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A FUNCTIONAL CLT FOR FIELDS OF COMMUTING
TRANSFORMATIONS VIA MARTINGALE
APPROXIMATION

ABSTRACT. We consider a field fon1 o---oTy?, where T1, ..., Ty are
completely commuting transformations in the sense of Gordin. If one
of these transformations is ergodic, we give sufficient conditions in
the spirit of Hannan under which the partial sum process indexed by
quadrants converges in distribution to a Brownian sheet. The proof
combines a martingale approximation approach with a recent CLT
for martingale random fields due to Volny. We apply our results
to completely commuting endomorphisms of the m-torus. In that
case, the conditions can be expressed in terms of the L2-modulus of
continuity of f.

Dedicated to the memory of Mikhail (Misha) Gordin

§1. INTRODUCTION

Let (2, A, 1) be a probability space and T a (non-invertible) measure
preserving map. Let U be the associated Koopman operator (Uf = foT
for every f € L'(Q,A,u)) and U* be the associated Perron-Frobenius
operator. In 1978, Gordin and Lifshits [10] (see also [8]) observed that if
f = (I —U*)g for some g € L*(u) (i.e. f is a coboundary for U*), then
one has a decomposition f = (¢ — UU*g) + (U — I)U*g into the sum of
a reverse martingale difference plus a coboundary (for U that time). This
allows to prove the central limit theorem (CLT) and the weak invariance
principle (WIP) for f from the corresponding results for stationary reverse
martingale differences.

This fruitful approach presents a part of the martingale approximation
method, known also as Gordin’s method and started with the seminal
paper [8] from 1969. It has been further developped in many papers (to go
beyond the coboundaries for U*). Let us mention the following references
where optimal or sharp results have been obtained concerning the CLT

Key words and phrases: random fields, reverse martingales, endomorphisms of the
torus.
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240 CH. CUNY, J. DEDECKER, D. VOLNY

as well as other limit theorems: Hannan [13,14], Heyde [15], Maxwell and
Woodroofe [17], Peligrad and Utev [18], Gordin and Peligrad [11], Cuny [4].

Consider now a family of commuting measure preserving transforma-
tions T1,...,Tq. In 2009, Gordin [9] proved a decomposition analogous to
the above one (see Section 4), when the transformations are completely
commuting (see the next section for the definition) and

f=U-U)---(I-Ugg.

However, probably by lack of a CLT for “multi-dimensional” reverse mar-
tingale differences, he did not derive any CLT from that decomposition.

Very recently, the third author [19] proved such a CLT. Actually, he
worked in the setting of martingale differences but, as shown in Section 3,
its proof applies equally in the reverse martingale case and yields also the
weak invariance principle. In this paper, we provide a suitable reverse-
martingale approximation under a condition in the spirit of Hannan, from
which the CLT and the WIP follow. Note that the WIP under Hannan’s
condition has been recently obtained by Volny and Wang [20] in the case
where the random field can be expressed as a function of an i.i.d. random
field. In the one-dimensional setting this condition is known to be sharp
(see for instance Dedecker [6]). The results of Volny and Wang can, us-
ing [20], be extended to random fields which are not Bernoulli. We apply
these results to prove a CLT and a WIP in the case where the trans-
formations are commuting dilating endomorphisms of the m-dimensional
torus. Note that, for such commuting endomorphisms (not necessarily di-
lating), the CLT has been obtained recently by mean of completely differ-
ent technics under slightly stronger conditions, see Section 5 for a deeper
discussion.

§2. SETTING OF THE PAPER

Let us describe our setting. Let (2,4, u) be a probability space. Con-
sider a family {T7,...,Ty} of measure preserving transformations on .

Denote by Uy,...,U; the corresponding Koopman operators and by
U, ..., U} the associated adjoint operators, also known in that context as
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the Perron—Frobenius operators. Recall that those operators are charac-
terized as follows

Uif = foTi;
[vitgdu= [ sutqdn.
Q Q
for every positive measurable functions f, g and every i € {1,...,d}.

Definition 1. We say that the family {Th,...,74} (or the family
{U1,...,Uq}) is completely commuting if it is commuting and if more-
over

UiUs = USU; for any i,j € {1,...,d}, i #j. (1)

Notice that (as already observed by Gordin) this definition is slightly
abusive since that property depends on p. Since y will be fixed in the
sequel, we will not worry about that fact.

We consider now the natural filtrations associated with our transforma-
tions. For every 7 € {1,...,d} and every n € N, denote FY = T, "(A).

Then, it is well-known (and not hard to prove) that, for every i €
{1,...,d} and every n € N, we have

E(f|F{) = UMUH™f  for any f € L' (), A, p). (2)
On the other hand, since the U;’s are clearly isometries (of any LP,

1 < p < 00), we also have for every i € {1,...,d}
U;Uf = f for any f € L'(Q, A, p). 3)

The relevance of the property of complete commutation lies in the fact
that for every i,j € {1,...,d} with i # j, and every n € N, the operator

U; and the operator of conditional expectation with respect to }"qu ) are
commuting.

§3. AN INVARIANCE PRINCIPLE FOR STATIONARY d-FIELDS OF
REVERSE MARTINGALE DIFFERENCES

In all of this section we suppose given a completely commuting family
{T1,...,T4} of transformations on the probability space (2, A, ) and we
make use of the previous notations.
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We shall use the notation n to specify that n is a vector. Then, if
n=(ni,...,ng) € N? (with N={0,1...}, and later N* = {1,2...}), we
shall use the notation

Urf=UM---Upif forany f e L' (Q,A p).

Definition 2. We shall say that (f,)nene is a commuting stationary d-
field of reverse martingale differences if there exists f € L'(Q, A, u) with

E(f|]-"1(z)) =0 for every i € {1,...,d} such that f, = UZf.

Let {e1,...,eq} be the canonical basis in R%. If (f,,) pene is @ commuting
stationary d-field of reverse martingale differences, then, for every i €
{1,...,d}, we have (with f as in the definition), U} f = 0 and

E(fal i) = U™ (U EmUnf = U U)Ff =0 (4)
for any m € N* n € Nd.

For every k,h € N? we shall write k < h if for every i € {1,...,d}
we have k; < h;. For every n € N? and every t € [0,1]%, we shall write
[nt] := ([n1t1],. .., [n4tq]), where [-] stands for the integer part.

Let (U™f),ene be arandom field on (92, A, i). For every n=(n1,...,nq) €
N? and every t = (t1,...,tq) € [0,1]¢ set

d
Sui(f) = >[Ik Amiti = 1) — ks + 1) UL,

0=k=[nt] i=1
_ Onalf)
([T, ma)/?

Theorem 1. Let (Uf),ene be a commuting stationary d-field of re-
verse martingale differences with f € L*(Q, A,u). Assume that one of
the U;’s is ergodic. Then, the process (Tpnt(f))te[0,1]¢)nene converges in
law in C([0,1]%) to ([[fll2Wp)tepo,1)2, where (Wy)ieoapa is the standard
d-dimensional Brownian sheet.

and Ty (f) :=

Remark. Recall that (W;)c[0,17¢ is the centered Gaussian process char-

d
acterized by E(W;W;) = [] (s; At;). The ergodicity will be needed at the
i=1
very end of the proof, in order to prove Lemma 4 below.
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As usual we shall prove that result in two steps. The first one consists
in proving tightness. The second one consists in proving convergence of
the finite dimensional distributions.

3.1. Proof of the tightness. The tightness has been proved by Volny
and Wang [20] in the case of martingale differences rather than reverse
martingale differences. Their argument carry on to our setting provided
that we have a maximal inequality of Cairoli’s type for reverse martingale
fields.

We shall just state the appropriate version of Cairoli’s maximal inequal-
ity needed and refer to [20] for the proof of the tightness. We state it in
the stationary case, but it holds in a more general setting.

Proposition 2 (Cairoli, [1]). Let (U%f)nene be a commuting stationary
d-field of reverse martingale differences with f € LP(Q, A, u), p > 1. Then,
E( max

for every n € N% we have
. |P p d . |P
o | 3 o) <2 (C5) (| X ve[) o
0=i=k 0=i=zn

Proof. We explain how to derive the result from Cairoli’s original result
when d = 2. Let n € N2. For every 0 < k < n write g := U2 Ef. Then,
(D o<i<k 9i)o<k=n is a so-called orthomartingale. Moreover, we see that

for every 0 < k < mn,

SNouir= > Uf- > UH- ) U+ ) Ui

0=i=zk 0=xi=n (k1,0)2i=Zn (0,k2)=i=xn (k1,k2)=i=n
= E gi — E 9i — E gi + E 9gi -
0<i<n 0<i<(ny—k1,0) 0<i=(0,n2ks) 0=<i=(n1 —k1,n2—kz)

O

3.2. Convergence of the finite dimensional distributions. We have
to prove that for every (t,)o<k<z With t, € [0,1]¢,
(Tﬂaég (f)7 e 7Tﬂ7§L (f)) = (Wéo (f)7 e WiL (f)) (6)

as ni,...,ng — 00.
Note first that, if

Sulfi= Y R amd T = et
0=k=[nt]-1 ( n¢)1/2
i=1
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where 1 = (1,...,1), then || T, (f) — Tnt(f)]l2 — 0 as ny,...,ng — .
This follows easily from the fact that, using the reverse-martingale prop-
erty,

d
1Sne(h) = Sua DB <IFZ(Y. TT m)-

i=1 je{1,...,d},j#i

Hence, is suffices to prove (6) with f&;i instead of Ty, ;.. Let (ag)o<r<r be
L + 1 real numbers. By the Cramer—Wold device, it suffices to prove that

L L
Z T s, (f) = Z ax Wi, (f)

As a second simple remark, note that the sum Z aan ¢, (f) can be written

as a weighted sum over disjoint and adjacent rectangles Hence, it suffices
to prove the convergence in distribution for such rectangles.

We shall make the proof when d = 2, the general case can be proved by
induction. Let tg =0 < t; < - - <tg <landsg=0< 51 < -+ <sg < 1.
Let also (ar,¢)1<k,e<k be real numbers. From the remarks above, it suffices
to prove that

K K [ntr]—1 [nse]—

an,n2 = anLQ kz Z UlU] (f)

=1 i=[n1tr_1] j=[n2s¢_1]

K K
:>Z Z Q¢ (W(tk,sz)(f)+W(tk,1,8[71)(f)7W(tk,sz71) (f)iW(tkfl,sz)(f)) .

k=1 (=1
as ni,ne — oo. Notice that the random variable on right hand is dis-
tributed according to N(0,T), with

K K
L =I5 Z Zai,z (te —te—1) (5¢ — 8¢-1)-

k=1 (=1
Clearly, it suffices to prove the desired convergence in distribution when
n1,m2 — oo along any sequence (my,n,)r>1. Hence, let us fix a sequence
(M, Ny )p>1 such that m,,n, — 0o as r — oo. It remains to prove that

[mrtk]—l [nrsg}—l

K K
mln DD ke D > UU(H = NOT).  (T)

k=1 (=1 i=[mrtr_1] j=[nrse—1]
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Proof of (7). Since one of the U;s is assumed to be ergodic, let us assume
that UQ is.

We will apply the following result of McLeish as stated in Hall and
Heyde [12] (see Theorem 3.6, p. 77). This theorem is stated for an array of
martingale differences, but a simple change of time gives the next propo-
sition. We first mention what we mean by an array of reverse martingale
differences. O

Definition 3. Let ((X,,k)o<k<p.—1)r>1 be an array of variables and

((Grk)o<k<p,—1)r>1

be an array of o-algebras, such that for every r > 1, (G;r)o<k<p.—1 18
decreasing. We say that (X, r, (Gr.k)o<k<p.—1)r>1 1S an array of reverse
martingale differences if X, ;, is G, p-measurable for every r > 1 and 1 <
k < p, and if E(X, ;|G j+1) = 0 for every 7 > 1 and every 0 < k < p, — 2.

Proposition 3 (McLeish). Let (X, k, (Grk)o<k<p.—1)r>1 be an array of
reverse martingale differences in L. Assume that

(i) sup | Xkl £ o;
0<k<pr—1
(i) sup E(X7,) < oo;

0<k<pr—1

oy Pt P

(i) Y X7, —V for someV > 0;
k=0

Then, >, X, converges in distribution to N'(0,V).

0<k<pr—1

To apply this proposition, we write

my,—1 K [nese]—1
Z D Lt )<i<mnta] - 1}<Zau > UlU](f))
T =0 k=1 j=[nrse_1]

me—1

= Z Zr,i-

=0

Note that Z,; is a reverse martingale difference with respect to G,; =
}"i(l). We shall now prove that (Z, ;)o<i<m,.—1 satisfies (¢), (4¢) and (ié7) of
Proposition 3 (with V' =T for (4i)).
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Proof of (i) and (i¢). We have
sup |2y
0<i<mn—1

[nrsg]l—1

g( sup Z|akl|) sup sup . ‘ Z UlU](f)’

1<k< K 1<US K 0<i<my—1 /TNy J ]
rSg—1

Hence we just have to prove that for every € > 0, and every 1 < ¢ < K,

HTSZ

Z UlU](f)‘ )Ho.

r—00

1
l.e, = ( sup
Yo a 0<i<m.—1 /My Ny

Using the stationarity and Markov 1nequahty, we obtain that

nrsf 1

nrsz
g,Tr \ m"’ U] ‘ )
%, u( WW\ Z . (f)
[n,,SZ]fl
1 1 ) 2
< E((m— SO Y s )
" j=[nese_1] j:[n§£71]U§ (F)|>v/mrnre

Notice that (Usf)o<i<m,—1 is a stationary sequence of reverse martin-
gale differences. Now, it is well-known (using stationarity, truncation and
the Burkholder inequality) that the family

[nrse]—1

= (S win))

j=[nrse_1]

r>1

is uniformly integrable, and (i) easily follows.

In the same way, (i7) can be proved by using the stationarity and the
fact that (Y, ¢)r>1 is bounded in L.

Proof of (¢i¢). This is the difficult part. It suffices to prove that

mpy—1
lim H ) Zf,i—FH -
r—00 ’ 1
i=0

Now
K [nrse]—1

‘ 1 K 1
Zii:ZETl{{mrtk11<¢<[mrtk1—1}(;ak,zf—nr > UlU’(f))

k=1 Jj=[nrse—1]
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Hence, it suffices to prove that

[m, tk} [nrse]— .
3 S Sk "3 ) a -
[ —— j=[nrse—1]

where v, = || f||3 Z ag ¢(tk — tr—1)(s¢ — s¢-1). By stationarity, it suffices
to prove that, for each ke{l,...,K},

[mrtr]—[mrtr—1]—1 [nrse]—

il X (2““1 > U1U1<f>)2—%Hl:°-

=0 (= T =[nrse_1]

Setting w, = [m,tg] — [m,tg—1], this is equivalent to

Up—1 K [nrse]— K
. 1 1 2 .
Jim || ) (E At E U1UJ( )>—|\f||§§ ai,z(sz—sz—l)HfU-
T =0 (=1 T =[nprsp_1] (=1

(8)

In order to prove (8), let us admit the following lemma for a while.

Lemma 4. Let € > 0. If Uy is ergodic, there exist integers v > 1 (large
enough) and p(v) (large enough), such that for every n > p(v)

nsz

H Z( Zak/ Z UiUi(f )fAkH1<5, (9)
=0 =[ns¢—1]
where Ay := HfHﬁ/; ag o(se — s0-1).
Let
K [nrse]—
rz—zak/\/— Z UlU](f)

j=[nrse—1]
Let » > 1, such that u, > v and write u, = vq, + t,, with ¢, > 1 and
tr € {0,...,v —1}. We have that

Up—1

Z
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By stationarity, and Lemma 4, we see that, for n, > p(v)

Ir— (k+

LZ( Z fm s,
[nrse]—1
<P (o

.y 2
Zak/ 3 Ung(f)) - AkHl <e. (11)
On another hand, for a fixed v, one has

=[nrse_1]

Ur—1

1 £ A
-y FEF’"—’”H —0. (12)
Uy | ' u, 11

lim

r—00

From (10), (11) and (12), we see that (8) holds. This completes the proof
of (iii).
Proof of Lemma 4. The proof relies on the following convergence in law.

Lemma 5. Let v > 1. The sequence of random vectors

[nse]—1

(\/_ia“ Z UV (f )1@@

[nse—1]

i=
converges in distribution to ( )1<i<v, where the N;’s are i.i.d. with com-

mon distribution N (0, || f||3 Z ag (sc —50-1)).
=1
Lemma 4 follows easily from Lemma 5, a truncation argument and the
law of large numbers in L' for (N?)1<i<y (with v — 00). O

Lemma 5 can be proved by applying Proposition 3, but it is shorter to
notice that it is a consequence of the WIP for stationary and ergodic R"-
valued reverse martingale differences (note that it is the only place where
we use the ergodicity of Us). Indeed, letting V(f) = (U (f),...,UY(f)),
it follows from the WIP that

[ns1]—1 1 [nsk]—1
( Z V(Ui(f > Vi)
\/_
J=[nsx 1]
converges in distribution to (Gi,...,Gk), where the G4’s are indepen-

dent Gaussian random vectors with respective covariance matrix (s, —
si—1)EV(£)V(f)"). Now since E(U{(f)U{(f)) = 0if i # j, we see that
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EWV(HV(F)) = ||Ifl31d,, where Id, is the identity v X v matrix. Lemma 5
follows straightforwardly.

§4. REVERSE MARTINGALE APPROXIMATION

We shall consider again a completely commuting family of (non invert-
ible) measure preserving transformations T4, ..., Ty.

In all that section we assume the following property

|(UH" sz — 0 for any ic{l,...,d}, and any fe L*(Q,A,pu)

with E(f) = 0. This property is equivalent to the fact that each T; is exact
(see Definition 4.14 in Walters [21]).

We shall now prove a (reverse) martingale approximation result under
a condition in the spirit of Hannan. For f € L?(u) set

1fll -

uﬁwww«mwfuz "

ongeEN  i=1

i

.ong€N =1

and
={fe L’ : |flla < oo}

It is not hard to prove as in the one-dimensional case (see for instance
the proof of Proposition 12 in [5]) that a sufficient condition for f to be in
XQ is that

@)™ W Sl _
nl,.;del\] (nl nd)1/2 ’ (14)

We first prove a maximal inequality. Its statement, as well as its proof,
are analogous to Lemma 5.2 of [20].

Lemma 6. Let f € X5. Then,

2 v

( max
1=<k=n

) <21 (15)
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Proof. Let f € X5. Using that for every i € {1,...,d}, [|[(Uf)"f|l — 0
as n — 0o, we obtain the following orthogonal decomposition

d
f= > Twmwym —vm@p™+) fi= 3 fm (16)

mi,...,mgENiI=1 mENd

Then, clearly

max
1=k=n
0=xi=k

max
1<k<n

> vl

Now, for every m = (ml,...,md) € Nd, (Uifm)iene is a commuting
stationary d-field of reverse martingale differences associated with f,, €
L*(Q, Am, i), where Ay, =T ™ o---0T; ™ (A). Hence, the result follows
from Proposition 2. O

We shall also need the following lemma.

Lemma 7. Let Ty be a measure preserving transformation and Uy the
associated Koopman operator. Let f,g € L*>(Q, A, 1) be such that for h €

{f, g},

ST (@ = Uy b, < o a7
n=0
Then, Y. [E(UF fUF g)| < oo, where k¥=max{0, k} and k~=max{0, —k}.
keZ
Moreover, writing f = > ((Ul*)’f _ U1(U1*)k+1)f and j := Y ((Ul*)k _
k=0 k>0
U (UT)Ft)g,
~ + —
=Y E(Uf fUf g). (18)
keZ

Proof. The absolute convergence of the series will follow from the proof.
Hence, we only prove (18). For every f € L*(2, A, ) such that E(f) = 0,
using that ||(U;)" flla — 0, we have

n—oo

f=> (Urwyr —upt ") f, (19)

neN

where the summands are orthogonal.
Let

Are(f,9) = B (((U5F = 00(UHFY) 1) (0D = UL )
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Using (17) to permute E and ), we have (with absolute convergence)

E(fg) = > Aci(f,9)

k,(EN
= j{: fikl(fag)_% 2{: fikl(fag)'+ j{: fikl(fag)
kt:k>( k.t k<t k,0:k=(

The first two sums on right hand are symmetric one from the other,
hence we shall deal only with the second one. Since

E(((U)" = (UD)F) f) ((U7)*g)) =0

for £ > k,
SN Arelfr9) =Y Y E(((Ufwhk - U wnkt) £) 7))
keN >k keN meN*
= > EU™f9g).
meN*

where we have used (19). In the same way
> Ark(fr0) =D E(((UFUD" = U UD) £)g) =E(fg). O
kEN kEN

Theorem 8. Let f € X5. Then, there exists a commuting stationary d-
field of reverse martingale differences (U%(d)),ene with d € L*(p) such

that
Z vt

and ||d|)3=">" E(Uﬂ fUR f), where we use the notations n*=(nj,...,n})
neN?

andn~ =(ny,...,n,).

(max ) o(ny---ng), asni,...,ng— 0o, (20)

0=<k=n

Proof. By (19) we see that |- || x, is definite on A5 hence that it is a norm.
Moreover, (Xa, || - || x,) is a Banach space.

Let i € {1,...,d}. We easily see that ||(U)"f|lx, — 0 as n — oo.
Hence, U} is mean ergodic on X5 (with no fixed points), that is

X2

Xo = (I -U})X,
Then, it follows that

=[] (- U (21)

1<i<d
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Define a linear operator D on X5 by setting

d
Df:= Y [[ (W)™ —vwy)y ) 1.

neNd i=1

Let us observe that if f = [] (I — U})g with g € X, then Df =

1<i<d
I (I-UUf)g. Obviously,
1<i<d
DAz < N1 ]lxe- (22)

Let us prove (20) with d = D(f). Let us admit for a while that (20)
holds whenever f belongs to [],;c,(I — U)X>. Let us show then that
(20) holds for every f € Xs.

Let f € X5. Let £ > 0. By (21), there exists g € X such that

|- TI u-vg| <=

1<i<d

For every n € N?, we have, setting § := ngigd(l —U¥)g,

S W -vtpp)| < | Y (U - Utg)|

0<k=<n 0=k=n

+| > Wt utpg) | +] S (UED(F - 9) .

0=k=n 0=2k=n

Using (15) to deal with the first term above and (22) and (5) to deal with
the third term, and since we admit for the moment that (20) holds for g,
we infer that

1 . )
lim sup 4E< max Z Utf — U
ng -
i=k

N1,...,mg—00 101 *** 1=k=n 0=i<k

2) < Ce,

and (20) follows by letting ¢ — 0.

It remains to deal with the case where f =[[, ;<,(I — U;)g, for some
g c XQ.

To do so we use the following simple identity (see also Gordin [9], Propo-
sition 1):

forie{1,...,dy, I-U=1I-UU;+ U —DU;.
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Let f= [[ (I-U})g with g € X5. We have

1<i<d

f=pf+ > Jlu-vuvyH[[W;-nU;g:=Df+h (23)

Ec{l,...,d},ic&e je&
E4D

The proof relies on the fact that the remainder in (23) (i.e. k) behaves
like a coboundary in some “directions” and like a sum of reverse martingale
differences in the other “directions”. For the sake of simplicity, we only
prove the results for d = 2, but the general case can be handled similarly.

We have

f=Df=I-UU)U: - U9+ [ - UU;) (UL — Uiy
+ (Ul *I)(Uz *I) U1*U2*9

For every 0 < k1 < n; and every 0 < k3 < no, we have

S U S UR(I - U (U - DU = (UF — 1)

0<i1 <k 0<ia<ke
i1 *\TTH
E Ut (I = U2U3) Uy g.
0<ia<ke

Define Zy, n, = MaXicpycn, | . U(I — UbUs)UMUrg|. For every
0<ia <k
A > 0, we have

. . 2
Sooul N URUI-RU(UL - DU g

0<i1 <k 0<ia<ke

max max
1<k <ny 1<ka<ne

2

)

< 20Zomsl* + 20247 +2 ) ‘Z’“v’%l{lzkl,wl%\/@}
0<k1<n

and, by stationarity

SNooulr > URI-TUs) (U - DU g

0<i1 <k 0<ia <k

)
2) .

E ( max max
1<k <ne 1<k <Ny

< 2E (|Zon,|*) +2n24” + 20y E (‘Zo,m 1120 ny 1240/}
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Since, (23 ,,/M2)ny>1 is uniformly integrable, it follows that

2)
—— 0.
ni,ny—00

1
E ( max max
ninz 1<kaSn2 ISki<n1

Yo U Y U -UUS)(U - DUy

0<i1<ky 0<io<ke

We may deal similarly with the sum associated with the term (I —
U Uf) (U — IUsg. To deal with the sum associated with the term (Uy —
I - U, — IUY)Us g is somehow easier.

To finish the proof of the theorem, it remains to identify | Df||3. But,
this follows by applying inductively Lemma 7, noticing that

d d
> (@ -y =] > ()" - w)™+)

neNd i=1 i=1 k; €N

and using the fact that (Uy,...,Uy) is completely commuting. O

§5. EXPANDING ENDOMORPHISMS OF THE m-DIMENSIONAL TORUS

Let A be am x m (m > 1) matrix with integer entries. We say that A
is expanding if all its eigenvalues have modulus strictly greater than 1.

A induces a transformation 64 of the m-dimensional torus [0, 1)™, pre-
serving the Lebesgue—Haar measure A\. We denote by U4 the corresponding
Koopman operator, and by U} the Perron-Frobenius operator.

Let us give a simple condition under which 64 and g are completely
commuting.

Lemma 9. Let A and B be two expanding m x m (m > 1) malrices
with integer entries. Assume that A and B commutes and that they have
coprime determinants. Then, 04 and O are completely commuting.

Proof. We have to prove that UjUp = UgU}. Let I" be representatives
of Zm/AZ™ with distinct images in Z™/AZ™. By (34) (using that A~!
and B commute), it suffices to prove that B induces a bijection (modulo
Z™) of the set (A=) er.

Let v,4" € T be such that there exists § € Z™ such that BA™ !y =
BA7 'y + 3. Set § := v —+' € Z™. Writing A~' = (det A)~' A, where
A is the adjugate matrix of A (with integer entries) and similarly, B~! =
(det B)~!B, we see that

(det B)A§ = (det A)BS.
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Since det B A det A =1, by the Gauss lemma, we infer that det, A divides
all entries Ad, hence that A=1§ € Z™ and § € AZ™. By definition of T,
we see that v = 4’ and the lemma is proved. (|

The fact that A and B have coprime determinants is by no mean neces-
sary for 84 and 6p to be completely commuting as one may see from the
g g ) and B = 8 (2) .

The next proposition is an easy consequence of a result by Fan [7] (see
Proposition 13 of the Appendix). Recall that the modulus of continuity in
L? is given by

following basic example: A = (

Qo p(8) == sup [[f(-+=2)— fl,,

0<|z[<8
where |z| stands for the Euclidean norm of z € [0,1)™.
Proposition 10. Let A, ..., Az be commuting expanding m X m matrices
with integral entries. Let Apin > 1 be the infimum of the modulus of their

eigenvalues. There exists C > 0 such that, for every f € L*>(\) and every
niy,...,ng €N,

JUA)™ -+ W)l < Dag (COGET) 0 (24)

min

Proof. Let us first notice that (U} )" --- (U},)" is the Perron-Frobenius
operator associated with 64,74...4,~1. Now, since the matrices are com-
muting, it follows from standard linear algebra results, that the set of the
eigenvalues of A;"¢--- A1™ is included in

{Ag" - A" ¢ )\ is an eigenvalue of A;}.

In particular, 4" --- A;™ is an expanding matrix. Then, the result fol-
lows from Proposition 13, noticing that

A (A;nl . -A;"d([O, 1]m)) < Cf)\—(1“L1—i-~.._i-nd)7

min

where A (A7 -+ A7"4([0, 1]™)) is the diameter of A7 ™ -+ A7"([0,1]™).
(]

We shall use the following notation:
vi=Uj - Ug

for every (i1, ...,iq) €N
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Theorem 11. Let d > 1. Let f € L*>([0,1)™,\) centered such that

1

1 t (d—2)/2
/ % Qs £ (t) dt < 0. (25)
0
Let Ay, ..., Ag be expanding m X m matrices with integral entries. Assume

that they are commuting and that their determinants are pairwise coprime.
Then, there exists a stationary d-field of reverse martingale differences
(U™(d))pene with d € L*(\) such that

E( max

2
1=k=n ):0("1"'ﬂd) as ni,...,ng — co. (26)

> Utf-Ud

0=ixk

In particular, we have an invariance principle.

Remark. We see that if Qs (t) = o(|log(t)|~%27%) (t — 0) (25) holds.
A CLT has been obtained by Cohen and Conze [2] under the condition
Qo ¢(t) = o(]log(t)|~%%) (t — 0). However, the results of [2] apply to
general arrays and to commuting families of general endomorphisms (in-
cluding for instance automorphisms) inducing a totally ergodic Né-action
(see their paper for more informations).

Proof. It follows from (31) and a density argument that [[(U},)" f[l2 — 0
as n — oo for every centered f € L?()\) and every i € {1,...,d}. Hence,
by Theorem 8, we just have to check that (14) holds. Using (31), we see
that (14) will hold provided that

Q. —.(n1+~~~+nd)
Z ny(C)‘mln ) < 0. (27)

(n1---nq)'/2

ni,...,ng EN*

Now, making the change of index ny + -+ - + ng — ngy,

S SO )

1/2
N1yeeeyng EN* (n1 n4) /

- ¥ 3 Qo7 (CAid)

S — .= 1/2°
Ni,.eesNg—1EN* ng2n—1+---+ng_1+1 (nl (nd m nd_l)) /
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Notice that for every m > 1, we have

>

1<ni<m—1 ni (m - nl
1
<V2imo ) \/— +V2/m Y ———=<D,
1<n1<m/2 m/2<n1<m—1 1
for a constant D > 0 independent of m.
Hence (27) holds if and only if
3 3 2,4 (CAxin)
ng=lns,...,ng_1EN*:ng+-+ng_1<ng—1 27 Nd—2
Ly 2Q (CAd )
< ( _) 2 f min
ng=l 1<j<ng \/';
(d—2)/2
<C n 12q F(CAL) < o0,
ng=>1
which is equivalent to (25) by comparing series and integrals. O

We shall now give a sufficient condition in terms of Fourier coefficients.

Lemma 12. Let f € L*([0,1)™) with Fourier coefficients (cn(f))nezm -
For every k > 1, define

A= max Y lealPP
nezZ™ : n;| 2k

it
(d=2)/2
5 BB () < oo (28)

then (25) holds.

Remark. Note that (28) holds as soon as A(f) = O((logk)~¢~*), for
some ¢ > 0. Conversely, if (28) is satisfied, since (Ag(f))k>1 is non-
increasing, we see that, Ay(f) = o((logk)~4). Note also that Levin [16]
proved the CLT (he also announced the weak invariance principle in [16])
under a condition that is easily seen to be equivalent to

og k)?1 ‘
S BB () < e

k>1
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He worked in the same setting as Cohen and Conze [2].

Proof. Let us first notice that (25) is equivalent to

1 (d—2)/2
3 Qos ) o L(1/k) < o0

k
k=1
Let k > 1 and z € R™ with |z| < 1/k. We have

IFC+2) == D leal NP1 —e*mes)]?,

nezm™

In particular, majorizing |1 — e*™(®2)| either by 2 or by 27|n||z|, we see
that

QP Y P e,y Y P

ne{—k,....k}™ =1 nezZ™ :\n; |2k
~ m m
\k—mZ Yo P+ Cads Y e
i=1 neZ™ :|n;|<k i=1 n€Z™ :|n;| >k

for two positive constants C,, and C,,. The second sum on right hand can
be handled directly by using (28), and it remains to prove that

(d-2)/2
S L (B < o, (29)

where

Bi(f) = max > nflea(f)
nezZm : |ni|<k

Let us prove that (28) implies (29). Let

A= 3 e P

nez™ :|n;| 2k

We have
k .
> ndleals Zy Al =3 AV (-1)) - kAL,
nez™ : |n;|<k j=1

Hence, we infer that (29) hold as soon as

B:=Y 8T logk (ZA )1/2<oo, (30)

k>1
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To prove that (28) implies (30), we first notice that (28) is equivalent to
Z n(@=2/2 [ A0 (f) < o0
n>0

(to see this it suffices to use the monoticity of Ay). Next

n+1

B ZZ logk (Z] ) )1/2

n=0 k=2n
on+1

ci (ZJA f)l/z.

In the same way, using the monoticity of Ag,

— L okt
(Z i) )1/2 _ (ZZZ jAj)1/2
k=0 j=2k
< (QXH:Q?’fAzk)l/z < ﬂzn:Q’f\/A_zk.
k=0 k=0

It follows that
( —
B<C Z ! Z 28/ Ape < DY KA () < 00
k=0 k>0

which completes the proof. (I

§6. APPENDIX

Proposition 10 of Section 5 is a consequence of the following proposition,
due to Fan [7]. We shall give the proof for the sake of completeness and
because the reference [7] is hard to obtain.

Proposition 13 (Fan [7]). There exists C > 0 such that for every ex-
panding m x m matrices A with integral entries, for every f € L?(\) with

A(f) =0,
1T £ 11> < Qa5 (A (A7([0,1]7)) (31)
where A (A71([0,1]™)) is the diameter of A=1([0,1]™).
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Proof. Let us recall some facts about tiling and Perron—Frobenius oper-
ators associated with expanding matrices.

Let A be an expanding m x m matrix. Let ' C Z™ be representatives
of Z™/AZ™. Then, see e.g. [3], there exists a unique compact set K C R™,
such that

K = U er(A7 K + A7) (32)
and an integer ¢ > 1 such that

Z 1ktn =¢ A-almost, everywhere.
nezm

Moreover, for every 7,7 € T with v # v/, A(AT'K + A7) N (A7'K +
A~'4")) = 0. Using that, clearly,

1k = Y (k4nnoa™) —ns
nezd

we infer that for every locally integrable f,

q / fd/\:/fd/\. (33)
K

[0,1]™
It follows then that the Perron—-Frobenius operator U} is given by
1
p = — At A7y . 4
Uil () detA;f( r+ A7) (34)

Let f € L*(\) with A(f) = 0. Using that U} preserves A and making
the change of variable y — y + x, we infer that

Uaf(x)
1
qde

G2 [ (AT A7) AT )+ A7) Ay,
vGFK

Hence, using Jensen’s inequality (recall that AM(K) = q),

(UL

1

S Tt d ZF/ (F(A e+ A7) — fA Ny +2) + A7) Ady).
vel j

qde
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M

< ([ a [ (seaterarin- st e ra-t) s )

aking the change of variable z — A~'z + A~!y, we infer that

ITALII3

1/2

vyel K K

<Y [ [ (@) - fa A ) M)

Vel g A-1K+ A1y

_ / 1f = £+ A2 Ady),

[0,1]

where we have used (32) and (33). The announced result clearly follows.

10.

11.

O
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