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§1. IntrodutionLet (
;A; �) be a probability spae and T a (non-invertible) measurepreserving map. Let U be the assoiated Koopman operator (Uf = f ◦ Tfor every f ∈ L1(
;A; �)) and U∗ be the assoiated Perron{Frobeniusoperator. In 1978, Gordin and Lifshits [10℄ (see also [8℄) observed that iff = (I − U∗)g for some g ∈ L2(�) (i.e. f is a oboundary for U∗), thenone has a deomposition f = (g − UU∗g) + (U − I)U∗g into the sum ofa reverse martingale di�erene plus a oboundary (for U that time). Thisallows to prove the entral limit theorem (CLT) and the weak invarianepriniple (WIP) for f from the orresponding results for stationary reversemartingale di�erenes.This fruitful approah presents a part of the martingale approximationmethod, known also as Gordin's method and started with the seminalpaper [8℄ from 1969. It has been further developped in many papers (to gobeyond the oboundaries for U∗). Let us mention the following refereneswhere optimal or sharp results have been obtained onerning the CLTKey words and phrases: random �elds, reverse martingales, endomorphisms of thetorus. 239



240 CH. CUNY, J. DEDECKER, D. VOLN�Yas well as other limit theorems: Hannan [13,14℄, Heyde [15℄, Maxwell andWoodroofe [17℄, Peligrad and Utev [18℄, Gordin and Peligrad [11℄, Cuny [4℄.Consider now a family of ommuting measure preserving transforma-tions T1; : : : ; Td. In 2009, Gordin [9℄ proved a deomposition analogous tothe above one (see Setion 4), when the transformations are ompletelyommuting (see the next setion for the de�nition) andf = (I − U∗1 ) · · · (I − U∗d )g:However, probably by lak of a CLT for \multi-dimensional" reverse mar-tingale di�erenes, he did not derive any CLT from that deomposition.Very reently, the third author [19℄ proved suh a CLT. Atually, heworked in the setting of martingale di�erenes but, as shown in Setion 3,its proof applies equally in the reverse martingale ase and yields also theweak invariane priniple. In this paper, we provide a suitable reverse-martingale approximation under a ondition in the spirit of Hannan, fromwhih the CLT and the WIP follow. Note that the WIP under Hannan'sondition has been reently obtained by Voln�y and Wang [20℄ in the asewhere the random �eld an be expressed as a funtion of an i.i.d. random�eld. In the one-dimensional setting this ondition is known to be sharp(see for instane Dedeker [6℄). The results of Voln�y and Wang an, us-ing [20℄, be extended to random �elds whih are not Bernoulli. We applythese results to prove a CLT and a WIP in the ase where the trans-formations are ommuting dilating endomorphisms of the m-dimensionaltorus. Note that, for suh ommuting endomorphisms (not neessarily di-lating), the CLT has been obtained reently by mean of ompletely di�er-ent tehnis under slightly stronger onditions, see Setion 5 for a deeperdisussion.
§2. Setting of the paperLet us desribe our setting. Let (
;A; �) be a probability spae. Con-sider a family {T1; : : : ; Td} of measure preserving transformations on 
.Denote by U1; : : : ; Ud the orresponding Koopman operators and byU∗1 ; : : : ; U∗d the assoiated adjoint operators, also known in that ontext as



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 241the Perron{Frobenius operators. Reall that those operators are hara-terized as follows Uif = f ◦ Ti ;∫
 Uif g d� = ∫
 f U∗i g d� ;for every positive measurable funtions f; g and every i ∈ {1; : : : ; d}.De�nition 1. We say that the family {T1; : : : ; Td} (or the family
{U1; : : : ; Ud}) is ompletely ommuting if it is ommuting and if more-over UiU∗j = U∗j Ui for any i; j ∈ {1; : : : ; d}; i 6= j. (1)Notie that (as already observed by Gordin) this de�nition is slightlyabusive sine that property depends on �. Sine � will be �xed in thesequel, we will not worry about that fat.We onsider now the natural �ltrations assoiated with our transforma-tions. For every i ∈ {1; : : : ; d} and every n ∈ N, denote F (i)n := T−ni (A).Then, it is well-known (and not hard to prove) that, for every i ∈
{1; : : : ; d} and every n ∈ N, we haveE(f |F (i)n ) = Uni (U∗i )nf for any f ∈ L1(
;A; �). (2)On the other hand, sine the Ui's are learly isometries (of any Lp,1 6 p 6 ∞), we also have for every i ∈ {1; : : : ; d}U∗i Uif = f for any f ∈ L1(
;A; �). (3)The relevane of the property of omplete ommutation lies in the fatthat for every i; j ∈ {1; : : : ; d} with i 6= j, and every n ∈ N, the operatorUi and the operator of onditional expetation with respet to F (j)n areommuting.

§3. An invariane priniple for stationary d-fields ofreverse martingale differenesIn all of this setion we suppose given a ompletely ommuting family
{T1; : : : ; Td} of transformations on the probability spae (
;A; �) and wemake use of the previous notations.



242 CH. CUNY, J. DEDECKER, D. VOLN�YWe shall use the notation n to speify that n is a vetor. Then, ifn = (n1; : : : ; nd) ∈ N
d (with N = {0; 1 : : :}, and later N

∗ = {1; 2 : : :}), weshall use the notationUnf = Un11 · · ·Undd f for any f ∈ L1(
;A; �).De�nition 2. We shall say that (fn)n∈Nd is a ommuting stationary d-�eld of reverse martingale di�erenes if there exists f ∈ L1(
;A; �) withE(f |F (i)1 ) = 0 for every i ∈ {1; : : : ; d} suh that fn = Unf .Let {e1; : : : ; ed} be the anonial basis in R
d. If (fn)n∈Nd is a ommutingstationary d-�eld of reverse martingale di�erenes, then, for every i ∈

{1; : : : ; d}, we have (with f as in the de�nition), U∗i f = 0 andE(fn|F (i)ni+m) = Uni+mi (U∗i )ni+mUnf = Un+mei(U∗i )kf = 0 (4)for any m ∈ N
∗; n ∈ N

d.For every k; h ∈ N
d, we shall write k � h if for every i ∈ {1; : : : ; d}we have ki 6 hi. For every n ∈ N

d and every t ∈ [0; 1℄d, we shall write[nt℄ := ([n1t1℄; : : : ; [ndtd℄), where [ · ℄ stands for the integer part.Let (Unf)n∈Nd be a random �eld on (
;A; �). For every n=(n1; : : : ; nd)∈
N
d and every t = (t1; : : : ; td) ∈ [0; 1℄d setSn;t(f) := ∑0�k�[nt℄ d∏i=1(ki ∧ (niti − 1)− ki + 1)Ukf ;and Tn;t(f) := Sn;t(f)(∏di=1 ni)1=2 :Theorem 1. Let (Unf)n∈Nd be a ommuting stationary d-�eld of re-verse martingale di�erenes with f ∈ L2(
;A; �). Assume that one ofthe Ui's is ergodi. Then, the proess (Tn;t(f))t∈[0;1℄d)n∈Nd onverges inlaw in C([0; 1℄d) to (‖f‖2Wt)t∈[0;1℄d, where (Wt)t∈[0;1℄d is the standardd-dimensional Brownian sheet.Remark. Reall that (Wt)t∈[0;1℄d is the entered Gaussian proess har-aterized by E(WsWt) = d∏i=1(si ∧ ti). The ergodiity will be needed at thevery end of the proof, in order to prove Lemma 4 below.



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 243As usual we shall prove that result in two steps. The �rst one onsistsin proving tightness. The seond one onsists in proving onvergene ofthe �nite dimensional distributions.3.1. Proof of the tightness. The tightness has been proved by Voln�yand Wang [20℄ in the ase of martingale di�erenes rather than reversemartingale di�erenes. Their argument arry on to our setting providedthat we have a maximal inequality of Cairoli's type for reverse martingale�elds.We shall just state the appropriate version of Cairoli's maximal inequal-ity needed and refer to [20℄ for the proof of the tightness. We state it inthe stationary ase, but it holds in a more general setting.Proposition 2 (Cairoli, [1℄). Let (Unf)n∈Nd be a ommuting stationaryd-�eld of reverse martingale di�erenes with f ∈ Lp(
;A; �), p > 1. Then,for every n ∈ N
d we haveE( max1�k�n ∣∣∣

∑0�i�kU if ∣∣∣
p)

6 2dp( pp− 1)dE(∣∣∣
∑0�i�nU if ∣∣∣

p) (5)Proof. We explain how to derive the result from Cairoli's original resultwhen d = 2. Let n ∈ N
2. For every 0 � k � n write gk := Un−kf . Then,(∑0�i�k gi)0�k�n is a so-alled orthomartingale. Moreover, we see thatfor every 0 � k � n,

∑0�i�kU if = ∑0�i�nU if− ∑(k1;0)�i�nU if− ∑(0;k2)�i�nU if+ ∑(k1;k2)�i�nU if= ∑0�i�n gi − ∑0�i�(n1−k1;0) gi − ∑0�i�(0;n2k2) gi + ∑0�i�(n1−k1;n2−k2) gi :
�3.2. Convergene of the �nite dimensional distributions. We haveto prove that for every (tk)06k6L with tk ∈ [0; 1℄d,

(Tn;t0(f); : : : ; Tn;tL(f)) ⇒
(Wt0(f); : : :WtL(f)) (6)as n1; : : : ; nd → ∞.Note �rst that, ifS̃n;t(f) := ∑0�k�[nt℄−1 Ukf and T̃n;t(f) := S̃n;t(f)( d∏i=1 ni)1=2 ;



244 CH. CUNY, J. DEDECKER, D. VOLN�Ywhere 1 = (1; : : : ; 1), then ‖Tn;t(f) − T̃n;t(f)‖2 → 0 as n1; : : : ; nd → ∞.This follows easily from the fat that, using the reverse-martingale prop-erty,
‖Sn;t(f)− S̃n;t(f)‖22 6 ‖f‖22( d∑i=1 ∏j∈{1;:::;d};j 6=inj):Hene, is suÆes to prove (6) with T̃n;ti instead of Tn;ti . Let (ak)06k6L beL+ 1 real numbers. By the Cramer{Wold devie, it suÆes to prove thatL∑k=0 akT̃n;tk(f) ⇒ L∑k=0 akWtk(f):As a seond simple remark, note that the sum L∑k=0 akT̃n;tk (f) an be writtenas a weighted sum over disjoint and adjaent retangles. Hene, it suÆesto prove the onvergene in distribution for suh retangles.We shall make the proof when d = 2, the general ase an be proved byindution. Let t0 = 0 < t1 < · · · < tK 6 1 and s0 = 0 < s1 < · · · < sK 6 1.Let also (ak;`)16k;`6K be real numbers. From the remarks above, it suÆesto prove thatVn1;n2 = 1√n1n2 K∑k=1 K∑`=1 ak;` [ntk℄−1∑i=[n1tk−1℄ [ns`℄−1∑j=[n2s`−1℄U i1U j2 (f)

⇒
K∑k=1 K∑`=1 ak;` (W(tk;s`)(f)+W(tk−1;s`−1)(f)−W(tk;s`−1)(f)−W(tk−1;s`)(f)) :as n1; n2 → ∞. Notie that the random variable on right hand is dis-tributed aording to N (0;�), with� = ‖f‖22 K∑k=1 K∑`=1 a2k;` (tk − tk−1) (s` − s`−1):Clearly, it suÆes to prove the desired onvergene in distribution whenn1; n2 → ∞ along any sequene (mr; nr)r>1. Hene, let us �x a sequene(mr; nr)r>1 suh that mr; nr → ∞ as r → ∞. It remains to prove that1√mrnr K∑k=1 K∑`=1 ak;` [mrtk ℄−1∑i=[mrtk−1℄ [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f) ⇒ N (0;�): (7)



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 245Proof of (7). Sine one of the Uis is assumed to be ergodi, let us assumethat U2 is.We will apply the following result of MLeish as stated in Hall andHeyde [12℄ (see Theorem 3.6, p. 77). This theorem is stated for an array ofmartingale di�erenes, but a simple hange of time gives the next propo-sition. We �rst mention what we mean by an array of reverse martingaledi�erenes. �De�nition 3. Let ((Xr;k)06k6pr−1)r>1 be an array of variables and((Gr;k)06k6pr−1)r>1be an array of �-algebras, suh that for every r > 1, (Gr;k)06k6pr−1 isdereasing. We say that (Xr;k; (Gr;k)06k6pr−1)r>1 is an array of reversemartingale di�erenes if Xr;k is Gr;k-measurable for every r > 1 and 1 6k 6 pr and if E(Xr;k|Gr;k+1) = 0 for every r > 1 and every 0 6 k 6 pr−2.Proposition 3 (MLeish). Let (Xr;k; (Gr;k)06k6pr−1)r>1 be an array ofreverse martingale di�erenes in L2. Assume that(i) sup06k6pr−1 |Xr;k| P→ 0;(ii) sup06k6pr−1E(X2r;k) < ∞;(iii) pr−1∑k=0 X2r;k P→ V for some V > 0;Then, ∑06k6pr−1Xr;k onverges in distribution to N (0; V ).To apply this proposition, we write1√mrnrmr−1∑i=0 K∑k=1 1{[mrtk−1℄6i6[mrtk℄−1}( K∑`=1 ak;` [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f)):= mr−1∑i=0 Zr;i:Note that Zr;i is a reverse martingale di�erene with respet to Gr;i =
F (1)i . We shall now prove that (Zr;i)06i6mr−1 satis�es (i), (ii) and (iii) ofProposition 3 (with V = � for (iii)).



246 CH. CUNY, J. DEDECKER, D. VOLN�YProof of (i) and (ii). We havesup06i6mr−1 |Zr;i|
6

( sup16k6K K∑`=1 |ak;`|) sup16`6K sup06i6mr−1 1√mrnr ∣∣∣
[nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f)∣∣∣:Hene we just have to prove that for every " > 0, and every 1 6 ` 6 K,`;";r := �( sup06i6mr−1 1√mrnr ∣∣∣

[nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f)∣∣∣ > ") −→r→∞
0:Using the stationarity and Markov inequality, we obtain thatj;";r 6 mr�( 1√mrnr ∣∣∣

[nrs`℄−1∑j=[nrs`−1℄U j2 (f)∣∣∣ > ")
6

1"2E(( 1√nr [nrs`℄−1∑j=[nrs`−1℄U j2 (f))21∣∣∣∣∣∣

[nrs`℄−1∑j=[nrs`−1℄Uj2 (f)∣∣∣∣∣∣>√mrnr"):Notie that (U i2f)06�6mr−1 is a stationary sequene of reverse martin-gale di�erenes. Now, it is well-known (using stationarity, trunation andthe Burkholder inequality) that the family(Yr;`)r>1 := (( 1√nr [nrs`℄−1∑j=[nrs`−1℄U j2 (f))2)r>1is uniformly integrable, and (i) easily follows.In the same way, (ii) an be proved by using the stationarity and thefat that (Yr;`)r>1 is bounded in L1.Proof of (iii). This is the diÆult part. It suÆes to prove thatlimr→∞

∥∥∥
mr−1∑i=0 Z2r;i − �∥∥∥1 = 0:NowZ2r;i = K∑k=1 1m r1{[mrtk−1℄6i6[mrtk ℄−1}( K∑`=1 ak;` 1√nr [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f))2:



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 247Hene, it suÆes to prove thatlimr→∞

K∑k=1 ∥∥∥
1mr [mrtk ℄−1∑i=[mrtk−1℄( K∑`=1 ak;` 1√nr [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f))2

− k∥∥∥1 = 0where k = ‖f‖22 K∑`=1a2k;`(tk − tk−1)(s` − s`−1). By stationarity, it suÆesto prove that, for eah k ∈ {1; : : : ;K},limr→∞

∥∥∥
1mr [mrtk℄−[mrtk−1℄−1∑i=0 ( K∑`=1 ak;` 1√nr [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f))2

−k∥∥∥1=0:Setting ur = [mrtk℄− [mrtk−1℄, this is equivalent tolimr→∞

∥∥∥ 1ur ur−1∑i=0 ( K∑`=1 ak;` 1√nr [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f))2
−‖f‖22 K∑`=1 a2k;`(s`−s`−1)∥∥∥1=0:(8)In order to prove (8), let us admit the following lemma for a while.Lemma 4. Let " > 0. If U2 is ergodi, there exist integers v > 1 (largeenough) and p(v) (large enough), suh that for every n > p(v)

∥∥∥
1v v−1∑i=0 ( 1√n K∑`=1 ak;` [ns`℄−1∑j=[ns`−1℄U i1U j2 (f))2

−�k∥∥∥1 < " ; (9)where �k := ‖f‖22 K∑`=1a2k;`(s` − s`−1).Let Fr;i = K∑`=1 ak;` 1√nr [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f) :Let r > 1, suh that ur > v and write ur = vqr + tr, with qr > 1 andtr ∈ {0; : : : ; v − 1}. We have that1ur ur−1∑i=0 F 2r;i −�k= vur qr−1∑k=0 

1v (k+1)v−1∑i=kv F 2r;i −�k+ 1ur ur−1∑i=vqr F 2r;i − tr�kur (10)



248 CH. CUNY, J. DEDECKER, D. VOLN�YBy stationarity, and Lemma 4, we see that, for nr > p(v)
∥∥∥
vur qr−1∑k=0 (1v (k+1)v−1∑i=kv F 2r;i −�k)∥∥∥1

6

∥∥∥
1v v−1∑i=0 ( 1√nr K∑`=1 ak;` [nrs`℄−1∑j=[nrs`−1℄U i1U j2 (f))2

−�k∥∥∥1 < " : (11)On another hand, for a �xed v, one haslimr→∞

∥∥∥
1ur ur−1∑i=vqr F 2r;i − tr�kur ∥∥∥1 = 0: (12)From (10), (11) and (12), we see that (8) holds. This ompletes the proofof (iii).Proof of Lemma 4. The proof relies on the following onvergene in law.Lemma 5. Let v > 1. The sequene of random vetors

( 1√n K∑`=1 ak;` [ns`℄−1∑j=[ns`−1 ℄U i1U j2 (f))16i6vonverges in distribution to (Ni)16i6v, where the Ni's are i.i.d. with om-mon distribution N (0; ‖f‖22 K∑`=1a2k;`(s` − s`−1)).Lemma 4 follows easily from Lemma 5, a trunation argument and thelaw of large numbers in L1 for (N2i )16i6v (with v → ∞). �Lemma 5 an be proved by applying Proposition 3, but it is shorter tonotie that it is a onsequene of the WIP for stationary and ergodi R
v-valued reverse martingale di�erenes (note that it is the only plae wherewe use the ergodiity of U2). Indeed, letting V (f) = (U11 (f); : : : ; Uv1 (f))′,it follows from the WIP that

( 1√n [ns1℄−1∑j=0 V (U j2 (f)); : : : ; 1√n [nsK ℄−1∑j=[nsK−1 ℄V (U j2 (f)))onverges in distribution to (G1; : : : ; GK), where the G`'s are indepen-dent Gaussian random vetors with respetive ovariane matrix (s` −s`−1)E(V (f)V (f)′). Now sine E(U i1(f)U j1 (f)) = 0 if i 6= j, we see that



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 249E(V (f)V (f)′) = ‖f‖22 Idv, where Idv is the identity v×v matrix. Lemma 5follows straightforwardly.
§4. Reverse martingale approximationWe shall onsider again a ompletely ommuting family of (non invert-ible) measure preserving transformations T1; : : : ; Td.In all that setion we assume the following property

‖(U∗i )nf‖2 −→n→∞
0 for any i ∈ {1; : : : ; d}; and any f ∈ L2(
;A; �)with E(f) = 0. This property is equivalent to the fat that eah Ti is exat(see De�nition 4.14 in Walters [21℄).We shall now prove a (reverse) martingale approximation result undera ondition in the spirit of Hannan. For f ∈ L2(�) set

‖f‖X2 : = ∑n1;:::;nd∈N

∥∥∥
d∏i=1(Unii (U∗i )ni − Uni+1i (U∗i )ni+1)f∥∥∥2 (13)= ∑n1;:::;nd∈N

∥∥∥
d∏i=1((U∗i )ni − Ui(U∗i )ni+1)f∥∥∥2 ;and

X2 := {f ∈ L2(�) : ‖f‖X2 <∞} :It is not hard to prove as in the one-dimensional ase (see for instanethe proof of Proposition 12 in [5℄) that a suÆient ondition for f to be in
X2 is that

∑n1;:::;nd∈N

‖(U∗1 )n1 · · · (U∗d )ndf‖2(n1 · · ·nd)1=2 <∞: (14)We �rst prove a maximal inequality. Its statement, as well as its proof,are analogous to Lemma 5.2 of [20℄.Lemma 6. Let f ∈ X2. Then,E( max1�k�n ∣∣∣
∑0�i�kU if ∣∣∣

2)
6 23d(n1 · · ·nd)‖f‖2X2 : (15)



250 CH. CUNY, J. DEDECKER, D. VOLN�YProof. Let f ∈ X2. Using that for every i ∈ {1; : : : ; d}, ‖(U∗i )nf‖2 −→ 0as n→ ∞, we obtain the following orthogonal deompositionf = ∑m1;:::;md∈N

d∏i=1 (Umii (U∗i )mi − Umi+1i (U∗i )mi+1) f := ∑m∈Nd fm: (16)Then, learly max1�k�n ∣∣∣
∑0�i�kU if ∣∣∣ 6

∑m∈Nd max1�k�n ∣∣∣
∑0�i�kU ifm∣∣∣Now, for every m = (m1; : : : ;md) ∈ N

d, (U ifm)i∈Nd is a ommutingstationary d-�eld of reverse martingale di�erenes assoiated with fm ∈L2(
;Am; �), where Am = T−m11 ◦· · ·◦T−mdd (A). Hene, the result followsfrom Proposition 2. �We shall also need the following lemma.Lemma 7. Let T1 be a measure preserving transformation and U1 theassoiated Koopman operator. Let f; g ∈ L2(
;A; �) be suh that for h ∈
{f; g}, ∑n>0 ∥∥((U∗1 )n − U1(U∗1 )n+1)h∥∥2 < ∞: (17)Then, ∑k∈Z

|E(Uk+1 fUk−1 g)|<∞, where k+=max{0; k} and k−=max{0;−k}.Moreover, writing ~f := ∑k>0((U∗1 )k − U1(U∗1 )k+1)f and ~g := ∑k>0((U∗1 )k −U1(U∗1 )k+1)g, E( ~f~g) = ∑k∈Z

E(Uk+1 f Uk−1 g): (18)Proof. The absolute onvergene of the series will follow from the proof.Hene, we only prove (18). For every f ∈ L2(
;A; �) suh that E(f) = 0,using that ‖(U∗1 )nf‖2 −→n→∞
0, we havef = ∑n∈N

(Un1 (U∗1 )n − Un+11 (U∗1 )n+1) f ; (19)where the summands are orthogonal.LetAk;`(f; g) = E ((((U∗1 )k − U1(U∗1 )k+1) f) (((U∗1 )` − U1(U∗1 )`+1) g))



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 251Using (17) to permute E and ∑, we have (with absolute onvergene)E( ~f~g) = ∑k;`∈N

Ak;`(f; g)= ∑k;` : k>`Ak;`(f; g) + ∑k;` : k<`Ak;`(f; g) + ∑k;` : k=`Ak;`(f; g):The �rst two sums on right hand are symmetri one from the other,hene we shall deal only with the seond one. SineE (((U∗1 )k − U1(U∗1 )k+1) f) (U1(U∗1 )`+1g)) = 0for ` > k,
∑k∈N

∑`>kAk;`(f; g) = ∑k∈N

∑m∈N∗

E (((Uk1 (U∗1 )k − Uk+11 (U∗1 )k+1) f) (U∗1 )mg)= ∑m∈N∗

E (Umf g) :where we have used (19). In the same way
∑k∈N

Ak;k(f; g) = ∑k∈N

E (((Uk1 (U∗1 )k − Uk+11 (U∗1 )k+1) f) g) = E(fg): �Theorem 8. Let f ∈ X2. Then, there exists a ommuting stationary d-�eld of reverse martingale di�erenes (Un(d))n∈Nd with d ∈ L2(�) suhthatE( max0�k�n ∣∣∣
∑0�i�kU if − U id∣∣∣2) = o(n1 · · ·nd); as n1; : : : ; nd → ∞; (20)and ‖d‖22= ∑n∈NdE(Un+f Un−f), where we use the notations n+=(n+1 ; : : : ; n+d )and n−=(n−1 ; : : : ; n−d ).Proof. By (19) we see that ‖·‖X2 is de�nite on X2 hene that it is a norm.Moreover, (X2; ‖ · ‖X2) is a Banah spae.Let i ∈ {1; : : : ; d}. We easily see that ‖(U∗i )nf‖X2 −→ 0 as n → ∞.Hene, U∗i is mean ergodi on X2 (with no �xed points), that is

X2 = (I − U∗i )X2X2 :Then, it follows that
X2 = ∏16i6d(I − U∗i )X2X2 : (21)



252 CH. CUNY, J. DEDECKER, D. VOLN�YDe�ne a linear operator D on X2 by setting
Df := ∑n∈Nd d∏i=1 ((U∗i )ni − Ui(U∗i )ni+1) f:Let us observe that if f = ∏16i6d(I − U∗i )g with g ∈ X2, then Df =

∏16i6d(I − UiU∗i )g. Obviously,
‖D(f)‖2 6 ‖f‖X2 : (22)Let us prove (20) with d = D(f). Let us admit for a while that (20)holds whenever f belongs to ∏16i6d(I − U∗i )X2. Let us show then that(20) holds for every f ∈ X2.Let f ∈ X2. Let " > 0. By (21), there exists g ∈ X2 suh that

∥∥∥f −
∏16i6d(I − U∗i )g∥∥∥X2 < ":For every n ∈ N

d, we have, setting ~g := ∏16i6d(I − U∗i )g,
∣∣∣

∑0�k�n(Ukf − UkDf)∣∣∣ 6

∣∣∣
∑0�k�n (Ukf − Uk~g) ∣∣∣+ ∣∣∣

∑0�k�n (Ukh− UkD~g) ∣∣∣+ ∣∣∣
∑0�k�n (UkD(f − ~g)) ∣∣∣:Using (15) to deal with the �rst term above and (22) and (5) to deal withthe third term, and sine we admit for the moment that (20) holds for ~g,we infer thatlim supn1;:::;nd→∞

1n1 · · ·ndE( max1�k�n ∣∣∣
∑0�i�kU if − U id∣∣∣2) 6 C";and (20) follows by letting " → 0.It remains to deal with the ase where f = ∏16i6d(I − U∗i )g, for someg ∈ X2.To do so we use the following simple identity (see also Gordin [9℄, Propo-sition 1): for i ∈ {1; : : : ; d}, I − U∗i = I − UiU∗i + (Ui − I)U∗i :



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 253Let f = ∏16i6d(I − U∗i )g with g ∈ X2. We havef = Df + ∑

E⊂{1;:::;d};
E6=∅

∏i∈E(I − UiU∗i ) ∏j∈E
(Uj − I)U∗j g := Df + h: (23)The proof relies on the fat that the remainder in (23) (i.e. h) behaveslike a oboundary in some \diretions" and like a sum of reverse martingaledi�erenes in the other \diretions". For the sake of simpliity, we onlyprove the results for d = 2, but the general ase an be handled similarly.We havef −Df = (I − U1U∗1 )(U2 − I)U∗2 g + (I − U2U∗2 )(U1 − I)U∗1 g+ (U1 − I)(U2 − I)U∗1U∗2 g:For every 0 6 k1 6 n1 and every 0 6 k2 6 n2, we have

∑06i16k1 U i11 ∑06i26k2 U i22 (I − U2U∗2 )(U1 − I)U∗1 g = (Uk11 − I)
∑06i26k2 U i11 (I − U2U∗2 )U∗1 g:De�ne Zk1;n2 := max16k26n2 | ∑06i26k2 U i22 (I − U2U∗2 )Uk11 U∗1 g|. For everyA > 0, we havemax16k16n1 max16k26n2 ∣∣∣

∑06i16k1 U i11 ∑06i26k2 U i22 (I − U2U∗2 )(U1 − I)U∗1 g∣∣∣2
6 2|Z0;n2 |2 + 2n2A2 + 2 ∑06k16n1 ∣∣∣Zk1;k21{|Zk1;n2 |>A√n2}∣∣∣2 ;and, by stationarityE( max16k26n2 max16k16n1 ∣∣∣

∑06i16k1 U i11 ∑06i26k2 U i22 (I − U2U∗2 )(U1 − I)U∗1 g∣∣∣2)
6 2E (

|Z0;n2 |2) + 2n2A2 + 2n1 E (∣∣∣Z0;n21{|Z0;n2 |>A√n2}∣∣∣2) :



254 CH. CUNY, J. DEDECKER, D. VOLN�YSine, (Z20;n2=n2)n2>1 is uniformly integrable, it follows that1n1n2 E

( max16k26n2 max16k16n1 ∣∣∣
∑06i16k1 U i11 ∑06i26k2 U i22 (I − U2U∗2 )(U1 − I)U∗1 g∣∣∣2)

−−−−−−→n1;n2→∞

0:We may deal similarly with the sum assoiated with the term (I −U1U∗1 )(U2 − I)U∗2 g. To deal with the sum assoiated with the term (U1 −I)− U2 − I)U∗1 )U∗2 g is somehow easier.To �nish the proof of the theorem, it remains to identify ‖Df‖22. But,this follows by applying indutively Lemma 7, notiing that
∑n∈Nd d∏i=1 ((U∗i )ni − Ui(U∗i )ni+1) = d∏i=1 ∑ki∈N

((U∗i )ki − Ui(U∗i )ki+1)and using the fat that (U1; : : : ; Ud) is ompletely ommuting. �

§5. Expanding endomorphisms of the m-dimensional torusLet A be a m×m (m > 1) matrix with integer entries. We say that Ais expanding if all its eigenvalues have modulus stritly greater than 1.A indues a transformation �A of the m-dimensional torus [0; 1)m, pre-serving the Lebesgue{Haar measure �. We denote by UA the orrespondingKoopman operator, and by U∗A the Perron{Frobenius operator.Let us give a simple ondition under whih �A and �B are ompletelyommuting.Lemma 9. Let A and B be two expanding m × m (m > 1) matrieswith integer entries. Assume that A and B ommutes and that they haveoprime determinants. Then, �A and �B are ompletely ommuting.Proof. We have to prove that U∗AUB = UBU∗A. Let � be representativesof Z
m=AZ

m with distint images in Z
m=AZ

m. By (34) (using that A−1and B ommute), it suÆes to prove that B indues a bijetion (modulo
Z
m) of the set (A−1)∈�.Let ; ′ ∈ � be suh that there exists � ∈ Z

m suh that BA−1 =BA−1′ + �. Set Æ :=  − ′ ∈ Z
m. Writing A−1 = (detA)−1 ~A, where~A is the adjugate matrix of A (with integer entries) and similarly, B−1 =(detB)−1 ~B, we see that (detB) ~AÆ = (detA) ~B�:



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 255Sine detB ∧ detA = 1, by the Gauss lemma, we infer that det; A dividesall entries ~AÆ, hene that A−1Æ ∈ Z
m and Æ ∈ AZ

m. By de�nition of �,we see that  = ′ and the lemma is proved. �The fat that A and B have oprime determinants is by no mean nees-sary for �A and �B to be ompletely ommuting as one may see from thefollowing basi example: A = ( 2 00 3 ) and B = ( 3 00 2 ).The next proposition is an easy onsequene of a result by Fan [7℄ (seeProposition 13 of the Appendix). Reall that the modulus of ontinuity inL2 is given by 
2;f (Æ) := sup06|x|6Æ ‖f(·+ x)− f‖2 ;where |x| stands for the Eulidean norm of x ∈ [0; 1)m.Proposition 10. Let A1; : : : ; Ad be ommuting expanding m×m matrieswith integral entries. Let �min > 1 be the in�mum of the modulus of theireigenvalues. There exists C > 0 suh that, for every f ∈ L2(�) and everyn1; : : : ; nd ∈ N,
‖(U∗A1)n1 · · · (U∗Ad)ndf‖2 6 
2;f (C�−(n1+···+nd)min ) : (24)Proof. Let us �rst notie that (U∗A1)n1 · · · (U∗Ad)nd is the Perron{Frobeniusoperator assoiated with �Adnd ···A1n1 . Now, sine the matries are om-muting, it follows from standard linear algebra results, that the set of theeigenvalues of Adnd · · ·A1n1 is inluded in

{�dnd · · ·�1n1 : �i is an eigenvalue of Ai}:In partiular, Adnd · · ·A1n1 is an expanding matrix. Then, the result fol-lows from Proposition 13, notiing that� (A−n11 · · ·A−ndd ([0; 1℄m)) 6 C�−(n1+···+nd)min ;where � (A−n11 · · ·A−ndd ([0; 1℄m)) is the diameter ofA−n11 · · ·A−ndd ([0; 1℄m).
�We shall use the following notation:U i = U i1A1 · · ·U idAdfor every (i1; : : : ; id)∈N

d.



256 CH. CUNY, J. DEDECKER, D. VOLN�YTheorem 11. Let d > 1. Let f ∈ L2([0; 1)m; �) entered suh that1∫0 | log(t)|(d−2)=2t 
2;f (t) dt < ∞: (25)Let A1; : : : ; Ad be expanding m×m matries with integral entries. Assumethat they are ommuting and that their determinants are pairwise oprime.Then, there exists a stationary d-�eld of reverse martingale di�erenes(Un(d))n∈Nd with d ∈ L2(�) suh thatE( max1�k�n ∣∣∣
∑0�i�kU if − U id∣∣∣2) = o(n1 · · ·nd) as n1; : : : ; nd → ∞: (26)In partiular, we have an invariane priniple.Remark. We see that if 
2;f (t) = o(| log(t)|−d=2−") (t → 0) (25) holds.A CLT has been obtained by Cohen and Conze [2℄ under the ondition
2;f (t) = o(| log(t)|−d−") (t → 0). However, the results of [2℄ apply togeneral arrays and to ommuting families of general endomorphisms (in-luding for instane automorphisms) induing a totally ergodi N

d-ation(see their paper for more informations).Proof. It follows from (31) and a density argument that ‖(U∗Ai)nf‖2 → 0as n → ∞ for every entered f ∈ L2(�) and every i ∈ {1; : : : ; d}. Hene,by Theorem 8, we just have to hek that (14) holds. Using (31), we seethat (14) will hold provided that
∑n1;:::;nd∈N∗


2;f (C�−(n1+···+nd)min )(n1 · · ·nd)1=2 <∞ : (27)Now, making the hange of index n1 + · · ·+ nd → nd,
∑n1;:::;nd∈N∗


2;f (C�−(n1+···+nd)min )(n1 · · ·nd)1=2= ∑n1;:::;nd−1∈N∗

∑nd>n−1+···+nd−1+1 
2;f (C�−ndmin )(n1 · · · (nd − n1 − · · · − nd−1))1=2 :
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∑16n16m−1 1√n1(m− n1)

6
√2=m ∑16n16m=2 1√n1 +√2=m ∑m=26n16m−1 1√m− n1 6 D;for a onstant D > 0 independent of m.Hene (27) holds if and only if

∑nd>1 ∑n2;:::;nd−1∈N∗:n2+···+nd−16nd−1 
2;f (C�ndmin)√n2 · · ·nd−2
6

∑nd>1( ∑16j6nd 1√j )d−2
2;f (C�ndmin)
6 C ∑nd>1n(d−2)=2d 
2;f (C�ndmin) < ∞;whih is equivalent to (25) by omparing series and integrals. �We shall now give a suÆient ondition in terms of Fourier oeÆients.Lemma 12. Let f ∈ L2([0; 1)m) with Fourier oeÆients (n(f))n∈Zm.For every k > 1, de�neAk(f) := max16i6m ∑n∈Zm : |ni|>k |n(f)|2:If

∑k>1 (log k)(d−2)=2k (Ak(f))1=2 < ∞ (28)then (25) holds.Remark. Note that (28) holds as soon as Ak(f) = O((log k)−d−"); forsome " > 0. Conversely, if (28) is satis�ed, sine (Ak(f))k>1 is non-inreasing, we see that, Ak(f) = o((log k)−d). Note also that Levin [16℄proved the CLT (he also announed the weak invariane priniple in [16℄)under a ondition that is easily seen to be equivalent to
∑k>1 (log k)d−1k (Ak(f))1=2 < ∞:



258 CH. CUNY, J. DEDECKER, D. VOLN�YHe worked in the same setting as Cohen and Conze [2℄.Proof. Let us �rst notie that (25) is equivalent to
∑k>1 (log k)(d−2)=2k 
2;f (1=k) < ∞:Let k > 1 and x ∈ R
m with |x| 6 1=k. We have

‖f(·+ x)− f‖22 = ∑n∈Zm |n(f)|2|1− e2i�〈n;x〉|2:In partiular, majorizing |1 − e2i�〈n;x〉| either by 2 or by 2�|n| |x|, we seethat(
2;f (1=k))2 6
∑n∈{−k;:::;k}m |n(f)|2 4�2|n|2k2 +Cm m∑i=1 ∑n∈Zm :|ni|>k |n(f)|2

6
~Cmk2 m∑i=1 ∑n∈Zm :|ni|6kn2i |n(f)|2 + Cm m∑i=1 ∑n∈Zm :|ni|>k |n(f)|2;for two positive onstants Cm and �Cm. The seond sum on right hand anbe handled diretly by using (28), and it remains to prove that

∑k>1 (log k)(d−2)=2k2 (Bk(f))1=2 < ∞; (29)where Bk(f) := max16i6m ∑n∈Zm : |ni|6kn2i |n(f)|2:Let us prove that (28) implies (29). LetA(i)k := ∑n∈Zm : |ni|>k |n(f)|2:We have
∑n∈Zm : |ni|6kn2i |n(f)|2= k∑j=0 j2(A(i)j −A(i)j+1)= k∑j=1A(i)j (j2−(j−1)2)−k2A(i)k+1:Hene, we infer that (29) hold as soon asB := ∑k>1 (log k)(d−2)=2k2 ( k∑j=1 jAj(f))1=2 < ∞; (30)



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 259To prove that (28) implies (30), we �rst notie that (28) is equivalent to
∑n>0n(d−2)=2√A2n(f) < ∞(to see this it suÆes to use the monotiity of Ak). NextB = ∞∑n=0 2n+1∑k=2n (log k)(d−2)=2k2 ( k∑j=1 jAj(f))1=2

6 C ∞∑n=0 n(d−2)=22n ( 2n+1∑j=1 jAj(f))1=2:In the same way, using the monotiity of Ak,
( 2n+1∑j=1 jAj(f))1=2 = ( n∑k=0 2k+1∑j=2k jAj)1=2

6

(2 n∑k=0 22kA2k)1=2
6

√2 n∑k=0 2k√A2k :It follows thatB 6 C ∞∑n=0 n(d−2)=22n n∑k=0 2k√A2k 6 D∑k>0 k(d−2)=2√A2k (f) <∞whih ompletes the proof. �

§6. AppendixProposition 10 of Setion 5 is a onsequene of the following proposition,due to Fan [7℄. We shall give the proof for the sake of ompleteness andbeause the referene [7℄ is hard to obtain.Proposition 13 (Fan [7℄). There exists C > 0 suh that for every ex-panding m×m matries A with integral entries, for every f ∈ L2(�) with�(f) = 0,
‖U∗Af‖2 6 
2;f (� (A−1([0; 1℄m))) ; (31)where � (A−1([0; 1℄m)) is the diameter of A−1([0; 1℄m).



260 CH. CUNY, J. DEDECKER, D. VOLN�YProof. Let us reall some fats about tiling and Perron{Frobenius oper-ators assoiated with expanding matries.Let A be an expanding m ×m matrix. Let � ⊂ Z
m be representativesof Z

m=AZ
m. Then, see e.g. [3℄, there exists a unique ompat set K ⊂ R

m,suh that K = ∪∈�(A−1K +A−1) (32)and an integer q > 1 suh that
∑n∈Zm 1K+n = q �-almost everywhere.Moreover, for every ; ′ ∈ � with  6= ′, �((A−1K +A−1) ∩ (A−1K +A−1′)) = 0. Using that, learly,1K = ∑n∈Zd 1((K+n)∩[0;1℄m)−n;we infer that for every loally integrable f ,q ∫[0;1℄m f d� = ∫K f d�: (33)It follows then that the Perron{Frobenius operator U∗A is given byU∗Af(x) = 1detA ∑∈� f (A−1x+A−1) : (34)Let f ∈ L2(�) with �(f) = 0. Using that U∗A preserves � and makingthe hange of variable y → y + x, we infer thatU∗Af(x)= 1q detA ∑∈�∫K (f(A−1x+A−1)− f(A−1(y + x) +A−1)) �(dy):Hene, using Jensen's inequality (reall that �(K) = q),(U∗Af)2

6
1q detA ∑∈�∫K (f(A−1x+A−1)− f(A−1(y + x) +A−1))2 �(dy) :



A FUNCTIONAL CLT FOR COMMUTING TRANSFORMATIONS 261Making the hange of variable x → A−1x+A−1, we infer that
‖U∗Af‖22

6
∑∈�( ∫K �(dy) ∫K (f(A−1x+A−1)−f(A−1(y+x)+A−1))2 �(dx))1=2

6
1q2 ∑∈�∫K �(dy) ∫A−1K+A−1 (f(x)− f(x+A−1y))2 �(dx)= ∫[0;1℄m ∥∥f − f(·+A−1y)∥∥22 �(dy) ;where we have used (32) and (33). The announed result learly follows.
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