
úÁ�ÉÓËÉ ÎÁÕÞÎÙÈÓÅÍÉÎÁÒÏ× ðïíé�ÏÍ 441, 2015 Ç.M. A. Lifshits, M. PeligradON THE SPECTRAL DENSITY OF STATIONARYPROCESSES AND RANDOM FIELDSAbstrat. In this note we show that a stationary sequene ob-tained by applying a �xed deterministi funtion to the shifts of astationary sequene (satisfying a mild regularity ondition) has aspetral density. In the multiparametri setting, we obtain a similarresult for a funtion of a shifted i.i.d. �eld.
§1. IntrodutionStationary proesses are an important tool for modelling time seriesappearing in theoretial probability theory and also in real life evolutions.In many situations, the orrelations between variables ould be viewed asa measure of dependene and, in the Gaussian setting, they determine thedistribution. The ondensed information about the orrelation struture ofa stohasti proess is ontained in the so alled \spetral measure" and,when it exists, in its density alled the \spetral density funtion". Then,the ovarianes between variables are obtained as the Fourier oeÆientsof this funtion. Beause the spetral density funtion enapsulates allinformation about ovarianes of a stohasti proess, its study oupiesa entral plae in their theory. In this note, our investigation is enteredaround the existene of spetral density.Let (Xn)n∈Z be a sequene of omplex-valued mean zero random vari-ables de�ned on a probability spae (
;K;P). We all this sequene weaklystationary (or seond order stationary) if there exist omplex numbers(n); n ∈ Z, suh that for all j; k ∈ Zov(Xj ; Xk) = E(XjXk) = (j − k):Note that (−n) = (n):Key words and phrases: stationary proesses, stationary random �elds, spetraldensity.Supported by grants RFBR 13-01-00172, SPbSU 6.38.672.2013; Partially supportedby a Taft researh enter grant and NSF grant DMS-1512936.274



ON THE SPECTRAL DENSITY 275By the Birkho�{Herglotz Theorem (see e.g. Brokwell and Davis [3℄),there exists a unique measure on the unit irle, or equivalently a non-dereasing funtion F; alled the spetral distribution funtion on [0; 2�),suh that (n) = 2�∫0 eintF (dt); for all n ∈ Z : (1)If F is absolutely ontinuous with respet to the Lebesgue measure � on[0; 2�), then the Radon{Nikodym derivative f of F with respet to theLebesgue measure is alled the spetral density; in other words F (dt) =f(t) dt and (n) = 2�∫0 eintf(t) dt; for all n ∈ Z :The most ommon situation where the existene of the spetral densitymay be established is the ase of a regular proess, f. e.g. [4, Chapter 7℄.Reall that a proess (Xn)n∈Z is alled regular, if the tail spaeGX
−∞ := ⋂n∈Z

GXnis trivial, where GXn is the losed linear span of {Xk}k6n.Regularity of the proess is equivalent (f. [3, Chapter 5℄ or [4, Chap-ter 7, Theorem 13℄) to the existene of Wold representation, i.e.,Xk = ∞∑j=0 aj�k−jwhere {aj}j>0 is a square summable deterministi sequene of omplexnumbers and {�n}n∈Z is an unorrelated zero mean unit variane sequeneof random variables suh that G�n = GXn . In this ase (Xk)k∈Z has thesame salar produt (ovariane) struture in L2(
;K;P) as the sequeneof funtions (xk)k∈Z in L2([0; 2�); �), wherexk(t) := (2�)−1=2 ∞∑j=0 ajei(k−j)t = eiktx0(t);therefore (k) = 2�∫0 xk(t)x0(t) dt = 2�∫0 eikt |x0(t)|2 dt:



276 M. A. LIFSHITS, M. PELIGRADIt follows that X has the spetral densityf(t) = |x0(t)|2 = 12� ∣∣∣
∞∑j=0 aje−ijt∣∣∣2; t ∈ [0; 2�);f. [4, Chapter 7, Corollary 5℄. Moreover, by Kolmogorov riterion [4, Chap-ter 7, Theorem 15℄, the proess (Xn)n∈Z is regular i� it has a spetraldensity f satisfying ondition2�∫0 ln f(t) dt > −∞:It is not lear however what an we say about the density existenewhen regularity ondition is not neessarily satis�ed, as, for example, inthe ase of funtions of a two-sided sequene of i.i.d. random variables.More generally, we shall also study the existene of spetral density forrandom �elds. For simpliity, we shall disuss only the Z2-indexed random�elds. Extension to the index set Zd with d > 2 is easy.In the sequel, where neessary, we use the standard oordinate notation,e.g. k = (k1; k2) for k ∈ Z2 and k · t = k1t1 + k2t2 for k ∈ Z2, t ∈ R2.We all the olletion of omplex-valued mean zero random variables(Xk)k∈Z2 weakly stationary (or seond order stationary) if there exist om-plex numbers (n); n ∈ Z2, suh that for all j;k ∈ Z2ov(Xj; Xk) = E(XjXk) = (j− k):In the ontext of weakly stationary random �elds it is known that thereexists a unique measure F on [0; 2�)2, suh thatov(Xk; X0) = ∫[0;2�)2 eik·tF (dt1; dt2); for all k ∈ Z

2 :If F is absolutely ontinuous with respet to Lebesgue measure �2 on[0; 2�)2, then there exists the Radon{Nikodym derivative f of F with re-spet to �2, i.e., F (dt1; dt2) = f(t1; t2) dt1 dt2. This funtion f is alledspetral density and we haveov(Xk; X0) = ∫[0;2�)2 eik·tf(t1; t2) dt1 dt2; for all k ∈ Z
2 :



ON THE SPECTRAL DENSITY 277For the sake of larity we shall treat separately proesses and thenrandom �elds.1.1. Results for stationary proesses. We start by pointing out a wellknown haraterization of the existene of spetral density.Theorem 1. Let X := (Xk)k∈Z be a mean zero omplex-valued seond or-der stationary stohasti proess. Then the following statements are equiv-alent:1) X has a spetral density.2) There are omplex numbers (aj)j∈Z with ∑j∈Z

|aj |2 < ∞ suh that(k) := ov(Xk; X0) = ∑j∈Z

ajaj+k; k ∈ Z:3) There exists a stationary proess X̃ := (X̃k)k∈Z equidistributed withX suh that X̃ admits a representationX̃k = ∑j∈Z

aj �j+k ; for all k ∈ Z; (2)where (aj)j∈Z satis�es ∑j∈Z

|aj |2 < ∞ and (�j)j∈Z is a sequene of meanzero unit variane unorrelated random variables. In this ase the spetraldensity is f(t) = 12� ∣∣∣
∑j∈Z

aj eijt∣∣∣2:Remark 2. If the seond order stationary stohasti proess (Xk)k∈Z isreal valued, Theorem 1 holds with a sequene (an)n∈Z of real numbers andthe density f is a symmetri funtion.Furthermore, if the proess (Xk)k∈Z is Gaussian, then the variables(�j)j∈Z in (2) are i.i.d. standard normal. For this latter statement see alsoVaradhan letures [6, Chapter 6, Setion 6.6℄.Let (�j)j∈Z be a stritly stationary sequene of random variables de�nedon (
;K;P) and for g : RZ → C onstrutX0 = g(: : : ; �−1; �0; �−1 : : : ); Xk = X0 ◦ T k; (3)where T is the shift operator on RZ:



278 M. A. LIFSHITS, M. PELIGRADDe�ne
Fk = �(�j : j 6 k); F−∞ = ∩k∈ZFk; and F = �((�j)j∈Z): (4)We shall assume the following regularity onditionE(X0|F−∞) = 0 a.s., (5)whih implies that E(X0) = 0:Theorem 3. De�ne the stritly stationary sequene (Xk) by (3). Assumethat ondition (5) is satis�ed and E|X0|2 <∞. Then the sequene (Xk)k∈Zhas spetral density.Let us mention that ondition (5) is satis�ed when the left tail sigma�eld F−∞ of (�k)k∈Z is trivial. This happens for instane when (�k)k∈Zis a sequene of i.i.d. random variables. Other examples are provided byonditions imposed on mixing oeÆients.The strong mixing oeÆient is de�ned in the following way:�(A;B) = sup{|P(A ∩B)−P(A) P(B)| : A ∈ A; B ∈ B};where A and B are two sigma �elds.The �-mixing oeÆient, also known as maximal oeÆient of orrela-tion, is de�ned as�(A;B)=sup{E(XY )=‖X‖2‖Y ‖2 : X∈L

2(A); Y ∈L
2(B); EX=EY =0}:For the stationary sequene of real valued random variables (�j)j∈Z, Fndenotes the �-�eld generated by �j with indies j > n, and Fk, as before,denotes the �-�eld generated by �j with indies j 6 k. Then we de�ne thesequenes of mixing oeÆients�n = �(F0;Fn) and �n = �(F0;Fn) :A sequene is alled strongly mixing if �n → 0. It is well-known that forstrongly mixing sequenes the left tail sigma �eld is trivial; see Claim 2.17ain Bradley [2℄. Examples of this type inlude Harris reurrent Markovhains.If �n < 1 for some n > 1, then the tail sigma �eld is also trivial aordingto Setion 2.5 in Bradley [1℄.Therefore the result of Theorem 3 holds for funtions of a sequene(�j)j∈Z if it is strongly mixing or satis�es �n < 1 for some n > 1.



ON THE SPECTRAL DENSITY 2791.2. Results for stationary random �elds. Similar results hold forrandom �elds. Below the indexes are in Z2; but we an easily formulatethe results for indexes in Zd with d integer. Here is a generalization ofTheorem 1 for random �elds:Theorem 4. A seond order stationary omplex valued random �eld(Xk)k∈Z2 has spetral density if and only if there are numbers (ak)k∈Z2satisfying ondition ∑k∈Z2 |ak|2 < ∞ suh that ov(Xk; X0) = ∑j∈Z2 aj aj+k.Our Remark 2 an be extended to random �elds in an obvious way, justreplaing the indexes in Z with indexes in Z2. The extension of Theorem 3is more deliate, beause, in the multi-index setting, there is no uniqueinterpretation of past and future. Here we restrit our onsiderations tothe funtions of an i.i.d. random �eld. As the reader will see, this set-ting provides some additional useful ommutativity properties for relatedprojetion operators.Let (�k)k∈Z2 be an i.i.d. random �eld de�ned on a probability spae(
;K;P) and de�ne a random variableX0 = g((�k)k∈Z):where g : R
Z
2 → C is a measurable funtion.Moreover, de�ne two translation operators on RZ

2T1((xu)u∈Z2) = (xu1+1;u2)u∈Z2and T2((xu)u∈Z2) = (xu1;u2+1)u∈Z2 :Finally, let Xu = g(T u11 T u22 (�k)) = g((�k+u)k∈Z2): (6)Theorem 5. Let the stationary sequene (Xk)k∈Z2 be de�ned by (6) andassume E(X0) = 0 and E|X0|2 < ∞. Then the sequene (Xk)k∈Z2 hasspetral density.This theorem has immediate appliations, for example, to Volterra-typerandom �elds whih play an important role in the nonlinear system theory.For any k ∈ Z2, de�ne the Volterra-type expansion as follows:Xk = ∑u;v∈Z2 bu;v �k−u �k−v ;



280 M. A. LIFSHITS, M. PELIGRADwhere bu;v are real numbers satisfyingbu;v = 0 if u = v; ∑u;v∈Z2 b2u;v <∞ ;and (�k)k∈Z2 is an i.i.d. random �eld of entered and square integrablerandom variables. Under the above onditions, the random �eld (Xk)k∈Z2exists, is stationary, zero mean and square integrable. By Theorem 5, thisrandom �eld has spetral density sine it is a funtion of i.i.d. �eld.
§2. ProofsProof of Theorem 1. 1) y 2). Let f be the spetral density of X . Sine√f(x) is square integrable, by Carleson Theorem (f. [5℄), we have anexpansion

√f(t) = 1√2� ∑j∈Z

ajeijt a.s. and in L2([0; 2�); �);with Fourier oeÆientsaj := 1√2� 2�∫0 √f(t)e−ijt dt; j ∈ Z;satisfying ∑j∈Z

|aj |2 < ∞. Therefore, by (1)(k) = 2�∫0 eiktf(t) dt = 12� 2�∫0 eikt∣∣∣ ∑j∈Z

ajeijt∣∣∣2 dt= 12� 2�∫0 ( ∑j1∈Z

aj1 ei(j1+k)t)( ∑j2∈Z

aj2 e−ij2t)dt = ∑j∈Z

aj aj+k ;as required in 2).2) y 1). Let f(t) = 12� ∣∣∣
∑j∈Z

ajeijt∣∣∣2:



ON THE SPECTRAL DENSITY 281Then 2�∫0 eiktf(t) dt = 12� 2�∫0 eikt∣∣∣∑j∈Z

ajeijt∣∣∣2 dt= 12� 2�∫0 ( ∑j1∈Z

aj1ei(j1+k)t)(∑j∈Z

aj2e−ij2t) dt= ∑j∈Z

aj aj+k = (k);as required in the de�nition of spetral density.3) y 2) is obvious.For 1) y 3) see [4, Chapter 7, Theorem 10℄. �Proof of Theorem 3. For every ` ∈ Z we de�ne the projetion operator
P` by letting

P`X = E(X |F`)−E(X |F`−1)for any integrable random variable X ∈ L1(
;K;P).Sine we assumed that E(X0|F−∞) = 0 a.s., by stationarity for allk ∈ Z, E(Xk|F−∞) = 0. Furthermore, sine all Xk are F-measurable, wehave the representation Xk = ∑`∈Z

P`Xk:Let us ompute the ovarianes. We haveov(Xk; X0) = ∑`1;`2∈Z

ov(P`1Xk;P`2X0):Sine the projetions are orthogonal, we haveov(Xk; X0) = ∑`∈Z

ov(P`Xk;P`X0) = ∑`∈Z

ov(P0Xk−`;P0X−`) (7)where, in the last inequality, we used the fat that (Xk) is stritly station-ary.Let us denote Y` = P0X`. Note that by stationarity and orthogonalityof the projetions it is true that
∑`∈Z

E |Y`|2 = ∑`∈Z

E |P0X`|2 = ∑`∈Z

E |P−`X0|2 = E |X0|2 < ∞: (8)



282 M. A. LIFSHITS, M. PELIGRADConsider the funtionf(t) = 12� E ∣∣∣
∑`∈Z

Y−` ei`t∣∣∣2; t ∈ [0; 2�):By the Fubini theorem and (8) we have2�∫0 f(t) dt = 12� E 2�∫0 ∣∣∣
∑`∈Z

Y−` ei`t∣∣∣2 dt = E∑`∈Z

|Y−`|2 < ∞:Let us now ompute the Fourier oeÆients of f . For every k ∈ Z we have2�∫0 eiktf(t) dt = 12� E 2�∫0 ( ∑`1∈Z

Y−`1 ei(k+`1)t)( ∑`2∈Z

Y−`2 e−i`2t) dt= ∑`1;`2∈Z

E (Y−`1 Y−`2)1{k+`1=`2} = ∑`∈Z

E (Yk−` Y−`) :By omparing this expression with (7) we see that f is the spetral densityfor (Xk)k∈Z. �Proof of Theorem 4. is ompletely idential to that of Theorem 1 andtherefore is omitted. We only notie that the spetral density for the pro-ess satisfying ov(Xk; X0) = ∑j∈Z2 aj aj+khas the form f(t) = 1(2�)2 ∣∣∣
∑j∈Z2 aj ei j·t∣∣∣2; t ∈ [0; 2�)2:

�Proof of Theorem 5. De�ne the sigma �elds
Fk1;k2 = �(�j : j1 6 k1; j2 6 k2):Next, for k ∈ Z, denote Fk;∞ = ∨k2∈ZFk;k2 and F∞;k = ∨k1∈ZFk1;k.We introdue the projetion operators by letting

Pu;∞X = E(X |Fu;∞)−E(X |Fu−1;∞)and
P∞;uX = E(X |F∞;u)−E(X |F∞;u−1)



ON THE SPECTRAL DENSITY 283for any integrable random variable X ∈ L1(
;K;P). Furthermore, wede�ne the iterated operator by
Pu1;u2X = (Pu1;∞ ◦ P∞;u2)X:Sine the variables (�k) are independent, for all−∞ 6 p1; p2; u1; u2 6 ∞it is true thatE (E(X |Fp1;p2)|Fu1;u2) = E(X |Fp1∧u1;p2∧u2) a.s.By using this property and the de�nition of the iterated operator, we seethat for all u1; u2 ∈ Z, almost surely,

Pu1;u2X=E(X |Fu1;u2)−E(X |Fu1;u2−1)−E(X |Fu1−1;u2)+E(X |Fu1−1;u2−1):We also obtain the same expression for (P∞;u2 ◦ Pu1;∞)X , thus we seethat the operators Pu1;∞ and P∞;u2 ommute.Next, we borrow an idea from Voln�y and Wang [7, Lemma 2.4(ii)℄ bylaiming that (u1; u2) 6= (p1; p2) yieldsov(Pu1;u2X;Pp1;p2Y ) = E[(Pu1;u2X)(Pp1;p2Y )℄ = 0:for all mean zero X and Y in L2(
;K;P). Indeed, assume, without loss ofgenerality, that p1 < u1. For any X the variable Pu1;∞X is orthogonal tothe spae H = L2(
;Fu1−1;∞;P). Hene, Pu1;u2X is also orthogonal toH , while Pp1;p2Y belongs to H due to assumption p1 < u1.Note that for all u ∈ Z, the orresponding tail sigma �elds de�ned as
Fu;−∞ = ∩u2∈ZFu;u2 , F−∞;u = ∩u1∈ZFu1;u and F−∞;−∞ = ∩u∈ZFu;−∞are trivial. Therefore, we have E(X |Fu;−∞) = 0 a.s., E(X |F−∞;u) = 0a.s., and E(X |F−∞;−∞) = 0 a.s. It follows that for any mean zero X in
L2(
;K;P) we have the following orthogonal representation,X= ∑u1∈Z

Pu1;∞X= ∑u1∈Z

Pu1;∞( ∑u2∈Z

P∞;u2X)= ∑u1;u2∈Z

Pu1;u2X a.s: (9)



284 M. A. LIFSHITS, M. PELIGRADLet us ompute the ovarianes of Xk and X0. By using the above pro-jetion deomposition written for both Xk and X0, together with the or-thogonality of the projetions and stationarity, we have for all k ∈ Z2,ov(Xk; X0) = ov(∑j∈Z2Pj1;j2Xk; ∑u∈Z2Pu1;u2X0)= ∑j∈Z2ov(Pj1;j2Xk;Pj1;j2X0)= ∑j∈Z2ov(P0;0Xk−j;P0;0X−j)= ∑j∈Z2ov(Yk−j; Y−j); (10)where we used the notation Yu = P0;0Xu. Observe also that, by takinginto aount (9) and stationarity, we have
∑u∈Z2E|Yu|2 = ∑u∈Z2E|Pu1;u2X0|2 = E|X0|2 < ∞: (11)Consider the funtionf(t) = 1(2�)2 E ∣∣∣

∑j∈Z2 Y−j ei j·t∣∣∣2; t ∈ [0; 2�)2:By Fubini theorem and (11) we have
∫[0;2�)2f(t) dt1 dt2 = 1(2�)2 E ∫[0;2�)2 ∣∣∣

∑j∈Z2 Y−j ei j·t∣∣∣2 dt1 dt2= E ∑j∈Z2 |Y−j|2 <∞:Let us now ompute the Fourier oeÆients of f . For every k ∈ Z2 we have
∫[0;2�)2 eik·tf(t) dt1 dt2 = 1(2�)2 E ∫[0;2�)2 A1(t)A2(t) dt1 dt2;where A1(t) = ∑j∈Z2 Y−j ei (k+j)·t; A2(t) = ∑u∈Z2 Y−u e−iu·t:
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