�∫0 eintf(t) dt; for all n ∈ Z :The most 
ommon situation where the existen
e of the spe
tral densitymay be established is the 
ase of a regular pro
ess, 
f. e.g. [4, Chapter 7℄.Re
all that a pro
ess (Xn)n∈Z is 
alled regular, if the tail spa
eGX
−∞ := ⋂n∈Z

GXnis trivial, where GXn is the 
losed linear span of {Xk}k6n.Regularity of the pro
ess is equivalent (
f. [3, Chapter 5℄ or [4, Chap-ter 7, Theorem 13℄) to the existen
e of Wold representation, i.e.,Xk = ∞∑j=0 aj�k−jwhere {aj}j>0 is a square summable deterministi
 sequen
e of 
omplexnumbers and {�n}n∈Z is an un
orrelated zero mean unit varian
e sequen
eof random variables su
h that G�n = GXn . In this 
ase (Xk)k∈Z has thesame s
alar produ
t (
ovarian
e) stru
ture in L2(
;K;P) as the sequen
eof fun
tions (xk)k∈Z in L2([0; 2�); �), wherexk(t) := (2�)−1=2 ∞∑j=0 ajei(k−j)t = eiktx0(t);therefore 
(k) = 2�∫0 xk(t)x0(t) dt = 2�∫0 eikt |x0(t)|2 dt:



276 M. A. LIFSHITS, M. PELIGRADIt follows that X has the spe
tral densityf(t) = |x0(t)|2 = 12� ∣∣∣
∞∑j=0 aje−ijt∣∣∣2; t ∈ [0; 2�);
f. [4, Chapter 7, Corollary 5℄. Moreover, by Kolmogorov 
riterion [4, Chap-ter 7, Theorem 15℄, the pro
ess (Xn)n∈Z is regular i� it has a spe
traldensity f satisfying 
ondition2�∫0 ln f(t) dt > −∞:It is not 
lear however what 
an we say about the density existen
ewhen regularity 
ondition is not ne
essarily satis�ed, as, for example, inthe 
ase of fun
tions of a two-sided sequen
e of i.i.d. random variables.More generally, we shall also study the existen
e of spe
tral density forrandom �elds. For simpli
ity, we shall dis
uss only the Z2-indexed random�elds. Extension to the index set Zd with d > 2 is easy.In the sequel, where ne
essary, we use the standard 
oordinate notation,e.g. k = (k1; k2) for k ∈ Z2 and k · t = k1t1 + k2t2 for k ∈ Z2, t ∈ R2.We 
all the 
olle
tion of 
omplex-valued mean zero random variables(Xk)k∈Z2 weakly stationary (or se
ond order stationary) if there exist 
om-plex numbers 
(n); n ∈ Z2, su
h that for all j;k ∈ Z2
ov(Xj; Xk) = E(XjXk) = 
(j− k):In the 
ontext of weakly stationary random �elds it is known that thereexists a unique measure F on [0; 2�)2, su
h that
ov(Xk; X0) = ∫[0;2�)2 eik·tF (dt1; dt2); for all k ∈ Z

2 :If F is absolutely 
ontinuous with respe
t to Lebesgue measure �2 on[0; 2�)2, then there exists the Radon{Nikodym derivative f of F with re-spe
t to �2, i.e., F (dt1; dt2) = f(t1; t2) dt1 dt2. This fun
tion f is 
alledspe
tral density and we have
ov(Xk; X0) = ∫[0;2�)2 eik·tf(t1; t2) dt1 dt2; for all k ∈ Z
2 :



ON THE SPECTRAL DENSITY 277For the sake of 
larity we shall treat separately pro
esses and thenrandom �elds.1.1. Results for stationary pro
esses. We start by pointing out a wellknown 
hara
terization of the existen
e of spe
tral density.Theorem 1. Let X := (Xk)k∈Z be a mean zero 
omplex-valued se
ond or-der stationary sto
hasti
 pro
ess. Then the following statements are equiv-alent:1) X has a spe
tral density.2) There are 
omplex numbers (aj)j∈Z with ∑j∈Z

|aj |2 < ∞ su
h that
(k) := 
ov(Xk; X0) = ∑j∈Z

ajaj+k; k ∈ Z:3) There exists a stationary pro
ess X̃ := (X̃k)k∈Z equidistributed withX su
h that X̃ admits a representationX̃k = ∑j∈Z

aj �j+k ; for all k ∈ Z; (2)where (aj)j∈Z satis�es ∑j∈Z

|aj |2 < ∞ and (�j)j∈Z is a sequen
e of meanzero unit varian
e un
orrelated random variables. In this 
ase the spe
traldensity is f(t) = 12� ∣∣∣
∑j∈Z

aj eijt∣∣∣2:Remark 2. If the se
ond order stationary sto
hasti
 pro
ess (Xk)k∈Z isreal valued, Theorem 1 holds with a sequen
e (an)n∈Z of real numbers andthe density f is a symmetri
 fun
tion.Furthermore, if the pro
ess (Xk)k∈Z is Gaussian, then the variables(�j)j∈Z in (2) are i.i.d. standard normal. For this latter statement see alsoVaradhan le
tures [6, Chapter 6, Se
tion 6.6℄.Let (�j)j∈Z be a stri
tly stationary sequen
e of random variables de�nedon (
;K;P) and for g : RZ → C 
onstru
tX0 = g(: : : ; �−1; �0; �−1 : : : ); Xk = X0 ◦ T k; (3)where T is the shift operator on RZ:



278 M. A. LIFSHITS, M. PELIGRADDe�ne
Fk = �(�j : j 6 k); F−∞ = ∩k∈ZFk; and F = �((�j)j∈Z): (4)We shall assume the following regularity 
onditionE(X0|F−∞) = 0 a.s., (5)whi
h implies that E(X0) = 0:Theorem 3. De�ne the stri
tly stationary sequen
e (Xk) by (3). Assumethat 
ondition (5) is satis�ed and E|X0|2 <∞. Then the sequen
e (Xk)k∈Zhas spe
tral density.Let us mention that 
ondition (5) is satis�ed when the left tail sigma�eld F−∞ of (�k)k∈Z is trivial. This happens for instan
e when (�k)k∈Zis a sequen
e of i.i.d. random variables. Other examples are provided by
onditions imposed on mixing 
oeÆ
ients.The strong mixing 
oeÆ
ient is de�ned in the following way:�(A;B) = sup{|P(A ∩B)−P(A) P(B)| : A ∈ A; B ∈ B};where A and B are two sigma �elds.The �-mixing 
oeÆ
ient, also known as maximal 
oeÆ
ient of 
orrela-tion, is de�ned as�(A;B)=sup{E(XY )=‖X‖2‖Y ‖2 : X∈L

2(A); Y ∈L
2(B); EX=EY =0}:For the stationary sequen
e of real valued random variables (�j)j∈Z, Fndenotes the �-�eld generated by �j with indi
es j > n, and Fk, as before,denotes the �-�eld generated by �j with indi
es j 6 k. Then we de�ne thesequen
es of mixing 
oeÆ
ients�n = �(F0;Fn) and �n = �(F0;Fn) :A sequen
e is 
alled strongly mixing if �n → 0. It is well-known that forstrongly mixing sequen
es the left tail sigma �eld is trivial; see Claim 2.17ain Bradley [2℄. Examples of this type in
lude Harris re
urrent Markov
hains.If �n < 1 for some n > 1, then the tail sigma �eld is also trivial a

ordingto Se
tion 2.5 in Bradley [1℄.Therefore the result of Theorem 3 holds for fun
tions of a sequen
e(�j)j∈Z if it is strongly mixing or satis�es �n < 1 for some n > 1.



ON THE SPECTRAL DENSITY 2791.2. Results for stationary random �elds. Similar results hold forrandom �elds. Below the indexes are in Z2; but we 
an easily formulatethe results for indexes in Zd with d integer. Here is a generalization ofTheorem 1 for random �elds:Theorem 4. A se
ond order stationary 
omplex valued random �eld(Xk)k∈Z2 has spe
tral density if and only if there are numbers (ak)k∈Z2satisfying 
ondition ∑k∈Z2 |ak|2 < ∞ su
h that 
ov(Xk; X0) = ∑j∈Z2 aj aj+k.Our Remark 2 
an be extended to random �elds in an obvious way, justrepla
ing the indexes in Z with indexes in Z2. The extension of Theorem 3is more deli
ate, be
ause, in the multi-index setting, there is no uniqueinterpretation of past and future. Here we restri
t our 
onsiderations tothe fun
tions of an i.i.d. random �eld. As the reader will see, this set-ting provides some additional useful 
ommutativity properties for relatedproje
tion operators.Let (�k)k∈Z2 be an i.i.d. random �eld de�ned on a probability spa
e(
;K;P) and de�ne a random variableX0 = g((�k)k∈Z):where g : R
Z
2 → C is a measurable fun
tion.Moreover, de�ne two translation operators on RZ

2T1((xu)u∈Z2) = (xu1+1;u2)u∈Z2and T2((xu)u∈Z2) = (xu1;u2+1)u∈Z2 :Finally, let Xu = g(T u11 T u22 (�k)) = g((�k+u)k∈Z2): (6)Theorem 5. Let the stationary sequen
e (Xk)k∈Z2 be de�ned by (6) andassume E(X0) = 0 and E|X0|2 < ∞. Then the sequen
e (Xk)k∈Z2 hasspe
tral density.This theorem has immediate appli
ations, for example, to Volterra-typerandom �elds whi
h play an important role in the nonlinear system theory.For any k ∈ Z2, de�ne the Volterra-type expansion as follows:Xk = ∑u;v∈Z2 bu;v �k−u �k−v ;



280 M. A. LIFSHITS, M. PELIGRADwhere bu;v are real numbers satisfyingbu;v = 0 if u = v; ∑u;v∈Z2 b2u;v <∞ ;and (�k)k∈Z2 is an i.i.d. random �eld of 
entered and square integrablerandom variables. Under the above 
onditions, the random �eld (Xk)k∈Z2exists, is stationary, zero mean and square integrable. By Theorem 5, thisrandom �eld has spe
tral density sin
e it is a fun
tion of i.i.d. �eld.
§2. ProofsProof of Theorem 1. 1) y 2). Let f be the spe
tral density of X . Sin
e√f(x) is square integrable, by Carleson Theorem (
f. [5℄), we have anexpansion

√f(t) = 1√2� ∑j∈Z

ajeijt a.s. and in L2([0; 2�); �);with Fourier 
oeÆ
ientsaj := 1√2� 2�∫0 √f(t)e−ijt dt; j ∈ Z;satisfying ∑j∈Z

|aj |2 < ∞. Therefore, by (1)
(k) = 2�∫0 eiktf(t) dt = 12� 2�∫0 eikt∣∣∣ ∑j∈Z

ajeijt∣∣∣2 dt= 12� 2�∫0 ( ∑j1∈Z

aj1 ei(j1+k)t)( ∑j2∈Z

aj2 e−ij2t)dt = ∑j∈Z

aj aj+k ;as required in 2).2) y 1). Let f(t) = 12� ∣∣∣
∑j∈Z

ajeijt∣∣∣2:



ON THE SPECTRAL DENSITY 281Then 2�∫0 eiktf(t) dt = 12� 2�∫0 eikt∣∣∣∑j∈Z

ajeijt∣∣∣2 dt= 12� 2�∫0 ( ∑j1∈Z

aj1ei(j1+k)t)(∑j∈Z

aj2e−ij2t) dt= ∑j∈Z

aj aj+k = 
(k);as required in the de�nition of spe
tral density.3) y 2) is obvious.For 1) y 3) see [4, Chapter 7, Theorem 10℄. �Proof of Theorem 3. For every ` ∈ Z we de�ne the proje
tion operator
P` by letting

P`X = E(X |F`)−E(X |F`−1)for any integrable random variable X ∈ L1(
;K;P).Sin
e we assumed that E(X0|F−∞) = 0 a.s., by stationarity for allk ∈ Z, E(Xk|F−∞) = 0. Furthermore, sin
e all Xk are F-measurable, wehave the representation Xk = ∑`∈Z

P`Xk:Let us 
ompute the 
ovarian
es. We have
ov(Xk; X0) = ∑`1;`2∈Z


ov(P`1Xk;P`2X0):Sin
e the proje
tions are orthogonal, we have
ov(Xk; X0) = ∑`∈Z


ov(P`Xk;P`X0) = ∑`∈Z


ov(P0Xk−`;P0X−`) (7)where, in the last inequality, we used the fa
t that (Xk) is stri
tly station-ary.Let us denote Y` = P0X`. Note that by stationarity and orthogonalityof the proje
tions it is true that
∑`∈Z

E |Y`|2 = ∑`∈Z

E |P0X`|2 = ∑`∈Z

E |P−`X0|2 = E |X0|2 < ∞: (8)



282 M. A. LIFSHITS, M. PELIGRADConsider the fun
tionf(t) = 12� E ∣∣∣
∑`∈Z

Y−` ei`t∣∣∣2; t ∈ [0; 2�):By the Fubini theorem and (8) we have2�∫0 f(t) dt = 12� E 2�∫0 ∣∣∣
∑`∈Z

Y−` ei`t∣∣∣2 dt = E∑`∈Z

|Y−`|2 < ∞:Let us now 
ompute the Fourier 
oeÆ
ients of f . For every k ∈ Z we have2�∫0 eiktf(t) dt = 12� E 2�∫0 ( ∑`1∈Z

Y−`1 ei(k+`1)t)( ∑`2∈Z

Y−`2 e−i`2t) dt= ∑`1;`2∈Z

E (Y−`1 Y−`2)1{k+`1=`2} = ∑`∈Z

E (Yk−` Y−`) :By 
omparing this expression with (7) we see that f is the spe
tral densityfor (Xk)k∈Z. �Proof of Theorem 4. is 
ompletely identi
al to that of Theorem 1 andtherefore is omitted. We only noti
e that the spe
tral density for the pro-
ess satisfying 
ov(Xk; X0) = ∑j∈Z2 aj aj+khas the form f(t) = 1(2�)2 ∣∣∣
∑j∈Z2 aj ei j·t∣∣∣2; t ∈ [0; 2�)2:

�Proof of Theorem 5. De�ne the sigma �elds
Fk1;k2 = �(�j : j1 6 k1; j2 6 k2):Next, for k ∈ Z, denote Fk;∞ = ∨k2∈ZFk;k2 and F∞;k = ∨k1∈ZFk1;k.We introdu
e the proje
tion operators by letting

Pu;∞X = E(X |Fu;∞)−E(X |Fu−1;∞)and
P∞;uX = E(X |F∞;u)−E(X |F∞;u−1)



ON THE SPECTRAL DENSITY 283for any integrable random variable X ∈ L1(
;K;P). Furthermore, wede�ne the iterated operator by
Pu1;u2X = (Pu1;∞ ◦ P∞;u2)X:Sin
e the variables (�k) are independent, for all−∞ 6 p1; p2; u1; u2 6 ∞it is true thatE (E(X |Fp1;p2)|Fu1;u2) = E(X |Fp1∧u1;p2∧u2) a.s.By using this property and the de�nition of the iterated operator, we seethat for all u1; u2 ∈ Z, almost surely,

Pu1;u2X=E(X |Fu1;u2)−E(X |Fu1;u2−1)−E(X |Fu1−1;u2)+E(X |Fu1−1;u2−1):We also obtain the same expression for (P∞;u2 ◦ Pu1;∞)X , thus we seethat the operators Pu1;∞ and P∞;u2 
ommute.Next, we borrow an idea from Voln�y and Wang [7, Lemma 2.4(ii)℄ by
laiming that (u1; u2) 6= (p1; p2) yields
ov(Pu1;u2X;Pp1;p2Y ) = E[(Pu1;u2X)(Pp1;p2Y )℄ = 0:for all mean zero X and Y in L2(
;K;P). Indeed, assume, without loss ofgenerality, that p1 < u1. For any X the variable Pu1;∞X is orthogonal tothe spa
e H = L2(
;Fu1−1;∞;P). Hen
e, Pu1;u2X is also orthogonal toH , while Pp1;p2Y belongs to H due to assumption p1 < u1.Note that for all u ∈ Z, the 
orresponding tail sigma �elds de�ned as
Fu;−∞ = ∩u2∈ZFu;u2 , F−∞;u = ∩u1∈ZFu1;u and F−∞;−∞ = ∩u∈ZFu;−∞are trivial. Therefore, we have E(X |Fu;−∞) = 0 a.s., E(X |F−∞;u) = 0a.s., and E(X |F−∞;−∞) = 0 a.s. It follows that for any mean zero X in
L2(
;K;P) we have the following orthogonal representation,X= ∑u1∈Z

Pu1;∞X= ∑u1∈Z

Pu1;∞( ∑u2∈Z

P∞;u2X)= ∑u1;u2∈Z

Pu1;u2X a.s: (9)



284 M. A. LIFSHITS, M. PELIGRADLet us 
ompute the 
ovarian
es of Xk and X0. By using the above pro-je
tion de
omposition written for both Xk and X0, together with the or-thogonality of the proje
tions and stationarity, we have for all k ∈ Z2,
ov(Xk; X0) = 
ov(∑j∈Z2Pj1;j2Xk; ∑u∈Z2Pu1;u2X0)= ∑j∈Z2
ov(Pj1;j2Xk;Pj1;j2X0)= ∑j∈Z2
ov(P0;0Xk−j;P0;0X−j)= ∑j∈Z2
ov(Yk−j; Y−j); (10)where we used the notation Yu = P0;0Xu. Observe also that, by takinginto a

ount (9) and stationarity, we have
∑u∈Z2E|Yu|2 = ∑u∈Z2E|Pu1;u2X0|2 = E|X0|2 < ∞: (11)Consider the fun
tionf(t) = 1(2�)2 E ∣∣∣

∑j∈Z2 Y−j ei j·t∣∣∣2; t ∈ [0; 2�)2:By Fubini theorem and (11) we have
∫[0;2�)2f(t) dt1 dt2 = 1(2�)2 E ∫[0;2�)2 ∣∣∣

∑j∈Z2 Y−j ei j·t∣∣∣2 dt1 dt2= E ∑j∈Z2 |Y−j|2 <∞:Let us now 
ompute the Fourier 
oeÆ
ients of f . For every k ∈ Z2 we have
∫[0;2�)2 eik·tf(t) dt1 dt2 = 1(2�)2 E ∫[0;2�)2 A1(t)A2(t) dt1 dt2;where A1(t) = ∑j∈Z2 Y−j ei (k+j)·t; A2(t) = ∑u∈Z2 Y−u e−iu·t:



ON THE SPECTRAL DENSITY 285By using orthogonality of the exponential fun
tions, we obtain∫[0;2�)2 eik·tf(t) dt1 dt2 = ∑j;u∈Z2E (Y−j Y−u)1{k+j=u}= ∑u∈Z2E (Yk−u Y−u ) :By 
omparing this expression with (10) we see that f is the spe
tral densityfor (Xk)k∈Z2 . �A
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